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ABSTRACT

As software systems continue to increase in sophistication and complexity, so do the inter-
face requirements that support the corresponding user interaction. To select the proper
blend of ingredients that constitutes an adequate user interface, it is essential that the
system designer have a firm understanding of the interaction process, 1.e, how the selected
dialogue format interacts with the user and with the underlying task software. To pro-
mote such an understanding, this paper presents a model that characterizes one particular
dialogue format: menu-based interaction. This model is actually a sequence of models,
hierarchically structured, where each successive model builds on its predecessor by intro-
ducing additional characterization elements. The first model describes the minimal set of
elements inherent to any menu-based interface; successive models extend this minimal set
by introducing task actions, incremental history sequences, and frame-associated memory.
These principal model elements enable the characterization of fundamental, menu-based
operations like computational and decision processes, user response reversal, and user di-
rected movement. Moreover, because the principal model elements correspond directly
to “real world” objects, an intuitive as well as formal understanding of menu-based in-
teraction can be achieved. Effectively, the model elements and the hierarchical structure
imposed by these elements provide and ideal environment for characterizing and claseify-
sng menu-based systems at various levels of sophistication.

* This work was supported in part by R.R. Donnelley & Sons, Chicago, IL
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1. Introduction

There are many techniques commonly used for communication between humans and computer
systems. Among the more prevalent ones are question/answer, command-driven, and menu-
based interaction; representative systems include Mycin (1], the Unix! shell [2, 3], and Browse
[4], respectively. Moreover, the complexity of a dialogue session often requires a collection of
communication techniques. For example, Omni [5] integrates all three of the above interaction

formats into a unified system that supports interactive tool selection, specification, and composition.

To construct an effective interface, it is imperative that one understands the ensuing relation-
ship between that dialogue format and the user, as‘well as the supporting software system. This
paper presents a sequence of hierarchically structured models that characteri.zes one prominent
communication format: menu-driven interaction. The first model in the hierarchy introduces the
basic elements inherent to any menu-driven system and characterizes their role in user/system
interaction. Subsequent models introduce additional enhancements that provide characterization

capabilities for a wider variety of menu systems, in particular, those systems that support history

* This work was supported in part by R. R. Donnelley & Sons, Chicago, IL
t Unix is a trademark of Bell Laboratories.
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facilities and user directed movement. Finally, several existing menu-based systems are classified

and characterized within the framework of the hierarchical model.

2. Menu-Driven Systems

Intuitively, a system is menu-driven if each user response is predicated on a set of choices
provided by the system. The system presents the user with a sequence of frames (often called
menus), each containing some descriptive text and a list of items. The text provides a description
of the frame, and the items present a set of choices to the user. The user responds by selecting
one of the items, causing the system to perform an action associated with that item selection.
Usually, this action includes displaying frames. The system may also perform operations that are
transparent to the user. These operations consist of validating the user’s response, recording it, and
in general, providing the continuity among frames. A typical selection process cycle is tllustrated
in Figure 1.

(0) Display initial frame

(1) Get item selection indicator

(2) If not valid, go to (1)

(3) Execute selected item action, if any

(4) Display next frame, if any

(5) Execute frame action, if frame changed
(6) Goto (1)

Figure 1
Menu Selection Process Cycle

By successively selecting a sequence of items, the user traverses a network of frames that
at times, can be very large [6] and quite complex [7] (a simplified frame network is illustrated
in Figure 2). To help the user navigate such networks, many menu systems provide additional
facilities beyond those of simply accepting a response and displaying frames. For example, the
user may need to revisit a frame, review previous responses, or negate an item selection. These
operations and others like them are independent of the system application, and help provide a

standard interface for the user.
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Figure 2
Frame Network Accessible From: Root

Menu-based systems host a variety of operational functions. Before presenting the first model,
however, a clarification between system features and intrinsic operations must be presented. System
features are operational characteristics that work in fandem with operations that affect frame
network traversal. For example, multiple windows are integral parts of Interlisp [8] and Smalltalk
[9]. They are system features, however, and not intrinsic to the underlying menu system; essentially
the same results can be achieved without them. On the other hand, operations supported by
commands like the undo and goto directly affect the sequence of frames presented to the user.
They are not system features because their removal changes the nature of the system. The models
presented below characterize operational characteristics inherent to menu-driven systems, while

ignoring details of particular “features”.
3. The Hierarchical Model

As mentioned earlier, the model presented in this paper is actually a sequence of models,
_hierarchically structured, where each successive model builds on its immediate predecessor. This
_hierarchy, illustrated by Figure 3, not only provides a basis for characterizing menn-driven systems,

but also presents a framework for classifying them. Moreover, because models often serve as a
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Figure 3
A Hierarchical View of Menu System Models

“blueprint” for system development, a conscious effort has been made to present in “real world”
terms the discriminating characteristics that induce the hierarchical structure. Abstractions are
used primarily to facilitate a succinct description of these characteristics and to elide unnecessary

details,

Because a sequence of models is presented, a brief description of each meodel, its discriminating

characteristic(s), and the class of menu systems it can characteristize are given below.

Model M; characterizes the minimal set of elements inherent to any menu system. They
are: a finite set of frames, a set of user responses, and a mapping from each frame/response
pair to another frame. Systems modelled by M; are said to be information systems because

their response to any valid item selection is simply the displaying of another frame.

Model M3 extends model M; by associating both a frame and action with each
frame/response pair. These actions are task oriented and support computation as well as

deciston operations.

Model M3 extends M; by including an incremental history sequence. With this extension,
Mj can model menu systems that support response reversal, item selection histories, and

passive response recognition.



Model M, incorporates the characterization elements of the previous models and ad-
ditioi;ally, associates a ézﬁall amount of memory with each frame.- This frame memory
permits both the naming and marking of frames. Frame names are a prerequisite for
operations like the goto and find, while frame marking provides a ba.sis for gathering

{rame specific information, e.g., frame visit counts.

3.1 Menu-Driven Information Systems

One basic function of all menu systems is to provide information to the user. The user obtains
information about a particular subject by selecting frame items that successively refine the available
subject catalogue. Depending on the design of the frame network, the user may obtain information
gradually as frames are displayed, or all at once when the subject catalogue has been sufficiently
pruned. The library information system Browse [4] and the information subsystem in Emacs {10]
ave bwo wenu-based systems that provide such functions. Basic information systems are modelled
firsi borause they represent minimal menu-driven systems and illustrate the framework around

which all menu systems are constructed.

3.1, M;: A Model for Information Systems

Let {to,t1,%2,...,2.} be the set that represents discrete times at which frames are displayed.

-~

Let g denote the time at which the initial frame is displayed and ¢, denote the time at which the
current frame is displayed. A minimal menu system can be modelled by the triple M; = (F, R, T})
where

F i3 a finite set of frames,

R is a set of user responses that select items, and

T: is a transition function that maps elements of F x R into F,ie., Ty : F x R+ F.

Using these model elements, a precise description user movement within menu-based systems is now

possible, as well as a characterization of individual system states resulting from such movement.
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Let f; denote the frame displayed at time ¢; and r; denote the user response to frame Ji. Some
distinguished frame, fo, is always the first frame displayed. When a frame is displayed on the
terminal it is said to be visited and is called the current frame, denoted as. fe. Initially, f. = fo.
The w:2r moves from the current frame f, to frame fe+1 by issuing response r.. A move is déﬁnéa

by ihe relation

Ly = {(fc:"c: fc+l) | Tl(fm rc) = f¢:+1})

L]
and is denoted by foF fey1. If a response is invalid, denoted as ri,, then the transition function

T maps the current frame into itself; in practice, an error message i3 displayed as well.

Movement is initiated by a user response. The next frame to be displayed, however, is a
function of both the response and the current state of the system. In general, a system state
is defined to be the minimal set of information sufficient to uniquely determine the next system
response toka given user response. Let §; denote the system state at time ¢;. For menu systéms
modelled by Mj, the current state of the system is defined by S, = f.. Intuitively, this meaﬁs

~that if one is given the current frame and the user response to that frame, the resulting new state
-of the system can be uniquely determined. Subsequent models will characterize more powerful

menu-driven systems, but at the expense of information required to describe a system state.

3.1.2 Comrments on Model M,

Model M; characterizes a minimal menu system. Because the behavior of such systems is
limited exclusively to moves that result in new frame displays, information dissemination is the
only pracfica.l function. Moreover, each move must be initiated by an active user response, that
is, the user must select an item presented by the current frame (this restriction is relaxed in later
models). Additionally, the user cannot choose to deviate from the predefined, forward progression
of frames. All movement is precisely defined by the transition function T1, and is based on the
current state of the system S, which is defined to be only f, (no previous frame or response history

exists).



3.2 Task-ozientad Menn Svstems

Tke functional capabilities of most menu systems éurpass simple information dissemination.
In task-griented systems, there exist actions that define operations for assimilating information
that may not be known a priori, Such actions are defined to be task actions because they are
directly related to the application of a given memm system. Task actions include routines that
make decisions, calculate, evaluate, and store results for later use. In task-oriented systems, frames
also display information, but in a manner that facilitates the. specification of a user’s task. For
example, a user may select a sequence of frame items whose corresponding task actions retrieve,
modify, and print a specified file. As the user interacts with such menu-based systems, operations
defined by task actions provide an incremental progression toward a task solution. Menunix [11], a
meinsi-iriven system that assists in selecting and executing Unix programs, 13 a task-oriented system

where the impetus behind the selection and execution operations is supplied by task actions.

-

3.2.1 Mj3: A Model for Task-Oriented Systems-

The model presented in this section extends model M, by including a set of task actions,
elements of which are executed each time the user selects a frame item. In addition to informa-
tion systems, the resulting model provides a classification category and sufficient characterization

capabilities to precisely describe basic, task oriented menu-driven gystems.

Taék-oriented menu systems are modelled by the quadruple M, = (F,R,A,T,), where

A s a finite set of task actions,

T> is a transition function that maps elements of F x R into elements of Ax F,ie.,

T2:FxR— Ax F, and

F and R are defined as in model M;,



" The principal difference between menn systems that are modelled by M; and those modelled by
M; is that members of the latter set execute actions associated with each item selection. Elements

of A are now used to characterize such activity as well as describe resulting states of the system.

Let a; denote the task action resulting from response r;. A move from frame f, to o1 now

implies the initiation of task action a., and can be defined by the relation

Ly = {(fcyrc’acafc-i-i) [ Tl(fcarc) = (ac, fc+1)}'

Te
The notation f, ‘f;‘ fet1 indicates a move from the current frame f, to frame fet1, where r. is the

response to frame f;, and a, is the associated task action.

The system response to an item selection must now reflect a move to frame f.4; that includes
the effects of the task action a.. Because task actions can produce compound effects, it is no longer
trivial to characterize individual system states. To facilitate a precise characterization of system

states that capture those effects, the following terminology is presented.

Let G represent the set of global objects subject to modification by any action @ € A. Define
G; to be the set G at time t;; hence, Gy represents the initial state of G. Define “A” to be the
binary operator that describes the result of applying a task action to elements of G. Let & be a

function defined as follows

®(Gi,ai) = GiAa; = Gy,
where g; is the task action at time ¢;. In effect,
‘I’(G,‘,a;) = G()Aao Afll AL /_\.a,-,

and describes the element values of Gy after 1 + 1 moves, The current system state can now be

defined by S, = (f., G.), or equivalently,
S, = (f,_-, Golaghai A ... Aac_l).

Intuitively, S is a enapshot of the system at time ¢,.
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3.2.2 Commenis on Model M3

The transition function 7' defines an additional relation between elements of F x Rand A It

is in fact, the pairing function
T2(fl'y f,') = (ﬁ(fl, rt')s a(ft’) rl'))’

where @ = T and #: F x R~ A. Hence, if the user is visiting frame f, and provides response r,,
then T; maps (f,,r.) into (a., fe+1). The task action a, is initiated, and upon completion, frame

«fe41 is displayed, thus completing a move from frame f, to f.4;.

How does model M; compare to model M;? Clearly any information capability ascribed to
systems modelled by M; can be characterized by Mz, (M; C Ma). In fact, with the inclusion of task
actions, the power and app}icaticﬁ scope of menu systems modelled by M, increases significantly.
The additional cost of this increase, however, is reflected in the complexity of §,. Each system
state description must now inc&ude the current frame as well as the compound effect of all task

actions from time tg to f,—;.

It should be mentioned that most applications addressed by existing menu systems can be
implemented by systems modelled by M;. This statement does not imply, however, an ideal
implementation because many common facilities such as history and user error recovery are lacking.
Nevertheless, M does illustrate the intrinsic power of task-oriented menu systems as well as

provides a classification category and characterization mechanism for such systems.
3.3 Menu Systems with History Facilities

The previous two models have characterized elements pertinent to the application scope of
menu systems. Menu-based interaction is often accompanied, however, by far more complex
functions than those described above. In particular, system support facilities that provide response

histories and user response reversal pervade many menu-driven systems.
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The model presented next extends model M; by incorporating an incremental history sequence
accessible by both the user and the system. As déscrib‘ed below, this extension provides the basis for
a third classification category, history oriented menu-based interaction. Intuiﬁ:ively, an incremental
history sequence is an ordered list that describes the interaction between the system and the uger
in a stepwise, progressi#e manner. By including the appropriate elements in tﬁis history sequence,
the resulting model can ecasily characterize operations liice viewing previous responses, revisiting

-frames, and most importantly, user response reversal.

'3.3.1 Ma3: A Model for Menu Systemé with History Facilities

Before presenting a formal definition of model M;, the following notation is introduced to
aid in the subsequent discussion of history sequences. Let IH be the set of all gequences over

F x Bt x A. Let H € H and H; denote the history sequence at time ¢;. Define

app:H x (F x Rt x A) v HH such that app(H, z) is the sequence obtained when the 3-tuple

z is appended to H, and

del: H + IH such that del(H) is the sequence obtained when the most recently appended

3-tuple is deleted from H.

A menu system with history facilities can now be modelled by the 5-tuple

Mz = (F,Rt, A, H,T;), where

R* = RUNU O such that
R is the set of user responses that select an item,
N is the set of user responses that negate an item selection, and

0= R* - {RUN},

A is a finite set of actions,

10



Ts is a transition function that maps F x R x H into A x F x H as follows:

ViFer seA sad H H' € H then
¥y € R, Ts(f,r,H) = (a,f', H') where H' = app(H, (f,r,a}}, and the first two
r‘ér::azaents. of T3(f,r, H) are independent of H,
¥n€ N, Ts(f,n, H) = (a, f!, H') where H' = del(H), and

Vo € O) T3(f30)H) = (aif'JH)l and
F 13 defined as in Mo.

It should be noted that elements of A now include task actions as well as those actions associated.
with system facilities that support user functions, e.g., the displaying and maintaining of a history
sequence. By letting A* denote all task actions, A® denote all system facility support actions, and

by including an empty (or null) action in each set, A can be precisely describe by
A={(z,y)| z€ A*, and y € 4°}.

Because user movement now dictates a change in the current history sequence, a corresponding

modification to our definition of user movement is required. A move is now defined by the relation

L = {(fc; re, He, Ge, fc-!-l;Hc-f-l) I Ta(fc,rc, Hc) = (Gc;fc-!-l; Hc+l)}-

Te
- A move from the current frame f, to frame fe+1 is denoted by f, E fet1, where r. is the response

to frame f, and a, is the associated action.

A response path from time ¢, to t,, denoted by Pp, is defined by the sequence of moves

Tm Fm-41 fmi4n=1
{fm g fﬂ'I+11 fm-}-l b fm+2:°'-:fm+ﬁ—1 - fm-]-n}o
m Cmt1 Cmitn—-1

A response path describes a sequence of frames visited, the user response to each frame, the resulting

action, and the next frame displayed. A response path is said to be complete if it describes all

11



“moves during the time period o to £,. A complete response path is denoted by F§. Intuitively Pg
“represents the compicte micraction history of the current user session; the cumulative effect can

be conveniently described and maintained by the following ordered list.
A history sequence i 13 an ordered list of triples

{(fﬂsr()yaﬂ)) (fl: rhal): ey (fc--.ls rc-—l,ac—-l)}

that provides a system accessible representation of the complete response path P§. H is said to be
an sincremental history sequence because the first element, f;, in each triple is defined by the function
Ts(fi-1,7i-1, Hi—1). The incremental history sequence is instrumental in characterizing history
oriented menu interaction because it provides the basis for reviewing previous item selections as
well as reversing previous user responses. Before presenting a detailed analysis of the ensuing
ramifications, however, the cffects of user response reversal on the current state of the system must A

he described.

In Mj, the current system state is an extension of the one presented in model M, and is
defined as follows. Let G and “A” be defined as in model M,. Define “v” to be the binary
operator that describes the result of negating or nullifying the application of an action to elements

of G. Let ! be a relation defined by
Gy, aim1) = Givai—; = G4y

Effectively, ~! defines an inverse operation for &. In reality, a program that implements such an
inverse operation may be difficult, or impossible, to construct. There exists, however, computational
methods described in [12] that effectively negates an item selection without requiring a program
for <I>."'1. Hence, ®~! will continue to be used because of its notational preciseness and simplicity,
with the understanding that the implementation may not contain a program for ®~!, The current
state of a system modelled by M3 can now be defined by §, = (fos Ge, H.), where f, is the current
frame, G, is constructed by ¢ successive invocations of ® and ®~!, and H, is the current history

sequence,

12



3.3.2 Comments on Model M3

The existence of an incremental history sequence enables model M; to characterize menu
systems that support bi-directional movement. Normal item selection moves the user forward in
the frame network; representative commands like the undo and passive or null responses provide

backward movement.

A Characterszation of User Response Reversal

As previously stated, a history sequence is an ordered list of triples

{{fo,r0,a0), (f1,71,81), ..., (fomi,Pem1,80-1)}

where i € F, r; € R, and ¢; € A, 0 <t < ¢. Let h; denote (fiyrs,a;), that is, the history element

appended to H; at time ¢;.

The initial history sequence Hp is empty. Depending on the user response, each successive
history sequence is constructed by either appending a history element to the previous history
sequence or deleting an element from it. For example, if the user selects a frame item at time ¢;,
Hiy1 = app(H;,(fi,ri,0:)). On the other hand, an undo command deletes the last element of H;,

that is, Hiy1 = del(H;) = H;—;. Henee,
Heyj = {....(fori, ), (firnsriens ains), oo (fogimty Pidim1, 2i5-1) ),

where 0 < [Hipji] <147,

In model M, history elements are appended to the history sequence only when a valid item is
selected; the undo operation, itself, is not added. This restriction does not limit the characterization
of negating the effects of an undo (i.c., undoing an undo) because such an operation is accomplished
and modelled by simply (re)selecting the item that was initially negafed.

13



Active Versus Passtve User Responses

In general, most user responses are considered active responses; that is, the user actively
seiect-s a frame items or initiates a‘support function activity. Menu based systems that include
history facilities, however, often support an additional type of user response that is said to be a

- passive (or null) response. A passive user response is one in which the user neither selects an item
nor invokes a support function. For example, a simple refurn or newline is usually considered to
be a passive response. A passive response at time #; causes frame f;—; to be redisplayed as the
current frame at time ¢;;;. Information regarding the specific frame displayed at time #;_, (t.e.,
fi—1) is provided by h;—, € H,. Effectively, the passive response selects the ubiquitous item that

causes a move to the previously displayed frame.

The advantages of the passive response are twofold. First, the frame network designer can omit
-explicit paths back to a frame’s immediate predecessor: hence, a reduction in network complexity.
Second, a passive response causes a nondestructive transition to the last frame visited. That is,-
the operations associated with the transition do not negate any actions initiated by previous item
selections. This is particularly attractive because the user can add to the information acquired on
previous visits. Nondestructive is emphasized because a similar move can also be accomplished via

the undo command, but destructively so.

Menu systems that support the passive response must also maintain some type of history
mechanism. Correspondingly, model Mjz, provides a basis for precisely characterizing such a
response (via the incremental history sequence) and suggests data structures as well as operations
for implementing the passive response. Note, however, that the only possible moves from the
currert frame are still dictated by the desig'h of the f.rame network. That is, if the user is currently
at franie fe, the only permissible transitions are to its immediate predecessor or successor as defined
by the frame network. The forth model, My, addresses this restriction.

14



3.4 Menu Systems with Frame Memory

The menu systems characterized thus far have all shared one common trait: they determine
the set of frames from which the nez¢ frame is selected. There exist, however, menu systems that
allow the user to select the next frame to visit based on information stored in frame-associated
memory 13, 14]. In such systems, the user is no longer forced to follow a rigid, predefined frame
network, but can instead, move to any frame regardless of the network topology. In general, the user
can locate and select the next frame to visit via frame-associated memory that contains a unique
designator {or name) for each frame. This approach embodies the salient characteristics of a broad

“class of uperations, namely those that support teztual search and user directed movement. Two user

suppori functions, characterized by the find and goto operations, implement these capabilities.

‘the find operation provides the user with the name of the frame that contains the specified
steing.  Although it has no effect on the current state of the system or on the current history
sequence, the find does take advantage of frame-associated memory, and in particular, the memory

that contains the frame name.

The goto takes as its argument a user supplied frame name, and initiates a direct move to the
specified frame. Unlike find, however, the goto induces a change in both the current state of the
system and the history sequence. Accordingly, the goto represents a class of user responses that

necessitates an expansion of the set R and the transition function T characterized by model Ms.

3.4.1 My : A Model for Menu Systems with Frame Memory

Currently, the set of user responses that initiates constructive user movement is characterized
in the hierarchical model by R: item selections and passive responses. That is, they always result
in an expanded history sequence and an application of ® to G,. Because the goto response also
initiates such movement, it too must be included in R. Additionally, the appropriate transition

mappings must be defined by T. In lieu of this observation, the following notation is introduced

15



to assist in defining the transition function Ty, redefining R, and hence, provide the capability for

characterizing user directed movement.

Let F* be a finite set of frames with memory. Define a new set of responses

Ryoro={r* ! VI €F*, 0<§<[F*], 37 = goto(f7)}.

user response, r7, that corresponds to the command “goto(f7)”. Now, define R' to be the set
{RU Ryeeery, where B € BY in model M;. In essence, valid elements of R include frame item

selections, passive responses, and response elements r?.

Defipe the transition function Tyoto : F* X Ryoto X H — AxF*x H. Tn eflect, Tyoro(f., r¥, H,) =

(@, fg'_,_!,H,,.;.l) for all possible current frames f, € F* and ¥ € Ryoto-

Model M can now be defined by the 5-tuple (F*, R*, A, IH,Ty), where

F* i3 a finite set of frames, each of which possesses a modicum of memory,

R* = R'U N U O such that
R is defined as above, and

N and O are defined as in model M,

A is a finite set of actions that includes those described in Ms, as well as system actions that

support the goto and find.

T; is a transition function that maps all elements of F* x R* x IH intoc A x F* X IH;

subsequently, it includes all mappings defined by Tyoto-

IH i3 defined as in mode] M.

16



3.4.2 Comments on Model M,

The frame memory characterized above is said to possess static information. That is, the
memory contents are immutable during a user session. There also exists frame memory whose
contents are dynamic, and hence subject to modification by the system. Mutable frame memory
provides » basis for supporting data collection statistics like frame visit counts, and human engi-
neering feriures such as item selection indicators. Because actions that modify frame memory can
be classifi- 7 as task or system actions, both of which are elements of A € My, menu systems that
expleit the properties of mutable frame memory can be easily characterized within the framework

of model M.
4. A Chszacterization of Several Menu Systems

The hierarchical model presented above provides a well defined mechanism for succinctly clas-
sifying and characterizing a wide spectrum of menu-based systems. It should be emphasized that
the modei =lements presented, and in particular each sub-model’s discriminating characteristics, are
defined and described as “real world” objects. This approach not only facilitates the classification
and characterization of menu systems, but also provides a naﬁural framework for translating model
characteristics into concrete implementation details. In developing and validating the hierarchical
model, several menu-driven systems were studied. Part of this procedure included the characteriza-
tion of four extant systems. To fully illustrate the flexibility and intrinsic power of the hierarchical
menu model, the next section presents a brief description of the menu-based systems, Quickchart
[15], Smalltalk [16, 17], Promis[6, 18], and Zog |13, 14, 19] within the framework of the appropriate

sub-models.

QUICKCHART

The Quickchart system [15] was developed in response to the problems originating from the
traditional methods physicians use to generate clinical records. Quickchart is modelled first because

it is relatively simple to characterize and exemplifies a “classical” M3 application.
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When the physician initiates a Quickchart session, a global object is created that represents a
template for a clinical record. Traversing the frame network corresponds to selecting thé appropriate
sections within the template; selecting a frame item not bound to another frame causes information
to be placed in the currently active template section. Hence, within the Quickchart system there
exists a set of fremes characterized by F € Ms, R represents the physicians responses (i.e., item
selection), and T3 defines the next frame, action, and history sequence as a function of the current
frame, physician’s response, and current history sequence. Because the clinical record is a global

object, subject to modification, it is characterized by G..

Quickchart also provides the following user support functions:

cancel : negates the effect of the last response,
nezt : causes an activation of the next template section, and

prev : allows the physician to revisit the preceding frame.

The nezt function is effectively a move, where the system selects the response; cancel and prev,
however, have a more substantial impact because they require some type of history mechanism,
Prev requires knowledge of the previous frame (an element of k) and is modelled by the passive

response. Cancel can be characterized by an undo.

In characterizing Quickchart, model M; is not sufficient because Quickchart requires a his-
tory mechanism. The capabilities of model M, are not necessary because only global memory,

represented by G, is required.
SMALLTALK

Smalltalk {16, 17] is an environment that supports a style of software development termed
“exploratory”. With respect to the systems presented in this section, Smalltalk is the most difficult

to model because it provides many “features” that operate in conjunction with the menu system.
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Some of these features are mentioned during the characterization of Smalltalk, but are noted as

such.

In Smailtalk windows reflect the result of a frame item selection. They represent global
objects thai are modified by actions resulting from an item selection. For clarity, all windows will
be denoted as objects. Smalltalk also provides two distinct methods for representing frames and

items, depending on the type of object being manipulated.

The first method of representing frames assumes a standard format where one frame is pre-
sented at = time (actually only one frame exists), the object is viewed as textual data, and the
frame items describe actions that manipulate that text. The selection of any item within the frame
implies a direct or indirect action directed at the associated object. Because there are numerous
items within the frame, only a few representative ones have been selected for discussion. The
user can select an editor item that enables direct manipulation of the object, including defining a
domain (text marking) for the next action. If the user has appropriately marked the object, frame
items can .be selected whose actions initiate copy, delete, and tnsert operations. If an action is
needed for which no item exists, the user types an appropriate Smalltalk command and then selects
the dost item. The resulting action interprets the SMALLTALK command and applies it to the
object. These operations can be modelled by M, and require only a global object (G,), and items
whose implied actions are task oriented {elements of A). Because Smalltalk also provides undo
and cancel operations, however, a more powerful characterization model is necessary, i.e., My. The
undo selection negates the effects of the last item selection, and the cancel negates all selections
back to the last edit session. A characterization of the undo is straightforward (ref. section 3.3.2),

and the cancel action can be modelled by successive undo operations.

The second method of representing frames is exemplified by “browse windows”. Unlike a text
object, the object associated with a browse window is manipulated by a set of five frames, all of
which cap be viewed simultaneously. Figure 4 illustrates a browse object and its associated frames.

By selecting elements in the first four frames, the user defines a “path” to external, user-defined
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objects. Such objects are typically definitions of abstract data types and their associated operations.
An analogovs structure exists within Unix, where the items in frame 1 represent directories in the
user’s home directory; frame 2 represents the directories within a selected directory of frame 1, and
so forth. Frame 4 displays the objects available for viewing and modification. Selection of an item
{external object) in frame 4 causes the creation of a browse object whose contents are the selected

external cbject.

Frame 1 Frame 2 Frame 3 Frame 4
—r B e o o

Frame 5

Browse Object

Figure 4
A Browse Window

When the user requests a browse window, frame 1 contains a list of categories; the user selects
a category, at which time, frame 2 presents sub categories within the selected category of frame 1.
A similar relationship exists between frames 2 and 3, and frames 3 and 4. Although the method of
presenting frames has changed somewhat, their characterization is straightforward. There exists
a distinguished frame (frame 1), from which a selected item initiates the display of frame 2, and
so forth. The fifth frame duplicates the single frame discussed in the previous methed and is
characterized accordingly.
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PROMIS

Promis [6, 18], developed at the University of Vermont, is a problem-oriented medical infor-
mation system containing branching displays that depict a patient’s complete medical history. The
user is first prompted for the patient’s account number, at which time a frame is displayed and
a global object is created that represents the patient’s personal information. The information is
retrieved from a database entry defined by a dynamic, frame specific, pointer element. This frame
is denotec as the “home base” and is the point from which all subsequent frames are visited. The
user can select items that modify the current global object, as well as items that select new frames,

and subsequently, additional patient information.

When the user selects an item, the given response and current state of the system, §,, are
forwarded to a “Frame Engine”. The Frame Engine determines the appropriate application action
and the next frame to be displayed. This process is precisely modelled by Ty : F* x R* x IH s
Ax F* x iH. Because each frame represents a different facet of the patient’s medical history, the
frames are considered to pessess mutable memory: a characteristic of model M,. This information is
retrieved and updated by selecting appropriate frame items, PROMIS includes a pattern matching
facility (find} that searches frame specific information, But instead of returning a frame name, each

find is followed by an implicit goto.

There is no facility for negating the effects of a user selection; however, confirmation is required
~ for all actions that update a patient’s medical history. Additionally, the user can revisit frames,

thus necessitating a history sequence.
Z0G

Zog [13, 14, 19] is a rapid response, menu selection system developed at Carnegie-Mellon
University. The system is actually a skeletal menu system whose application is defined by the given
set of frames and corresponding task actions. The user traverses the network of frames by selecting

the appropriate frame item. Each time a new frame is visited, the previous frame is placed on a
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“backup list”, i.e., a history list. The backup list provides a history of previously visited frames,
responses to those frames, as well as a basis for response reversal (undo). Zog promotes the “No

Sudden Death® concept, that is, no selection is irreversible.

The user can also “mark” a frame before it goes on the backup list; such frames are considered
“anckor points”. The user support function return negates the effects of all selections and actions

back to the last marked frame on the backup list.

Zog also provi@es the user functions goto and find. Find searches for a specified text string
within: frame specig;: memory and returns the frame name. The goto permits the user to select
the next frame to be visited. If these two functions are used in tandem with the refurn function,
e.g., rziurn followed immediately by find or goto, the set of applicable frames is restricted to those
on the backup list or the frames pointing to the last marked frame on the list. In some seuse,

khig rostriction preserves the integrity of the frame network because the user can only move along

predefined transition paths.

Mociel My is essential for the characterization of Zog. The backup list, history facility, and
response reversal are modelled by H, history, and undo, respectively. Return can be modelled
by successive undo commands. Frame marking, however, requires frame-associated memory; the
actions that support marking are considered to be elements of A®. The goto and find functions
assume frame memory and are precisely characterized by tfle like named functions described in
section 3.4.1. Their restrictive invocations can be modelled by a global test variable (in @,) that

i set by return and checked by both find and goto.
5. Conclusion

The adaptability of menu-based systems to many diverse applications and their simplistic ap-
proach to user interaction has contributed significantly to the widespread acceptance of menu-driven
systems. The continued integration of menu-based interaction with increasingly sophisticated soft-

ware systems, however, necessitates a comprehensive understanding of their capabilities, as well as
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their limitations. The hierarchical model presented in this paper provides a basis for achieving this
understanding. It not only provides a scheme for classifying and characterizing menu systems but
can serve as a blueprint for implementing them. The hierarchical structure of the model allows one
to characterize menu systems, varying in degrees of sophistication, without-being encumbered by
unnecessary details. Although there may exist menu systems that elude a complete characterization
by the hierarchical model, the extensibility of the model to include such systems is enhanced by its

modular composition and well defined properties,
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