
Evaluation of Safety-Oriented Two-Version Architectures

Juan A. Carrasco and Joan Figueras

Departament d’Enginyeria Electrònica

Universitat Politècnica de Catalunya

Diagonal 647, plta. 9

08028 Barcelona, Spain

Annie Kuntzmann

CISI Ingenierie

France

Except for formatting details, this version matches exactly the version published with the
same title and author inJournal of Systems and Software, vol. 14, no. 3, 1991, pp.

155–162

Abstract

A Markov model taking into account physical and design faults for a two-version architec-

ture oriented to safety-related applications is developed. Only a probabilistic knowledge of the

initial state of the versions in relation to the presence of design faults is assumed. The model can

be split into two submodels accounting separately for physical and design faults, and a closed

form expression for the unsafety of the system is obtained. The parameter estimation problem

is discussed and a method to predict the probability distribution of the number of related design

faults at the beginning of the operational life of the systemis proposed. The method uses a

pool model to process fault-occurrence data collected during a “face-to-face” debugging of the

two versions. It has by nature a limited capability for proving version diversity, but it is shown

that the limit is of the order of the diversity reported by recent experiments on real software.

Finally, the impact of version correction during operationis shown to be negligible for critical

applications.



1 Introduction

One of the most critical problems faced in the production of fault-tolerant systems is how to monitor

architecture design together with the development processin order to meet the dependability and

performance specifications ensuring cost effectiveness. Evaluation methods encompassing physical

(hardware) faults and design faults introduced during the specification and development processes

might help solve this problem. The need for such a combined evaluation has recently been pointed

out [10]. In critical applications, the complexity of current software and hardware designs makes

it no longer possible to cope with design faults using only a fault-avoidance approach, and fault-

tolerance techniques should be considered. Design diversity [1] is a suggested approach to provide

design fault-tolerance.

Design diversity is applied differently in safety-oriented and reliability-oriented applications.

Safety-oriented applications do not require complete fault-tolerance but merely error detection. For

applications of this type, design diversity is implementedusing two versions and a comparison mon-

itor, which takes the system to a safe failure state when the outputs of the two versions differ. For

reliability-oriented applications, design faults have tobe tolerated. In applications of this type, three

or more versions are used in conjuction with a majority voterto decide which of the results provided

by the versions are to be issued. The efficiency of design diversity depends critically on the extent

to which the versions fail independently. Experimental results recently carried out on multiversion

software seem to indicate that even though the versions do not fail independently [7], multiversion

systems improve significantly single-version systems in both safety and reliability-oriented applica-

tions [8]. In our opinion, since hardware design is similar in many aspects to software development,

a parallel promise stands in relation to hardware design faults.

Some work has been done toward the combined modeling of physical and design faults [3, 10,

12], but, to the best of our knowledge, no evaluation of multiversion systems incorporating both

types of faults has been carried out. In this paper, a Markov model to evaluate the unsafety of a two-

version system with version correction during operation isdeveloped and solved. This architecture

can match the requirements of most safety-oriented applications at a reasonable development cost.

2 Taxonomy

2.1 Architecture

Figure 1 shows the architecture under evaluation. Two independently designed computation chan-

nels in synchronous operation share a given set of inputs andproduce separate outputs that are

compared by a totally self-checking (TSC) comparison monitor. The output of the system is taken

from the first channel and is considered valid as long as no failure indication is given by the moni-

tor. The comparison monitor can be implemented using well-known techniques [9]. We would like

to point out that no assumption is made regarding the particular implementation of the channels.

2



TSC comparison monitor

CHANNEL 1

FAILURE

CHANNEL 2

Figure 1: Architecture of a two-version system.

They could be special-purpose VLSI systems or programmed systems. The only requirement is that

correct outputs from both channels should be equal.

2.2 Fault Model

The faults considered for the development of the model can beclassified as follows:

* physical faults

− in channels

+ unrelated

+ related

− in the monitor

+ benign

+ latent

* design faults (in channels)

+ unrelated

+ related

Physical faults are permanent or temporary malfunctions ofthe hardware resulting from phys-

ical degradation processes or external disturbances. Theycan affect the channels or the monitor.

Physical faults affecting only one channel are called unrelated faults; physical faults affecting both

channels are called related faults. Related physical faults produce erroneous, but usually not identi-

cal, outputs in both channels. Physical monitor faults are classified into benign and latent. Benign

faults are within the self-checking capability of the monitor and produce a FAILURE indication. La-

tent faults fall outside the self-checking capability of the monitor and do not produce that indication.

It is assumed that the comparison monitor is design fault-free. Design faults are viewed as

regions in the system input space, which in general would consist of sequence of input vectors.

3



end of correction

UP
UNSAFE
FAILURE

DIAGNOSIS

HARDWARE
REPAIR

CORRECTION OF
UNRELATED

DESIGN FAULTS

CORRECTION OF

DESIGN FAULTS
RELATED

SAFE DOWN

failure indication restart

undetected error

end of repair

end of correction

Figure 2: Conceptual behavioral model.

When the input enters the region associated with a design fault, the fault is activated and an error

occurs. In our model, regions in different versions are either disjoint (unrelated design faults) or

coincident (related design faults). Related design faultsmay or may not produce identical errors.

2.3 Behavioral model

The behavioral model is obtained by combining the fault model with the maintenance strategy and

is shown in Figure 2. An unsafe failure occurs if an erroneousoutput is given without a FAIL-

URE indication. This happens if a related physical or designfault produces identical errors in both

channels, or if the first channel gives an erroneous output inthe presence of a latent fault in the

comparison monitor preventing the recognition of the disagreement. When a FAILURE indication

is issued, the operation of the system is stopped for diagnosis. If a permanent physical fault or a

design fault is found, a maintenance operation starts. Otherwise, a transient fault is assumed and the

system is immediately restarted. From a purely statisticalpoint of view, it would seem reasonable to

restart the system’s operation when a design fault is diagnosed and perform the correction off-line:

the system is, after all, as good as it was before. However, from a psychological point of view, this

does not seem reasonable, even if the design fault is belivedto be confined to only one channel.

From the user’s point of view, the system alternates betweenthe UP and SAFE DOWN states

until the undesired unsafe failure occurs. In order to quantify the dependability of the system, we

4



will use the unsafetyUS (t), defined as the probability of having an unsafe failure over the firstt

time units of operation in the UP state, i.e., ignoring the time spent in the SAFE DOWN state. This

choice is motivated by the following reasons:

1) it is a reasonable one in the context of our measure,

2) it gives an upper bound for the unsafety computed over the real time,

3) the bound is tight in the frequent case in which the maintenance and correction rates are much

higher than the failure rates,

4) it simplifies the model significantly.

A stochastic model for the evaluation of the unsafety of the system is developed in the next

section.

3 The Evaluation Model

3.1 Model Hypotheses

The actual faulty behavior of the comparison monitor in coordination with the channels is complex.

First, the self-checking attribute of the comparison monitor only implies that benign faults are de-

tected (cause a FAILURE indication) for some pairs of channel outputs. Hence, in fact, benign faults

are “latent” for some time. In addition, a latent fault in thecomparison monitor can result in a FAIL-

URE indication for some agreeing pair of channel outputs or in the absence for some disagreeing

pair. A detailed model would be dependent on the actual design of the comparison monitor and on

the actual operation of the channels since the production ofthe fault, and would be in general very

difficult, if not impossible, to build. A simpler model will be used in this paper. The latency of

bening faults will be neglected and it will be assumed, pessimistically, that an unsafe failure follows

immediately after a latent fault. Under these hypotheses and bearing in mind that the unsafety has

been defined over the “up” time, only the faults leading to an unsafe failure need be considered.

Having defined the unsafety over the “up” time, only the repair processes modifying the pro-

duction of faults leading to an unsafe failure (critical faults) need be modeled. Since physical failure

processes are not modified by repair actions and the system has only one operational mode, critical

physical faults are modeled by a constant rateλCP , which can be obtained by adding the rate of

related physical faults producing identical errors and therate of monitor latent faults.

Unrelated design faults are always detected and can be ignored in the model. Related design

faults can cause an unsafe failure and have to be considered.An activation/correction model for

related design faults is needed. The one proposed is a generalization of the Goel and Okumoto

model [4], and is described by the following hypotheses:

1) initially there arek related design faults with probabilityqk, k ≥ 1,

5



2) the total related design fault activation rate whenk ≥ 1 faults are present isψk,

3) a related design fault, when activated, causes identicalerrors with probabilityc (error correla-

tion),

4) an activated related desing fault causing a disagreementis diagnosed as such with probability

Ed (diagnosis efficiency) and with probability1− Ed is treated as a transient physical fault1,

i.e., the system is restarted without correction,

5) a diagnosed related design fault is properly corrected ina version with probabilityEc (correc-

tion efficiency),

6) a related design fault not properly corrected in any version leaves the same related design fault

activation rate as the system had before.

Thus, with probabilityc the activation of a related design fault causes an unsafe failure, with

probability

α = (1− c)Ed
[

1− (1− Ec)
2
]

(1)

the fault is removed from the system, and with probability1 − c − α either the fault is not well

diagnosed and therefore not removed, or is improperly corrected in both versions, in both cases

leaving the system with the same related design fault activation rate as it had before.

3.2 Model Solution

Assume now that the number of initial related faultsk is bounded byn (we will show later how to

choose a suitable value forn). Then, it is possible to describe the evolution of the system on the up

states until its first unsafe failure by the homogeneous, continuous-time Markov chain depicted in

Figure 3a. Considering that all the up states have a common transition with rateλCP to the unsafe

state, it is possible to decompose the model in two submodels: one accounting for critical physical

faults (Figure 3b) and a second one accounting for related design faults (Figure 3c). The safetyS(t)

can be expressed as

S(t) = Sp(t)Sd(t)

whereSp(t) (physical safety) andSd(t) (design safety) are obtained using the submodels. When

dealing with safety-related applications it is often more significant the unsafetyUS (t) = 1 − S(t)

or probability of having an unsafe failure over the firstt time units.US(t) can be computed from

USp(t) andUS d(t) using

US (t) = USp(t) + USd(t)− US p(t)US d(t)

1Note that the model neglects the probability of diagnosing adesign fault for only one version, which is estimated to

be a very unlikely event, considering that related desing faults have a common cause.

6



n− 1

UFUF

αψ1αψn−1

n 1 0
αψn

(c)

cψn−1 cψ1cψn

UP

λCP

(b)

αψ1

(a)

αψn−1

n 1 0

UF

cψn−1 + λCP

λCPcψn + λCP cψ1 + λCP

αψn

. . .

. . .

n− 1

Figure 3: Unsafety evaluation model (a) and its decomposition into a physical unsafety evaluation

model (b) and a design unsafety evaluation model (c).

The model decomposition is interesting because it makes it possible to analyze separately the

contributions of the two types of faults to the overall unsafety. The unsafety due to critical physical

faults is given by

US p(t) = 1− e−λCP t

The evaluation ofUSd(t) requires the transient solution of the Markov chain depicted in Fig-

ure 3c. Letqi be the probability that the initial number of related faultsis i, 0 ≤ i ≤ n. Under the

assumptionψi 6= ψj for i 6= j, which is true for the model, the following closed-form solution (see

Appendix) can be obtained.

US d(t) =

n
∑

i=1

qiAi −

n
∑

k=1

(

n
∑

i=k

qiB
i
k

)

e−ρkt (2)

where

ρk = (c+ α)ψk (3)

Ai = 1−

(

α

c+ α

)i

(4)

Bi
k =

c

ρk

k
∑

l=1

(

α

c+ α

)i−l

i
∏

m=l

ψm

i
∏

m=l

m6=k

(ψm − ψk)

. (5)

Two particular cases are worth mentioning: a) total error correlation (c = 1), and b) no version

correction. The latter can be obtained from the general model by makingEd = 0. In both cases

7



α = 0 (1) and the model of Figure 3c is reduced to a Markov chain having only transitions from the

statesi = 1, . . . , n to the unsafe state, with ratesψi for case a andcψi for case b. These models are

easily solved yielding

US d(t) =
n
∑

i=1

qi

(

1− e−ψit
)

for case a (6)

US d(t) =
n
∑

i=1

qi

(

1− e−cψit
)

for case b (7)

Let us consider the problem of selecting a truncation valuen for the initial number of related

design faults. The limit design unsafety is given by (2)

USd(∞) =

n
∑

i=1

qiAi (8)

whereAi = 1 for the particular cases. A suitable criterion is to taken so that the relative truncation

error inUSd(∞) is lower than a specified toleranceTOL. According to (4),Ai ≤ 1. Then, it

suffices to take the smallestn with

1−
n
∑

i=0

qi

n
∑

i=0

qiAi

< TOL ,

since the numerator is an upper bound of the absolute truncation error and the denominator is a lower

bound of the absolute value.

4 Model Parameter Estimation

The critical physical fault rateλCP can be evaluated by architectural and circuit analysis, fault

injection, etc., and will not be discussed here. As it will beshown in the next section, the other

most influencial parameters arec, qk, andψk. When the system has only one output signal, it can

be ensured thatc = 1. Otherwise,c is likely to be smaller. In general, the higher the design level to

which the fault belongs, the more likely it is that the errorsresulting from related design faults will

be correlated. Analysis of the modular structure of the two versions and correlation with statistical

data could be used to estimatec. Of course, it is also possible to take the pessimistic assumption that

c = 1. In this case, the simpler model (6) can be used.

Perhaps the most difficult problem is the estimation of the distribution of the number of remain-

ing related faults when the operation of the system starts. Asuggestive approach is to use an under-

lying model for the production of design faults accounting for related faults. Such a model should

include parameters characterizing: a) the complexity of the design, b) the specification methods, c)

the level of diversity of the development methods and tools,and d) the mastery of the designers and

tools. However, we consider it doubtful that such an approach will be workable because of

8



1) the difficulty in indentifying a reduced set of significantparameters,

2) the limited amount of data on related design faults,

3) the rapid evolution of design methods and tools.

Our approach is a generalization of the methods currently used in “software science” to monitor

the reliability growth during debugging and estimate the software reliability at the release point. Our

suggestion is as follows.

Once both versions have been cleaned out of coarse flaws, theyare debugged in parallel using

the same test inputs (“face-to-face” debugging). Errors are monitored and design faults corrected.

At a given point, both versions are considered good enough tobe released for operation. LetD1 and

D2 be the number of observed (and corrected) unrelated design faults in, respectively, each version,

andDr the number of observed (and corrected) related design faults. “Software science” (see, for

instance, [11]) can be used to estimate the number of unrelated design faults in each version before

the “face-to-face” debugging started. LetN1 andN2 be the number of those faults,Nu = N1 +N2

andDu = D1 +D2. Now, we can think in the debugging process as a sample without replacement

from a “pool” containing two types of objects:

1) Nu unrelated design faults,

2) Nr related design faults,

and our problem is the estimation ofNr − Dr, or equivalentlyNr, knowing the outcome of the

sample (Du andDt) andNu.

The only assumption of the model is that all faults are extracted from the “pool” with the same

probability. This is equivalent to assume that for the debugging input sequence all design faults

are activated at the same rate. Using this “pool” model it is possible to evaluate “a posteriori”

probabilitiesq′k and from them the “a priori” probabilitiesqk of havingk = Nr −Dr related design

faults after the sample. This yields

qk =
q′k

∞
∑

l=0

q′l

(9)

where the “a posteriori” probabilities can be computed by

q′l =

(

Nu

Du

)(

Dr + l

Dr

)

(

Nu +Dr + l

Du +Dr

) (10)

A potential drawback of the method is that the amount of faultdata collected during the “face-

to-face” debugging establishes a bound on the provable diversity. The bound for givenNu andDu is

obtained forDr = 0 and is illustrated in Figure 4, where the predicted average number of remaining

related design faults ANF is plotted against the number of undetected unrelated design faults for

9



Figure 4: Average number of related faults predicted at the beginning of the operation of the system

when no faults of this class are observed during debugging.

several values ofNu. The results clearly show the convenience of carrying out anextensive “face-

to-face” debugging to minimize the number of undetected unrelated design faultsNu − Du and

starting it as soon as possible, to maximizeNu. The former is limited by economical factors, the

latter by the fact that coarse faults may obey different statistics.

Experimental results for two-version software [8] have given an average probability of error

detection in a two-version system of 0.9968. This is within the bound imposed by the method pro-

posed if a number of unrelated faults for complex software (the applicatiosn of interest) is observed

during the “face-to-face” debugging. For instance, if the number of unrelated faults detected in each

version is 49, and the system is released when it is estiamtedthat one unrelated design fault remains

in each version, the estimate for the average number of related design faults when the versions are

released can be as good as 0.03 ifDr = 0 (see Fig. 4 withNu = 100). Then, if we assumec = 0.2

and that all the design faults are activated during operation at the same rateψ, the total activation rate

of design faults will be approximately2ψ, whereas coincident errors will be produced only with rate

(0.2)(0.03)ψ. This gives a provable error detection probability bound of0.9974, which is slightly

large than that observed empirically.

In order to estimateψk, it can be assumed that all design faults have the same activation rate,

irrespective of whether they are related or not. This assumption si also used in software growth

models for single-version systems [6]. Then,ψ = kψ. The activation rate per design fault could be

estimated from the rates observed during debugging. Usually, special-case inputs rather than random

inputs would be used in order to accelerate the debugging. Inthis case, an appropriate correction

factor, which could be estimated by correlating the observed failure rates with those obtained with

random inputs, should be used.

10



1� 0�

1� 0�

1� 0�

1� 01

1��00

1� 0� 1� 0� 1� 01 1��00 1��01

w��� v�	
��� c�		�c����

w����
� v�	
��� c�		�c����

Figure 5: Influence of error correlation and distribution ofinitial number of related design faults in

the design unsafety with and without version correction during operation.

5 Model Analysis

In this section a qualitative analysis of the unsafety of two-version systems using the model devel-

oped in Section 3 will be carried out. Since the behavior ofUS p(t) is trivial, only US d(t) will be

considered.

Figure 5 illustrates the influence of the error correlation factor and the initial distribution of

related design faults on the design unsafety. Two cases are considered: operation with version

correction and operation without version correction. The initial distribution of related design faults

is computed using the method proposed in the previous section using two sets of values forNu,

Du, andDr, differing only in the value ofDr. The design unsafety is evaluated using (1)–(5) for

the case with version correction, and (7) for the case without version correction, withψk = kψ. It

can be seen that bothc and the initial number of related design faults have an important impact on

the design unsafety. In addition, and at first sight suprisingly, the initial behavior is independent of

whether related design faults are corrected. This is due to the fact that fault correction necessarily

follows fault ocurrence and the initial behavior ofUSd(t) is mainly determined by the activation

of the first fault. The conclusion is that for critical applications, where a very low probability of

unsafe failure has to be guaranteed, version correction during operation does not help, at least from

a statistical point of view.

The impact of the diagnosis and correction efficiency is thuslimited to the asymptotic behavior

of the design unsafety ans is analyzed in Figure 6. It can be seen that diagnosis efficiency is more

important than correction efficiency, and that moderate values for both are enough.

11



1� 0�

1� 01

1��00

0�0 0�� 0�� 0�� 0�� 1�0

Figure 6: Impact of diagnosis and correction efficiencies onthe asymtotic behavior of the design

unsafety.

6 Conclusions

Starting from a behavioral model, an evaluation model for a two-version architecture for safety-

oriented applications has been developed. The model is sufficiently simple for a closed form expres-

sion for the unsafety to be obtained. The problem of parameter estimation has been studied and a

method for the prediction of the distribution of the number of related design faults at the beginning

of the operation of the system has been proposed. The method has the advantage of not requiring an

underlying model for the production of design faults duringthe specification and design processes.

It has been shown that, if the face-to-face” debugging is carried out from an early stage, the method

is capable of predicting diversities of the order of magnitude reported in recent experiments for two-

version systems. For a higher number of versions the estimate might be coarse if the versions are

very diverse.

By analyzing the model it has been shown that version correction during operation has a neg-

ligible influence during the period of interest for criticalapplications. This has two consequences.

First, from a practical point of view, it stresses the need for extensive debugging before operation,

even if different versions are used. Second, from a modelingpoint of view, only the initial related

design fault rate is significant and correction need not be modeled. It must be emphasized that

these conclusions apply onlt to two-version architecturesand critical applications, where a very low

unsafety has to be guaranteed.

Currently we are considering the application of a similar methodology for the modeling of

three-version systems for reliability-oriented applications. Much more complex Markov models are

needed for these systems. A software tool, METFAC [2], is being used to define and process the

models.

12



A Derivation of the closed-form expression for US d(t)

USd(t) is the probability of being in the unsafe failure state at time t. Since the state is absorbing

and cannot be reached from the state 0 (see Figure 3c),

US d(t) =

n
∑

i=1

qipi,UF (t) (11)

wherepij(t) are the interval transition probabilities of the continuous-time Markov chain (pij(t) is

the probability that the chain is in statej at timet given that it was in statei at the initial time).

Let

ρk = (c+ α)ψk . (12)

The transition probabilities are governed by the set of differential equations (see, for instance [5])

dpii

dt
= −ρipii(t)

dpij

dt
= −ρjpij(t) + αψj+1pi,j+1(t) , 1 ≤ j < i

dpi,UF

dt
=

i
∑

j=1

cψjpij(t)

with initial conditions

pii(0) = 1

pij(0) = 0 , 1 ≤ j < i

pi,UF (0) = 0 .

Using the Laplace transform the following linear system is obtained:

sPii(s)− 1 = −ρiPii(s)

sPij(s) = −ρjPij(s) + αψj+1Pi,j+1(s) , 1 ≤ j < i

sPi,UF (s) =
i
∑

j=1

cψjPij(s) . (13)

The system can easily be solved iteratively inPij(s), resulting

Pij(s) =

αi−j
i
∏

k=j+1

ψk

i
∏

k=j

(s+ ρk)

, 1 ≤ j ≤ i .

13



By substituing in (13), the following expression is obtained:

Pi,UF (s) =
i
∑

j=1

cψjα
i−j

i
∏

k=j+1

ψk

s

i
∏

k=j

(s+ ρk)

.

After fractional expansion, and making use of the fact thatψi 6= ψj for i 6= j, the reverse

Laplace transfrom can be found to be

pi,UF (t) =

i
∑

j=1

cψjα
i−j

i
∏

k=j+1

ψk

i
∏

k=j

ρk

+

i
∑

j=1

cψjα
i−j





∏

k=j+1

ψk





i
∑

k=j

Cijke
−ρkt

with

Cijk = −
1

ρk

i
∏

l=j

l 6=k

(ρl − ρk)

.

After some algebraic manipulations and changes of indices in the summations one obtains

pi,UF (t) = Ai −

i
∑

k=1

Bi
ke

−ρkt (14)

with

Ai = 1−

(

α

c+ α

)i

(15)

Bi
k =

c

ρ : k

k
∑

l=1

(

α

c+ α

)i−l

i
∏

m=l

ψm

i
∏

m=l

m6=k

(ψm − ψk)

. (16)

Finally, by substitution of (14) in (11):

US d(t) =
n
∑

i=1

qiAi −

n
∑

i=1

qi

i
∑

k=1

Bi
ke

−ρkt

and by rearranging the summations of the second term:

US d(t) =
n
∑

i=1

qiAi −

n
∑

k=1

(

n
∑

i=k

qiB
i
k

)

e−ρkt . (17)

The closed-form solution is defined by (17), (15), (16), and (12).

14



Acknowledgments

This research work was supported by the ESPRIT project 1609 SMART (System Measurement and

Architecture Techniques) and by the CICYT (“Comisión Interministerial de Ciencia y Tecnologı́a”).

References

[1] A. Avizienis, The N-version Approach to Fault-TolerantSoftware,IEEE Trans. on Software Eng., SE-

11, 1491–1501 (1985).

[2] J. A. Carrasco and J. Figueras, METFAC: Design and Implementation of a Software Tool for Model-

ing and Evaluation of Complex Fault-Tolerant Computing Systems,Proc. 16th Int. Symp. on Fayult-

Tolerant Computing FTCS-16, Vienna, Austria, July 1986, pp. 424–429.

[3] A. Costes, C. Landrault, and J. C. Laprie, Reliability and Availability Models for Maintained Systems

Featuring Hardware and Design Faults,IEEE Trans. on Computers, C-27, 548–560 (1978).

[4] A. L. Goel and K. Okumoto, An Analysis of Recurrent Software Failures ina Real-Time Control System,

Proc. ACM Ann. Tech. Conf., Washington, DC, 1978, pp. 496–500.

[5] R. A. Howard,Dynamic Probabilistic Systems, Volume II: Semi-Markov and Decision Processes, John

Wiley and Sons, Inc., New York, 1971.

[6] Z. Jelinsky and P. Moranda, Software reliability research, inStatistical Computer Performance Evalua-

tion, (W. Freiberger, Ed.), Academic, New York, 1972, pp. 465–484.

[7] J. C. Knight, N. G. Levenson, and L. D. St. Jean, A Large-Scale Experiment in N-version Programming,

Proc. 15th Int. Symp. on Fault-Tolerant Computing FTCS-15, Ann Arbor, Michigan, June 1985, pp.

135–139.

[8] J. C. Knight and N. G. Levenson, An Emperical Study of Failure Probabilities in Multiple-Version

Software,Proc. 16th Int. Symp. on Fault-Tolerant Computing FTCS-16, Vienna, Austria, July 1986, pp.

165–170.

[9] P. K. Lala.Fault Tolerant and Fault Testable Hardware Design, Prentice-Hall Inc., London, 1983.

[10] J. C. Laprie, Dependability Evaluation of Software Systems in Operation,IEEE Trans. on Software

Eng., SE-10, 701–714 (1984).

[11] P. N. Misra, Software Reliability Analysis,IBM Systems Journal, 22, 262–270 (1983).

[12] U. Sumita and Y. Masuda, Analysis of Software Availability/Reliability Under the Influence of Hard-

ware Failures,IEEE Trans. on Software Eng., SE-12, 32–41 (1986).

15


