
J. SYSTEMS SOFTWARE 157 
1992; 18:157-170 

A Layered Communication System Generator 

Yung-Chen Hung and Gen-Huey Chen 
Department of Computer Science and Information Engineering, National Taiwan University, 
Taipei, Taiwan, Republic of China 

Although many approaches have been proposed for 
modeling and automatically validating communication 
protocol entities, no approaches have been proposed 
for automatically implementing various layered com- 
munication systems. In the article, we propose a 
layered communication system generator that can 
automatically implement various layered communica- 
tion systems. The layered communication system 
generator is established on the basis of a generalized 
communication system framework. In addition, a lay- 
ered communicating finite state machine is introduced 
to specify the layered communication systems, and 
a matrix approach is proposed for protocol valida- 
tion. We have implemented the proposed layered com- 
munication system generator in DOS and UNIX 
environments, in which several real-world protocols 
from Department of Defense and IEEE 802 standards 
organizations have been successfully developed. 

1. INTRODUCTION 

Layered communication system generation is a process 
of developing new layered communication systems. 
The objective is to provide a systematic way of devel- 
oping layered communication systems so that their 
correctness can be ensured. 

To facilitate smooth communication among different 
information processing systems in a heterogeneous 
environment, we need a universal framework of 
computer networking architectures. The well-known 
seven-layer open system interconnection reference 
model, which was proposed by the International Stan- 
dards Organization, is a worldwide standard for the 
creation of communication systems. On this basis, the 
layered communication system generator can be defined 
as follows: Given a communication specification under 
a layered architecture, the layered communication sys- 
tem generator constructs the corresponding executable 
communication system so that the interactions within 

Address correspondence to Professor Gen-Huey Chen, Dept. 
of Computer Science and Information Engineering, National 
Taiwan University, Taipei, Taiwan, Republic of China 

the communication system are complete, live, and 
deadlock free. Completeness ensures that all possible 
inputs are handled and all possible outputs are received. 
Liveness ensures that there are no nonexecutable transi- 
tions. The absence of deadlocks guarantees that no two 
communication systems wait for each other forever. 

In this article, we first propose a generalized commu- 
nication system framework suitable for a variety of 
target machines. We use a layered communicating finite 
state machine (L_CFSM) to specify a layered commu- 
nication system. In an L-CFSM, each protocol entity 
and interlayer synchronization are specified by a modi- 
fied finite state machine (MFSM) and a pair of FIFO 
queues, respectively. The MFSM is represented by an 
event matrix and an action matrix. Based on these, we 
can automatically implement a given L_CFSM into a 
communication system while systematically validating 
the logical correctness of the given L-CFSM at the 
same time. 

There has been some progress in creating an inte- 
grated set of tools for automatic protocol design. These 
tools are useful in the specification, validation, and 
implementation of a protocol. However, they are dedi- 
cated only for implementing a protocol entity [l-8]. 
The objective of this article is to show how to automati- 
cally implement a layered communication system from 
an L_CFSM, not only a protocol entity. 

The procedure of developing a layered communica- 
tion system consists of five steps and is outlined as 
follows (Figure 1): 

1. 

2. 

3. 

4. 

5. 

Install the generalized communication system frame- 
work in the given target machine. 

Input the specification of the layered communication 
system. 

Transform protocol entities into event and action 
matrices. 
Validate protocol entities to ensure they are logical 
error free. 

Download the event and action matrices to the target 
machine. 

0 Elsevier Science Publishing Co., Inc. 
655 Avenue of the Americas, New York, NY 10010 01641212/92/$5.00 



158 J. SYSTEMS SOFTWARE Yung-Chen Hung and Gen-Huey Chen 
1992; 18:157-170 

Modify 

e 

Install 

Generalized 

System 

Framework 

in Target 

Machine 

Event Matrices 

Protocol 

validation 

Event Matrices 

No 

b 

+ 
, , c[ :z:ces 1 

and Event 

Matrices 

Systems 

Figure 1. Overview of the layered communication system 
generator. 

Although we have suggested the installation of 
the generalized communication system framework to 
be the first step of the procedure, it is not necessary 
for the installation to precede the input of the L-CFSM. 
The installation must be complete only before down- 
loading the action and event matrices to the target 
machine. 

Also, note that in Figure 1, the action matrices need 
not be processed through protocol validation and logi- 
cal error checks, since they bear no relation to protocol 
validation. In fact, whenever logical errors are detected 
in the event matrices, the L_CFSM needs to be modi- 
fied, which may cause changes in the action matrices. 

The approaches to protocol validation are mainly 
classified into two categories: perturbation analysis 
[5, 81 and the relational algebraic approach [9]. The 
perturbation analysis cannot systematically express the 
validation procedure. On the other hand, the relational 
algebraic approach is based on relational operations 
(e.g., projection, selection, replacement, join, &join, 

etc.) and its realization relies on a powerful relational 
data base system (e.g., INGRES). We propose a new 
approach in which protocol validation is performed 
systematically by matrix operations. 

The rest of this article is organized as follows. A 
generalized communication system framework is pre- 
sented in section 2. The L-CFSM is introduced in 
section 3. In section 4, we show a protocol entity 
generator, which transforms each protocol entity into 
an event matrix and an action matrix. In section 5, we 
propose a matrix approach to protocol validation. The 
implementation experience of the layered communica- 
tion systems is discussed in section 6. Finally, in 
section 7, we summarize the features of the proposed 
layered communication system generator and sug- 
gest some future research directions. Appendices 
list the event and action matrices of TCP in our 
implementation. 

2. A GENERALIZED COMMUNICATION 
SYSTEM EFRAMEWORK 

In this section, we present a generalized communication 
system framework (see Figure 2) suitable for a multi- 
vendor network system. This framework contains a set 
of modules for interlayer synchronization, interlayer 
flow control, memory management, and time manage- 
ment. We assume that each protocol entity can multi- 
plex more than one protocol entity in its upper layer. 
For simplicity, we show only one protocol entity in 
each layer in Figure 2. The framework consists mainly 
of unidirectional FIFO queues, a switcher, a memory 
manager, a time manager, layered protocol entities, 
and a protocol entity generator. This environment is 
suitable for various layered communication systems. 

Queue Structure 

A pair of unidirectional FIFO queues are used for 
intermodule, interlayer, and intercomputer synchro- 
nization. They are classified into three categories. 

1. 

2. 

3. 

External queues, which are necessary in communi- 
cating finite state machines [lo- 121, are used for 
intercomputer synchronization. 
Internal queues are used for interlayer synchroniza- 
tion (see Figure 3). 
Service queues are used for synchronization 
between protocol entities and the time manager 
(Figure 3). 

Each protocol entity can send (receive) packets into 
(from) a subset of queues called its outgoing (incoming) 
queues. The reasons why we adopt the queue structure 
in the framework are as follows. 



A Layered Communication System Generator J. SYSTEMS SOFTWARE 159 
1992: l&157-170 

t 

external + 
queues 

7 + 
COMMUNICATION 

MEDIUM 

Figure 2. A generalized communication system framework. 

Znterlayer synchronization. The queue structure is 
the most commonly used technique for interprocess 
synchronization in operating systems. It is also suitable 
for interlayer synchronization. In a layered communica- 
tion system, each protocol entity can multiplex more 
than one protocol entity in its upper layer, which is 
called upward multiplexing. In upward multiplexing, 
the communication between the multiplexed protocol 
entities is called local delivery. For example, in Figure 
3, protocol entity C multiplexes protocol entities A and 
B, and the local delivery between protocol entities A 
and B must go through protocol entity C. Generally, a 
layered communication system can be implemented by 
either treating each protocol entity as a separate process 

or taking the whole communication system as a pro- 
cess. The latter approach often implements each proto- 
col entity as a function or a subroutine, and so the 
interlayer synchronization can be implemented by func- 
tion or subroutine calls. However, there are two weak- 
nesses in such an implementation. One is that a long 
path of function or subroutine calls due to consecutive 
local deliveries will make the whole computer system 
fail. The other is that a race condition will occur 
between changing protocol entity states and returning 
from function calls when local deliveries proceed. 
Therefore, we adopt the former implementation, in 
which each protocol entity is represented by a separate 
process. In such an implementation, interprocess syn- 



160 1. SYSTEMS SOFTWARE 
1992: 18:157-170 

Yung-Chen Hung and Gen-Huey Chen 

Figure 3. Queues for synchronization between adjacent lay- 
ers and between the time manager and protocol entities. 

chronization is realized through the use of the queue 
structure. 

Interlayer flow control. Queues are a good check- 
point to measure the workload of the protocol entities 
and to detect bottlenecks in a layered communication 
system. 

Communication system migration. In a layered 
communication system, queues are a good interface 
between adjacent layers, With the use of queues, layers 
may be arbitrarily grouped into three parts: the upper 
part stays in the host computer, the middle part is 
downloaded to a front-end processor, and the lower 
part is realized by a special hardware chip (adaptor). 

Switcher 

As mentioned above, 
sented by a separate 

each protocol entity is repre- 
process. Therefore, how CPU 

switches between these processes is important. If the 
layered communication system runs in a single-user 
environment (e.g., DOS), a switcher is needed to allo- 
cate CPU among these processes. On the other hand, if 
the layered communication system runs in a multiuser 
environment (e.g., UNIX), a new switcher is still 
needed because the original OS scheduling criteria can- 
not fit the layered communication system. The switcher 
is responsible for allocating CPU to the process with 
the highest priority. The priorities of processes are 
usually determined by the number and urgency of 
packets in the incoming queues. 

The switcher itself is a main process in a layered 
communication system. When it gets CPU to run, it 
switches CPU to the highest priority protocol entity, 
which then removes packets from incoming queues 
(dequeue), processes them, inserts some packets into 

outgoing queues (enqueue), and finally returns CPU to 
the switcher. By repeatedly switching CPU among the 
protocol entities, the switcher can make the communi- 
cation system more 
smoother. 

productive and the interlayer flow 

Memory Manager 

For convenient use of the layered communication sys- 
tem, we provide a uniform logical view of memory 
utilization. The memory manager defines a fixed-size 
(16, 256, or 512 bytes) block of memory as a logical 
memory unit. The memory manager also provides a set 
of routines including allocation, deallocation, enqueue, 
and dequeue to realize the necessary memory opera- 
tions. The allocation (deallocation) routine is invoked 
to allocate (free) a logical memory unit. The enqueue 
and dequeue routines are used as basic queue opera- 
tions. Because the protocol entities share a common 
memory pool, pointers, instead of data packets, are 
physically transmitted between the protocol entities. 

Time Manager 

In a layered communication system, there are some 
time-related mechanisms such as retransmission, time- 
out, and piggyback. The framework provides a time 
manager for the following purposes: start a timer, stop 
a timer, keep track of timers, and send an alarm signal 
to a protocol entity as timeout. The interface between 
the time manager and the protocol entities consists of a 
pair of queues, through which start and stop events can 
be transmitted from protocol entities to the time man- 
ager and timeout events can be transmitted in reverse 
direction. 

Protocol Entity 

A protocol entity consists of two parts, nonlogical and 
logical [l]. 

Nonlogical part. Some tasks in a protocol entity, 
such as formatting, encoder, decoder, error-checking, 
syntax-checking, fragmentation, reassembly, event 
interpreting, and synchronizing, can be considered 
nonlogical. Their implementations may require special 
considerations concerning the target machine. The non- 
logical part is implemented by hand. In our imple- 
mentation, a primitive library is provided to support 
nonlogical primitives and an action matrix is used to 
drive these primitives. The action matrix can be auto- 



A Layered Communication System Generator J. SYSTEMS SOFTWARE 161 
1992; 18:157-175 

maticahy generated from an MFSM by the protocol 
entity generator, which we describe in section 4. 

Logicu/ part, The remaining part of a protocol 
entity, excluding the nonlogical part, is considered 
logical. It is the most important part of a protocol entity 
and in our implementation it is represented by an 
event matrix. The event matrix can be automati- 
cally generated from an MFSM by the protocol entity 
generator. 

The framework we have proposed here uses the 
queue structure to realize interlayer communication. 
Before a protacol entity sends a packet, which is the 
unit of exchanges between the protocol entities, it 
executes the primitives to encapsulate appropriate 
addressing, cormof information, and data into the 
packet. The packet is then sent to an upper, lower, or 
peer protocol entity, and the protocoI entity that receives 
the packet will determine which event is to accur (by 
interpreting the control information), the next state, and 
the primitives to be executed (by considering the cur- 
rent state, the event t5 occur, the event matrix, and the 
action matrix). In this way, interlayer control can be 
realized through the use of the queue structure and 
primitives. 

From the above discussion we know that the protocol 
entities are event driven. In fact, a promcol entity is an 
afternative representation of an MFSM and its next 
state is determined by three factors: current state, 
event, and event matrix (Figure 4). It also determines 
which primitives are to be executed during its execution 
by three factors: current state, event, and action matrix. 

3. LAYERED COMMUNICATING FINITE STATE 
MACHINES 

The layered communication system we consider in this 
section consists of two host computers and two bounded 
unidir~~5n~ external queues. Bach h5st computer has 
a k-layer communication architecture and (k - 1) - 2 
internal queues. For example, Figure 5 shows the 
abstract model of a three-layer communication system. 

Figure 4. Execution of a protocol entity. 

Host Computer 1 Host Computer 2 

---o ml 
Figure 5. Abstract model of a three-layer communication 
system. 

Note that the timer mechanism is optional since it is not 
necessarily needed in each pro&o1 entity. Thus, for 
simplicity, the time manager is not shown in the abstract 
model. 

Each protocol entity in the layered communication 
system is represented by an MFSM. Like a finite state 
machine, an MFSM can be expressed as a directed 
graph whose nodes represent the states 5f the protocol 
entity and arcs represent the transitions between 
the states. The state transition is triggered by an 
event occurrence and is possibly accompanied by some 
primitives. 

A layered co~~ication system, which consists of 
a set of rules that govern the exchange of packets 
between computers, can be represented by an L_CFSM 
as defined below. 

Definition 1. An L_CFSM is a IO-tuple 

@.)._ 13 i-IorZ.j=I.....k~ 

(Aij~i=10r2,j=l,...,k. 

(Oij)i=rorZ,j~1,...,k~ 

!Nj>i,j=t orZ.i*j¶ 

(~~~li=lnr2,P=I.....k-l, 

W& lor2,p=l,....k-1s 

Gj,>i, j= IorZ.ifj* 

(Cifpfi=Ior2,p=I,....k-I~ 

(C~)i=lar2,tr=l,...,k-,~SUEC), 



162 J. SYSTEMS SOFTWARE 
1992; 18:157-170 

where k=2 

k 

‘ij 

*ij 

Oij 

Mij 

cij 

G&J 

c,c;, 

succ 

is the number of layers, 

is the state of the protocol entity (denoted by Pij) 
of the jth layer in computer i, 

is the set of primitives that are executed by the 
protocol entity PU, 

is the initial state of the protocol entity Pij, 

is the set of packets that can be sent from com- 
puter i to computer j through an external queue 
(denoted by Q,), 

is the set of packets that can be sent downward 
from the (p + 1)th layer to the pth layer in the 
computer i through an internal queue (denoted 

by Q&A 
is the set of packets that can be sent upward from 
the pth layer to the (p + 1)th layer in the 
computer i through an internal queue (denoted 

by Q&L 
is the capacity of the external queue Qti, 

is the capacity of the internal queue Qi,,, 

is the capacity of the internal queue Q$, 

is a partial function from S, x Eij to S, x 2*‘j, 
where Eij is the set of events that can occur to 
protocol entity Pij . 

Note that the packets that appear in different queues are 
different. That is, the sets Mij, &, and h4; are 
disjoint. 

For example, let us consider Figure 6, where 

Host Computer 1 Host Computer 2 

Q,, 

4Il 

Figure 6. Example of a two-liier communication system. 

Yung-Chen Hung and Gen-Huey Chen 

s,, = {110,111,112}, S,* = {120,121,122} 
S,, = {210,211,212}, S,, = {220,221,222} 

A,, = {print_ack, save-m}, A,, = A,, = { }, 
A,, = { print-req} 

M;, = {l(Q;,>, 2(Q’,,)), M;, = {3(Q;,)), 
M,, = il(Q,,>l, 4, = {3(Qdl 
W, = {3<Q;,>,4<Q;,>)v W, = tl(Q&)l, 

E,, = { + UQ;J, +3(Qd - l(Q,A - 3(Q;,)) 

E,, = {+3(Q;,), - UQ;,), - 2(Q;,)) 

Ez, = { + l(Qd, +3(Q;,L +4(Q;,L 

- VQ;,), - 3CQ2,)) 

ED = { + l(Q;,), - 3(Q;,), - 4(Q;,)), 
0,, = 110, 0,, = 120, 0,, = 210, and O,, = 220. 

The function succ is defined for 17 argument pairs 
that are represented by the 17 arcs in Figure 6. Three 
examples of defined succ values are 

succ( 121, +3( Q;,)) = (120, { print-ack, save-m}) 

succ(220, + l(Q;,)) = (221, { print-req}) 

succ(l20, - l(Q;,)) = (121, { }). 

An example of an undefined succ value is 
succ(l10, - 4(Q,*)). In Figure 6, the plus and minus 
signs indicate receiving and sending events, respec- 
tively. For example, +3(Q;,) represents an event that 
a packet 3(Q;,) received from the queue Q;, 
and - 4( Q;,) represents an event that a packet 4( Q;,) 
sent to the queue Q;, . 

The states of the protocol entities and the contents of 
the queues will change during the execution of the 
layered communication system. We define a global 
state of the layered communication system as 

D;,, . . > D;(,-,,,D;,, . . . , D&k_,,> 

D;, , . . , > D;(,_ ,,) , 

where sij is the current state of the protocol entity Pij, 
and D,, D$, and 05 are the sequences of packets in 
Qti, Qi , and Qi , respectively. 

Initially, each protocol entity Pij is in state 0, and 
all the queues are empty. 

4. PROTOCOL ENTITY GENERATOR 

As mentioned in the previous section, a protocol entity 
is modeled as an MFSM. The behavior of an MFSM is 
again represented by a directed graph, which can 
be transformed into two matrices, an event matrix 
and an action matrix. The protocol entity generator 



A Layered Communication System Generator J. SYSTEMS SOFTWARE 163 
1992: 18:157-170 

220 

221 

222 

-3tQil ) -4(Q;, ) +NQ’;,) 

IziEl 

*Mz* 

Figure 7. Examples of event and action matrices. 

is responsible for transforming MFSMs into the 
event and action matrices. We denote the event 
matrix and the action matrix of protocol entity Pij by 
E&fij and AMij, respectively. For example, EM,*, 
AM,, , EM,, and AM,, , with respect to the example 
in Figure 6, are shown in Figure 7. Each row and 
column of EMij and AMij represent a state and an 
event, respectively. The entries of EMij and AMij 
are determined as follows: If succ( sl, x) = (s2, W), 
then EMij(s,, x) = s2 and AM,(s,, x) = W; 
otherwise EMij(s, , x) and AMij( s, , x) are null, where 

s, , s2 E S,, x E Eij and WE 2*“. The meaning of 
EMij( s, , x) = s2 is that protocol entity Pij in state s, 
enters the states s2 due to event x. Similarly, 
AMij( s, , x) = W represents that protocol entity P, in 
state s, executes the subset W of primitives due to 
event x. 

After all MFSMs are transformed into the event and 
action matrices, protocol validation can be performed 
on these matrices instead of on protocol entities them- 
selves. If the protocol entities are logical error free, 
then these matrices are downloaded to the generalized 
communication system framework, which has been 
installed in the target machine. After that, the layered 
communication system is well established. If not, the 
specification of the layered communication system 
should be modified. 

In the next section, a matrix approach is proposed 
for protocol validation. 

5. PROTOCOL VALIDATION USING A MATRIX 
APPROACH 

The function of protocol validation is to detect potential 
logical errors in an L-CFSM. There are three types 
of logical errors: deadlock unspecified reception, and 
nonexecutable transition. A deadlock is a global state in 
which only receiving events are defined, but all the 
queues are empty. Thus, if the layered communication 
system gets into a deadlock state, it will stay in that 

state indefinitely. An unspecified reception is a glo- 
bal state in which only receiving events are defined, not 
all the queues are empty, and the first packet in each 
nonempty queue is not specified in the receiving events; 
in other words, no receiving events may occur in an 
unspecified reception state since the first packet in each 
nonempty queue is not the desired one. A non- 
executable transition is a transition (i.e., an event 
occurrence) in an MFSM that never occurs during the 
execution and exists because of some inconsistencies or 
syntatic errors in the design of the MFSM. 

In this section, the protocol validation is realized 
by performing reachability analysis using a matrix 
approach. The reachability analysis is a procedure to 
generate all reachable global states of the layered com- 
munication system, starting from the initial global state: 
All executable transitions can be found during the 
reachability analysis. Thus, if logical errors exist, they 
will be found after the reachability analysis. 

Before presenting the matrix approach, let us 
consider a simplified example shown in Figure 8. 
Figure 8a shows a one-layer communication system. 
The global state is of the form (a, b, X, Y), where a 
and b are the states of protocol entities A and B, 
respectively, and X and Y are the sequences of pack- 
ets in queues Q,, and QBA, respectively. In Figure 8, 
for simplicity, the queue symbol (Q,, or QBA) is 
omitted for each event since no ambiguity occurs. Also, 
primitives are not shown since they bear no relation to 
protocol validation. 

The matrix approach to the reachability analysis is 
divided into three stages as described below. 

Stage 1: Construct the event matrices. As 
described in section 4, the event matrices can be auto- 
matically constructed from the L-CFSM. For example, 
the event matrices that are constructed for the protocol 
entities of Figure 8 a are shown in Figure 8 b. 

Stage 2: Construct the patterns. For each protocol 
entity Pij, we use an f x 1 matrix PA ij, s to indicate 
which events may happen during global state S, where 
f is the number of events in Eij (Figure 8~). Such a 
matrix is called a pattern. Each row of PA,, s represents 
an event, and the event sequence is the same as the 
event sequence of EMij. We denote the events 
by Xiji, xu2,. . . 7 xuf in sequence. The contents of 
each pattern PA,, s tell the status of the incoming 
queues (whether they are empty) and the outgo- 
ing queues (whether they are full) of Pij. Depending 
on the entry of PA,,,, the corresponding event is 
enabled or disabled. For a receiving event Xij,, 
PAij, J xij,) = 1 if the incoming queue associated with 
it is not empty, and 0 otherwise. For a sending event 



164 J. SYSTEMS SOFTWARE 
1992; 18:157-170 

protocol entity A 

if Klcn and Wl=O if Lylol and IO%0 if L&n and WbO if Kl=n and IYI=O 

~AA,s = ; 1 1 1 1 

if IYlol and I&O if IYl<n and KM If lwh and KI>O if IYI=n and LX%0 

Cc) 

S = (a. b, X. Y) 
(c4, e, ) 

) s= (8, L&x, 21) 
Cd) 

Figure 8. Reachability analysis using a matrix approach. a, 
An example of a one-layer communication system. b, Event 
matrices of the protocol entities. c, Patterns to induce next 
global states. d, Stat: transition. 

xijw, PA,, s( xijw) = 1 if the outgoing queue associated 
with it is not full, and 0 otherwise. 

Let YijW denote the associated packet of the event 

xijw; that is, YijW is being processed when the 
event XijW occurs, The entries of PA,,, can be 
determined as follows. 

Case 1. xijw is a receiving event and xijW E Eti. 

If (Yij, cMpi and 1 Dpi 1 > 0, where p = 1 or 2 
and p#i) or Yij,~A4i and 1061 >O) or 
(Yij,EMG-i) and I D&,)1 > 01, 

then PA,,,(x,,) = 1; 
else PAij,s(xijw) = 0. 

Case 2. x+, is a sending event and xijw E Ed. 

If 

then 
else 

(YijwEMi,andCi,> (Dir),wherep= lor2 
and p + i) or (Yij,~Mi;i_,) and C;+,, > 
1 Qpl,l) or (YijwE1M~ and C; > I II; I), 

PAij,s(Xijw) = 1; 
PAij,s(Xij,) = 0. 

Yung-Chen Hung and Gen-Huey Chen 

Note that ( Dij 1, ) Di 1, and (II: I denote the 
number of packets in queues Qij, Qh, and Qi , 
respectively. 

For example, Figure 8c shows the matrices (pat- 
terns) PA,,, and PA,,, for protocol entities A and 
B in Figure 8a, respectively. The capacities of the 
queues Q,, and QAB are assumed to be n. 

Stage 3: Reachability analysis. Starting from the 
initial global state, the reachability analysis generates 
all possible succeeding global states by repeatedly exe- 
cuting a single transition (i.e., an event occurrence) in 
one of the protocol entities, and then reaching these 
new global states in turn until no new global states 
can be created. Let S = ( sl,, . . . , slk, s2,, . . . , szk, 

D,,, 4, q,, . . f 9 q,_,,, q1, * . . , q;,_,,, 
Oil, . . . , D&,_ 1j, II;,, . . . , Dgck _ I,> be the current 
global state. The layered communication system may 
change the global state when a certain event occurs. Let 

S = (si1, - . . 9 :lk, :21, . . . , &k, B,~Y 
-021, El,, . * D’ D” D” . 7 -I(k-1)r -11, . * . 9 -I(k-I)? 

_D;,, . D’ D” . . 3 _2(k-l), -21,. . * 3 D;l(k- 1) be the next global 
state of S. Also, let NSPij(S) be the set of the possible 
next global states S that can be induced from S after a 
certain event occurs to protocol entity Pu, and NT,& S) 
the set of executable transitions in protocol entity Pij 
when the global state is S. The sets NSPij(S) and 
NTrij( S) can be determined from EMj and PA,, s 
as follows (incidentally, we define a pair of binary 
operators “8” and “ @ ,” which operate on EMij and 

pAij,S for computing NSrij( S) and NTrij( S), 
respectively). 

NS,, ( S) = EMij @ PA ij, s 

= (8 = ($I,, . . . , ?,,, $1, . . . , $k, &, 
ll;,, . D’ D” *‘?_l(k-I),--IIT”‘* 

&(k_,), &, . . . D’ 9 -2(k- I)’ 

-o;,, * . . 7 -D;(k- 1)) I 

vxijw satisfying that PAij,,(xij,) = 1 and 
EMij(Sij, XijW) # null, 
(l) _s1j = E”ij(sij, xijw)9 
(2) Case 1. xijW is a receiving event. 

Yij, * IIpi = Dpi if Yij, E Mpi 9 

Yij, ._O&=D; if yijw E MG, 

yyw *&_I, = Dk-1, if_YijwEMi’;i_,,, 

Case 2. xijw is a sending event. 

Dir = Dip * Yb, if Yij, E Mip 9 

>:a_ 1) = Db- 1) * Yijw if Yijw eMi;i_ 1) 9 

_O; =D; .yti.. if yij,EMi, 

where - denotes the concatenation of 
two packet sequences, 



A Layered Communication System Generator J. SYSTEMS SOFTWARE 165 
1992: 18: 157- 170 

(3) The other components. of 8 are the 

same as the corresponding ones of S.} 

NTpij (S) = EMij 8 PA ij, s 

= ((s,, Xijw)lEMij(Sij, Xijw) # null 

and PAij,s(xijw) = 1 

and if xijw is a receiving event, 

Yijw ’ Dpi = Dpi if Yijw E Mpi 9 

yij, * _o; = qj if yij, E MG, 

yijw-&,, = II&,, if YUwEM&,,.} 

Let NS(S) be the set of all possible next global 
states that can be induced from S by a certain event. 

Since it is assumed that no two events occur simultane- 

ously, M(S) can be determined as follows: 

M(S) = MS,,,(s) u M,,,(S) u *** 

u N%,(S) u N%*,(S) 

UNS,,,(S) u ... ufvs,,k(s). 

For example, NS( S) = MS,(S) U NS,( S) for the 
example of Figure 8a. Assume n > 1. If S = 

(0, 0, E, E), then 

NsA(s) = N&,(0,0, E, E) = EM,@pA.,, 

= {(LO, 1, &)}Y 
m,(S) = NS,(O, 0, E, E) = EM,~PA,,, 

MS(S) = ivS(0, 0, E, E) = NS*(O, 0, E, E) 

UNS,(O, 0, E, E) 

= {(l,O, 1, E), (09 1, EY 3))9 

NT,(S) = NT’A(O, 0, E, c) = EM, e PA,.s 

m,(S) = NT,(O,O, E, E) = EM, @ PA,,, 

I1 - 2 -\ /I\ 

where an entry with “-” denotes a null value and an 

“E” denotes an empty sequence. If S = (l,O, 1, E), 
then 

m,(S) = NS,(l,O, 1, &) = EM,@PA,,, 

= ((1, 1, 1, 3), (1,2, &, E)}, and 

NT,(S) = NT’&, 0, 1, &) = EM, e PA,,, 

/l - 2 -\ /l\ 

With the aid of M(S) and NT&S), we now pro- 
ceed with the reachability analysis to generate all reach- 

able global states and executable transitions. The 
algorithm for the reachability analysis is as follows: 

step 1: G = G’ = {Se}; 
FOR i = 1 TO 2, j = 1 TO k DO 

R,ij={ >; 

step 2: REPEAT 
L = {S 1 s’ ENS(S) for all SEC’}; 
FOR i = 1 TO 2, j = 1 TO k DO 

BEGIN 

Rkij = {Cs, x)l(sT x>ENTpij(S) 
for all SEC’}; 

R,, = R,, u z?‘,,; 
END; 

G’= L - G; 

G = G + G’; 
UNTIL G’ is empty. 

In the above algorithm, G represents the set of all 
reachable global states starting from the initial global 
state S,, and Rpij represents the set of all executable 
transitions in protocol entity Pij. The sets of G and 
R,, contain all the necessary information for detecting 
the logical errors of the layered communication system. 



166 J. SYSTEMS SOFTWARE 
1992; l&157-170 

Yung-Chen Hung and Gen-Huey Chen 

(+3.--l 

c4 OIEE 

0: Deadlock. 

0 Unspecified reception. 

(1) 

(2) 

(3) 

Yijw*_Dh_,,=D&_,,, 

EMij ( sti , xijw ) is not defined. 

x is a nonexecutable transition if 

EMij (sh, Xijw) # null and (Su , Xijw) # R,ij. 

Nonexecutable tmmm”ns 
(1,+4), (3,+3) (in protocol enoty A) 
(3.~4). (2,+1) (in protocol enuty B) 6. EXPERIENCE WITH THE LAYERED 

@) COMMUNICATION SYSTEM GENERATOR 

Figure 8. e, State transition diagram. 

The proposed algorithm is to generate all the reachable 
global states and the executable transitions by augment- 
ing G with G’ and RPti with R’pij in each iteration, 
where G’ and R’pij are the sets of newly generated 
reachable global states and executable transitions, 
respectively. The sets G’ and Rbij are determined by 

finding the sets NS(S) and NTPij(S), respectively, 

for each reachable global state S that has just been 

generated in the last iteration. 
Consider again the example of Figure 8~. Let e, and 

ea denote the events that may occur to protocol entities 

A and B, respectively, when the global state is S = 

(a, b, X, Y). Also, denote S = (a, b, X, Y) as the 
next global state of S (see Figure 84. Figure 8e 
shows the corresponding state transition diagram of the 
reachability analysis with queue capacities equal to one 
(n = l), where each node uniquely represents a reach- 
able global state and each arch represents an event 
occurrence (transition). 

After generating G and R,, , we can detect the 
logical errors of the layered communication system as 
follows. (tit s = ($1,. . . , S,k, SZl,. . . , $k, D,,, 

D,,, o;,, . . . , D&k-l), O;,, . . . , &,-,,, 

o;,, . . . , D;(,_ ,), &, . . . , D;;k_l) E G, and X = 
( sij, Xij,) is a transition in protocol entity Pij. 

S is a deadlock state if 

NS(S) = { } and 

D,,=D,,=D;,= a.. = D;(,_ ,) = D;, 

= ..* = D;:(k_lj = Dil = . . . 

= Dick_,) = D& = - - - = Dzck_,) = E. 

S is an unspecified reception state if 

NS(S) = { } and 

for all yij, satisfying yijw * & = Dpi or 

yij, * Bb = DC or 

The layered communication system generator described 
here has been used to generate a variety of layered 
communication systems, including protocols for the 

data link, network, transport session, and application 
layers of the ISO/OSI reference model as summarized 
in Figure 9. These layered communication systems 
were specified by the L-CFSMs. We have not only 
implemented these real-world protocols automatically, 
but also migrated these layered communication systems 

into several target machines, which are summarized in 
Figure 10. In Figure 10, Intel 80286 and 80386 are 

Ei FTP, SMTP, TELNET 

1 2.dmlink 1 LLC (IEEE 802.2) I 

l.physical IEEE 802.3 

Figure 9. Layered communication systems generated by the 
layered communication system generator. 



A Layered Communication System Generator J. SYSTEMS SOFTWARE 167 
1992; 18:157-170 

Layer target I 

7.application Y 6presentation 

Intel 
API 

80286 

4.transpon 

3.network 

Zdaralink 

I.physical Intel 82586 

target 2 

Intel 

80386 

(UNIX) 

target 3 

Intel 

80286 

@OS) 

Imel 

80186 

target 4 

Intel 

80386 

(UNIX) 

Intel 

80186 

Figure 10. Environments where the layered communication 
systems are developed. 

hosts and Intel 80186 and 82586 are front-end proces- 
sors (Intel 82586 chip is devoted to IEEE 802.3). DOS 
and UNIX were run in Intel 80286 and 80386, respec- 
tively. Protocol entities were first developed in the 
host, and then either all of them stayed in the host or 
some of them, belonging to the application interface 
(API), session transport, network, and datalink layers, 
were migrated into the Intel 80186 front-end processor 
(i.e., the intelligent network card). Since queues were 
used for interlayer synchronization, the migration was 
easily achieved. 

The most complex protocol entity in our implementa- 
tion is the transmission control protocol (TCP) of 
Department of Defence (DOD). TCP performs the func- 
tion of establishing sessions between user processes on 
the intemet and ensures reliable communications by 
implementing error recovery procedures on an end-to- 
end basis [ 131. The detailed listings of states, events, 
and action primitives from our TCP implementation are 
shown in Appendices A and B. The event and action 
matrices are shown in Appendices C and D. In our 
implementation, there are 11 states, 17 upper layer 
events, 4 timer events, 13 lower layer events, and 19 
hand-code primitives (i.e., the nonlogical parts). Each 
primitive has about 30 lines of C codes. 

7. DISCUSSION AND CONCLUSION 

On the basis of a generalized communication system 
framework, we have proposed a layered communica- 
tion system generator. This framework contains queues, 
a switcher, memory manager, time manager, protocol 
entity generator, and hand-code primitive library. The 
proposed layered communication system generator can 
automatically generate layered communication systems 
(except for the nonlogical parts). The layered commu- 
nication systems were specified by the L_CFSMs, in 
which each protocol entity was again specified by 

an MFSM. The protocol entity generator transformed 
each MFSM into an event matrix and an action matrix. 
The behavior of each protocol entity was expressed by 
these two matrices. We have also presented a matrix 
approach to the validation of the protocol entities. 

We have physically established the generalized com- 
munication system framework on target machines (Intel 
80286 and 80386) to validate the proposed layered 
communication system generator. Several layered com- 
munication systems with real-world protocols from 
DOD and IEEE 802 standards organizations have 
been successfully developed by the proposed layered 
communication system generator. 

In summary, the proposed layered communication 
system generator has the following features: 

1. 

2. 

3. 

4. 

5. 
6. 

Automatic generation of layered communication sys- 
tems, except for the nonlogical parts (the hand-code 
primitives). 
Enhanced ability of specifying layered communica- 
tion systems. 
Enhanced reliability of layered communication 
systems. 
Easy maintenance of layered communication 
systems. 
Easy migration of layered communication systems. 
Considerable reduction in the overhead that arises 
from the implementation of layered communication 
systems. 

In addition, the proposed layered communication 
system generator can be easily adapted to multiple 
stream connections between computers and the multi- 
ple priority scheme [ 141. For the former, we only 
need to add an additional index to the components of 
the L_CFSM (for example, S, now becomes S,,), to 
specify layered communication systems. For the latter, 
we need to provide multiple priority queues between 
layers such that the multiple priority scheme can be 
supported. Each packet will be put into the priority 
queue with the same priority level. 

Finally, our future research directions include 
automation and generalization of the nonlogical parts, a 
matrix approach to handling the state explosion prob- 
lem [15], and a new strategy for the switcher to 
improve the productivity of layered communication 
systems. 

ACKNOWLEDGMENT 

We thank the anonymous referees for their helpful sugges- 
tions and comments. We also thank Professors Yu-Chin Hsu 
and Maw-Sheng Chern for their careful reading of the 
manuscript. 



168 J. SYSTEMS SOFTWARE 
1992; 18:157-170 

Yung-Chen Hung and Gen-Huey Chen 

APPENDIX A: TCP States and Events 

S5 ESTAB 

S6 CLOSEWAIT 

Sl LASTACK 

S8 FINWAITI 

s9 FINWAll- 

SlO CLOSING 

Sll TIMEWAIT 

Code Event name 

Ll synchronization 

L2 acknowledgement 

L3 security not match 

L4 reset 

L5 
synchronization, 
acknowledgement 

L4 invalid acknowledgement 

Ll 
acknowledgement of 
synchronization 

L8 
security, precedence 
not match 

L9 final, acknowledgement 
of synchronization 

LlO wt of sequence no. 

Lll acknowledgement of final 

L12 final, acknowledgement 

L13 final 

Figure Al. Listing of TCP states. 
Figure A4. Listing of TCP events from lower layer entity. 

APPENDIX B: Listing of TCP Action Primitives 

Cod.5 Event name 

Ul unspecified passive open 

u2 fully specified passive open 

u3 active open 

u4 active open with data 

US send data 

Figure A2. Listing of TCP events from upper layer entity. 

retransimition timeout 

upper layer protocol timeout 

timewait timeout 

acknowledgement timeout 

Figure A3. Listing of TCP events from TIME MANAGER. 

code 1 Short name Full format in TCP 

==Pt T_accept(sv,dT_blk) 

dispatch T_dispatch(sv,dT_blk) 

generate SYN T_genSYN(sv) 

T_open(sv,rT_blk) 

T_openfail(sv) open fail 

Td_xnsfer(sv) 

T_partRST(sv) 

T_recSYN(sv,dT_blk) 

T_RST(sv) 

T_RSTslf(sv) 

T_rstarthv(sv) 

T_rxmt(sv) 

T_savesnd(sv,rT_blk) 

T_sndack(sv) 

T_sndFIN(sv) 

T_recFlN(sv) 

T_starttw(sv) 

T_UPDsw(sv.dT_blk) 

T_stopULPrec(sv) 

F 

G 

H 

K 

L 

M 

R 

S 

open S”CCeSS 

partial reset 

record SYN 

reset 

reset self 

restart time wait 

save send 

send ack 

send final 

set final 

start time wait 

update sliding 
window 

stop upper layer 
receive 

: state vector of TCP 
K blk : the packet from lower layer entity 
rT:blk : the packet fmm upper layer entity 



A Layered Communication System Generator J. SYSTEMS SOFTWARE 169 
1992: 18: 157-170 

APPENDIX C: TCP Event Matrix 

Ul U2 U3 U4 U5 U6 U7 Tl T2 T3 T4 Ll L2 L3 L4 L5 L6 L7 L8 L9 LIO Lll L12 L13 

S6 

S8 

APPENDIX D: TCP Action Matrix 

Ul U2 U3 U4 U5 U6 U7 Tl T2 T3 T4 Ll L2 L3 L4 L5 L6 L7 L8 L9 LIO LII Ll2 LI3 

s7 

S8 

7he execution sequence of the primitives in each entry are from left to right and from top to bottom. 

(e.g. The execution sequence of the primttives in entry (SS,Ll2) is A, R, P, N, Q.) 

REFERENCES 

S. Aggarwal and R. P. Kurshan, Automated implementa- 
tion from formal specification, in Proceedings of 
I.F. I. P. International Workshop on Protocol Specs@- 
cation, Testing, and Vertfication, 1985, pp. 127-136. 
D. P. Anderson, Automated Protocol Implementation 
with RTAG, IEEE Trans. Software Eng. 14, 281-300 
(1988). 
T. P. Blumer and D. P. Sidhu, Mechanical Verification 
and Automatic Implementation of Communication Proto- 

4. 

5. 

6. 

cols, IEEE Trans. Software Eng. SE-12, 827-843 
(1986). 

G. Jholzmann, The Pandora System: An Interactive Sys- 
tem for the Design of Data Communication Protocols, 
Comp. Net. 8, 71-79 (1984). 

C. V. Ramamoorthy, C. T. Dong, and Y. Usuda, An 
Implementation of an Automated Protocol Synthesizer 
(APS) and Its Application to the X.21 Protocol, IEEE 
Trans. Software Eng. SE-1 1, 886-908 (1985). 

N. Shiratori, K. Takahashi, and S. Noguchi, A Software 



170 J. SYSTEMS SOFTWARE 
1992: l&157-170 

Design Method and Its Application to Protocol and Com- 
munication Software Development, Comp. Net. ISDN 
Syst. 15, 245-267 (1988). 

7. S. T. Vaong, D. D. Hui, and D. D. Cowan, VALIRA-a 
tool for protocol validation via reachability analysis, in 

Proceedings of 7th International Symposium on Pro- 
tocol Specification, Testing, and Verification, 1988, 
pp. 35-41. 

8. P. Zafiropulo, C. West, H. Rudin, D. D. Cowan, and 
D. Brand, Towards Analyzing and Synthesizing Proto- 
cols, IEEE Trans. Commun. .COM-28, 651-661 
(1980). 

9. T. T. Lee and M. Y. Lai, A Relational Algebraic 
Approach to Protocol Verification, IEEE Trans. Soft- 
ware Eng. 14, 184-193 (1988). 

10. D. Brand and P. Zafiropulo, On Communicating Finite- 

State Machines, J. ACM 30, 323-342 (1983). 

Yung-Chen Hung and Gen-Huey Chen 

11. C. H. Chow, M. G. Gonda, and S. S. Lam, On con- 
structing multi-phase communication protocols, in Pro- 
ceedings of I.F.I.P. International Workshop on 
Protocol SpeczQication, Testing, and Verification, 
1985, pp. 57-68. 

12. A. Finkel, A new class on analyzable CFSMs with 
unbounded FIFO channels, in Proceedings of 8th Znter- 
national Symposium on Protocol SpeclQication, Test- 
ing, and VeriJication, 1988, pp. 283-294. 

13. DDN Protocol Handbook - DOD Military Standard 
Protocols, vol. 1, DNN Network Information Center, 
Menlo Park, California, 1985. 

14. UNIX System V Release 4 -Programmer’s Guide: 
STREAMS, UNIX Software Operation, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1990. 

15. M. T. Liu, Protocol Engineering, Adv. Comp. 29, 
79-195 (1989). 


