
AD-A228 493

Jointly-Owned Objects for Collaboration:

Operating-System Support and Protection Model

DTIC Sheng-Uei,
: EC rUniversity of North Carolina at Chapel Hill

N6V 0 7 1990 Hussein Abdxel-Wahab9Old Dominion University

Peter Calingaert
University of North Carolina at Chapel Hill

Joooq- 9(-0k- 0690
19?4'7
Abstract

As real-time collaboration becomes more frequent, it is common for a group of users to
create and own an object jointly. The use of multi-user tools makes the existence of jointly-
owned objects a necessity: a participant who joins a multi-uscr tool written by others knows that
the user agent executed in his name is not a Trojan horse if the multi-user tool is jointly owned by
all the participants. In this paper, we discuss the requirements and issues behind jointly-owned
objects. By generalizing these requirements we have implemented a conditionally jointly-owned
object. The conditions take the form of a quorum or a list of users who have the rights to access
an object or to change its protection state. We sketch a design of conditionally jointly-owned
objects, and apply the same concepts to subjects. Authority- and quorum-based objects are inves-
tigated as instances of conditionally joinly-owncd objects. We show that conditionally jointly-
owned objects can also be used to resolve the conflicts that may arise among joint owners. We
generalize Graham and Denning's protection model to incorporate these jointly-owned entities.
Operating system support for conditionally jointly-owned objects is specified at the system-call
level. Examples are provided to demonsuate the usefulness of conditionally jointly-owned
objects.

Keywords: computer-supported cooperative work, multi-user tool, jointly-owned object, jointly-
owned subject, protection models

APZroved tcz pul.j'ii leleasR

90)

1. INTRODUCTION

With the falling cost of hardware and communication, more and more people are experi-
menting today with computer-supported cooperative work (CSCW) [1,2]. We usually find CSCW
in an environment with networked personal computers, workstations, and multi-user computer
systems. Here are some sample applications of this technology: accountant and client at different
locations each looking at the same spreadsheet on their personal computers; two researchers
jointly writing a paper over a wide-area network; an application programmer and a system pro-
grammer collaborating to find an elusive bug in a program execution for which both share the
same view of the process output.

Conceptually, the object being worked on in a CSCW scenario is owned jointly by the col-
laborators. Such joint ownership is common in real life, as for joint bank accounts and condomin-
ium real estate. In computer systems, however, an object is usually owned by a single user. The
operating-system support provided for such objects does not serve the conceptual requirements of
CSCW. We seek therefore to introduce into operating systems the concepts and mechanisms
needed to support joint ownership of objects.

Another requirement for joint ownership arises from security concerns. A multi-user
cooperation tool when executed usually creates, for each participant, a user agent that runs under
that participant's domain. Some multi-user tools will be written by system programmers, and
some by the collaborators themselves. For the former, tools installed will be trusted by the colla-
borators and used without any security concern, just as users usually trust system utilities. For the
latter, a participant who joins a multi-user tool written by others has no way of knowing that the
user agent executed in his name is not a Trojan horse [3]. (A Trojan horse usually refers to a trap-
door, in a program, that allows unauthorized access to other objects.) This doubt can be relieved
when a collaborator knows about the multi-user tool he joins. But it cannot be tr'ally removed
unless he is sure that the multi-user tool he knows and trusts cannot be replacci unless he is
notified. This requirement cannot be fulfilled with traditional singly-owned objects, since one of
the authors of the multi-user tool usually has full ownership of the tool and has rights to make
such a change.

There exist, to be sure, a few examples of jointly-owned objects in computer systems: a vir-
tual circuit that, once established, each party can read from, write into, or disconnect; a link in a
hypertext environment that spans across nodes in files of two users, each of whom jointly owns
the link and can delete it whenever appropriate; a multi-threaded task [4], described more fully in
Section 2.3. Nevertheless, these objects are highly specialized and by themselves inadequate to
support CSCW.

In Shamir's work [5], a joint-encryption scheme allows several users to share a secret
object. No single user can open the object unless a certain number of users present keys to open
it. Although such a scheme seems to provide functions of jointly-owned objects, there is a differ-
ence. A jointly-encrypted object is usually not owned by the whole group; it is owned by one
group member. Hence the owner can change its protection mode. It is difficult also to change the
set of members who share a jointly-encrypted object. The object must be re-encrypted with .
another key and the members informed of the new key. The maintenance of the key by each
member is a burden, and there is always a possibility that a member forgets his key or exposes it ,
accidentally.

Inasmuch as singly-owned objects are managed by operating systems, it is appealing to - -.
integrate the jointly-owned objects with the singly-owned objects. The problem of supporting C40
jointly-owned objects by using a mechanism designed for the support of singly-owned objects is
that when an object is created, one member of the group is overly trusted with full ownership.
Even if the group decides that the object is read-only, the assigned owner can still change its Co,cs

Dist. "A" per telccon Dr. Ralph Va chter. . :

I I1/06/c) ___

protcction mode and write over it. Deletion of the single-owner from the group requires a reas-
signmcnt of all the jointly-owned objects to other users in the group.

What should be the protection model for joindly-owncd objects? Although many protection
models have appeared in the literature [6-101, none has dealt with this possibility. In the follow-
ing, we first summarize Graham and Denning's protection model [7]. To help resolve conflicts
among joint-owners, we generalize jointly-owned objects to conditionally jointly-owned objects,
and present a mechanism for realizing them. We extend the Graham and Denning model to pro-
vide a protection basis for conditionally joindy-owned objects and subjects, and specify
operating-system support for conditionally jointly-owned objects at the system-call level.
Finally, we present a functional description and system-call level interface of the design of a
jointly-owned subject, i.e. the multi-user process (111, and provide examples. Details of our
implementation have been described in Guan's dissertation [I I].

2. CONDITIONALLY JOINTLY-OWNED OBJECTS

2.1 Definitions

First we give some definitions. An object is an entity to which access must be controlled.
A subject is what Graham and Denning call an "active entity" (i.e. a process) whose access to
objects must be controlled. A subject may create an object, and becomes the owner of the object.
Every subject is also an object, because it must be pr9tected.

We propose a mechanism to allow multiple owners to specify some condition to the system.
A condition defines one or more subsets of the set of users who have rights to an object. It can be
a quorum (e.g. presence of at least two joint-owners), an authority-list (e.g. presence of joint-
owners A and B). or something more complex, (e.g. presence of more than 60% of the joint-
owners, including A). We call these objects conditionally jointly-owned (CJO) objects. The sys-
tem ensures that the condition is met before the object can be accessed or its protection state
changed.

An object's condition has two distinct parts. An access-condition (AC), if placed on an
object, must be met before the owners or authorized users can access the object. A control-
condition (CC), if placed on an object, must be met before the owners or authorized users can
change the protection state of the object (e.g. grant an access right to another user, destroy the
object). Each user (process) when making an access or changing the protection state of an object
needs to inform the system whether a joint action is intended. If so, the system will wait until the
required number of participants join and then verify that the condition is met. Using the access-
or control-condition, the joint-owners' conflicts are resolved with their joint presence.

An access condition is useful if the joint-owners of an object want more awareness of each
other's actions on the object. For example, when two users jointly open a bank safe, they are
aware of each other's actions on the safe in addition to the knowledge of joint presence. An
access condition can include presence constraints for read, write, or execute access that require all
or a majority of the joint-owners to be present.

A jointly-owned (JO) object is a special case of CJO object with null control-condition.
Each owner of a JO object has full ownership. The access-condition of a JO object may be non-
null. Obviously, a singly-owned object is a special case of a jointly-owned object.

-2-

2.2 Operations on CJO Objects

Creation. A CJO object may be created by several users jointly. e.g. through a multi-user pro-
cess, as described in [I 11. A multi-user process is a process jointly owned by all attaching users.
It provides multiple terminal interfaces to attaching users. The creator of a process makes it
multi-user by giving a list of users who may join. When a participant joins the process, he
becomes a joint-owner of the process. Standard input, output, and error channels are created for
this user, whose terminal becomes attached to the channels When an object is created by a
multi-user process, the participants become joint-owners of the CJO object. During the creation
of the object, the users specify the access- and control-condition jointly.

Alternatively, the owner of an object may grant ownership to another user, if that user
accepts. In most protection systems, granting an access right needs no agreement of the grantee
[7]. Our model requires that the grantee agree. This is because ownership frequently implies obli-
gation. Sometimes a user does not want such a granted ownership; he may even be charged for
disk space if he jointly owns an object. The original owner of an object makes it jointly owned by
specifying the joint-owners. The granting of ownership to a user is completed when that user
accepts it, thereby becoming committed. A uncommitted user has no owner right to the object.

There is one technical difficulty in requiring a user to commit before ownership is granted.
The protection state of a CJO object may not even be changed u-,til all the joint-owners commit,
because the control-condition is not met until then. To solve this difficulty, we define the effec-
tive control-condition (ECC) as the restriction of the specified control-condition (CC) to the set of
committed joint owners. For example, let the CC be the presence of any three joint-owners,
including Smith. If only two joint-owners have committed, and Smith has not, then the ECC is
the presence of those two joint-owners. Once three or more joint-owners, including Smith, have
committed, the ECC becomes equal to the specified CC. The ECC, when different from the
specified CC, is used in place of the specified CC. Similarly, we define the effective access-
condition (EAC) with respect to the specified access condition (AC).

Validation of access. One difficulty of validating access to a CJO object can readily be seen.
With computer access, users need not even gather together physically to access an object jointly.
With single-user processes, it is difficult for users to provide evidence to the system that they are
indeed "together" to open the object. If each user issues open in his process, the requests
received by the operating system are still serialized, and the system has no way to verify that
users are together. The system cannot simply wait until all users have issued their requests.

Assume that users with different interests are collaborating in subgroups on different sec-
tions of an object. The system needs to know whether the requests issued from the users'
processes are related. For example, assume that a quorum-based object has four users who have
read access rights, and a read-quorum equal to two. Suppose the users form two groups. The
read requests from these two groups of users should not be correlated by the system because they
may work on different parts of a document.

The difficulty can be solved with a multi-user process, described further in Section 5. The
multi-user process can be programmed to ask agreement from its participants and perform the
joint action for the users. The multi-user process notifies each participant of the result of the joint
action by replicating it to each participant's standard output channel. Alternatively, the difficulty
can be solved in the following way: before accessing a CJO object jointly, one user process pro-
vides to the system some information (e.g. timeout or the number of users to be together) and
asks the system to return an unforgeable token. It then distributes the token to its cooperating user
processes that want to access this object jointly. These user processes may notify the attaching
users, seek their agreement, and present the token when making their requests, so that the system
knows that they are together to make the access. The system waits until all expected participants

-3-

make the access request (or the specified time-out expires). It then checks whether the effective
access- or control-condition is mct.

With a multi-user process, a joint operation is performed in a straightforward manner. A
read or write action is performed once; the result is returned to the multi-user process itself.
With several processes issuing a joint operation through a token, we have "write once, read
many" operation. A write operation, whether into a file, channel, data structure, or memory, is
performed only once. Thus for a joint-write operation, only one process, preferably the one that
asks the system to assign a token for the joint operation, needs to tell the system all the informa-
tion needed for the write operation. For a read operation, whether from a file, channel, data struc-
ture, or memory, the result is replicated to all the participating processes. Thus all the participat-
ing processes need to provide the system consistent information regarding how the read operation
is to be done (e.g. how many bytes to read, where to store the result).

Miscellaneous. When the ECC is null, a joint-owner may withdraw his ownership at will. Other-
wise, the ECC must be met. A withdrawing user is removed from the committed users list.

The access- or control-condition of a CJO object can be changed if the issuing user(s) meet
the effective control-condition.

A CJO object can be deleted upon command of the joint-owners. The effective control-
condition must be met. When the condition is null, this can be done by any joint-owner. Of
course, an object is removed when its last joint-owner withdraws.

2.3 Jointly-Owned Subjects

Because subjects are also considered to be objects, it is natural to expect that the concept of
"jointly-owned" can be applied to subjects. The multi-threaded task [4] is an example. (A task is
an execution environment - chiefly an address space and a protection state - in which threads
may run; a thread is the basic unit of CPU utilization, roughly equivalent to an independent pro-
gram counter.) All threads within a multi-threaded task execute in parallel and share the same
address space and capabilities. Any thread may suspend, resume, or destroy the task as a whole.
Thus the task is jointly owned by its threads.

A jointly-owned (JO) subject is defined as a subject that has several owners, each of whom
has full ownership. A subject can be jointly created and owned by several owners* alternatively,
an owner can grant ownership to another subject, who becomes a joint-owner if he agrees. With
this extension, ownership can be granted, and the relation "owner" no longer defines a tree
hierarchy. A joint-owner cannot invalidate the ownership of another joint-owner. Thus owner-
ship, once granted, cannot be revoked. A joint-owner (subject) may grant some of its rights to a
JO subject; the conferred rights or the subject itself may be removed by another joint-owner with
appropriate rights. An object that is created by a JO subject is a JO object. The notion of "condi-
tionally jointly-owned" can be applied to subjects.

The multi-user process is another JO subject. The process is jointly owned by all attacl'ng
participants. An object or a process created during the execution of a multi-user process v ili nor-
mally be owned by the joint-owners.

-4-

3. PROTECTION MODELS

3.1 Review or Graham and Denning's Model

To permit the cooperation of mutually suspicious subsystems, Graham and Denning [7] pro-
posed a protection model based on Lampson's work [6]. They left the case of "jointly-owned"
unsolved [7-10]. We chose their model for extension because it incorporates the widely used
access matrix [10,121. We summarize their model here and encourage our readers to study their
original paper.

There are three components in their model: objects, subjects, and rules. Objects and sub-
jects are as defined in Section 2. A unique identifier is assigned to each object. When a subject
creates an object, the system grants to the subject the "owner" right to the object. The owner
right allows the subject to grant to itself any access right to the object. When the object being
created is also a subject, the creator grants to it a "control" right. This right allows the subject to
read or delete rights from its protection state.

The information specifying the types of access that subjects have to objects can be
represented conceptually as an access matrix A, with subjects identifying the rows and objects the
columns. Element A[S,X] of the matrix specifies the access rights held by subject S to object X.

A copy flag can be associated with an access right. If the copy flag is on, the subject may
grant to any other subject that access right to the object If the copy flag is off, the subject may
not grant such access. Here, the copy flag is an asterisk.

A monitor exists for each type of object; it validates all accesses to objects of that type. An
access proceeds as follows:
I. S initiates access to X in manner a, e.g. read, write, etc.
2. The computer system supplies the triple (S, a, X) to the monitor of X.
3. The monitor of X interrogates the access matrix to determine whether a is in A[S,X]. If so,

access is permitted; otherwise, it is denied.
Rules control the making of changes in the protection state. Each rule has three parts: a

command issued by the subject, an authorization that must be satisfied, and the operation that
results if the subject has the required authorization. Graham and Denning stated eight rules (Table
I of [7]). The rules are enforced by an access-matrix monitor.

Graham and Denning make a restriction that each subject is owned or controlled by at most
one other subject. Enforcing this maintains a tree hierarchy of objects. It is still possible in their
model for the owner right of a non-subject object to be granted, but they argued that either multi-
ple ownership should not be provided or coordination among the joint-owners themselves needs
to be done to avoid contradictory actions, e.g. one joint-owner grants access the others do not
want granted.

3.2 Our Extended Model

Access. We extend the protection model by associating with each CJO object two fields in the
access matrix: access-condition (AC), and control-condition (CC). The effective access-
condition (EAC) is AC evaluated without uncommitted joint-owners. The following notations
are adopted in the access matrix:

owner& ; uncommitted joint-owner
owner ; owner or committed joint-owner

-S.

Generally, an access proceeds as follows:

I. Access to an object X in manner a is initiated by a conceptual subject SV. Formally, SV
(for "subject vector") is a single- or multi-component vector whose elements are the indi-
vidual subjects.

2. The system supplies the triple (SV, a, X) to the monitor of X.

3. The monitor of X interrogates the access matrix to determine whether a is in A[SV,X] and
the effective access-condition is satisfied. It both conditions are satisfied, access is permit-
ted; otherwise, it is denied.

For authority-based objects, the last rule says that the effective access-authority, i.e. the
access-authority members who have committed, must be present to make access. For users to
access a quorum-based object, ISVI (dimension of SV) may not be less than the effective access-
quorum.

An example: shown in the access matrix of Figure 1 is a CJO object X with three joint-
owners B, C, D and one user E. It is an authority- and quorum-based object with access-
condition (read-quorum = 0, write-quorum = 2, execute-quorum = 01, and control-condition
{control-authority = B, control-quorum = 2). Since all joint-owners are committed, the effective
access/control-condition is the specified access/control-condition. Because the read- and
execute-quorums are zero, user B, C. D or E can read or execute the object individually. Any two
users together are allowed to write the object. Users C and D together, although they are joint-
owners and meet the control-quorum, may not change the protection state of X because the
control-authority (owner B) is not present. Users B and C together, or B and D together, are
allowed to change its protection state because the control-authority is present and the control-
quorum is met.

It should be noted here that for multiple owners JK of an object X, their access matrix
entries A[J,X] and A[K,X] may not always be identical, because an owner can delete rights (see
next section) from its own entry. As shown in Figure 1, the access- and control-condition are
stored with an object. An ideal place to store them is with the access control list of the object if
there is one; otherwise they may be stored as part of the features of the object.

Protection System Commands. Protection system commands are listed in Figure 2, which is in
two ways an extension of Table I of [7]. For the convenience of readers who are familiar with the
Graham and Denning rules, we have numbered our first eight to correspond with theirs. Our first
extension is to add to their rules RI-R8 the concepts of the various conditions and to impose
some necessary restrictions. The second extension is the introduction of three new commands.
Rules R9 and RIO govern new commands for adding and removing joint-owners. Rule RI I pro-
vides for changing AC or CC. In Figure 2, SV can stand for a single subject or several subjects,
but we restrict the grantee S to a single subject.

Modifications to Graham and Denning's Rules. Rule RI allows one or several subjects (SV)
to transfer (replicate) an access right held for an object X to any other subject, if the copy flag
("*") is set and the corresponding effective control-condition is met. Note that a subject does not
need to be an owner to be able to transfer a right. Transferring a right to another subject results in
a protection state change of the object X, because the grantee will then be able to access the
object. Hence the corresponding ECC must be met.

Rule R2 allows one or several joint-owners to grant to any other subject access rights for an
owned)bject, if the ECC is met. Rule R3 allows one or several subjects to delete from any other
subject access rights for an object if they have control right over that subject, or owner right over
that object. For both cases the ECC must be met. The right a granted, transferred, or deleted in
rules RI-R3 is restricted not to be "owner" or "owner&". This is because granting or

-6-

withdrawing ownership needs special handling. Rules R9 and RIO are provided for those opera-
tions.

We digress at this point to exemplify the differences bctwcen our rules and those of Graham
and Denning, by citing their rule R3. Their authorization is either 'control' in A [SoS] or 'owner'
in A [SoX 1, where So is the subject issuing the command; their operation is to delete 'a' from
A [S ,X 1. We augmented their authorization by adding the ECC; we restricted their operation by
excluding ownership as a right deletable by this rule.

Rule R4 allows one or more subjects SV to read the protection state of another subject S
regarding an object X, if SV has control right to subject S, or SV has owner right to object X.

Rule R5 allows one or several subjects jointly to create a CJO object by issuing the create
command. The subjects are considered to be committed immediately, i.e. access right owner is
stored into each joint-owner's matrix entry. Creating a 0O subject (rule R7) is like creating a
CJO object, except that the subject created will have a control right to itself (as in Graham and
Denning's model). Only the owner or joint-owners are able to destroy a CO object or subject;
the ECC must be met (rules R6, R8).

The Added Rules. Another way to create a CJO object is through converting a singly-owned
object, i.e. through granting ownership: addjoint (rule R9). Note that addjoint is used either
for an owner or joint-owners to add a new joint-owner or for a user to commit himself as a joint-
owner. When a new joint-owner S is added for an object X, the access right owner& is inserted
into A[S,X]. When that user commits as a joint-owner, his access right owner& is changed into
owner.

Rule R 10 is used for joint-owners to remove an uncommitted or committed joint-owner, if
the ECC is met. It is possible for a joint-owner to withdraw unilaterally only if the ECC so
allows. Rule RI I allows joint-owners to change the access- or control-condition of an object if
the ECC is met. In this rule. NC stands for the new condition, and alc is a flag specifying whether
NC is an access- or control-condition.

Because ownership cannot be transferred or granted using rule RI or R2, and addjoint
requires a grantee to commit before he accepts the ownership, It is not possible to transfer or
grant ownership without the grantee's agreement. Similarly, because ownership cannot be deleted
using rule R3 and withdrawjoint requires the ECC to be met for a joint-owner to withdraw, it is
not possible in general for a joint-owner to withdraw unilaterally. We now explain these com-
mands for authority- and quorum-based objects.

To convert a singly-owned object into an authority-based object, change condition can be
issued to specify the access- and control-conditions: an access-authority-list and a control-
authority-list are specified. Addjoint is then issued to specify an owners-list. To commit, a
user issues addjoint and he must be on the owners-list. To add a new joint-owner, addjoint is
again issued, and the effective control-authority members must be among the issuing users SV. A
joint-owner can withdraw his joint-ownership if the effective control-authority-list is null; other-
wise the members of the effective control-authority list must be present.

A quorum-based object can be created similarly by converting a singly-owned object, or it
can be created by several subjects specifying access-quorums and the control-quorum with the
create command. These subjects become the joint-owners. Adding or withdrawing a joint-
owner requires that the number of issuing joint-owners be not less than the effective control-
quorum. Changing the access-quorums or the control-quorum can be done through
change-condition, which requires the effective control-quorum to be met.

Note that the sequence of issuing change condition and addjoint to convert a singly-
owned object into CJO object is significant. If addjoint is issued first, there is a possibility that,
before any condition on the presence of joint-owners is imposed, one joint-owner commits and

.7.

changcs the protection state before the original owner can specify a CC on it. An alternative
would be to have a separate protection system command makejoint to allow an owner to
specify the list of joint-owners and the conditions simultaneously. To add joint-owners, or to
commit, addjoint is used. To change the conditions, changecondition is used. Another possi-
bility is that when a control-condition is not specified the default is to require all joint-owners to
be present.

In our extended model, granting ownership needs the grantee's agreement. With a slight
modification, however, ownership can be granted without the grantee's agreement. (Rules RI,
R2. R3, and RIO are changed by removing the term "owner&; rule R9 is changed by removing
references to committing, and "owner" is stored in A[S,X] when ownership is granted.) Each
grantee is then treated as immediately committed when ownership is granted.

Correctness and Trust. Graham and Denning use an informal approach to show the correctness
of their model. To show the correctness of the extension, we follow their approach under the
assumption that their original model is correct. As they state [7]:

To prove that a protection model or its implementation is correct. one must show
that a subject can never access an object except in an authorized manner. Two
things must be proved: (1) any action by a subject that does not change the protec-
tion state cannot be an unauthorized access; and (It) any action by a subject that
does change the protection state cannot lead to a new protection state in which
some subject has unauthorized access to some object.

Regarding the first (I), the extended model allows the additional possibility that several sub-
jects jointly access an object. Would this lead to an unauthorized access? The answer is no, as the
validation against A[SVX] or A[SVS] is still performed for each participating subject. It is
assumed here that the system associates with each subject a unforgcable identifier, that each mon-
itor acts correctly, i.e. it interrogates the correct entry in the access matrix for each access, and
that no monitor except the access-matrix monitor is able to change the contents of the access
matrix. Any action done is based on the joint-owners' pre-agreed control-condition, and hence is
authorized.

Regarding the second (1I), let's look at rules RI-R8 first. Except for rules R4, R5, and R7,
the others ame extended with the additional ECC restriction, which means the system will perform
additional checking. For example, in Graham and Denning's model, it is possible to grant or
transfer ownership to another user. When multiple ownerships arise in this case, they have no
control when conflicting actions among multiple owners are issued, e.g. through rules RI-R3.
With the extended model, the ECC terms imply that additional checking is to be done before a
user who has control or owner right can change the protection state. The new protection states
reached through these rules (RI-R8) are the same as in Graham and Denning's model except for
rules R5 and R7, where additionally AC and CC are stored with X. This new protection state does
not result in a new state in which some subject gains unauthorized access to some object, because
AC and CC are conditions to be met (not rights).

Consider now rules R9-RI 1. Rule R9 allows a new owner to be added; the resulting new
protection state allows that new owner access to the object X if he commits. As the application
of rule R9 is based on trust, i.e. an owner (or several owners) trusts a new user to own his (their)
object, this user is authorized to have the access. So the new protection state does not result in a
new state in which some subject has unauthorized access to some object. It is obvious that rule
R10 does not result in a new state in which some subject has unauthorized access to some object.
In rule Ri 1, the multiple owners agree to make a change of AC or CC, either allowing owners
more freedom or reducing owners' freedom. Either case results in authorized access only.

.--

4. IMPLEMENTATION OF CJO OBJECTS

4.1 System Call Interface

To create authority- or quorum-based objects, we can specify an authority-list or quorums
for each kind of access right (e.g. read, write, execute, or control). The number of users on the
authority-list can be one, several, or zero. In the last case no authority presence is required to
control protection state changes on the object. The authority list must be a subset of the owners.
The control-quorum specifies the number of owners needed to change an owner, authority,
quorum, or protection mode. The effective control-quorum is the lesser of the specified control-
quorum (as specified in the makejoint call) and the current number of committed joint-owners.
The effective control-quorum is validated in the protection state change on a jointly-owned
object.

To implement CJO objects, we created six system calls in the C language for use in a Unix
environment.

makejoint (object-name, owners list, authority list, control quorum, read-quorum,
writequorum, execute quorum)

char *object.name;
char *ownersjist;
char *authoritylist;

authority list is applied with the control quorum
int control-quorum, read-quorum, write-quorum, exccutequorum;

To simplify our design, the above authoritylist does not include the access-authority list.
The extension to one with access-authority list is straightforward. Note that the specified
quorums should be nonnegative.

add joint (object name, joint owner name)

char *object-name, *jointowner..name;

If the issuer is a joint-owner who hasn't committed, this call makes him a joint-owner. This
call also allows a user to be granted joint-ownership of an object by several joint-owners when
the effective control-authority and control-quorum are met.

withdrawjoint (object name, jointowner.name)

char *object name, *joint-owner-name;

For an owner to withdraw, the effective control-authority and control-quorum must be met.
If a withdrawing user is one of the control-authority, his name is removed from the authority list.
Three other calls are used to change the control-authority field or quorums of an authority- or
quorum-based object. The effective control-authority and control-quorum must be met.

add-authority (object-name, joint owner name)

char *object-name, *joint-ownerjname;

-9-

with draw authority (object-name. joint_ownername)

char *objcct-name, *joint owner_name;

change quorum(object name, crwxjflag, newquorum)

char *object-name,
char crwx flag; 'c'for changing the control quorum,

'r' for changing the read quorum,
'w' for changing the writequorum,
'x' for changing the execute quorn.

int new-quorum;

4.2 Examples.

Let's see how the mechanisms proposed in Section 4.1 can be applied to several instances
of conditionally jointly-owned objects. Although the first two examples come from the real
world, we believe that they can be modeled and realized in the computer world with the introduc-
tion of CIO objects.

Example 8.1 - Joint Account. Suppose a couple John and Mary open a joint account Y:

makejoint ("Y", "john mary", "". 1, 1, 1, 1)

The call can be issued through a multi-user process with John and Mary as owners. This account
Y is a JO object. Either John or Mary can get information from, deposit into, withdraw from, or
delete the account.

Example 8.2 - Contract. Suppose user Guan makes a contract proposal of object X and
presents it to user Chen, who agrees by committing to it. User Guan issues the following:

makejoint ("X", "guan chen", "guan chcn", 2, 1, 2, 1)

The contract is proposed to be a CJO object owned by both users, controllable and writable only
when both Guan and Chen are present. It is readable by any joint-owner. User Chen, after seeing
the contract proposal, agrees by issuing the following:

addJoint ("X", "chen")

Note that specifying the control quorum and writ iCquorum as 2 helps to resolve any possible
conflict between Guan and Chen because a joint action is needed before the contract can be
changed or deleted.

Example 8.3 - Multi-User Tool (Solving the Trojan Horse Problem). The following example
shows how the CJO concepts can be applied to the computer world: a multi-user tool is made
jointly owned to solve the Trojan horse problem.

A multi-user tool can be implemented in two ways: centralized with a server synchronizing
messages or resolving contending accesses to objects, or decentralized with all user agents coor-
dinating and synchronizing in a distributed manner. A user usually has a user agent running
under his domain. The user agent program is usually the same for each participant and can be
made jointly owned by all of them. The same can be done with the server program. For example,
suppose that a multi-user tool has two components, a user agent program X and a server program
Y, and is used by users Guan, Wang, and David. User Guan writes the tool, and proposes it be
jointly owned by three of them through issuing:

-10.

makejoint (", "guan wang david", "guan " ng david', 3, 1, 3. 1)

makejoint ("Y", "guan wang david", "guan wang david", 3, 1, 3, 1)

This says that rewriting the contents of the multi-user tool or changing the protection state
of the multi-user tool requires the presence of all three owners. Users Wang and David, after
committing with addjoint, will be sure that no change (cithcr to the contents or to the write-
quorum or authority-list of the tool) can be made without their presence.

5. MULTI-USER PROCESS

The multi-user process mechanism supports multi-user tool development and sharing of
user privileges in real-time cooperation. Traditionally, a process is associated with a single user.
For real-time cooperation, we propose the multi-user process for access control list systems and
systems with mixed strategy [3). A system with mixed strategy is a system that uses an access
control list for the secondary storage or file system, while using a capability scheme for the rest;
the capabilities cannot be copied into the file system.

A process runs initially wLh its creator as the owner (against whom the protection che., .s
made). The creator makes the process "multi-user" by issuing allowjoin, which specifies a
nickname and a :ist of users who may join. The c-eator then issues waitjoin when ready to
accept participants to join. A process that wishes to join issues join.proc.

When a user on the list specified by the allowjoin call issues joinproc from a single-user
process, that process is suspended. Standard input, output, and error channels are created in the
multi-user process for this user, whose terminal becomes attached to the channels. The user
becomes active in the multi-user process. The multi-user process can read input from the joining
user's standard input channel and can write output to his standard output channel. An active user
leaves the multi-user process by issuing an exit control signal from his terminal or when the pro-
cess terminates. The process can be killed by an active user with a special control signal.

allowjoin (nickname, users list)

char *nickname;
char *usersJist;

f a multi-user process with the same name and created by the same creator already exists,
the call returns ERROR. The creator is an assumed participant whose name need not be specified
in the users-list. If users list is omitted, any eligible user on this machine can join.

waitjoin (ifnotjoin, timeout, joint-user)
int ifnotjoin, timeout;
JOININFO *joint user

typedef struct j.user
char *usemame;
int in, out, err,
} JOIN-INFO;

Waitjoin waits for one user (process) at a time to join. A program can be coded with a
simple loop so that waitjoin is executed several times untii all the users on the userslist join.
The flag ifnotjoin selects among three options. (I) The calling process will block until the process

-ll-

of a user on the specified list issues joinproc. (2) The calling process will block until either that
event occurs or the specified timeout interval elapses. (3) The calling process will not block.

With this call, the multi-user process is ready to accept participants. The returned informa-
tion joint user includes the name of the joining user and the standard input, output, and error
descriptors created for his terminal.

join.proc (nickname, creator name, ifnotexist, timeout)

char *nickname, *creatorname;
int ifnotexist, timeout;

To avoid naming conflicts, a joining participant is required to specify the name of the
multi-user process creator in addition to the nickname. The flag ifnotexist selects among the same
three actions as before if the multi-user prmess does not exist or is not ready to accept partici-
pants.

A multi-user process is jointly owned by its active users, against whom the protection check
is made. If an active user leaves by issuing an exit control signal, that user loses his ownership to
the multi-user proces s and his original process is then rcsumcd.

A multi-user process achieves a shared workspace. This is an abstraction that denotes a col-
lection of objects belonging to some cooperative work and the software tools needed to access
these objects. Each participant has in front of him the shared workspace where he can operate
with some tools on the same objects that other participants see. For example, researchers writing
a joint paper will have in their workspace objects such as sections, figures and tables, and tools
such as editors, formatters, and spelling checkers. The resource of a multi-user process partici-
pant can be shared whenever the process opens it or acquires a capability for it. Simultaneous
manipulation of objects across multiple user domains (e.g. a process simultaneously opening
objects under different users' domains) is possible because the process runs under the union of
multiple user domains. A departing user may leave behind capabilities for his objects so that oth-
ers can continue working on them.

How is it possible that a multi-user process runs with multiple user privileges? We assume
that participants in a multi-user process wiU share with each other the access rights needed for
object access when they issue join.proc. Thus, when a multi-user process accesses an object, the
user(s) who have the access right grant it to the others so that they can make joint access. The
grantor(s) must have the copy flag set with their rights, and the effective control-condition must
be met. The right granted will be used only for the life of the multi-user process. We see an anal-
ogy in real-time collaboration, where we allow a participant to share access to an object. After the
collaboration, the participant may no longer access the object.

Implementation details and examples demonstrating the usefulness of the multi-user pro-
cess have been described in [II].

6. CONCLUSION

Effective sharing of workspace objects is a fundamental issue in multi-user cooperative
work. The proposed C0O mechanism serves as an extension to traditional singly-owned objects,
allowing sharing of ownership and trusted use of multi-user collaboration tools. The multi-user
process, as a special case of CO object, allows the implementation of a fully shared workspace.

A design of conditionally jointly-owned (CJO) objects has been laid out and a protection
basis provided for it. The proposed jointly-owned object mechanism extends the functions of

-12-

operating systems. Ownership can indeed be shared. Athough granting ownership in our
extended protection model needs the grantee's agreement, only slight changes are required to
make ownership grantable without the grantee's agreement.

Access rights can also be shared. Conflicts among joint-owncrs can be solved with CJO
objects: actions must be approved with an access- or control-condition on the presence of the
owners. Access- and control-conditions are provided as mechanisms for specifying presence con-
ditions; they are designed as general mechanisms so that different user policy decisions can be
implemented.

Two varieties of CJO objects have been provided: authority- and quorum-based objects.
The former gives the presence condition by a user list, the latter by a count. Operating-system
support for these CJO objects is specified at the system-call level. The problem of using a multi-
user cooperation tool is also solved by making the tool a CJO object: by specifying a write-
access-condition and control-condition that require the collaborators' presence. A user can trust a
multi-user cooperation tool he uses since he knows that neithcr the contents nor the write-access-
condition of the tool can be changed without his being noti fied.

We have tested the concepts presented in this paper by implementing, under the 4.3BSD
Unix operating system [13], a library of system call interface routines and server to support con-
ditionally jointly-owned objects and multi-user processes, as well as two concepts not discussed
in this article: shared capability lists and dynamic groups with shared viewing. We have written
several programs based on the library calls to demonstrate the feasibility of our approach. Among
these programs is a recoding of the Remote Shared Workspace application reported in [2]. This
application permits multiple, mutually remote users to share a single-user tool for collaborative
tasks such as editing. Our programs have demonstrated the utility of our concepts; greater execu-
tion efficiency will await a direct implementation in the operating-system kernel.

Increasing productivity has been a major goal of this century. Facilitating cooperative work
using computers will increase productivity. Incorporating more support into operating systems
facilitates cooperative work and the development of more productive cooperation tools. It
remains to be seen how much closer this will bring us to the goal.

ACKNOWLEDGEMENTS

The authors wish to thank their colleague Don Smith for valuable comments. This work
was partially supported by the Office of Naval Research, under contract N00014-86-K-0680, and
by IBM, under Shared University Research Agreement #826.

.13.

REFERENCES

[1] Irene Greif, Computer-Supported Cooperative Work: A Book of Readings, Morgan Kaufmann,
Palo Alto, California, 1988.

[21 H. M. Abdel-Wahab, S.-U. Guan, and J. Nievergclt, Shared Workspaces for Group Collabora-
tion: An Experiment using Interet and UNIX Interproccss Communications, IEEE Communica-
tions 26, 10-16, 1988.

[31 J. H. Saltzer and M. D. Schroeder, The Protection of Information in Computer Systems,
Proceedings of the IEEE 63, 1278-1308, 1975.

[4] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young, Mach: A New Ker-

nel Foundation for UNIX Development, USENIX Winter Conference Proceedings, 93-112, 1985.

[5] A. Shamir, How to Share a Secret, C4CM 22, 612-613, 1979.

[6] B. Lampson, Protection, Proceedings, Fifth Annual Princeton Conference on Information Sci-
ences and Systems, Department of Electrical Engineering, Princeton University, Princeton, New
Jersey, 437-443, 1971; reprinted in ACM Operating Systems Review 8, 18-24, 1974.

[7] G. S. Graham and P. J. Denning, Protection - Principles and Practice, AFIPS Conference
Proceedings 40, 417-429, 1972.

[81 M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, Protection in Operating Systems, CACM 19,
461-471, 1976.

[9] T. A. Linden, Operating System Structures to Support Security and Reliable Software, ACM
Computing Surveys 8,409-445, 1976.

[10] C. E. Landwehr, Formal Models for Computer Security, ACM Computing Surveys 13, 247-
275, 1981.

[I I] S.-U. Guan, A Model, Architecture, and Operating System Support for Shared Workspace
Cooperation, Ph.D. Dissertation, University of North Carolina at Chapel Hill, 1989.

[12] M. Maekawa, A. E. Oldehoeft, and R. R. Oldehocft, Operating Systems: Advanced Con-
cepts, Benjamin/Cummings, Menlo Park, California, 1987.

(13] S. I. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and Imple-
mentation of the 43BSD UNIX Operating System, Addison-Wesley, Reading, Massachusetts,
1989.

-14-

