
TECHNICAL REPORT

^COLLECTING AND CATEGORIZING SOFTWARE ERROR
DATA IN AN INDUSTRIAL ENVIRONMENT

BY

THOMAS J. OSTRAND*

AND

ELAINE J. WEYUKER**

TECHNICAL REPORT #47

AUGUST 19 8 2

I

NEW YORK UNIVERSITY

;

H
KJ

Department of Computer Science

Courant Institute of Mathematical Sciences

251 MERCER STREET, NEW YORK, N.Y. 10012

COLLECTING AND CATEGORIZING SOFTWARE ERROR
DATA IN AN INDUSTRIAL ENVIRONMENT

BY

THOMAS J. OSTRAND*

AND

ELAINE J. WEYUKER**

TECHNICAL REPORT #47

AUGUST 198 2

* Systems and Software Research
Sperry Univac
Blue Bell, PA 19424

** Department cf Computer Science
Courant Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, New York 10012

This research was supported in part by the National
Science Foundation under Grant MCS-82-001167

.

C>

ABSTRACT

A study has been made of the software errors committed

during development of an interactive special-purpose editor

system. This product has been followed during nine months of

coding, unit testing, function testing, and system testing.

Detected errors and their fixes have been described by testers

and debuggers. To help analyze the relationship of error

characteristics to the various aspects of the software

development process, a new error categorization scheme has been

developed. Within this scheme, 174 errors were classified. For

each error, we asked the programmers to select the most likely

cause of the error, report the stage of the software development

cycle in which the error was created and first noticed, and the

circumstances of its detection and isolation, including time

required, techniques tried, and successful techniques.

The results collected in this study are compared to results

from earlier studies, and similarities and differences are noted.

1 . Introduction

The assessment of many software development and validation

methods suffers from a lack of factual and statistical •

information characterizing their effectiveness, particularly in a

real production environment.

For the past two years, we have been involved in the design

and execution of a study of software errors at Sperry Univac. We

have gathered information describing types of errors, the methods

used to detect their presence and isolate problems, and the

difficulty of detection, isolation, and correction. We also

attempted to determine when an error enters the product being

developed, how much time elapses until it is detected, and

perhaps most difficult, to determine the real underlying cause of

the error's existence.

The study's specific goals include finding answers to the

following questions:

— how do the types, frequencies, and difficulty of detection and

isolation of errors vary over the steps of development and use

of software?

-- can the trends in software error statistics reported in

earlier studies be verified?

-- can a usable and practical method of error categorization be

developed?

In addition, error information collected now will later be used

as baseline data for evaluating the effect on the number and

types of errors of different software development methods and

tools .

-1-

-2-

In this paper we report the results obtained from collecting

error data for about nine months. One medium sized project has

been followed from approximately midway through coding to the

completion of system testing. The product consists of about

10000 lines of high level source code and 70000 bytes of object

code. Program design and coding for the project were done by

three programmers over ten months, after the initial

specification had been completed. The implementation represents

approximately 18 person-months of effort. An additional five

months were used for function and system testing by independent

test groups, and for the consequent changes to the product. The

product has now passed both function and system testing and has

just been released to customers.

2. The Collection of Data

Previous error studies have given us valuable insights into

the way to organize data collection, and the type of information

to collect [3, 5, 8, 10, 13, 14, 16, 17, 18, 20, 21]. We have

drawn especially from Basili [M], Basili et al [6], Thayer et al

[18], and Weiss [20, 21] in developing our collection goals and

method. Our two-page Change Report form, shown in Figure 1, is

modelled after those of Weiss [21]. The form is used during the

entire development cycle to describe changes made to the product.

During and after function testing, error symptoms are not entered

on the Change Report, since a standard Univac form, the Software

User Report (SUR), is used for this purpose. In those cases, all

remaining questions are answered on the Change Report form and a

copy of the SUR is attached to the form.

-3-

CHANGE REPORT

Project:
Date problea found or

SUR date, if applicable:

Unit (3) requiring change:

Programming language:

PROBLEM DETECTION
Methods Problem
used noticed by

Requirements Review
Design Review
Desk Checking by Progranmer .

Desk Checking by Other Person
Code Review
Teat Runs by Programmer . . ,

Test Runs by Other Person . .

Execution under Trace Control
Examining Dump
Special Debugging Code . . .

PROBLEM ISOLATIOII (debugging)

Methods Successful
tried method

Internal SUR {it

Customer SUR {t

Other (

Other (

Other (

.t.

Description of problem symptoms (not needed if this problem is reported on a SUR);

Description of actual problem:

Date and description of fix (Give as much detail as possible);

Was the original code or documentation
that you just changed

[] written entirely by you

[] written partly by you

[] not written by you at all

RETEST (for SUR writer only) Date:.

[] Passed [J Failed

[] with same ayrnptoms

[] with new syraptoms

give new 3UH ^

Figure 1. Change Report Form

-4-

TIME FOR DEBUGGING AND FIXING
. under 1 hour

Time Used to

Isolate Problem []

Time Used to
Make Correction []

1 hour to U hours

C]

4 hours to 1 day

[]

C]

over 1 day

C]

[]

CHANGES WERE MADE TO
Code

[] 5 or fewer instructions in 1 procedure [] more than 5 instructions in 1 proc

[] 2 or more procs in 1 module [] procs in more than 1 module

Documentation
[] Documentation in code [] High-level specification (in CPSD [] or ?D [])

[] Program specification (in SDS) [] Interface specification (in SDS)

[] User documentation : : z . ~ .•
'. .

STEPS OF SW

DEVELOPMENT

Requirements (SOR) . . .

Feasibility
Definition (PD or CPSD) .

Program Design (SDS) . .

Coding
Unit Testing
Integration
Function Testing
System Test 4 Qual . . .

First Release
Unknown

WHEN WAS PBOBLEH
FIRST NOTICED '

"^
.. DURING WHICH STEP

'

WAS PHOBLE-l CREATED

WHY DO YOU THINK THE PROBLEM OCCURRED?

Requirements or [] specification changed for [] this unit or [] other unit.
Requirements were unclear, incomplete, ambiguous, etc.
Specification was unclear, incomplete, ambiguous, etc.
Programming language doesn't do what manual claims it dees.
Programmer misunderstood prograrcming language.
Programmer misunderstood development system.
Clerical error (Terminal, keypunching, unclear handwriting, etc.)
Communication failure between people (e.g., misunderstanding of subroutine interface)
Programmer error
A previous fix led to this problem
Other (specify)

:

Please give any other information that may help to describe what the error is,

how it was found, or e.xplain its cause.

Figure 1. Change Report Form

-5-

The form does not ask the programmer to categorize program

errors. Rather, in its only part which requires substantial

writing, the programmer describes the error symptoms, the actual

problem discovered, and the correction made. From these

descriptions we have developed a new error classification scheme.

This attribute categorization scheme, described in the next

section, is more accurate in defining errors, more flexible, and

easier to use than previous classifications. The written error

descriptions are also valuable for data validation interviews

with the programmers, since they enable accurate recall of an

error's circumstances. The valiciat'io.n' interviews are used to

confirm that programmers are interpreting the check-off

categories on the form consistently, and to eliminate ambiguous

or unclear descriptions of errors.

The Change Report form includes several questions which try

to pinpoint the reason that the error entered the software.

Although the ultimate objective of software error analysis is to

understand the underlying causes of errors, of the studies

referenced above, only Weiss [20] has asked similar questions of

his study participants. Other researchers have attempted to

deduce error causes from knowledge of the programming environment

and types of errors detected. For example, although the goals of

his study are to enumerate error causes and find ways to prevent

their occurrence, Endres [8] did not collect any direct

information about specific causes. He defines six broad

categories of error cause, and then presents some reasonable

guesses as to causes of various error types, possible preventive

measures, and detection methods.

6-

The categorization scheme and data on frequency of various

error types and their underlying causes can be used to develop

and evaluate new strategies for program testing. Goodenough [11]

has pointed out the advantages of developing tests with the

purpose of detecting specific errors. Several recently proposed

testing techniques are based on anticipation of frequently

occurring software errors. These techniques include error-based

testing [15], mutation testing [1,7], error-sensitive test cases

[9], and functional testing [12]. Since these methods are

intended to be applied during both unit and function testing, we

have begun collection of error data as early as possible in the

software development process. Approximately one-third of the

errors reported for the project were discovered during unit

testing. This contrasts with most previous software error

studies, which have begun collecting data after the software has

passed unit testing and been integrated into a system complete

enough for functional testing to begin.

Before starting error data reporting, the programmers

working on the project completed a form describing their general

experience, their experience with the project's implementation

language and system, and their knowledge of various software

development techniques and languages. The project manager

completed a form recording the project's time schedule, the

resources available, methods to be used during the various

development steps, and tools available to the project personnel.

He was asked to update this project profile whenever any

significant changes, such as a revised schedule, took place.

This background information will be used as a basis for comparing

-7-

error statistics of this project with results collected from

other projects.

3 . Error Categorization

A major goal of this research is to devise a usable and

practical scheme for categorizing software errors. Such a scheme

is essential for understanding and controlling the factors which

affect software quality. Although several categorization schemes

have been used in previous studies [8,17,18], there are serious

problems with all of them. ' These problems are discussed in [191;

they include ambiguous, overlapping, and incomplete categories,

too many categories, and confusion of error symptoms, error

causes, and actual errors.

The categorization scheme we have developed attempts to make

assigning a category as simple and mechanical as possible,

thereby reducing the possibility of misclassification , The usual

approach to classification is to place a given error at an

appropriate node in a tree of categories. The TRW system [18] is

an example of such a scheme. The primary characteristic of a

tree scheme is the requirement to place each error in a unique

category that simultaneously represents all its features. The

many characteristics of a software error and the large number of

categories in tree schemes make them difficult to use and subject

to the problems mentioned above.

A slightly different approach to classification is the

five-dimensional scheme proposed by Amory and Clapp [2]. Errors

are classified in the dimensions WHERE, WHAT, HOW, WHEN, and WHY.

-8-

Within each of these dimensions is a hierarchy or tree of

characteristics. Classification of a specific error consists of

assigning one or more nodes from each tree to the error, and then

attaching more detailed information describing the error to each

assigned node. The scheme's five dimensions provide a broad

description of the error; at the same time the tree structure

allows very detailed information to be recorded.

Amory and Clapp intended "to define a framework which was

open-ended and extendible and could be adapted to the particular

needs and orientations of users wishing to classify errors." To

our knowledge, no one has reported using this classification

scheme in a study.

Our error categorization scheme describes only the

programming aspects of errors. The scheme records information

roughly equivalent to the dimensions HOW and WHAT of Amory and

Clapp's method. (However, our Change Report form collects

sufficient information to identify other aspects of an error,

including the three dimensions WHERE, WHEN, and WHY.)

Since even the programming aspects of an error are

multi-dimensional, we do not assign an error to a single

category, as in a tree scheme. Instead, we attempt to identify

the error's characteristics in several distinct areas, including

major category, type, presence, and use of data. There are only

a few possible values for each area, making it easy to choose the

correct one. Taken together, all the area values for a given

error should provide even more detailed information about the

error than a unique node in a category tree.

-9-

We call this approach an attr ibute categorization scheme
;

the various areas whose values describe an error are similar to

the attributes of a relation in a relational database. A

significant advantage to this method is the relative ease of

recording additional information about each error by adding new

attributes to the scheme. The characteristics already recorded

for an error do not become invalid when the new information is

added .

The attributes described below were defined in order to

classify the errors collected from the Univac project. They

obviously do not include all potenti-al error characteristics; as

we monitor additional projects, and collect error reports from

the operational use and maintenance phases, the scheme will be

extended to include other characteristics.

Major Category

An error's major category identifies what type of code was

changed to fix the error, and corresponds roughly to the first

level branching of an error category tree. Errors from the

Univac project have been placed in the following major

categories

.

Data Definition - Code which defines constants, storage areas,

control codes, etc.

Data Handling - Code which modifies or initializes the values

of V ar iables .

Test - Code which evaluates a condition and branches

according to the result.

Test plus Process - Code which evaluates a condition and performs a

-10-

Documentation

System -

Not an Error -

specific computation if the test is satisfied.

Written description of the product.

This category describes any error in the

program's environment, including operating system,

compiler, hardware, etc.

This category is provided for problem

reports which are resolved without changing

any part of the system or product.

Type
. JB -iSQC- -:

The type of an error modifies the major category. For a major

category involving data, the type can be one of the following:

Address - Information which locates values in memory.

Typical examples are an array index, list pointer,

offset into a defined storage area, and the name

of a table of continuation codes.

Control - Information to determine flow of control,

such as entries in a branch table or codes

identifying different output display formats.

Data - Primary information which is processed,

read , or wr itten .

For a major category involving a test, the types are:

Loop - If the test controls a loop.

Branch - If the test controls a multiple-way branch

such as a simple IF or a CASE statement.

-11-

Pr esence

The possible values are

Omitted - Something was left out.

Superfluous - Something was present that should not

have been

.

Incorrect - Something present had to be corrected

Use

This attribute has been used only rarely in the errors reported

on to date. It describes the operation being performed in a data

handling error. The possible values are

Initialize -

Set -

Update -

Variable x is initialized with value k if

k is independent of the present value of x and

subsequent values of x will depend on k.

Variable x is set to value k if k is independent

of the present value of x and subsequent values of

X will be independent of k.

Variable x is updated with value k if k depends

on the present value of x.

To illustrate the categorization scheme's use, we give two

(slightly edited) examples of problem descriptions and show how

the errors were classified. Problem 1 was classified as a single

data handling error. Problem 2 was classified as two errors, an

omitted test plus processing and an omitted data definition.

Problem 1

:

Descr iption of error symptoms :

Lines which needed to be created at the end of Section A were

-12-

not created

.

Description of actual problem :

A counter indicating the number of lines to be created was

cleared at the wrong point in the module.

Description of fix :

Counter should have been initialized only at first time

Section A was entered. Initialization instruction was moved

to an existing processing block that was invoked only first

time Section A was entered. ,

Problem 2:— '9 .. C \ -.

Description of error syinptoms-:.^ ^ ^.^ .^., -

When output screen C was redisplayed to add more names to the

destination-table, source lines were created with the

"indexed-by" phrase overlaying the "destination-table" phrase

Description of actual pro b 1 em :

Code to eliminate the reserved word "DESTINATION-TABLE" on

second use was omitted. A partial line was created but not

written; then next line was created without clearing the

partial line. Result was jumbled output.

Description of fix :

New CASE statement added to handle situation. New constants

added for screen C to allow the new CASE processing.

Figure 2 shows the three error categorizations that resulted

from these two problems.

-13-

Ma jor Category Type

Problem 1 Data Handling Control
Problem 2 Test plus Processing Branch
Problem 2 Data Definition Control

Presence Use

Incorrect Initialization
Omit
Omit

Figure 2. Error Categorization

4. Data Collection Results

The Univac product which was followed for this error study

had a two-year history from its initial statement of requirements

to its certification by the system testing organization. The

product is a special-purpose ed ifo'r^-us«-d for interactive writing

and maintenance of high-level so uT" be" programs , The initial

specification (also the first version "of the user manual) was

completed by month 5. The system's overall structure was

determined and a program design in pseudo-code completed by month

10. Coding began in month 10 and by month 16 enough had been

completed for an initial version of the system to run.

Function testing by an independent quality assurance group

began in month 17, and system testing began in month 22. The

editor was certified to have met system testing requirements in

the middle of month 23.

We began monitoring the project for changes at the beginning

of month 15, shortly after the programmers had started unit

testing their modules. A small amount of program design was

still going on at this time, accounting for two errors discovered

during the program design phase. Every Change Report for the

editor was completed by the original programming team. During

unit testing, the programmers detected errors and filled out the

-14-

entire form themselves. During function and system testing,

errors were detected by independent testers who entered a date

and identification number on the Change Report, and described the

error symptoms on a Software User Report. The two Reports were

then sent to the programmers who analyzed the problem, made

necessary changes, and completed the Change Report.

A total of 174 Change Report forms were completed; 160 of

these represented errors. The others included 7 compiler or

system bugs, 3 cases in which an independent tester misunderstood

the specification, 3 changes in the specification, and 1 case in

which the programmer deliberately did not fulfill the

specification since he felt it was too difficult to do. This

case ultimately led to a change in the specification.

In 15 cases, a given response was categorized as containing

two distinct types of error -- frequently a data definition error

and a test. In one case a response led to three categories: two

different types of omitted data definition information as well as

omitted test plus processing code. For questions involving error

categorizations, therefore, the database contains 177 entries.

For most other queries, such as those involving when the error

was made and why the error was made, there are 160 entries, since

that is the number of distinct errors made.

Table 1 gives a capsule definition of the development steps

monitored, and shows the total number of errors detected during

each phase.

-15-

Number
of

Step Description Performed by Errors Percent

Program Creation of system's Developers 2 1$
Design modular structure..

High-level description
(pseudo-code) of
system's algorithms.

Coding Translation of Developers 8 5%
program design from
pseudo-code to
implementation language.

Unit Execution of separate Developers test 46 29?
testing modules. Test cases their own and

designed by developers each other's
attempt to perform code.
module's functions. :

Function Execution of entire Separate testing 101 63%
testing product from user's group, using a

point of view . ^ predefined test
Attempts to execute plan developed
all possible functions from user manual.
of product.

System , Execution of product Separate system 3 2%
testing in environment of the test group.

operating system.
Tests behavior of
product-product interfaces.

TABLE 1. Software Development Steps and Errors Found

Table 2 shows the distribution of the 162 non-clerical

errors by major category:

Total
Percent

33
23
20
19

3

1

1

Major

-16-

For data handling and data definition errors, the type

attribute describes the data that was involved in the error. The

three classes, address, control, and data, are defined in Section

3. Table 3 shows the results of this finer categorization.

DATA HANDLING DATA DEFINITION

Type of Total Total
data error number Percent number Percent

address 14 37 5 9

control 10 26 24 44
data 14 37 25 46

TABLE 3. Types of Data Errors

For data handling errors, we also attempted to categorize

the error by use. In each case we tried to determine whether the

error involved an initialization, a setting, or an updating of a

variable. Our use of these terms is also defined in Section 3-

Of the 38 data handling errors, we were able to make a use

determination in 32 cases. The results are shown in Table 4.

Use of
variable number Percent

Total
number

-17-

Total

-18-

responses which were nonclerical errors were categorized as

involving a test (either a test statement alone (19%) or a test

statement plus processing (20%)). Of these, 81% involved omitted

code and the remaining 19% incorrect code. In no instance did a

programmer describe an error involving a superfluous test. Of

the errors involving a test statement alone, 65% involved omitted

code and 35% incorrect code. For the test plus processing

category, the figures were 97% omitted versus 3% incorrect.

Of the non-clerical data definition errors, 31% were

omissions while 69% involved incorrect data definitions. Notice

that while the majority of all errors involving tests were

instances of omitted code, less than ~one-third of the data

definition errors were omissions. For data handling errors, 45%

involved omitted code, 50% incorrect code, and 5% superfluous

code.

The large number of errors of omission, especially those

involving tests, is an important signal about program testing

techniques. Many popular methods, including branch testing, rely

solely on analysis of the existing program code to generate

tests. The above figures show the need for developing program

tests which are based on the problem's requirements and

specifications as well.

Tables 6 and 7 report on the effort required to isolate

errors (i.e., to determine the problem), and the effort to fix

errors (i.e., to actually write and install the correction.)

-19-

Time to

-20-

UNIT TESTING FUNCTION TESTING

Time to

-21-

Table 10 shows the distribution of responses to the question

"Why do you think the error was made?" Of the 150 errors, 68%

were categorized by the programmer as programmer errors, 4% as a

programmer misunderstanding of the language, 2% as due to a

previous fix, and ^% as a human communcation error involving the

programmer. Thus a total of 75% of the errors were categorized

by the programmer as a failing of a programmer (as opposed to

clerical errors or a failing of the specification writer). Such

a high percentage of self-attributed errors was unexpected.

Weiss [21] reported that up' to' 1 9%' of the errors originally

described as "clerical" by programmers were reclassified after

validation. For about two-thirds (1 1 8) of our reported errors we

also have information on whether the person correcting the error

was the original writer of the code-. Although only 10 errors out

of 118 were not corrected by the original writer, in none of

these 10 cases was the problem attributed to programmer error.

The programmers were thus harsher in assigning blame to

themselves than to their colleagues. We believe that these

results reflect an especially well-motivated and mature group of

programmers .

These "failing of a programmer errors" are not distributed

evenly over all the reported errors. The programmers attributed

94% of "incorrect" code errors, 100% of "superfluous" code

errors, but only 70% of "omitted" code errors to programmer

mistakes. The remaining 30% of "omitted" errors was attributed

to unclear, incomplete, or ambiguous specifications. Since

omitted code errors are among the most difficult to detect and

correct, this distribution shows the importance of producing

-22-

high-quality specifications before program design and coding

begin .

5 . Compar ison to Other Studies

In several areas, results collected from the Univac editor

project are very similar to those reported in other studies.

These similar results encourage us to believe that there is some

uniformity in the data collection methods, and validity to the

data from which we expect to learn how to improve our software

design and implementation methods.

The most striking common result running through the error

categorization studies is the predominance of errors involving

condition testing and associated processing. Furthermore, within

the set of errors involving tests, a substantial number are

errors of omission, where either an entire test was omitted, or a

case was left out of a Boolean expression being tested.

A high proportion of test errors appears in all the projects

which made up the TRW study. Counting test errors in the TRW

study is not completely straightforward, since different

categorization schemes were used. It is possible, however, to

extract subcategories which represent the same types of errors we

have classified as test-related. For the TRW projects,

test-related errors ranged from 11J to 36% of the total of all

recorded errors. Test-related errors of omission ranged from 65*

to 96* of the test errors, and 8% to 33% of all recorded errors.

Other studies did not provide the detailed category

breakdown needed to identify test-related errors. However,

certain categories are quite similar, and there is always a large

-23-

number of decision-related and omitted decision errors. In

Glass's study [10], out of 200 errors, 60 were classified as

occurrences of "omitted logic", and 11 (possibly overlapping with

the omitted logic category) as "IF statement too simple".

Presson [16] found that "logic errors" accounted for 31% to 63%

of the errors in the four development projects he analyzed. The

next most frequent category, over all the projects, was "database

errors" with 15% for one project. In the study by Mendis and

Gollis [14], "logic errors" were 30% of the total; the two next

most frequent were "computational errors" at 19% and

"documentation errors" a't'l3%". ~ 'Neitfier Presson nor Mendis and

Gollis characterized errors as "omitted" or "incorrect".

In the three latter studies th^e" class of "logic errors"

contains more than what we have called "test-related errors".

The term "logic" is interpreted in the broad sense of "design and

implementation of the algorithm to solve the problem".

A second area where our results are similar to those of

previous studies is the effort required to isolate and correct

software errors. Weiss [21] and Presson have collected this type

of information and the results can be directly compared. For

comparison with Presson's work we combined our categories of

under 1 hour and 1 to 4 hours. The overall trend is that the

large majority of errors are both isolated and fixed very easily,

each step usually requiring under four hours.

In Presson's projects, 57% to 89% of the errors were

isolated in under four hours, while 76% to 96% were fixed within

that time. The corresponding figures for the Univac project are

38% and 90%, respectively. Weiss monitored three projects at the

-24-

Software Engineering Laboratory and another at the Naval Research

Laboratory. He noticed similar figures for isolation and

correction effort, and with one exception, correction was again

generally easier than isolation.

In an effort to determine if errors discovered later in the

development process are more difficult to isolate and correct, we

calculated the percentages for errors detected before function

testing began, from the beginning of function testing to the

beginning of system testing, and after the beginning of system

testing. Since some of these a.CitJ.:Vcit'.i€3^ were going on in

parallel, this produces a different breakdown of errors than the

one in Tables 8 and 9, which is ^ccp-rding to the type of testing

which detected the error. There is, however, no apparent

increase in difficulty. We intend to continue following the

editor during use and maintenance and to watch for such a trend

to develop.

6 . Conclus ions

The three specific goals mentioned in the Introduction have

been partially achieved by this study.

First, we have studied the occurrence of error types and the

difficulty of error correction in relation to distinct steps of

the software development process. Some of the unexpected results

are that unit testing was very effective in detecting data

handling errors, but considerably less effective than function

testing in detecting data definition errors and errors involving

a test and associated processing. During unit testing, error

isolation tended to be more difficult than error fixing, while

-25-

during function testing this trend reversed and error fixing was

more difficult than error isolation.

Second, we found strong agreement with some results reported

in earlier error studies. In particular, all studies which

categorized errors found that errors involving test predicates

and combinations of tests and processing were by far the most

common type. Among these, errors of omission have always been a

large majority, leading to doubts about the value of test

generation techniques such as branch coverage that are based

solely on the existing program code-.- -

Third, the attribute categorization scheme was a useful and

practical method for classifyirig- the errors reported in this

study. The scheme needs further development to make it

applicable to broader types of errors, and we expect to add

attributes as they are needed when we accumulate additional error

descriptions .

Acknowledgement : We are very grateful for the cooperation and

assistance of Bob Hux, Bettye Scott, Jim Paul, Chris Rowan,

Reggie King, and Joanne Heimbrook of Sperry Univac. Without

their help the study could not have been done. Jim Paul was

especially generous with his time and willingness to explain

details of the editor system and to clarify error reports. We

are also grateful to Max Goldstein of the Courant Institute for

providing us access to the Ingres database system.

References

[I] Acree, A.T., R.A. DeMillo, T.J. Budd, R.J. Lipton, and F.G.
Sayward, "Mutation Analysis", Technical Report GIT-ICS-79/08,
Georgia Inst. Tech., Sept. 1979-

[2] Amory, W. and J. A. Clapp, "A Software Error Classification
Methodology", MTR-2648, Vol. VII, Mitre Corp., Bedford, MA, 30
June 1973.

[3] Baker, W.F., "Software Data Collection and Analysis: A

Real-Time System Project History", RADC-TR-77-1 92 , Rome Air
Development Center, Griffis AFB, NY, June 1977-

[4] Basili, V.R., "Data Collection Validation and Analysis",
Draft Software Metrics Panel Final Report, ed . A.J. Perils, F.G.
Sayward, and M. Shaw, Washington, DC, 30 June 1980.

[5] Basili, V.R. and D.M. Weiss, "Analyzing Error Data in the
Software Engineering Laboratory", Fourth Minnowbrook Workshop on
Software Performance Evaluation, Blue Mtn. Lake, NY, August 1981.

[6] Basili, V.R., M.V. Zelkowitz, F.E. McGarry, R.W. Reiter, W.F.
Truszkowski , and D.M. Weiss, "The Software Engineering
Laboratory", Tech. Report TR-535, U. Maryland Computer Science
Center, College Park, MD, May 1977.

[7] DeMillo, R.A., R.J. Lipton, and F.G. Sayward, "Hints on Test
Data Selection: Help for the Practicing Programmer", Computer ,

11(4), April 1978, 34-41.

[8] Endres, A., "An Analysis of Errors and Their Causes in System
Programs", IEEE Trans. Softw. Eng ., Vol SE-1, June 1975, 140-149.

[9] Foster, K.A., "Error-Sensitive Test Cases Analysis", IEEE
Trans. Softw. Eng ., Vol. SE-6, May 1980, 258-264.

[10] Glass, R.L., "Persistent Software Errors", IEEE Trans.
Softw. Eng ., Vol. SE-7, March 1981, 162-168.

[II] Goodenough, J.B., "The Ada Compiler Validation Capability",
Proc . ACM SIGPLAN Symp

.

on the Ada Programming Language , Boston,
Dec. 19M.

[12] Howden, W.E., "Completeness Criteria for Testing Elementary
Program Functions", U. Victoria Dept. of Mathematics, DM-212-IR,
May 1980.

[13] Litecky, C.R. and G.B. Davis, "A Study of Errors,
Error-Proneness , and Error Diagnosis in Cobol" , Comm . ACM , Vol.
19, January 1976, 33-37.

>i \H-S/.' \.Z^

Lrrori in Sc-ftwar* ?rogr3r>2", ?" vc . >^c: A I A A

?.' eciicting
•- e r 3 m

i »» ^ *

.

, > '- * ^"^ '' i '. ? * " * ^ - - -y * -^ ^ ' r r—^ r ^—

0f r r r

nHj./.'t', ''£'".' -Eased Progratn Testing",
.'-.' \Hz '-.'.'•. Z j'.-.'-.'-.z

,
l.h\-.\~ '.' H , MD, March

<-^'<

.
-; / '-

* '
'. f t. wa r =: i ' 'c- r 3 on La r g

e

'Manage-, e" t

,

Alexan-jr i'a'i VX
,

""^cTTo ETer T^T
^•i<ir 'i .eon

'

J, ' I ^ -; ^w' "?
, ;i. ano H. Hoffr.an, "An 1/ per i.Tient .n Software

Zrror l^:-- .ion and Analysis", IEEE T.^ ans. 3oftw . En g . , Vol

1, <• » * /

-.•/•'-, T.A., M, Lipnw, and E.G. Melson, Software
"-'. '.•:'':-, nf >>ftware Tenhnology'J Vol . ?,

. , . - - ... ,,..,„ ' 07 P

' '; 'oooeau, ?., Tne 2tate-of-the-Ar t in Software Error Data
Vv.^eoo.'.' -:'d Analysis - Final Report", General Research Corp.,
Huntsvi. -.L, Jan. 31, 197^.

C20] Weiss, :>.'''., "E7a:cjating Software Development by Error
Analysis: Tne Data from the Architecture Researon Facility", J.

Systems and Software , Vol. 1, 1979, 57-70.

1 i^ ' , «';.ss, D.M., "Evaluating Software Development Py Analysis of
Change Data", Tech. Report TR-1120, U. Maryland Computer Science
'.'.' '-. -/:^: •-•-:'/', MD, Movember 1981.

•rw» ^r* «»»/ >/. k.^ I JoJ

FOURTEEN DAYS

NYU C.2
Comp. Sex. Dept.
TR-47
Ostrand
Collecting and categorizing
software error data in ...

C,2
NYU

Sci. Dest..Comp. SCI. ue^
TR-4 7 Ostrana

CToYfecting and categorizing

sdt^ware error data m.

DATE DUE 3C = =>Cv\ E^ S

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012

'1-
: y'^Ji^

