Evaluation of Safety-Oriented Two-Version Architectures

Juan A. Carrasco and Joan Figueras Annie Kuntzmann
Departament d’Enginyeria Electronica CISI Ingenierie
Universitat Politecnica de Catalunya France
Diagonal 647, plta. 9
08028 Barcelona, Spain

Except for formatting details, this version matches eyatie version published with the
same title and author idournal of Systems and Software, vol. 14, no. 3, 1991, pp.
155-162

Abstract

A Markov model taking into account physical and design ftdr a two-version architec-
ture oriented to safety-related applications is develogady a probabilistic knowledge of the
initial state of the versions in relation to the presencesasiigh faults is assumed. The model can
be split into two submodels accounting separately for giasind design faults, and a closed
form expression for the unsafety of the system is obtaindd@ Jarameter estimation problem
is discussed and a method to predict the probability digio of the number of related design
faults at the beginning of the operational life of the sysiemproposed. The method uses a
pool model to process fault-occurrence data collectechduai“face-to-face” debugging of the
two versions. It has by nature a limited capability for prayversion diversity, but it is shown
that the limit is of the order of the diversity reported by eatexperiments on real software.
Finally, the impact of version correction during operatisrshown to be negligible for critical
applications.

1 Introduction

One of the most critical problems faced in the productioraoftftolerant systems is how to monitor
architecture design together with the development proitessder to meet the dependability and
performance specifications ensuring cost effectivenegsluition methods encompassing physical
(hardware) faults and design faults introduced during freciication and development processes
might help solve this problem. The need for such a combinatuation has recently been pointed
out [10]. In critical applications, the complexity of cuntesoftware and hardware designs makes
it no longer possible to cope with design faults using onhaaltfavoidance approach, and fault-
tolerance techniques should be considered. Design divétdiis a suggested approach to provide
design fault-tolerance.

Design diversity is applied differently in safety-oriedtand reliability-oriented applications.
Safety-oriented applications do not require completet-famlérance but merely error detection. For
applications of this type, design diversity is implementethg two versions and a comparison mon-
itor, which takes the system to a safe failure state when tityguts of the two versions differ. For
reliability-oriented applications, design faults havév#otolerated. In applications of this type, three
or more versions are used in conjuction with a majority vatetecide which of the results provided
by the versions are to be issued. The efficiency of desigrrgityedepends critically on the extent
to which the versions fail independently. Experimentallssrecently carried out on multiversion
software seem to indicate that even though the versions tfaihindependently [7], multiversion
systems improve significantly single-version systems th lsafety and reliability-oriented applica-
tions [8]. In our opinion, since hardware design is simifamany aspects to software development,
a parallel promise stands in relation to hardware desigitstau

Some work has been done toward the combined modeling ofqaiyesid design faults [3, 10,
12], but, to the best of our knowledge, no evaluation of naaigion systems incorporating both
types of faults has been carried out. In this paper, a Markoglehto evaluate the unsafety of a two-
version system with version correction during operatiodegeloped and solved. This architecture
can match the requirements of most safety-oriented apiolitsaat a reasonable development cost.

2 Taxonomy

2.1 Architecture

Figure 1 shows the architecture under evaluation. Two iaddently designed computation chan-
nels in synchronous operation share a given set of inputspardlce separate outputs that are
compared by a totally self-checking (TSC) comparison noonithe output of the system is taken
from the first channel and is considered valid as long as tharéaindication is given by the moni-
tor. The comparison monitor can be implemented using wadakn techniques [9]. We would like
to point out that no assumption is made regarding the p#atiéGmplementation of the channels.

CHANNEL 1

L FAILURE

——

CHANNEL 2

|

TSC comparison monitor

Figure 1: Architecture of a two-version system.

They could be special-purpose VLSI systems or programmstgisys. The only requirement is that
correct outputs from both channels should be equal.

2.2 Fault Modd

The faults considered for the development of the model casldssified as follows:

* physical faults

— in channels

+ unrelated
+ related

— in the monitor

+ benign
+ latent

* design faults (in channels)

+ unrelated

+ related

Physical faults are permanent or temporary malfunctiortk@hardware resulting from phys-
ical degradation processes or external disturbances. Gdewaffect the channels or the monitor.
Physical faults affecting only one channel are called ateel faults; physical faults affecting both
channels are called related faults. Related physicalsfautiduce erroneous, but usually not identi
cal, outputs in both channels. Physical monitor faults &assified into benign and latent. Benign
faults are within the self-checking capability of the moniand produce a FAILURE indication. La-
tent faults fall outside the self-checking capability of thhonitor and do not produce that indication.

It is assumed that the comparison monitor is design faa#-frDesign faults are viewed as
regions in the system input space, which in general woulgisbmf sequence of input vectors.

undetected error UNSAFE
@ FAILURE

failure indication restart

/

@NOSIS SAFE DOWN
\» HARDWARE end of repair /
REPAIR

end of correctioy

\

CORRECTION O
UNRELATED
DESIGN FAULTS

CORRECTION O
RELATED
DESIGN FAULTS

end of correctioy

v

Figure 2: Conceptual behavioral model.

When the input enters the region associated with a desidt tha fault is activated and an error
occurs. In our model, regions in different versions areegitfisjoint (unrelated design faults) or
coincident (related design faults). Related design fanlig or may not produce identical errors.

2.3 Behavioral modd

The behavioral model is obtained by combining the fault nhedé the maintenance strategy and
is shown in Figure 2. An unsafe failure occurs if an erroneoutput is given without a FAIL-
URE indication. This happens if a related physical or de&git produces identical errors in both
channels, or if the first channel gives an erroneous outpthiérpresence of a latent fault in the
comparison monitor preventing the recognition of the disament. When a FAILURE indication
is issued, the operation of the system is stopped for diagindfsa permanent physical fault or a
design fault is found, a maintenance operation starts. r@tke, a transient fault is assumed and the
system is immediately restarted. From a purely statisgioait of view, it would seem reasonable to
restart the system’s operation when a design fault is disgphand perform the correction off-line:
the system is, after all, as good as it was before. Howewvam & psychological point of view, this
does not seem reasonable, even if the design fault is betived confined to only one channel.

From the user’s point of view, the system alternates betwleetJP and SAFE DOWN states
until the undesired unsafe failure occurs. In order to gbattie dependability of the system, we

will use the unsafetyUS(t), defined as the probability of having an unsafe failure olerfirstt
time units of operation in the UP state, i.e., ignoring thegtispent in the SAFE DOWN state. This
choice is motivated by the following reasons:

1) itis areasonable one in the context of our measure,
2) it gives an upper bound for the unsafety computed overdhktime,

3) the bound is tight in the frequent case in which the masntea and correction rates are much
higher than the failure rates,

4) it simplifies the model significantly.

A stochastic model for the evaluation of the unsafety of tysesn is developed in the next
section.

3 TheEvaluation M oddl

3.1 Mode Hypotheses

The actual faulty behavior of the comparison monitor in dimation with the channels is complex.
First, the self-checking attribute of the comparison namdnly implies that benign faults are de-
tected (cause a FAILURE indication) for some pairs of chhoaoputs. Hence, in fact, benign faults
are “latent” for some time. In addition, a latent fault in #t@mparison monitor can result in a FAIL-
URE indication for some agreeing pair of channel outputsndhé absence for some disagreeing
pair. A detailed model would be dependent on the actual desighe comparison monitor and on
the actual operation of the channels since the productigheofault, and would be in general very
difficult, if not impossible, to build. A simpler model willdused in this paper. The latency of
bening faults will be neglected and it will be assumed, paistically, that an unsafe failure follows
immediately after a latent fault. Under these hypothesesbaaring in mind that the unsafety has
been defined over the “up” time, only the faults leading to asafe failure need be considered.

Having defined the unsafety over the “up” time, only the repabcesses modifying the pro-
duction of faults leading to an unsafe failure (criticallfauneed be modeled. Since physical failure
processes are not modified by repair actions and the systemnihaone operational mode, critical
physical faults are modeled by a constant rage>, which can be obtained by adding the rate of
related physical faults producing identical errors andréte of monitor latent faults.

Unrelated design faults are always detected and can beeigriorthe model. Related design
faults can cause an unsafe failure and have to be considémdctivation/correction model for
related design faults is needed. The one proposed is a dieagom of the Goel and Okumoto
model [4], and is described by the following hypotheses:

1) initially there arek related design faults with probability,, & > 1,

2) the total related design fault activation rate wiker 1 faults are present ig;,

3) arelated design fault, when activated, causes idergicats with probabilityc (error correla-
tion),

4) an activated related desing fault causing a disagreeisdiggnosed as such with probability
E, (diagnosis efficiency) and with probability— E, is treated as a transient physical fault
i.e., the system is restarted without correction,

5) adiagnosed related design fault is properly correctedviersion with probabilityF,. (correc-
tion efficiency),

6) arelated design fault not properly corrected in any eeraves the same related design fault
activation rate as the system had before.

Thus, with probabilityc the activation of a related design fault causes an unsdfedaiith
probability
a=(1-c)Es[1 - (1- E.)*] (1)

the fault is removed from the system, and with probability ¢ — « either the fault is not well
diagnosed and therefore not removed, or is improperly ctedein both versions, in both cases
leaving the system with the same related design fault dittivaate as it had before.

3.2 Modd Solution

Assume now that the number of initial related faultss bounded by (we will show later how to
choose a suitable value faj). Then, it is possible to describe the evolution of the syste the up
states until its first unsafe failure by the homogeneoustimoeous-time Markov chain depicted in
Figure 3a. Considering that all the up states have a commaasition with rate\ op to the unsafe
state, it is possible to decompose the model in two submodaks accounting for critical physical
faults (Figure 3b) and a second one accounting for relateigjddaults (Figure 3c). The safe(t)
can be expressed as

S(t) = Sp(t)Sa(t)

where S,(t) (physical safety) and;(t) (design safety) are obtained using the submodels. When
dealing with safety-related applications it is often magn#icant the unsafety/S(¢) = 1 — S(t)

or probability of having an unsafe failure over the fitgtme units. US(¢) can be computed from
US,(t) and US,(t) using

US(t) = US,(t) + USq(t) — US,(t) USa(t)

!Note that the model neglects the probability of diagnosimigsign fault for only one version, which is estimated to
be a very unlikely event, considering that related desing$dhave a common cause.

cn + Acp

Figure 3: Unsafety evaluation model (a) and its decompositito a physical unsafety evaluation
model (b) and a design unsafety evaluation model (c).

The model decomposition is interesting because it makeass#iple to analyze separately the
contributions of the two types of faults to the overall uesaf The unsafety due to critical physical

faults is given by
US,(t) =1 — e ert

The evaluation ofUS;(t) requires the transient solution of the Markov chain depligteFig-
ure 3c. Letg; be the probability that the initial number of related faudts, 0 < ¢ < n. Under the
assumptionp; # 1; for i # j, which is true for the model, the following closed-form dain (see
Appendix) can be obtained.

USa(t) =D aidi = (Z QiB]i> e Prt 2
i=1 k=1 \i=k

where
pr = (c+ a)iy 3)

i (25)

il
« m=l
<c + a) i ' ©)

Two particular cases are worth mentioning: a) total erroratation ¢ = 1), and b) no version
correction. The latter can be obtained from the general inogenaking £; = 0. In both cases

a = 0 (1) and the model of Figure 3c is reduced to a Markov chainrgaenly transitions from the
statesi = 1, ..., n to the unsafe state, with ratés for case a andy; for case b. These models are
easily solved yielding

USq4(t) = Zn: i (1 — e"”it> for case a (6)
i=1

US4(t) = zn: g (1 - e—cwit) for case b @)
=1

Let us consider the problem of selecting a truncation valder the initial number of related
design faults. The limit design unsafety is given by (2)

US4(00) = Z%’Ai 8
i—1

whereA; = 1 for the particular cases. A suitable criterion is to takeo that the relative truncation
error in US4(o0) is lower than a specified tolerancBOL. According to (4),4; < 1. Then, it
suffices to take the smallestwith

n
1—2%‘

— =0 - 70L,

n
Z GiAi
i=0

since the numerator is an upper bound of the absolute tionaatror and the denominator is a lower
bound of the absolute value.

4 Mode Parameter Estimation

The critical physical fault rate\cp can be evaluated by architectural and circuit analysislt fau
injection, etc., and will not be discussed here. As it willdf@wn in the next section, the other
most influencial parameters ateq;, andv,. When the system has only one output signal, it can
be ensured that = 1. Otherwiseg is likely to be smaller. In general, the higher the desigrl¢y
which the fault belongs, the more likely it is that the errmgsulting from related design faults will
be correlated. Analysis of the modular structure of the tersions and correlation with statistical
data could be used to estimateOf course, it is also possible to take the pessimistic aptomthat

c = 1. In this case, the simpler model (6) can be used.

Perhaps the most difficult problem is the estimation of tistrithution of the number of remain-
ing related faults when the operation of the system starsuggestive approach is to use an under-
lying model for the production of design faults accounting rfelated faults. Such a model should
include parameters characterizing: a) the complexity efdbsign, b) the specification methods, c)
the level of diversity of the development methods and taaisl d) the mastery of the designers and
tools. However, we consider it doubtful that such an approeitl be workable because of

8

1) the difficulty in indentifying a reduced set of significgrarameters,
2) the limited amount of data on related design faults,

3) the rapid evolution of design methods and tools.

Our approach is a generalization of the methods currendg irs“software science” to monitor
the reliability growth during debugging and estimate thievgare reliability at the release point. Our
suggestion is as follows.

Once both versions have been cleaned out of coarse flawsatbelebugged in parallel using
the same test inputs (“face-to-face” debugging). Erroesmaonitored and design faults corrected.
At a given point, both versions are considered good enoudgk teleased for operation. LB and
Dy be the number of observed (and corrected) unrelated dessidps fn, respectively, each version,
and D, the number of observed (and corrected) related desigrsfai8oftware science” (see, for
instance, [11]) can be used to estimate the number of uacetisign faults in each version before
the “face-to-face” debugging started. L&t and N, be the number of those faultd), = N1 + No
andD,, = D1 + D,. Now, we can think in the debugging process as a sample witeplacement
from a “pool” containing two types of objects:

1) N, unrelated design faults,

2) N, related design faults,

and our problem is the estimation &f. — D,., or equivalentlyN,, knowing the outcome of the
sample D, andD;) and N,

The only assumption of the model is that all faults are extdérom the “pool” with the same
probability. This is equivalent to assume that for the dejing input sequence all design faults
are activated at the same rate. Using this “pool” model itdssfble to evaluate “a posteriori”
probabilitiesq;, and from them the “a priori” probabilitieg, of havingk = N, — D, related design

faults after the sample. This yields
/

_ %

S
>
1=0

where the “a posteriori” probabilities can be computed by

(Nu> (DT + l)
. \Dy Dy (10)

= (Nu+Dr+l>

qk 9

D, + D,

A potential drawback of the method is that the amount of fdatt collected during the “face-
to-face” debugging establishes a bound on the provablegiiyeThe bound for givewv,, andD,, is
obtained forD, = 0 and is illustrated in Figure 4, where the predicted averameler of remaining
related design faults ANF is plotted against the number detected unrelated design faults for

1E+00

1
1E-01

Ny — Dy

Figure 4: Average number of related faults predicted at #ggriming of the operation of the system
when no faults of this class are observed during debugging.

several values alV,,. The results clearly show the convenience of carrying oudensive “face-
to-face” debugging to minimize the number of undetectecelated design faultsv, — D, and
starting it as soon as possible, to maximi¥g. The former is limited by economical factors, the
latter by the fact that coarse faults may obey differenisttes.

Experimental results for two-version software [8] haveegivan average probability of error
detection in a two-version system of 0.9968. This is wittma bound imposed by the method pro-
posed if a number of unrelated faults for complex softwane @pplicatiosn of interest) is observed
during the “face-to-face” debugging. For instance, if thentber of unrelated faults detected in each
version is 49, and the system is released when it is estiatinédne unrelated design fault remains
in each version, the estimate for the average number otckldesign faults when the versions are
released can be as good as 0.0Bjif= 0 (see Fig. 4 withV,, = 100). Then, if we assume = 0.2
and that all the design faults are activated during opearatidche same rate, the total activation rate
of design faults will be approximateB), whereas coincident errors will be produced only with rate
(0.2)(0.03)%. This gives a provable error detection probability boun®®074, which is slightly
large than that observed empirically.

In order to estimate);, it can be assumed that all design faults have the same timtivate,
irrespective of whether they are related or not. This assiomsi also used in software growth
models for single-version systems [6]. Then= k1. The activation rate per design fault could be
estimated from the rates observed during debugging. Ussakkcial-case inputs rather than random
inputs would be used in order to accelerate the debugginghisncase, an appropriate correction
factor, which could be estimated by correlating the obskfadure rates with those obtained with
random inputs, should be used.

10

1E+00
Ny =50 —— with version correction
US4(®) Dy = 48 —&— without version correction

1E-01

Dr=2,c=0.5

Dy =2,c=
1E-02 r
1E-03 —

" Dr=0,c=0.2
1E-04 1)
1E-03 1E-02 1E-01 1E+00 wt 1E+01

Figure 5: Influence of error correlation and distributionirdfial number of related design faults in
the design unsafety with and without version correctiorirduoperation.

5 Mode Analysis

In this section a qualitative analysis of the unsafety of-ti@osion systems using the model devel-
oped in Section 3 will be carried out. Since the behaviol/s,(t) is trivial, only US4(t) will be
considered.

Figure 5 illustrates the influence of the error correlatiantér and the initial distribution of
related design faults on the design unsafety. Two casescarsdered: operation with version
correction and operation without version correction. Tiigal distribution of related design faults
is computed using the method proposed in the previous seasimg two sets of values fa¥,,,
D,, andD,., differing only in the value ofD,. The design unsafety is evaluated using (1)—(5) for
the case with version correction, and (7) for the case withietsion correction, withy, = k. It
can be seen that bothand the initial number of related design faults have an itgmbrimpact on
the design unsafety. In addition, and at first sight supglgjrthe initial behavior is independent of
whether related design faults are corrected. This is dubdddct that fault correction necessarily
follows fault ocurrence and the initial behavior 6%5,(¢) is mainly determined by the activation
of the first fault. The conclusion is that for critical apgltons, where a very low probability of
unsafe failure has to be guaranteed, version correctiangloperation does not help, at least from
a statistical point of view.

The impact of the diagnosis and correction efficiency is thmited to the asymptotic behavior
of the design unsafety ans is analyzed in Figure 6. It can &e g&t diagnosis efficiency is more
important than correction efficiency, and that moderataesfor both are enough.

11

1E+00

USq(e) | R

1E-01 [

02 b o v o
0,0 0,2 0,4 0,6 0,8

Figure 6: Impact of diagnosis and correction efficienciest@asymtotic behavior of the design
unsafety.

6 Conclusions

Starting from a behavioral model, an evaluation model fowa-tersion architecture for safety-
oriented applications has been developed. The model isieuiftiy simple for a closed form expres-
sion for the unsafety to be obtained. The problem of parangstiimation has been studied and a
method for the prediction of the distribution of the numbgradated design faults at the beginning
of the operation of the system has been proposed. The me#isatidn advantage of not requiring an
underlying model for the production of design faults durthg specification and design processes.
It has been shown that, if the face-to-face” debugging igexdout from an early stage, the method
is capable of predicting diversities of the order of magidétueported in recent experiments for two-
version systems. For a higher number of versions the egtimaiht be coarse if the versions are
very diverse.

By analyzing the model it has been shown that version caoreduring operation has a neg-
ligible influence during the period of interest for critigplications. This has two consequences.
First, from a practical point of view, it stresses the neeadefdensive debugging before operation,
even if different versions are used. Second, from a modgaigt of view, only the initial related
design fault rate is significant and correction need not bealeal. It must be emphasized that
these conclusions apply onlt to two-version architectares critical applications, where a very low
unsafety has to be guaranteed.

Currently we are considering the application of a similathodology for the modeling of
three-version systems for reliability-oriented appligas. Much more complex Markov models are
needed for these systems. A software tool, METFAC [2], is@eaised to define and process the
models.

12

A Derivation of the closed-form expression for US(t)

USq4(t) is the probability of being in the unsafe failure state atetimSince the state is absorbing
and cannot be reached from the state 0 (see Figure 3c),

USq4(t) Z qipi, ur(t (11)

wherep;;(t) are the interval transition probabilities of the continsdime Markov chaing;;(¢) is
the probability that the chain is in statet timet given that it was in stateat the initial time).

Let
pe = (c+). (12)

The transition probabilities are governed by the set obdiftial equations (see, for instance [5])

d ..

gt” = —pipii(t)
dpi; _ 1< i<
i —pjpij(t) + apjiapi j+1(t), <j<i

dp UF
- Z ijpm

with initial conditions

pii(0) =1
pij(O):O, 1§j<i
pi,ur(0) =0.

Using the Laplace transform the following linear systembitamed:
sPy(s) — 1= —p; Py(s)
sP;j(s) = —p;jPij(s) + a1 Pijia(s), 1<j<i

z UF Z CT/}] zy (13)

The system can easily be solved iterativelyn(s), resulting

13

By substituing in (13), the following expression is obtaine

7
| 1w
. k=j+1
PLue(s) = S eggatT I

1
= s[](s+pw)
k=j

After fractional expansion, and making use of the fact that~ 1; for i # j, the reverse
Laplace transfrom can be found to be

pi,ur(t Z i Ly > epjal

Jj=1 Jj=1
Hﬂk
k=j

k=j+1 k=j

ﬁ L
(H w’f)z T

with
1

PkH pL— pr)

l;ék

i
Jk =

After some algebraic manipulations and changes of indicéise summations one obtains
pi,UF(t) = Az — Z Blie_pkt (14)

with

Ai=1-— (Ci‘() (15)

k i—l
m=l
. 16
T p k‘;(CJra) : 4o

Finally, by substitution of (14) in (11):

USq(t) Zqu ZquBle prt
=1 =

and by rearranging the summations of the second term:
US4(t) ZqZA Z (Z qu2> eTPrt, (17)

The closed-form solution is defined by (17), (15), (16), al®))(

14

Acknowledgments

This research work was supported by the ESPRIT project 1608 (System Measurement and
Architecture Technigues) and by the CICYT (“Comision miéisterial de Ciencia y Tecnologia”).

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]
[10]

[11]

[12]

A. Avizienis, The N-version Approach to Fault-Tolerg®wftware | EEE Trans. on Software Eng., SE-
11, 1491-1501 (1985).

J. A. Carrasco and J. Figueras, METFAC: Design and Impletation of a Software Tool for Model-
ing and Evaluation of Complex Fault-Tolerant Computingt8yss,Proc. 16th Int. Symp. on Fayult-
Tolerant Computing FTCS-16, Vienna, Austria, July 1986, pp. 424—429.

A. Costes, C. Landrault, and J. C. Laprie, Reliabilitydakvailability Models for Maintained Systems
Featuring Hardware and Design FaultsEE Trans. on Computers, C-27, 548-560 (1978).

A. L. Goel and K. Okumoto, An Analysis of Recurrent Softeédailures ina Real-Time Control System,
Proc. ACM Ann. Tech. Conf., Washington, DC, 1978, pp. 496-500.

R. A. Howard,Dynamic Probabilistic Systems, Volume 11: Semi-Markov and Decision Processes, John
Wiley and Sons, Inc., New York, 1971.

Z. Jelinsky and P. Moranda, Software reliability resdgin Statistical Computer Performance Evalua-
tion, (W. Freiberger, Ed.), Academic, New York, 1972, pp. 465448

J. C. Knight, N. G. Levenson, and L. D. St. Jean, A Larged8&xperimentin N-version Programming,

Proc. 15th Int. Symp. on Fault-Tolerant Computing FTCS-15, Ann Arbor, Michigan, June 1985, pp.
135-139.

J. C. Knight and N. G. Levenson, An Emperical Study of &l Probabilities in Multiple-Version
Software Proc. 16th Int. Symp. on Fault-Tolerant Computing FTCS-16, Vienna, Austria, July 1986, pp.
165-170.

P. K. Lala.Fault Tolerant and Fault Testable Hardware Design, Prentice-Hall Inc., London, 1983.

J. C. Laprie, Dependability Evaluation of Software @yss in OperationlEEE Trans. on Software
Eng., SE-10, 701-714 (1984).

P. N. Misra, Software Reliability Analysi$BM Systems Journal, 22, 262—270 (1983).

U. Sumita and Y. Masuda, Analysis of Software AvailghiReliability Under the Influence of Hard-
ware Failures|EEE Trans. on Software Eng., SE-12, 32—41 (1986).

15

