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In this article, we study an adaptive load-balancing 
algorithm in the homogeneous distributed systems in 
which only local status information is used. The pa- 
rameters affecting the performance of the load-bal- 
ancing algorithm are investigated. Jo analyze the ef- 
fects of service disciplines on load balancing, we study 
two classes of service disciplines, impartial discipline 
and partial discipline. In impartial discipline, all tasks 
in the system are treated alike. Partial disciplines 
divide tasks into two classes, local tasks and remote 
tasks, and then assign different priorities to them. Five 
partial disciplines with different priority assignment 
rules are compared. The numerical results are pre- 
sented and used to shed light on the characteristics of 
the load-balancing process. 

1. INTRODUCTION 

Distributed computer systems have many advan- 

tages, including the capability to share processing of 

tasks in the event of overloads and failures, trans- 
parency, and modulari~. In a distributed system a 
task might wait for service at the queue of one 
server while at the same time another server capable 
of serving the task is idle. This phenomenon was 
clearly demonstrated by Livny and Melman [l], who 
showed that in a network of homogeneous, au- 
tonomous nodes, there is a high probabili~ that at 
least one node is idle while tasks are queueing at 
some other node or nodes over a wide range of 
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network size and node utilizations. A load-balancing 
policy designed to minimize the mean turnaround 
time of the task will tend to prevent the system from 
reaching such a state. System performance can be 
improved by transferring workload from heavily to 
lightly loaded nodes. 

Load-balancing policies may be either static or 
adaptive. Static policies only use information about 
the average behavior of the system; transfer deci- 
sions are independent of the actual current system 
state. Numerous static load-balancing policies have 
been proposed. Stone [2, 31 and Bokhari [4] exam- 
ined the deterministic algorithms of task assign- 
ments. Tantawi and Towsley [51 developed a tech- 
nique to find optimal probabilistic assignment rules. 

The principal advantage of static policies is their 
simplicity: there is no need to acquire and maintain 
information on the system state. By contrast, adap- 
tive policies are more complex, since they use infor- 
mation of the current system state in making trans- 
fer decisions. Several adaptive load-sharing policies 
have been reported. Two strategies for adaptive load 
sharing with distributed control were investigated by 
Eager, Lazowska, and Zahotjan [6]. Wang and Mor- 
ris [7] compared a number of server- and source-ini- 
tiative adaptive algorithms. 

The motivation behind this article is to investigate 
the effects of processor service disciplines on load- 
balancing policy, which have not been discussed in 
the reports mentioned above. First, we study a sim- 
ple adaptive load-balancing policy and analyze the 
effects of its parameters on system performance. 
Owing to different service disciplines, tasks in the 
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system are divided into two classes: local tasks, which 
are processed at their site of origination, and remote 
tasks, which are processed at some other sites in the 
system after being transferred through an intercon- 
nection network. We also examine the effects of 
assigning different priorities to two classes of tasks. 
Five such policies are developed, ranging from one 
favoring local tasks to one favoring remote tasks. 
Analytic queueing model and simulation results are 
used to study the interdependence between the sys- 
tem parameters and the behavior of these load-bal- 
ancing policies. 

The remainder of this article is organized as fol- 
lows. In section 2, we briefly describe the system 
architecture. Section 3 comprises the description of 
load-balancing policies and the mathematical analy- 
sis of the decomposition approximation model. In 
section 4, we describe the numerical and simulation 
results of this research. Section 5 concludes the 
article. 

2. SYSTEM MODEL AND ASSUMPTIONS 

We present a distributed system as a collection of IV 
identical nodes. The nodes are connected by an 
interconnection network (IN). The system architec- 
ture is shown in Figure 1. Each node in the system 
consists of a processor, a network interface proces- 
sor (NIP), and a queue. The NIP performs the 
load-balancing algorithm and is responsible for com- 
municating with the interconnection network. Tasks 
entering the node from the external world (AI or 
from the interconnection network (y) are selected 
by the NIP, based on a specific load-balancing pol- 
icy. Then the accepted tasks enter the queue and 
wait for the service of the processor; the remaining 
tasks are transferred to the interconnection network. 

Tasks to be transferred 

to other nodes 
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There are several assumptions to simplify the system 
model, which are stated as follows. 

Homogeneity. The nodes are identical and are 
subject to external task arrival Poisson processes 
with the same rate A; the service time of the proces- 
sor is exponentially distributed with mean l/p. 

FFhen a task is tra~fe~ed to the interconnection 
network for remote processing, the task incurs a com- 
munication delay. This delay includes the communi- 
cation cost, which is a cost between the NIP and the 
interconnection network and includes packing data, 
transmitting data, receiving data, unpacking data, 
and the transmission delay in the interconnection 
network. We lump these effects together as commu- 
nication overhead (Cob), which is incurred by the 
load-balancing algorithms when a task is transferred 
to the other nodes through the IN. We also model 
the communication channel as a single-server 
queueing system whose service time is an exponen- 
tially distributed random variable with mean l/pi”. 

The processing cost of NIP is much smaller than that 
of the processor. That is, the load-balancing algo- 
rithm performed by the NIP does not interfere with 
the processor; therefore, the processing cost of the 
NIP is ignored. 

~ecomposa~i~i~. We assume, in the steady state, 
that the task arrivals from the interconnection net- 
work are of Poisson type and the interarrival time of 
the transferred task is an exponentially distributed 
random variable with mean l/y. Based on this 
decomposition approximation, we can decompose 
the system model so that the model for each node 
can be independently analyzed. 

External I I I 

Figure 1. System queueing modei. 
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3. LOAD-BALANCING POLICIES AND QUEUEING 
ANALYSIS 

3.1 Load-Balancing Algorithm 

A distributed load-balancing algorithm is composed 
of two main elements, the probing element and the 
decision element. The decision element determines 
when, from where, and to whom to transfer a wait- 
ing task. The decision is made according to the 
current available information on the state of the 
system. The probing element collects this status in- 
formation for the decision element. We consider 
here a simple and straightforward algorithm. The 
probing element only collects the local status (queue 
length) of the node, and the decision element ac- 
cepts rejects an arriving task, depending on this local 
status information and a predefined threshold Clh) 
value. The algorithm is as follows: when an arriving 
task enters the node, if the NIP finds the local 
queue length, including tasks waiting in the queue 
and the task in service, is Th, then this task is 
transferred through the interconnection network to 
a randomly selected node in the system with equal 
probability. Otherwise, this task is accepted and goes 
into the queue. 

This algorithm can cause instability. That is, in a 
heavily loaded network, when all nodes in the system 
have a queue length larger than the Th, the system 
will enter a state in which the task arrivals are 
always transferred back and forth within the net- 
work and no processor accepts them. This instability 
phenomenon can be overcome by adding an appro- 
priate control policy to the decision element. The 
simple control policy we adopt here is to restrict the 
number of times that a task can be transferred to a 
predefined transfer limit (Tl) value [8]. Then the 
load balancing algorithm is updated as follows. 

When an arriving task enters the node, if the NIP 
finds the local queue length of the node is lower 
than the Th or the number of times that the task has 
been transferred and a message carried by the task 
is equal to the Tl, then this task is accepted. Other- 
wise, the transfer count of the task is increased by 
one and the task is transferred to a randomly se- 
lected node in the system. The initial value of the 
transfer count of a task from the external world is 
set at 0. 

3.2 Service Disciplines 

Another question that arises in 
havior of the refined algorithm 

considering the be- 
is how the destina- 
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tion node should treat an accepting transferred task 
from the interconnection network: tasks may be 
given different service attributes in the local site or 
in the remote site. We consider two classes of ser- 
vice disciplines and describe them in the following 
discussion. 

3.2.1 Impartial discipline. In this discipline, the 
destination node treats an arriving transferred task 
as a task originating at that node. Then all accepted 
tasks, assigned with the same priority, enter the 
queue and follow the first come, first-served scheme 
to wait for the service of the processor. We call this 
an Fl discipline. 

3.2.2 Partial disciplines. In these disciplines, owing 
to the different service attributes, tasks are divided 
into two classes-local tasks, referring to tasks pro- 
cessed at their own site, and remote tasks, which 
processed at some other site in the system after 
being transferred through the interconnection net- 
work. Local tasks come either from the external 
world directly or from the interconnection network. 
Tasks transferred to another node because of the 
limitation of the local task Th are later transferred 
back to the same node because of the effect of the 
Tl. Since the system has two classes of tasks, we 
define LQ and RQ, respectively, as random variables 
denoting the number of local tasks and the number 
of remote tasks at a node; Th, and Th, are the 
values of the threshold of the local task and remote 
task, respectively. Two types of partial disciplines 
use different priority assignment schemes as defined 
below. 

1. Priority Queueing [9] Disciplines 
a. Local tasks first (LTF) policy 

i. 

ii. 

If an arriving task from the external world 
finds the local task queue length of the 
node is Th,, then the transfer count of the 
task is incremented by one and the task is 
transferred to a randomly selected node in 
the system with equal probability. Other- 
wise, it is processed locally. 
Arriving tasks from the interconnection 
network can be divided into two cases. 
Local tasks: if the transfer count is Tl, then 
this task is accepted. Otherwise, its transfer 
count is increased by one and it is trans- 
ferred to a randomly selected node. Re- 
mote tasks: if the remote task queue length 
of the node is lower than Th, or the trans- 
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fer count is Tl, then this task is accepted 
for processing locally. Otherwise, its trans- 
fer count is increased by one and it is 
transferred to a randomly selected node. 
Tasks at each node are processed accord- 
ing to a priority discipline with nonpreemp- 
tion allowed. Tasks having the same prior- 
ity are processed in a first come, first served 
manner. 

iv. Local tasks are given higher priority than 
remote tasks. 

b. Remote tasks first (RTF) policy 
i. Same as LTF policy. 

ii. Same as LTF policy. 
iii. Same as LTF policy. 
iv. Remote tasks are given higher priority than 

local tasks. 
c. Long queue first (LQF) policy 

i. Same as LTF policy. 
ii. Same as LTF policy. 

iii. Same as LTF policy. 
iv. Local tasks are given higher priority than 

remote tasks when LQ 2 RQ. Otherwise, 
remote tasks are given higher priority than 
local tasks. 

d. Short queue first (SQF) policy 
i. Same as LTF policy. 

ii. Same as LTF policy. 
iii. Same as LTF policy. 
iv. Local tasks are given higher priority than 

remote tasks when LQ I RQ and LQ > 0. 
Otherwise, remote tasks are given higher 
priority than local tasks. 

2. First come, first served (F2) policy 
i. Same as LTF policy. 

ii. Same as LTF policy. 
iii. Tasks at each node are assigned with the 

same priority and follow the first come, 
first served scheme to wait for the service 
of the processor. 

3.3 Queueing Analysis 

Based on the decomposition approximation men- 
tioned above, we can simplify the queueing analysis 
by assuming that the state of each node is stochasti- 
tally independent of that of any other node. Each 
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node can then be analyzed in isolation. The effect of 
the remainder of the system on an individual node is 
represented by an arrival process of transferred tasks 
from the interconnection network. Because the net- 
work is homogeneous, system performance measures 
can be obtained by analyzing a model of any individ- 
ual node. We will discuss the accuracy of this de- 
composition approximation at the end of section 4. 

Owing to the complexity, the mathematical analy- 
sis is only tractable for cases when Tl = 1. The 
independent analysis of each individual policy will 
be described in the following subsections. 

3.3.1 Tl = 1: Impartial discipline (Fl). In this case, 
p (the probability that the portion of transferred 
tasks have their transfer count equal to Tl) = 1. Let 
E[Q] be the mean queue length of the node. We can 
show that 

E[QI = 
i [ 
(P+ Pl) 

l-(P+PJTh 
(1 - P - Pd2 

lwP + PdTh - 
1-P-R 1 

where 

A Y P= i,P, = -,and PO 
P 

[ 

l-b+dTh + (P+PJTh 
-1 

= 
1-P-h 1 l-P, . 

Let E[T] be the mean task response time. From 
Little’s formula [lo] and the fundamental queueing 
theory [ll], we have 

E[T] = 
E[Ql 
h + ;E[Coh], 

1 
where E[Coh] = denotes the mean com- 

Pin - NY 

munication overhead. The y (mean transferred task 

Figure 2. Markov chain of Fl policy &l = 1). 
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arrival/departure rate) is a function of h, Th, and 
Tl, which can be calculated by a recursive substitu- 
tion technique (see Appendix A). 

3.3.2 Tl = 1: Partial disciplines. In this case, the 
remote task threshold, Th,, has no effect on the 
load-balancing policy. As the decomposition approx- 
imation stated above, each node in the system under 
load-balancing policies can be represented by a con- 
tinuous time and discrete state Markov chain. Fig- 
ure 3 shows the state transition diagrams for a node 
executing four priority queueing disciplines, ,respec- 
tively, when Th, = 3 and Tl = 1. The state (I, r) 
denotes that there are f local tasks and r remote 
tasks in the node, respectively, and P(1, r) is the 
probability that the node is in the state (I, r). 

Let E[LQ] and E[RQ] be the mean number of 
local tasks and mean number of remote tasks in the 
node, respectively. For the LTF policy, we can find 
the closed-form expression for y, E[LQ], and E[RQ]. 
Using the 2 transfo~ technique (see Appendix B), 
there are 

hP3 
Y= 

1 f p + p2 + p3 ’ 

E[LQ] = 
p + 2p* + 3p3 

1 + p + p* + p3 ’ 
and 

(3) 

(4) 

(4 

. . . 

EiRQl 

pl( p6 + 3p5 + 6p4 + lop3 + 6p2 f 3p + 1) 

= (1 + p + p2 f p3)[1 - pl(l + p + p* + p”)] . 

(5) 

The other three priority queueing disciplines can be 
analyzed by the matrix-geometric solution tech- 
nique [121. This technique has been used in the 
performance modeling and analysis of the nonprod- 
uct form queueing networks [131, which yield exact 
solutions of E[LQ] and E[RQ] for each node (see 
Appendix C). Thus, the mean task turnaround time 
03TI) is 

E[T] = 
JWQI + J-WQI + ~ELCohl 

A p ’ 
(6) 

where E[Coh] is the same as in Equation 2. As 
mentioned above, the value of y can be calculated 
by a recursive substitution technique. 

3.3.3 TI > 1. In this case, for Fl discipline, p < 1. 
It is then difficult to find the exact solution of p and 
to solve the birth-death process. We obtain the 
performance measures from simulations. In the same 
way, the Markov chain of the LTF policy (Th, = Th, 
= 3 and Tl > 1) is shown in Figure 4. In this figure, 

p is the probability that the portion of transferred 

Figure 3. a, Markov chain of LTF policy (Tl = 1, Th, = 3). b, Markov chain of RTF policy (Tl = 1, Th, = 3). C, Markov 
chain of LQF policy (T1 = 1, Th, = 3). d, Markov chain of SQF policy (Tl = 1, ThB = 3). 
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Figure 4. Markov chain of LTF policy (Tl > 1, 
Th, = 3). 

. . . 

local tasks have their transfer count equal to Tl and 
q is the probability that the portion of transferred 
remote tasks have their transfer count equal to Tl. 
We note that p + q < 1. The exact solution of this 
Markov chain is too complicated to be obtained by 
mathematical methods. Thus, we again obtain the 
performance measures from simulations for partial 
priority queueing disciplines. 

3.3.4 F.2 ~scipli~e. Even when the decomposition 
appro~mation is valid and Tl = 1, the analytic anal- 
ysis for the F2 discipline is not tractable. Thus, we 
obtain the performance measures of this discipline 
from simulations. 

4. RESULTS 

In this section, we present the performance mea- 
sures of the load-balancing policies stated in section 
3. As mentioned above, some situations, such as 
Tl > 1, are too complicated to analyze using the 
mathematical methods, simulation is the most popu- 
lar approach for the analysis of the performance of a 
computer system because of its generality and sim- 
plicity. Therefore, we use results from simulations to 
depict the actual sample means. At the end of this 
section, we will discuss the relationship between 
simulation results and those of the mathematical 
analysis. 

The simulation model is constructed on a SUN/4 
workstation using PAWS (performance analyst’s 
workbench system) simulation language [14]. Over 
100 cases have been simulated. The lengths of the 
simulation runs are determined over a considerable 
range of parameter values by a suitable compromise 
between numerical accuracy and the completion time 
for simulations. All results have confidence intervals 
[15] of I 5% a 90% confidence level. The key 

performance metric of these experiments is the mean 
turnaround time of tasks (Rt). Furthermore, in the 
following experiments, we let the mean task service 
time, l/l.~, equal one unit; all measurements of the 
turnaround time are in terms of this unit. 

Since many parameters, such as the system load 
( p), threshold (Th), transfer limit (Tl), communica- 
tion overhead (Cob), etc., can affect the perfor- 
mance of load-balancing policies, we adopted a “one 
factor at a time” approach in our simulation experi- 
ments; that is, each experiment involves the varying 
of one parameter while keeping the others at a 
constant value. The variable parameter in each ex- 
periment is represented by the abscissa of the corre- 
sponding result graph, whereas the values of the 
fixed factors are included in the figure legend. The 
number of nodes in the system (N) is fixed at 10 in 
all simulation runs. In general, although it is possi- 
ble for the communication overhead of the intercon- 
nection network to be > 10% of the mean task 
service time, it would not occur frequently. Hence, 
we assume the communication overhead is 5% of 
the mean task service time, i.e., I*in = 20, unless 
otherwise mentioned. 

In the following experiments, we first investigate 
the effects of system parameters on the performance 
of impartial discipline (Fl), and then compare the 
performance of Fl discipline with those of partial 
disciplines. 

4.1 Fl Discipline 

4.1.1 Perfbmance compa~so~. The prelimina~ 
perfo~ance measures of the load-balancing algo- 
rithm are shown in Figure 5. The results are com- 
pared with two bounds, represented by the M/M/l 
model (no load balancing) and the M/M/N [ill 
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model (perfect load balancing with no costs). From 
this comparison, we find that even an extremely 
simple load-balancing algorithm can achieve sub- 
stantial performance improvement over no load bal- 
ancing. The improvement is much more pronounced 
as the load increases. For instance, at p = 0.9, the 
turnaround time of the load balancing is about 5.5 
units, whereas the M/M/l turnaround time is 10 
units, a significant difference. It is clear that the 
algorithm performs worse than the exact M/M/10 
model. For instance, at p = 0.9, M/M/10 results in 
a turnaround time of about 1.6 units. 5 

To clearly present how much performance im- 
provement (PI) can be achieved by the load-balanc- 
ing policy, we define the PI factor as follows: 

PI(%) = (T”lb - T,b)/T”,b x loo%, 

where T,, CT”,,,) is the mean task turnaround time of 
the node with (without) load balancing. At extreme 
load condition, p = 0.9, the PI value is 44.3%. The 
performance of the load-balancing policy can achieve 
much more improvement because of the variation of 
system parameters, which will be described in the 
following subsections. 

4.1.2 Effect of Th. Threshold is a fundamental 
parameter of the load-balancing policy. It deter- 
mines when a task transfer will be attempted. Intu- 
itively, a low Th is appropriate at low system loads 
because the probbility is high for a transferred task 
to “find” a node where the queue length is lower 

than the Th. However, at high system loads, a high 
Th is appropriate because in these conditions, most 
nodes have high queue length. However, high Th 
will reduce the task transfers and hence reduce the 
effects of load balancing, so the Th should be se- 
lected carefully. 

Figure 6 shows the phenomenon stated above. 
The optimal Th is 1 for low and medium system 
loads ( p I OS), 2 for high system loads ( p = 0.71, 
and 3 for extreme high loads ( p = 0.9). Based on 
this attribute, in the following experiments we use 
the adaptive threshold (A = Th) policy (i.e., Th = 1 
for p 5 0.5, Th = 2 for p = 0.7, and Th = 3 for 
p = 0.9) for simulations. 

Another parameter affecting the value of optimal 
Th is the Coh. It is clear that low Th are appropriate 
for low Coh; high overheads demands higher Th. 

4.1.3 Effect of TZ. With a Tl, tasks are allowed to 
be transferred multiple times in searching for a 
suitable node. Thus, the probability of a successful 
transfer at Tl > 1 is higher than at Tl = 1; system 
performance will also be improved. 

Figure 7 shows mean turnaround time versus Tl 
for different system loads. From this figure, we ob- 
serve that the higher the value of the Tl, the better 
the system performance will be. However, this im- 
provement will be saturated when the value of the 
Tl is larger than a specific value. This phenomenon 
occurs because the performance improvement 
caused by the high probability of successful task 
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transfer will be offset by the Coh under high-T1 
conditions. From our simulation experiments, the 
specific Tl is about 3 for p < 0.5, about 4 for 0.5 5 p 
I 0.7, and about 5 for p > 0.7. As for Th, the Coh 
will also affect the selection of Tl. Clearly, at high 
Coh low Tl is appropriate; high Tl are for systems 
with lower overheads. 

Based on these observations, we can make opti- 

ma1 choices for different conditions. For instance, at 
p = 0.9, Th = 3, and Tl = 5, the PI factor is 70.3%, 
which is a significant improvement over no load 
balancing. 

4.1.4 Effect of Coh. As mentioned above, cases 
where the Coh of the interconnection network is 
> 10% of the mean task service time do not occur 

(N=1O.A-Th,Coh=S%) 
38 

18 
---a--___ 

16 

Figure 7. Effects of transfer limit (N = 10, A-Th, Coh = 5%). 
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frequently. However, we investigate the effect of this 
parameter just for theoretic analysis. Figure 8 shows 
the mean task turnaround time versus Coh for dif- 
ferent system loads. In this figure, the results of 
p = 0.5 at Coh = 30% and p = 0.9 at Coh 2 20% 
are beyond the scale of the graph. For p d 0.3, the 
Coh has almost no effect on system performance. 
However, the system turnaround time increases dra- 
matically at high overheads. This phenomenon 
proves that the queueing delay in the communica- 
tion channel is a predominant factor in the mean 
task turnaround time at high overheads. 

An interesting phenomenon occurs at Coh = 30%, 
where the turnaround time of p = 0.7 is lower than 
that of p = 0.5. This is due to the A-Th policy (i.e., 
Th = 1 for p = 0.5 and Th = 2 for p = 0.7) that we 
applied in simulations. Thus, we can imagine that 
these Th are not the optimal values at high overhead 
conditions, The description related to the effect of 
Coh on Th in section 4.1.2 is verified again. This 
phenomenon will be clearer in the following experi- 
ments. Figure 9a (some results are beyond the scale 
of the graph) shows the effect of Coh on the selec- 
tion of optimal Th. We can observe that under 
Tl = 2 and Coh = 15% environments, the optimal 
Th at p = 0.5 is 2 instead of 1 and at p = 0.9 is 5 
instead of 3. Figure 9b shows the effect of the 
network server on system pe~o~ance. We focus 
experiments on extreme high load C p = 0.9) condi- 
tions. We observe that enhancing the capability of 
the communication channel will significantly im- 
prove system performance for high-load and low-Th 
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environments. However, this improvement is not so 
clear in high-Th environments. These observations 
provide some tradeoffs in the design alternatives of 
the interconnection network. 

4.1.5 before t~ruug~p~t. In this section, we con- 
sider the network traffic, N x y, resulting from task 
transfers. It is clear that network throughput in- 
creases (decreases) with an increase in Tl (Th). 
Figure 10a shows the network throughput versus 
system load for different Th. We observe that the 
higher the Th the lower the network throughput will 
be. The network throughput versus Tl for different 
system loads is shown in Figure lob. We observe 
that when the system load is < 0.5, the network 
traffic is small; therefore, it is easier to approach 
saturation. This is due to the fact that, at low system 
loads, there is a high probability of successful task 
transfer. However, when the system load is > 0.5, 
the network traffic increases substantially and ap- 
proaches saturation at high Tl. For instance, at 
p = 0.9, the network traffic will approach saturation 
when Tl > 10 and the throughput is about 17 (not 
shown in Figure lob). Another interesting phe- 
nomenon is that the network throughput at p = 0.7 
is smaller than at p = 0.5, when Tl > 3. This is 
due to the effect of the A-Th policy 0-h = 1 at 
p = 0.5 and Th = 2 at p = 0.71 that we applied to 
simulations. 

Intuitively, the greater the activity of load baianc- 
ing, the heavier the network traffic will be. Thus, 
one may imagine that the larger the network 
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Figure 9. a, Effects of Coh on Th (N = 10, ;1 = 2, Coh = 15%). b,‘Effects of0 
3 

nehvork server (N = 10, Load = 0.9, Tl = 2, Coh = 1.5%). 

throughput, the higher the PI will be. However, this 
is valid for environments with fixed Th and Coh. 
This phenomenon is verified by comparing Figures 
10b and 7. When Th is a variant factor, the above 
statement is no longer true, as can be seen by 
comparing Figures 10a and 6. 

4.2 Partial Disciplines 

We apply the A-Th policy stated above (Th, = Th, 
= 1 for p 5 0.5, Th, = Th, = 2 for p = 0.7, and 
Th, = Th, = 3 for p = 0.9) to the following experi- 
ments. 

The network throughput can be used to determine 4.2.1 P~~~~~nc~ comparison. Figure 1 la shows a 
the minimum network bandwidth (BW). For exam- comparison of the PI factor of the Fl discipline with 
ple, if the size of a task is K bits, the minimum BW those of five partial disciplines. In this figure, at 
is N x y x K. In other words, for a given network p = 0.95, the performance of the SQF policy is worse 
bandwidth, the network utihzation is (N X y X (PI < 0) than that of the condition in which no load 
K/BW) x 100%. balancing is performed. We observe that the perfor- 
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Figure 10. Network a, N = 10, = 1, Coh = N = 
A-TX, Coh = 5%. 

mance of the Fl discipline is better than those of 
the partial disciplines. This is not hard to under- 
stand: under the Fl discipline, the transferred tasks 
from the interconnection network are treated alike, 
with tasks originating from the external world at that 
node. However, under the partial disciplines, if the 
local and remote tasks are assigned different priority 
levels for processing in the processor, then the 
queueing structure of the tasks in the node will be 
changed because of the transferred task arrivals. 
Intuitively, we can imagine that the disciplines favor- 
ing the remote tasks will result in shorter mean 
remote task turnaround time and longer mean local 

task response time. However, in 
voring the local tasks, shorter 

the disciplines fa- 
mean local task 

turnaround time and longer mean remote task 
turnaround time will be obtained. Let E[LT] and 
E[RT] be the mean local task turnaround time and 
the mean remote task turnaround time, respectively. 
When Tl = 1, the mean task turnaround time is 

E[T] = 
A-Y 
hE[LT] + XE[RT], (7) 

where E[LTl = E[LQl/(h - 7) and E[RT] = 
E[RQI/y + ElCohl. For small y, because E[T] = 
E[LTl and tasks in the system are almost all of 
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Figure 11. Performance improvement. ayTFN = 10, l-Th, Tl = 1, “,oh”L 5%. IJ,~ 
SQF v Fl 

N= 10, A-Th, Tl = 2, Coh = 5%. 

“local” type, all partial disciplines will have almost SQF policy usually assigns higher priority to the 
the same performance. However, if the y is large, local tasks. A comparison of the performance im- 
the E[RT] becomes a dominant factor in the E[T] 
and the performance of the disciplines favoring re- 
mote tasks will be better than those of the disci- 
plines favoring local tasks. 

The descriptions stated above can be verified in 
Figure lla. At low and medium system loads ( p I 
0.5) and small y, disciplines have almost the same 
performance. However, at high system loads ( p 2 
0.7) and large y, the RTF policy results in the best 
and the SQF policy results in the worst performance. 
This is due to the fact that, at high system loads, the 

provement of different disciplines at Tl = 2 is shown 
in Figure llb. In the same way, the Fl discipline 
results in the best performance. However, in the 
partial disciplines, the RTF policy performs best, the 
LTF policy performs worst, and the LQF and F2 
policies have almost the same performance over the 
entire range of the system loads. 

4.2.2 Throughput comparison. Figure 12a shows 
the comparison of the network throughput of the Fl 
discipline with those of the partial disciplines. From 
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N = 10, A-Th, Tl = 2, Coh = 5%. 

this figure, we can observe that the network 
throughput of the Fl discipline is always higher than 
those of the partial disciplines. At low and medium 
system loads ( p I OS), the partial disciplines have 
almost the same throughput. The larger the network 
throughput, the higher the probability of successful 
task transfers will be; the larger the throughput, the 
better the performance will be. This phenomenon 
can be observed in Figures lla and 12a. Exceptions 
are the SQF and the LTF policies at extreme high- 
load conditions. The throughput comparison at Tl = 
2 is shown in Figure 12b. We find that the effect of 

the Tl on the FI discipline is more pronounced than 
on the partial disciplines. 

The reason why the SQF results in the worst 
performance at p r 0.9 and Tl = 1 can be described 
as follows: The SQF discipline assigns higher priority 
to the minority tasks in the system, which results in a 
large queueing delay for the majority tasks and 
significant performance deterioration. Thus, at ex- 
treme high-load conditions and Tl = 1, the perfor- 
mance of SQF is worse than that of LTF. This 
phenomenon is more pronounced at p = 0.95, in 
which SQF results in a turnaround time of about 50 
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units and LTF results in a turnaround time of about 
9.6 units. However, at large Tl, the effects of ioad 
balancing (large y) will improve the performance of 
SQF significantly, this leads to the situation in which 
the performance of SQF is slightly superior to LTF. 

4.2.3 High threshold at extreme high-system-load 
co~d~t~o~~, As mentioned above, the SQF policy al- 
most results in the worst performance in the partial 
disciplines because it assigns higher priority to the 
minority tasks and results in a large queueing delay 
for the majority tasks. However, if the queue length 

R.-C. Liu and S.-D. Wang 

difference between the local and remote tasks is 
small (under high-Th environments), then the SQF 
policy will perform well because of the reduced 
turnaround time for minority tasks and the insignif- 
icant queueing delay for the majority tasks. This 
description is verified in Figure 13a. We focus the 
experiments on extreme high-load conditions ( p = 
0.95). We observe that the SQF policy results in the 
best performance when Th 2 18. Because high Th 
are for systems with higher Coh, we can image that 
the SQF policy will perform well in high-overhead 
systems. Figure 13b shows this phenomenon. We 

(N=10.~ood=0.95,11= ,.Coh=lj%) 

a 

(Th) 
q F2 + ATF LOF x SOF 

b 
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1 3 
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(Th) 

Figure 13. Effects of high Thy a, G = 10, ‘,,a:‘= 0.95, ;I =‘;‘, Coh =*5%~~, 

x WF 

N = 10, Load = 0.95, Tl = 2, Coh = 15%. 
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also observe that under high-overhead and low-Th 
(Th = 3) environments, the RTF policy results in 
the worst performance and the LTF policy has the 
best performance. Based on the observation men- 
tioned above, we can conclude that for partial disci- 
plines at low Coh the RTF policy is appropriate; 
the SQF policy is suitable for systems with higher 
overheads. 

4.3 Accuracy of the Decomposition 
Approximation 

The mathematical queueing analysis described in 
section 3 is valid under the assumption that all 
nodes in the system are stochastically independent. 
The effect of the remainder of the system on an 
individual node is represented by an arrival process 
of the transferred tasks from the other nodes in the 
system. We also assume that this is a Poisson pro- 
cess. These assumptions lead to a decomposition 
approximation model in which each node in the 
system can be analyzed in isolation. Here we investi- 
gate the accuracy of this approximation. Let Sim and 
Num be the results from simulations and numerical 
solutions of the analytic model, respectively. The 
deviation (S) is defined as a(%) = 1Sim - 
Num/SimI X 100%. 

Figure 14 shows the deviations of the Fl, RTF, 
and LQF policies versus system load when N = 10 
and N = 20, where FlO, RlO, and LlO depict the 
curves of Fl, RTF, and LQF with N = 10, respec- 
tively. From this figure we observe that there is a 

14 

13 

12 

10 
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very good consistence; the deviation is < 2% be- 
tween the analytic model and the simulation when 
p I 0.5. However, the higher the system load, the 
larger the deviation will be. At high system loads, for 
instance, at p = 0.9 and N = 10, the deviation is 
> 13%. These errors came from the effects of the 
decomposition approximation and the assumption 
that the transferred task process is a Poisson pro- 
cess. However, these effects are reduced when N is 
large. For instance, at p = 0.9 and N = 20, the 
deviation is < 8%. Based on observations from 
various simulation experiences, this is because the 
larger the system size, the more the transferred task 
process (y) is similar to a Poisson process. This 
leads to a situation in which the approximation is 
reduced for large systems. Thus, we can conjecture 
that the approximation error of the analytic model 
will approach 0 when the system size, N, approaches 
infinity. 

The analytic queueing analysis described in sec- 
tion 3 is limited to Tl = 1 cases. Based on our 
experiments, the execution time of the simulation 
under extreme high-load conditions with p = 0.9 
and Tl = 1 on a SUN/4 machine with 16 MIPS 
capability using PAWS language more than two 
hours. However, the same experiment, following the 
mathematical approach, running on an IBM-PC 
(80386 + 80397) with 4 MIPS capability using MAT- 
LAB language obtains a result of about 10 seconds. 
This is a significant difference that can be easily 
observed. Thus, if the analytic approach can be 
extended to Tl > 1 cases, a pronounced benefit will 

(&Th,TI=,.Coh=5%) 

Figure 14. 
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be obtained. For Tl > 1 conditions, the Markov chain 
approaches infinity two dimensionally, as depicted in 
Figure 4, some parameters, p and 9, are too compli- 
cated to determine analytically. The mathematical 
analysis with further approximation might be a feasi- 
ble approach. This interesting research area requires 
further investigation. 

5. CONCLUSIONS 

This study was concerned with the performance 
analysis of a simple load-balancing algorithm with 
different service disciplines. The six disciplines we 
investigated were Fl, LTF, RTF, LQF, SQF, and F2. 
The analysis of the policies was carried out using 
two approaches, i.e., simulation and mathematical 
method. 

The mathematical modeling of the Markov pro- 
cess of the entire system appeared to be computa- 
tionally intractable. Thus, we made some assump- 
tions and applied a decomposition technique to solve 
the simplified Markov process using the Z transform 
and matrix-geometric solution techniques. 

The policies were tested over a large range of 
parameter values. Some salient observations are as 
follows. 

An extremely simple adaptive load-balancing algo- 
rithm that only collects local status information 
yields dramatic performance improvement over no 
load balancing. 

The optimal Th of the policy, under a realistic 
value of Coh, is 1 for p 5 0.5, 2 for 0.5 < p < 0.9, 
and 3 for p 2 0.9. 

The performance of the load-balancing algorithms 
is insensitive to the effect of the Tl at low and 
medium-sized system loads. The improvement in 
performance caused by this effect will approach 
saturation when the Tl is greater than some spe- 
cific values. 

The Coh is an important parameter that will affect 
the selection of Th and Tl. For low-overhead 
systems, low Th and high Tl are appropriate; high 
Th and low Tl are suitable for systems with higher 
overheads. 

Network traffic resulting from task transfers is a 
function of the system load, Th, and Tl. 

The Fl discipline performs better than the partial 
disciplines under a wide range of system loads and 
various Tl conditions. 

For partial disciplines, the RTF policy results in 
the best performance under low-overhead envi- 
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ronments. However, the SQF policy performs very 
well for systems with higher overheads. 

l The deviation of analytic results caused by decom- 
position approximation is always acceptable at low 
and medium-sized system loads. At high system 
loads, N = 10, the deviation might be > 13%. 
However, it would be reduced to an acceptable 
value for large systems. 

APPENDIX A 

Here we give the closed-form representation of E[Q] 
of the Fl discipline. From the Markov chain in 
Figure 2, we can show that 

Pi = 
( P + Pd'Po for i I Th, 

( p + pl)Th pfpThP,, , for i 2 Th, 
(A-1) 

where Pi denotes the probability that the queue 
length of the node is i. From the conservation of 
probabilities, Cy= a Pi = 1, we can solve for P,,, which 
give us 

1 -(p+ PdTh + (p+ PJTh 
-1 

PO = 
l-P-P, 1 - Pl 1 . (A.2) 

The mean number of tasks in the node is 

E[Q] = 5 iPi 
i=l 

mP+ PdTh 

1-P-P, 1 
1 

(1 - P,Y 
P 

O’ 

The recursive substitution technique, which is used 
to compute the mean transferred task arrival/de- 
parture rate. is described as follows: 

1. 
2. 

3. 
4. 

Set y to an initial value. 
Compute the probability distribution using equa- 
tions A.1 and A.2. 
Compute y, = hProb[Q 2 Thl. 
If I-y, - yI < E, where E is an arbitrary small 
constant, stop iteration. Otherwise, set y := y1 
and go to step 2. 

The iterative scheme described above is based on 
the fact that Prob[Q > Th] is a nondecreasing func- 
tion of y. This is because the node queue length 
increases with an increasing y for Tl = 1. Hence, 
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the Prob[Q > Th] also increases with an increasing 
y. Numerical experiences indicate that regardless of 
the initial value of y and how small E is, the 
iteration always converges to a fixed point. 

APPENDIX B 

Here we derive the closed-form expression of E[LQ] 
and E[RQ] of the LTF policy using the 2 transform 
technique. From the Markov chain in Figure 3-a, we 
can write down the equilibrium equations as follows: 

( P + ~~)~(O,O~ = P(O, 1) + P(l,O), 

(1 + p + PI)P(l,O) = PP(O,O) + P(XO), 

(1 + p + PI)P(2,0) = PP(l,O) + P(3,0), 
(B.1) 

(1 + P,)P(3,0) = PP(2,O). 

(1 + p + p,)P(O,i) = p,P(O,i - 1) 

+P(O,i+ 1) +P(l,i),izl, 

(1 + p + pI)P(l,i) = p,P(l,i - 1) 

+ pP(0, i) + P(2, i), i2 1, 

(1 + p + p1)P(2,i) = p,P(2,i - 1) 
(B.2) 

+ pP(1, i) + P(3, i), i2 1, 

(1 + p1)P(3,i) = p,P(3,i - 1) 

+ pP(2,i), irl. 

Define the following Z transformations as 

Z,(z) = i P(O,i)z’, 
j=” 

l,(z) = i P(l,i)z’, 
i=O 

a 

12(z) = I3 P(2, i)z’, 
i=o 

13(z) = CP(3, 
j-0 

i)zi. 

(B.3) 

From equations B.1, B.2, and B.3, and using some 
algebra, we obtain 

(1 + P + P,IZ,(Z) 

= P,ZZ,(Z) + ;Z”W 

(1 + P + PI)ZI(Z) (B.4) 
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= P,ZI,(Z) + P4dZ) + b(Z)? 

(1 + P + P,)&(Z) 

= P,%(Z) + PZ,(Z) + 13(z), 

(1 + P,)ZdZ) 

= P,Zl3@) + Pi,(Z)- 

From equations B.4, let z = 1. Using the fact that 
Z,(l) + Z,(l) + Z,(l) + Z,(l) = 1, we obtain 

Zl(l> = PZ”(l), 

Z,(l) = P2ZriW1 

Z,(l) = P3Z”W> (B.5) 

I 
Z,(l) = 1 + p + p2 + p3. 

Therefore, the mean local task queue length is ob- 
tained from 

EELQI = Z,(l) + 21,(l) + 31,(l) 

p + 2p= + 3p3 

= 1 + p + p2 + p3 . 

From equation B-4, take derivative and let z = 1, we 
obtain 

Z;(l) = PG(l) + P,Ul)T 

Ml) = PG(l) + P,D,W + W)L P-6) 

C(1) = Phi(l) + PlV3U) + Z,(l) + 4U)lT 

where the prime (‘) denotes the derivative with 
respect to its argument. Since Z;(l) = ICY= ,LP(O, i), 
applying the fact that PCO, i + 1) = p,Cs;=oP(j, i), 
for i r 0, and substituting them into the summation, 
we have 

Z;(l) = p&,1 + E[RQ]). (B-7) 

From equations B.5, B.6, and B.7, after some alge- 
braic manipulations, we finally obtain the mean re- 
mote task queue length: 

E[RQ] = Z;(l) + Z;(l) + Z;(l) + Z;(l) 

p,( p6 + 3~’ + 6p4 + lop3 + 6p2 + 3p + 1) 

= (1 + p + p2 + p3)[l - p,(l + p + p= + p”)] . 
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The mean remote task arrival rate is 

Y = hProb[LQ = Th,] 

= AZ,(l) = 
hP3 

1 + p + p2 + p3 * 

APPENDIX C 

Here we describe the analytic queueing analysis of 
the LQF policy (Tl = 1 and Th, = 3) in detail. Anal- 
ysis of the RTF and the SQF policies can be per- 
formed by the same procedures as the LQF policy 
and is omitted. 

Let Xi = [P(O, i), P(1, i), P(2, i), P(3, i)] be the 
probability vector that the node has i remote tasks 
and x=[X,,X,,X, ,... I. From the Markov chain 
in Figure 3c, we can write down the equilibrium 
equations that lead to the matrix equation x * G = 
0, which describes the behavior of the system at 
equilibrium, where G is the infinitesimal generator 
of the Markov chain and * is the operation of 
matrix multiplication. G has the structure of a block 
tridiagonal matrix of the form 

&I Z&i 

&I B,, B,* 

B*, B,* B,, 

G= B,, B33 AlI 

B43 A, A2 

A2 A, . 

. A2 . 

We define the components of internal matrices of 
the infinitesimal generator G at the end of this 
appendix. Consider the following nonlinear matrix 
equation 

Ao+R*A,+R2*A2=0 (C-1) 

such that R is its nonnegative solution. We can 
show that R is an upper triangular matrix. Let 
R = [rij], where 

rij = 0, V i > j, 

111 = r22 = r33 

= [(A+Y+z-~-(A+Y+cL)*-~Y~]~‘~ 

21.L 
7 

Y 
r44 = -, 

ZJ 

Ar,1 
r12 = rz3 = 

(A + Y + 1-4 - 4r11 + r2d ’ 

r - 
Ar33 

34 - (Y + P) - cLh3 + r44) ’ 

r12(A + ~23) 

r13 = (A + y + ZJ) - &rii + r33) ’ 

r23(A + cLr34) 
r - 

24- (Y+CL) -b4r22+r44)‘and 

Ar,, + I*(r12r24 + r13r34) 
r14 = 

(Y + p) - P(‘11 + f-44) . 

Thus, the diagonal elements of R can be described 
explicitly in terms of the parameters of the Markov 
process. Once the diagonal elements are deter- 
mined, the elements above the diagonal are com- 
puted from the value of the diagonal elements. The 
following theorem has been proven by Neuts [12]. 

Theorem. The Markov chain, with infinitesimal 
generator G, is positive recurrent if and only if 
S’(R) < 1, all the eigenvalues of R lie inside the 
unit disk, and the stochastic matrix B[R], defined 
below, has a positive left invariant vector, eigenvec- 
tor, [X,,, Xi, X2, X,]. Normalizing the eigenvector 
IX,, X,, X2, X,1 by <X0 + X, + X2>* e + X3 *(I - 
RI-’ * e = 1, where e = [l, l,l, llT, T denotes the 
transpose of a vector, and Z is the identity matrix of 
size 4, then the invariant probability vector X of G 
is given by Xi = X3 * Ri-3, for i 2 3. 

In the case of the LQF policy, because R is a 
upper triangular matrix, its eigenvalues are its diago- 
nal elements. It is clear that W(R) < 1 if y < Z_L. 
However, for Tl = 1 cases, the value of y is always 
smaller than that of the A. The matrix B[ RI, given 

by 

rBoo B”, 0 0 

42 0 
B22 B23 

B32 B33 + R * B43 

aperiodic matrix. The vector 
the left eigenvector of B[R]. 
conditions stated in the above 

4” 41 
B[Rl = o B 

21 

1 0 0 

is an irreducible, 
[X0, Xi, X2, X31 is 
Therefore, the two 
theorem are satisfied. We now assume that all the 
values of all parameters are known. First, we calcu- 
late the components of the R matrix. The boundary 
conditions are determined by solving a system of 
linear equations [X0, Xi, X2, X,1 * B[Rl = 0, and 
the remainder probability vectors are obtained from 
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X, = X, * R’- ‘, for i 2 3. Thus, the performance 
measures are 

E[LQ] = i Xi *e,=(XO +X1 +Xz)*e, 
j-0 

-t-X,*(1-R)-‘*e,, (C.2) 

E[RQ] = iix,*e=(X, + 2X,)*e 
i=o 

+3X,*(1-R)-‘*e 

+X,*(1 - R)-‘*e, (C.3) 

where e, = [0, 1,2, 31T. 
The components of internal matrices of the in- 

finitesimal generator G are listed as follows: 

-A-y A 0 0 

B,= ; 
I 

-A-y-/l A 0 

cr. -A-y-p 1 h ' 

-A-y-p h 

4, = 
F -A- y-p 

0 P 

0 0 

41 = 

-h-y-p A 

J322 = 

0 -A-y-f.l 

0 It 
0 0 

--A--y-EL A 

B,, = 

0 -h-y-p 
0 0 
0 0 

CL -r-CLJ 

0 

A 

-A-y-p 

P 

0 
A 

-A-y-p 

LL 

0 

A 

-A-y-/k 

P 

- 

- 

0 
0 

A ’ 

-Y--CL 1 

0 

0 

A ’ 

Y-P 1 
0 
0 
h ' 

Y-P 1 
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-A- y-p A 0 0 

0 -A-y-p A 0 A,= 
0 0 -h-y-p A 

0 0 0 --Y--P 

B,,=B,,=B*~=A,=y*I,B,,=A,=~**. 
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