
J. SYSTEMS SOFTWARE 169
1993; 20:169-187

Performance Modeling and Analysis of Load
Balancing Policies with Priority Queueing

Rong-Chau Liu
Chung Shan Institute of Science and Technology, Lungtan, Taiwan, R.O.C.

Sheng-De Wang
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

In this article, we study an adaptive load-balancing
algorithm in the homogeneous distributed systems in
which only local status information is used. The pa-
rameters affecting the performance of the load-bal-
ancing algorithm are investigated. Jo analyze the ef-
fects of service disciplines on load balancing, we study
two classes of service disciplines, impartial discipline
and partial discipline. In impartial discipline, all tasks
in the system are treated alike. Partial disciplines
divide tasks into two classes, local tasks and remote
tasks, and then assign different priorities to them. Five
partial disciplines with different priority assignment
rules are compared. The numerical results are pre-
sented and used to shed light on the characteristics of
the load-balancing process.

1. INTRODUCTION

Distributed computer systems have many advan-

tages, including the capability to share processing of

tasks in the event of overloads and failures, trans-
parency, and modulari~. In a distributed system a
task might wait for service at the queue of one
server while at the same time another server capable
of serving the task is idle. This phenomenon was
clearly demonstrated by Livny and Melman [l], who
showed that in a network of homogeneous, au-
tonomous nodes, there is a high probabili~ that at
least one node is idle while tasks are queueing at
some other node or nodes over a wide range of

Address correspondence to Professor Rong-Chau Liu, Chung Shun
I~titu#e of Science and Tech~~o~, P.O. Box ~8-9-3, Lungtan,
Taiwan, R. 0. C.

network size and node utilizations. A load-balancing
policy designed to minimize the mean turnaround
time of the task will tend to prevent the system from
reaching such a state. System performance can be
improved by transferring workload from heavily to
lightly loaded nodes.

Load-balancing policies may be either static or
adaptive. Static policies only use information about
the average behavior of the system; transfer deci-
sions are independent of the actual current system
state. Numerous static load-balancing policies have
been proposed. Stone [2, 31 and Bokhari [4] exam-
ined the deterministic algorithms of task assign-
ments. Tantawi and Towsley [51 developed a tech-
nique to find optimal probabilistic assignment rules.

The principal advantage of static policies is their
simplicity: there is no need to acquire and maintain
information on the system state. By contrast, adap-
tive policies are more complex, since they use infor-
mation of the current system state in making trans-
fer decisions. Several adaptive load-sharing policies
have been reported. Two strategies for adaptive load
sharing with distributed control were investigated by
Eager, Lazowska, and Zahotjan [6]. Wang and Mor-
ris [7] compared a number of server- and source-ini-
tiative adaptive algorithms.

The motivation behind this article is to investigate
the effects of processor service disciplines on load-
balancing policy, which have not been discussed in
the reports mentioned above. First, we study a sim-
ple adaptive load-balancing policy and analyze the
effects of its parameters on system performance.
Owing to different service disciplines, tasks in the

0 Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010 0164-1212/93/$6.00

170 J. SYSTEMS SOFIWARE
1993; 20:169-187

system are divided into two classes: local tasks, which
are processed at their site of origination, and remote
tasks, which are processed at some other sites in the
system after being transferred through an intercon-
nection network. We also examine the effects of
assigning different priorities to two classes of tasks.
Five such policies are developed, ranging from one
favoring local tasks to one favoring remote tasks.
Analytic queueing model and simulation results are
used to study the interdependence between the sys-
tem parameters and the behavior of these load-bal-
ancing policies.

The remainder of this article is organized as fol-
lows. In section 2, we briefly describe the system
architecture. Section 3 comprises the description of
load-balancing policies and the mathematical analy-
sis of the decomposition approximation model. In
section 4, we describe the numerical and simulation
results of this research. Section 5 concludes the
article.

2. SYSTEM MODEL AND ASSUMPTIONS

We present a distributed system as a collection of IV
identical nodes. The nodes are connected by an
interconnection network (IN). The system architec-
ture is shown in Figure 1. Each node in the system
consists of a processor, a network interface proces-
sor (NIP), and a queue. The NIP performs the
load-balancing algorithm and is responsible for com-
municating with the interconnection network. Tasks
entering the node from the external world (AI or
from the interconnection network (y) are selected
by the NIP, based on a specific load-balancing pol-
icy. Then the accepted tasks enter the queue and
wait for the service of the processor; the remaining
tasks are transferred to the interconnection network.

Tasks to be transferred

to other nodes

R.-C. Liu and S.-D. Wang

There are several assumptions to simplify the system
model, which are stated as follows.

Homogeneity. The nodes are identical and are
subject to external task arrival Poisson processes
with the same rate A; the service time of the proces-
sor is exponentially distributed with mean l/p.

FFhen a task is tra~fe~ed to the interconnection
network for remote processing, the task incurs a com-
munication delay. This delay includes the communi-
cation cost, which is a cost between the NIP and the
interconnection network and includes packing data,
transmitting data, receiving data, unpacking data,
and the transmission delay in the interconnection
network. We lump these effects together as commu-
nication overhead (Cob), which is incurred by the
load-balancing algorithms when a task is transferred
to the other nodes through the IN. We also model
the communication channel as a single-server
queueing system whose service time is an exponen-
tially distributed random variable with mean l/pi”.

The processing cost of NIP is much smaller than that
of the processor. That is, the load-balancing algo-
rithm performed by the NIP does not interfere with
the processor; therefore, the processing cost of the
NIP is ignored.

~ecomposa~i~i~. We assume, in the steady state,
that the task arrivals from the interconnection net-
work are of Poisson type and the interarrival time of
the transferred task is an exponentially distributed
random variable with mean l/y. Based on this
decomposition approximation, we can decompose
the system model so that the model for each node
can be independently analyzed.

External I I I

Figure 1. System queueing modei.

Load Balancing with Priority Queueing

3. LOAD-BALANCING POLICIES AND QUEUEING
ANALYSIS

3.1 Load-Balancing Algorithm

A distributed load-balancing algorithm is composed
of two main elements, the probing element and the
decision element. The decision element determines
when, from where, and to whom to transfer a wait-
ing task. The decision is made according to the
current available information on the state of the
system. The probing element collects this status in-
formation for the decision element. We consider
here a simple and straightforward algorithm. The
probing element only collects the local status (queue
length) of the node, and the decision element ac-
cepts rejects an arriving task, depending on this local
status information and a predefined threshold Clh)
value. The algorithm is as follows: when an arriving
task enters the node, if the NIP finds the local
queue length, including tasks waiting in the queue
and the task in service, is Th, then this task is
transferred through the interconnection network to
a randomly selected node in the system with equal
probability. Otherwise, this task is accepted and goes
into the queue.

This algorithm can cause instability. That is, in a
heavily loaded network, when all nodes in the system
have a queue length larger than the Th, the system
will enter a state in which the task arrivals are
always transferred back and forth within the net-
work and no processor accepts them. This instability
phenomenon can be overcome by adding an appro-
priate control policy to the decision element. The
simple control policy we adopt here is to restrict the
number of times that a task can be transferred to a
predefined transfer limit (Tl) value [8]. Then the
load balancing algorithm is updated as follows.

When an arriving task enters the node, if the NIP
finds the local queue length of the node is lower
than the Th or the number of times that the task has
been transferred and a message carried by the task
is equal to the Tl, then this task is accepted. Other-
wise, the transfer count of the task is increased by
one and the task is transferred to a randomly se-
lected node in the system. The initial value of the
transfer count of a task from the external world is
set at 0.

3.2 Service Disciplines

Another question that arises in
havior of the refined algorithm

considering the be-
is how the destina-

J. SYSTEMS SOFTWARE 171
1993; 20:169-187

tion node should treat an accepting transferred task
from the interconnection network: tasks may be
given different service attributes in the local site or
in the remote site. We consider two classes of ser-
vice disciplines and describe them in the following
discussion.

3.2.1 Impartial discipline. In this discipline, the
destination node treats an arriving transferred task
as a task originating at that node. Then all accepted
tasks, assigned with the same priority, enter the
queue and follow the first come, first-served scheme
to wait for the service of the processor. We call this
an Fl discipline.

3.2.2 Partial disciplines. In these disciplines, owing
to the different service attributes, tasks are divided
into two classes-local tasks, referring to tasks pro-
cessed at their own site, and remote tasks, which
processed at some other site in the system after
being transferred through the interconnection net-
work. Local tasks come either from the external
world directly or from the interconnection network.
Tasks transferred to another node because of the
limitation of the local task Th are later transferred
back to the same node because of the effect of the
Tl. Since the system has two classes of tasks, we
define LQ and RQ, respectively, as random variables
denoting the number of local tasks and the number
of remote tasks at a node; Th, and Th, are the
values of the threshold of the local task and remote
task, respectively. Two types of partial disciplines
use different priority assignment schemes as defined
below.

1. Priority Queueing [9] Disciplines
a. Local tasks first (LTF) policy

i.

ii.

If an arriving task from the external world
finds the local task queue length of the
node is Th,, then the transfer count of the
task is incremented by one and the task is
transferred to a randomly selected node in
the system with equal probability. Other-
wise, it is processed locally.
Arriving tasks from the interconnection
network can be divided into two cases.
Local tasks: if the transfer count is Tl, then
this task is accepted. Otherwise, its transfer
count is increased by one and it is trans-
ferred to a randomly selected node. Re-
mote tasks: if the remote task queue length
of the node is lower than Th, or the trans-

172

. . .
111.

J. SYSTEMS SOFTWARE
1993; 20:169-187

fer count is Tl, then this task is accepted
for processing locally. Otherwise, its trans-
fer count is increased by one and it is
transferred to a randomly selected node.
Tasks at each node are processed accord-
ing to a priority discipline with nonpreemp-
tion allowed. Tasks having the same prior-
ity are processed in a first come, first served
manner.

iv. Local tasks are given higher priority than
remote tasks.

b. Remote tasks first (RTF) policy
i. Same as LTF policy.

ii. Same as LTF policy.
iii. Same as LTF policy.
iv. Remote tasks are given higher priority than

local tasks.
c. Long queue first (LQF) policy

i. Same as LTF policy.
ii. Same as LTF policy.

iii. Same as LTF policy.
iv. Local tasks are given higher priority than

remote tasks when LQ 2 RQ. Otherwise,
remote tasks are given higher priority than
local tasks.

d. Short queue first (SQF) policy
i. Same as LTF policy.

ii. Same as LTF policy.
iii. Same as LTF policy.
iv. Local tasks are given higher priority than

remote tasks when LQ I RQ and LQ > 0.
Otherwise, remote tasks are given higher
priority than local tasks.

2. First come, first served (F2) policy
i. Same as LTF policy.

ii. Same as LTF policy.
iii. Tasks at each node are assigned with the

same priority and follow the first come,
first served scheme to wait for the service
of the processor.

3.3 Queueing Analysis

Based on the decomposition approximation men-
tioned above, we can simplify the queueing analysis
by assuming that the state of each node is stochasti-
tally independent of that of any other node. Each

R.-C. Liu and S.-D. Wang

node can then be analyzed in isolation. The effect of
the remainder of the system on an individual node is
represented by an arrival process of transferred tasks
from the interconnection network. Because the net-
work is homogeneous, system performance measures
can be obtained by analyzing a model of any individ-
ual node. We will discuss the accuracy of this de-
composition approximation at the end of section 4.

Owing to the complexity, the mathematical analy-
sis is only tractable for cases when Tl = 1. The
independent analysis of each individual policy will
be described in the following subsections.

3.3.1 Tl = 1: Impartial discipline (Fl). In this case,
p (the probability that the portion of transferred
tasks have their transfer count equal to Tl) = 1. Let
E[Q] be the mean queue length of the node. We can
show that

E[QI =
i [
(P+ Pl)

l-(P+PJTh
(1 - P - Pd2

lwP + PdTh -
1-P-R 1

where

A Y P= i,P, = -,and PO
P

[

l-b+dTh + (P+PJTh
-1

=
1-P-h 1 l-P, .

Let E[T] be the mean task response time. From
Little’s formula [lo] and the fundamental queueing
theory [ll], we have

E[T] =
E[Ql
h + ;E[Coh],

1
where E[Coh] = denotes the mean com-

Pin - NY

munication overhead. The y (mean transferred task

Figure 2. Markov chain of Fl policy &l = 1).

Load Balancing with Priority Queueing J. SYSTEMS SOFTWARE 173
1993; Z&169-187

arrival/departure rate) is a function of h, Th, and
Tl, which can be calculated by a recursive substitu-
tion technique (see Appendix A).

3.3.2 Tl = 1: Partial disciplines. In this case, the
remote task threshold, Th,, has no effect on the
load-balancing policy. As the decomposition approx-
imation stated above, each node in the system under
load-balancing policies can be represented by a con-
tinuous time and discrete state Markov chain. Fig-
ure 3 shows the state transition diagrams for a node
executing four priority queueing disciplines, ,respec-
tively, when Th, = 3 and Tl = 1. The state (I, r)
denotes that there are f local tasks and r remote
tasks in the node, respectively, and P(1, r) is the
probability that the node is in the state (I, r).

Let E[LQ] and E[RQ] be the mean number of
local tasks and mean number of remote tasks in the
node, respectively. For the LTF policy, we can find
the closed-form expression for y, E[LQ], and E[RQ].
Using the 2 transfo~ technique (see Appendix B),
there are

hP3
Y=

1 f p + p2 + p3 ’

E[LQ] =
p + 2p* + 3p3

1 + p + p* + p3 ’
and

(3)

(4)

(4

. . .

EiRQl

pl(p6 + 3p5 + 6p4 + lop3 + 6p2 f 3p + 1)

= (1 + p + p2 f p3)[1 - pl(l + p + p* + p”)] .

(5)

The other three priority queueing disciplines can be
analyzed by the matrix-geometric solution tech-
nique [121. This technique has been used in the
performance modeling and analysis of the nonprod-
uct form queueing networks [131, which yield exact
solutions of E[LQ] and E[RQ] for each node (see
Appendix C). Thus, the mean task turnaround time
03TI) is

E[T] =
JWQI + J-WQI + ~ELCohl

A p ’
(6)

where E[Coh] is the same as in Equation 2. As
mentioned above, the value of y can be calculated
by a recursive substitution technique.

3.3.3 TI > 1. In this case, for Fl discipline, p < 1.
It is then difficult to find the exact solution of p and
to solve the birth-death process. We obtain the
performance measures from simulations. In the same
way, the Markov chain of the LTF policy (Th, = Th,
= 3 and Tl > 1) is shown in Figure 4. In this figure,

p is the probability that the portion of transferred

Figure 3. a, Markov chain of LTF policy (Tl = 1, Th, = 3). b, Markov chain of RTF policy (Tl = 1, Th, = 3). C, Markov
chain of LQF policy (T1 = 1, Th, = 3). d, Markov chain of SQF policy (Tl = 1, ThB = 3).

174 J. SYSTEMS SOFTWARE
1993; 20:169-187

R.-C. Liu and S.-D. Wang

Figure 4. Markov chain of LTF policy (Tl > 1,
Th, = 3).

. . .

local tasks have their transfer count equal to Tl and
q is the probability that the portion of transferred
remote tasks have their transfer count equal to Tl.
We note that p + q < 1. The exact solution of this
Markov chain is too complicated to be obtained by
mathematical methods. Thus, we again obtain the
performance measures from simulations for partial
priority queueing disciplines.

3.3.4 F.2 ~scipli~e. Even when the decomposition
appro~mation is valid and Tl = 1, the analytic anal-
ysis for the F2 discipline is not tractable. Thus, we
obtain the performance measures of this discipline
from simulations.

4. RESULTS

In this section, we present the performance mea-
sures of the load-balancing policies stated in section
3. As mentioned above, some situations, such as
Tl > 1, are too complicated to analyze using the
mathematical methods, simulation is the most popu-
lar approach for the analysis of the performance of a
computer system because of its generality and sim-
plicity. Therefore, we use results from simulations to
depict the actual sample means. At the end of this
section, we will discuss the relationship between
simulation results and those of the mathematical
analysis.

The simulation model is constructed on a SUN/4
workstation using PAWS (performance analyst’s
workbench system) simulation language [14]. Over
100 cases have been simulated. The lengths of the
simulation runs are determined over a considerable
range of parameter values by a suitable compromise
between numerical accuracy and the completion time
for simulations. All results have confidence intervals
[15] of I 5% a 90% confidence level. The key

performance metric of these experiments is the mean
turnaround time of tasks (Rt). Furthermore, in the
following experiments, we let the mean task service
time, l/l.~, equal one unit; all measurements of the
turnaround time are in terms of this unit.

Since many parameters, such as the system load
(p), threshold (Th), transfer limit (Tl), communica-
tion overhead (Cob), etc., can affect the perfor-
mance of load-balancing policies, we adopted a “one
factor at a time” approach in our simulation experi-
ments; that is, each experiment involves the varying
of one parameter while keeping the others at a
constant value. The variable parameter in each ex-
periment is represented by the abscissa of the corre-
sponding result graph, whereas the values of the
fixed factors are included in the figure legend. The
number of nodes in the system (N) is fixed at 10 in
all simulation runs. In general, although it is possi-
ble for the communication overhead of the intercon-
nection network to be > 10% of the mean task
service time, it would not occur frequently. Hence,
we assume the communication overhead is 5% of
the mean task service time, i.e., I*in = 20, unless
otherwise mentioned.

In the following experiments, we first investigate
the effects of system parameters on the performance
of impartial discipline (Fl), and then compare the
performance of Fl discipline with those of partial
disciplines.

4.1 Fl Discipline

4.1.1 Perfbmance compa~so~. The prelimina~
perfo~ance measures of the load-balancing algo-
rithm are shown in Figure 5. The results are com-
pared with two bounds, represented by the M/M/l
model (no load balancing) and the M/M/N [ill

Load Balancing with Priority Queueing J. SYSTEMS SOFTWARE 175
1993; 20:169-187

10
(N=IO.Th=l,TI=1.Coh=5%)

0-m I ,

0 I 03 05 0 7

(LO&)
M/M/l 0

Figure 5. Load balancing performance (NC = ;;I, Th =‘I, Ty’!‘;, Coh = 05%).

I -4
“9

model (perfect load balancing with no costs). From
this comparison, we find that even an extremely
simple load-balancing algorithm can achieve sub-
stantial performance improvement over no load bal-
ancing. The improvement is much more pronounced
as the load increases. For instance, at p = 0.9, the
turnaround time of the load balancing is about 5.5
units, whereas the M/M/l turnaround time is 10
units, a significant difference. It is clear that the
algorithm performs worse than the exact M/M/10
model. For instance, at p = 0.9, M/M/10 results in
a turnaround time of about 1.6 units. 5

To clearly present how much performance im-
provement (PI) can be achieved by the load-balanc-
ing policy, we define the PI factor as follows:

PI(%) = (T”lb - T,b)/T”,b x loo%,

where T,, CT”,,,) is the mean task turnaround time of
the node with (without) load balancing. At extreme
load condition, p = 0.9, the PI value is 44.3%. The
performance of the load-balancing policy can achieve
much more improvement because of the variation of
system parameters, which will be described in the
following subsections.

4.1.2 Effect of Th. Threshold is a fundamental
parameter of the load-balancing policy. It deter-
mines when a task transfer will be attempted. Intu-
itively, a low Th is appropriate at low system loads
because the probbility is high for a transferred task
to “find” a node where the queue length is lower

than the Th. However, at high system loads, a high
Th is appropriate because in these conditions, most
nodes have high queue length. However, high Th
will reduce the task transfers and hence reduce the
effects of load balancing, so the Th should be se-
lected carefully.

Figure 6 shows the phenomenon stated above.
The optimal Th is 1 for low and medium system
loads (p I OS), 2 for high system loads (p = 0.71,
and 3 for extreme high loads (p = 0.9). Based on
this attribute, in the following experiments we use
the adaptive threshold (A = Th) policy (i.e., Th = 1
for p 5 0.5, Th = 2 for p = 0.7, and Th = 3 for
p = 0.9) for simulations.

Another parameter affecting the value of optimal
Th is the Coh. It is clear that low Th are appropriate
for low Coh; high overheads demands higher Th.

4.1.3 Effect of TZ. With a Tl, tasks are allowed to
be transferred multiple times in searching for a
suitable node. Thus, the probability of a successful
transfer at Tl > 1 is higher than at Tl = 1; system
performance will also be improved.

Figure 7 shows mean turnaround time versus Tl
for different system loads. From this figure, we ob-
serve that the higher the value of the Tl, the better
the system performance will be. However, this im-
provement will be saturated when the value of the
Tl is larger than a specific value. This phenomenon
occurs because the performance improvement
caused by the high probability of successful task

176 J. SYSTEMS SOFTWARE
1993; 20:169-187

R.-C. Liu and S.-D. Wang

z-
a

55

5

45

15

I 3 5

(Th)
Load=0

thrisholcl (N
1

1,‘Coho 1
0 05 a 07 x “9

Figure 6. Effects of = 10, Tl = 5%).

transfer will be offset by the Coh under high-T1
conditions. From our simulation experiments, the
specific Tl is about 3 for p < 0.5, about 4 for 0.5 5 p
I 0.7, and about 5 for p > 0.7. As for Th, the Coh
will also affect the selection of Tl. Clearly, at high
Coh low Tl is appropriate; high Tl are for systems
with lower overheads.

Based on these observations, we can make opti-

ma1 choices for different conditions. For instance, at
p = 0.9, Th = 3, and Tl = 5, the PI factor is 70.3%,
which is a significant improvement over no load
balancing.

4.1.4 Effect of Coh. As mentioned above, cases
where the Coh of the interconnection network is
> 10% of the mean task service time do not occur

(N=1O.A-Th,Coh=S%)
38

18
---a--___

16

Figure 7. Effects of transfer limit (N = 10, A-Th, Coh = 5%).

Load Balancing with Priority Queueing

frequently. However, we investigate the effect of this
parameter just for theoretic analysis. Figure 8 shows
the mean task turnaround time versus Coh for dif-
ferent system loads. In this figure, the results of
p = 0.5 at Coh = 30% and p = 0.9 at Coh 2 20%
are beyond the scale of the graph. For p d 0.3, the
Coh has almost no effect on system performance.
However, the system turnaround time increases dra-
matically at high overheads. This phenomenon
proves that the queueing delay in the communica-
tion channel is a predominant factor in the mean
task turnaround time at high overheads.

An interesting phenomenon occurs at Coh = 30%,
where the turnaround time of p = 0.7 is lower than
that of p = 0.5. This is due to the A-Th policy (i.e.,
Th = 1 for p = 0.5 and Th = 2 for p = 0.7) that we
applied in simulations. Thus, we can imagine that
these Th are not the optimal values at high overhead
conditions, The description related to the effect of
Coh on Th in section 4.1.2 is verified again. This
phenomenon will be clearer in the following experi-
ments. Figure 9a (some results are beyond the scale
of the graph) shows the effect of Coh on the selec-
tion of optimal Th. We can observe that under
Tl = 2 and Coh = 15% environments, the optimal
Th at p = 0.5 is 2 instead of 1 and at p = 0.9 is 5
instead of 3. Figure 9b shows the effect of the
network server on system pe~o~ance. We focus
experiments on extreme high load C p = 0.9) condi-
tions. We observe that enhancing the capability of
the communication channel will significantly im-
prove system performance for high-load and low-Th

J. SYSTEMS SOFTWARE 177
1993; Z&169-187

environments. However, this improvement is not so
clear in high-Th environments. These observations
provide some tradeoffs in the design alternatives of
the interconnection network.

4.1.5 before t~ruug~p~t. In this section, we con-
sider the network traffic, N x y, resulting from task
transfers. It is clear that network throughput in-
creases (decreases) with an increase in Tl (Th).
Figure 10a shows the network throughput versus
system load for different Th. We observe that the
higher the Th the lower the network throughput will
be. The network throughput versus Tl for different
system loads is shown in Figure lob. We observe
that when the system load is < 0.5, the network
traffic is small; therefore, it is easier to approach
saturation. This is due to the fact that, at low system
loads, there is a high probability of successful task
transfer. However, when the system load is > 0.5,
the network traffic increases substantially and ap-
proaches saturation at high Tl. For instance, at
p = 0.9, the network traffic will approach saturation
when Tl > 10 and the throughput is about 17 (not
shown in Figure lob). Another interesting phe-
nomenon is that the network throughput at p = 0.7
is smaller than at p = 0.5, when Tl > 3. This is
due to the effect of the A-Th policy 0-h = 1 at
p = 0.5 and Th = 2 at p = 0.71 that we applied to
simulations.

Intuitively, the greater the activity of load baianc-
ing, the heavier the network traffic will be. Thus,
one may imagine that the larger the network

(N=IO,A-Th,TI=I)

‘* 1v -. --------------- K I

/ P.

n’

9 --

8-

7-

4 8 12 I6 20 ‘!a LS

(COh.%)

Coh”cN
Load=O. 1

1;.
03 0 0.5 a O? x OY

Figure 8. Effects of = 10, A-Th, Tl =

178 J. SYSTEMS SOFTWARE
1993; 20:169-187

R.-C. Liu and S.-D. Wang

(N= 10,11=2,Coh=15%)

10

a

9

7

6

Oh)
L7 iood=O., + 03 0 0.5 A 07 x 3.9

i 3 5 7

WI
Server=l 2

Figure 9. a, Effects of Coh on Th (N = 10, ;1 = 2, Coh = 15%). b,‘Effects of0
3

nehvork server (N = 10, Load = 0.9, Tl = 2, Coh = 1.5%).

throughput, the higher the PI will be. However, this
is valid for environments with fixed Th and Coh.
This phenomenon is verified by comparing Figures
10b and 7. When Th is a variant factor, the above
statement is no longer true, as can be seen by
comparing Figures 10a and 6.

4.2 Partial Disciplines

We apply the A-Th policy stated above (Th, = Th,
= 1 for p 5 0.5, Th, = Th, = 2 for p = 0.7, and
Th, = Th, = 3 for p = 0.9) to the following experi-
ments.

The network throughput can be used to determine 4.2.1 P~~~~~nc~ comparison. Figure 1 la shows a
the minimum network bandwidth (BW). For exam- comparison of the PI factor of the Fl discipline with
ple, if the size of a task is K bits, the minimum BW those of five partial disciplines. In this figure, at
is N x y x K. In other words, for a given network p = 0.95, the performance of the SQF policy is worse
bandwidth, the network utihzation is (N X y X (PI < 0) than that of the condition in which no load
K/BW) x 100%. balancing is performed. We observe that the perfor-

Load Balancing with Priority Queueing J. SYSTEMS SOFTWARE 179
1993: 20:169-187

(N=lO,TI=l,Coh=5%)

‘)->-a

1 3 i

Oh)
0 Luod=O I + 0.7 c’ 05 A 0 7 x 0 ‘,

(N=lO.A-Th,Coh=5%)

0 , / , 4
1 3 5

01)
Load=0

thr&$put.
1

T;
03

i%.‘i, I;,
07 x 09

Figure 10. Network a, N = 10, = 1, Coh = N =
A-TX, Coh = 5%.

mance of the Fl discipline is better than those of
the partial disciplines. This is not hard to under-
stand: under the Fl discipline, the transferred tasks
from the interconnection network are treated alike,
with tasks originating from the external world at that
node. However, under the partial disciplines, if the
local and remote tasks are assigned different priority
levels for processing in the processor, then the
queueing structure of the tasks in the node will be
changed because of the transferred task arrivals.
Intuitively, we can imagine that the disciplines favor-
ing the remote tasks will result in shorter mean
remote task turnaround time and longer mean local

task response time. However, in
voring the local tasks, shorter

the disciplines fa-
mean local task

turnaround time and longer mean remote task
turnaround time will be obtained. Let E[LT] and
E[RT] be the mean local task turnaround time and
the mean remote task turnaround time, respectively.
When Tl = 1, the mean task turnaround time is

E[T] =
A-Y
hE[LT] + XE[RT], (7)

where E[LTl = E[LQl/(h - 7) and E[RT] =
E[RQI/y + ElCohl. For small y, because E[T] =
E[LTl and tasks in the system are almost all of

180 J. SYSTEMS SOFTWARE
1993; 20:169-187

R.-C. Liu and S.-D. Wang

(N= 1 O.A-Th.TI= 1 .Coh=5%)

a

0

01 03 05 07 09

(Load)
F2 + RTF 0 LTF A LOF x S”F v FI

(N= 1 O,A-Th,TI=Z,Coh=5%)

80

70

5

a

60

50

40

30

20

10

0 , I I / I I 1 I I

01 03 05 07 0.9

(Load)
LTF

Figure 11. Performance improvement. ayTFN = 10, l-Th, Tl = 1, “,oh”L 5%. IJ,~
SQF v Fl

N= 10, A-Th, Tl = 2, Coh = 5%.

“local” type, all partial disciplines will have almost SQF policy usually assigns higher priority to the
the same performance. However, if the y is large, local tasks. A comparison of the performance im-
the E[RT] becomes a dominant factor in the E[T]
and the performance of the disciplines favoring re-
mote tasks will be better than those of the disci-
plines favoring local tasks.

The descriptions stated above can be verified in
Figure lla. At low and medium system loads (p I
0.5) and small y, disciplines have almost the same
performance. However, at high system loads (p 2
0.7) and large y, the RTF policy results in the best
and the SQF policy results in the worst performance.
This is due to the fact that, at high system loads, the

provement of different disciplines at Tl = 2 is shown
in Figure llb. In the same way, the Fl discipline
results in the best performance. However, in the
partial disciplines, the RTF policy performs best, the
LTF policy performs worst, and the LQF and F2
policies have almost the same performance over the
entire range of the system loads.

4.2.2 Throughput comparison. Figure 12a shows
the comparison of the network throughput of the Fl
discipline with those of the partial disciplines. From

Load Balancing with Priority Queueing J. SYSTEMS SOFTWARE 181
1993; 20:169-187

(,,-_ io,A-Th.Tl=1.Coh=~%)

(Loud)

0 F2 * RTF 0 LTF a LOF * WF v i 1

jN=,O,A-Th,Tt=Z.Coh-9%)

12
_ .__-I__ .-~

-r----

01 0-T 05 07 05

(Good)
LTF

Figure 12. Throughputfl~~~parison: a, “z = 10, ,kTh, Tl = 1, >oh’z 5%. blx
SQF D Fl

N = 10, A-Th, Tl = 2, Coh = 5%.

this figure, we can observe that the network
throughput of the Fl discipline is always higher than
those of the partial disciplines. At low and medium
system loads (p I OS), the partial disciplines have
almost the same throughput. The larger the network
throughput, the higher the probability of successful
task transfers will be; the larger the throughput, the
better the performance will be. This phenomenon
can be observed in Figures lla and 12a. Exceptions
are the SQF and the LTF policies at extreme high-
load conditions. The throughput comparison at Tl =
2 is shown in Figure 12b. We find that the effect of

the Tl on the FI discipline is more pronounced than
on the partial disciplines.

The reason why the SQF results in the worst
performance at p r 0.9 and Tl = 1 can be described
as follows: The SQF discipline assigns higher priority
to the minority tasks in the system, which results in a
large queueing delay for the majority tasks and
significant performance deterioration. Thus, at ex-
treme high-load conditions and Tl = 1, the perfor-
mance of SQF is worse than that of LTF. This
phenomenon is more pronounced at p = 0.95, in
which SQF results in a turnaround time of about 50

182 J. SYSTEMS SOFTWARE
1993; 20~169-187

units and LTF results in a turnaround time of about
9.6 units. However, at large Tl, the effects of ioad
balancing (large y) will improve the performance of
SQF significantly, this leads to the situation in which
the performance of SQF is slightly superior to LTF.

4.2.3 High threshold at extreme high-system-load
co~d~t~o~~, As mentioned above, the SQF policy al-
most results in the worst performance in the partial
disciplines because it assigns higher priority to the
minority tasks and results in a large queueing delay
for the majority tasks. However, if the queue length

R.-C. Liu and S.-D. Wang

difference between the local and remote tasks is
small (under high-Th environments), then the SQF
policy will perform well because of the reduced
turnaround time for minority tasks and the insignif-
icant queueing delay for the majority tasks. This
description is verified in Figure 13a. We focus the
experiments on extreme high-load conditions (p =
0.95). We observe that the SQF policy results in the
best performance when Th 2 18. Because high Th
are for systems with higher Coh, we can image that
the SQF policy will perform well in high-overhead
systems. Figure 13b shows this phenomenon. We

(N=10.~ood=0.95,11= ,.Coh=lj%)

a

(Th)
q F2 + ATF LOF x SOF

b

5

1 3

2

:,.~ 0 -y-VI-m---m’-

3 5 7 ‘) 1 I I’! I i 17 1’8

(Th)

Figure 13. Effects of high Thy a, G = 10, ‘,,a:‘= 0.95, ;I =‘;‘, Coh =*5%~~,

x WF

N = 10, Load = 0.95, Tl = 2, Coh = 15%.

Load Balancing with Priority Queueing

also observe that under high-overhead and low-Th
(Th = 3) environments, the RTF policy results in
the worst performance and the LTF policy has the
best performance. Based on the observation men-
tioned above, we can conclude that for partial disci-
plines at low Coh the RTF policy is appropriate;
the SQF policy is suitable for systems with higher
overheads.

4.3 Accuracy of the Decomposition
Approximation

The mathematical queueing analysis described in
section 3 is valid under the assumption that all
nodes in the system are stochastically independent.
The effect of the remainder of the system on an
individual node is represented by an arrival process
of the transferred tasks from the other nodes in the
system. We also assume that this is a Poisson pro-
cess. These assumptions lead to a decomposition
approximation model in which each node in the
system can be analyzed in isolation. Here we investi-
gate the accuracy of this approximation. Let Sim and
Num be the results from simulations and numerical
solutions of the analytic model, respectively. The
deviation (S) is defined as a(%) = 1Sim -
Num/SimI X 100%.

Figure 14 shows the deviations of the Fl, RTF,
and LQF policies versus system load when N = 10
and N = 20, where FlO, RlO, and LlO depict the
curves of Fl, RTF, and LQF with N = 10, respec-
tively. From this figure we observe that there is a

14

13

12

10

J. SYSTEMS SOFTWARE 183
1993; 20:169-187

very good consistence; the deviation is < 2% be-
tween the analytic model and the simulation when
p I 0.5. However, the higher the system load, the
larger the deviation will be. At high system loads, for
instance, at p = 0.9 and N = 10, the deviation is
> 13%. These errors came from the effects of the
decomposition approximation and the assumption
that the transferred task process is a Poisson pro-
cess. However, these effects are reduced when N is
large. For instance, at p = 0.9 and N = 20, the
deviation is < 8%. Based on observations from
various simulation experiences, this is because the
larger the system size, the more the transferred task
process (y) is similar to a Poisson process. This
leads to a situation in which the approximation is
reduced for large systems. Thus, we can conjecture
that the approximation error of the analytic model
will approach 0 when the system size, N, approaches
infinity.

The analytic queueing analysis described in sec-
tion 3 is limited to Tl = 1 cases. Based on our
experiments, the execution time of the simulation
under extreme high-load conditions with p = 0.9
and Tl = 1 on a SUN/4 machine with 16 MIPS
capability using PAWS language more than two
hours. However, the same experiment, following the
mathematical approach, running on an IBM-PC
(80386 + 80397) with 4 MIPS capability using MAT-
LAB language obtains a result of about 10 seconds.
This is a significant difference that can be easily
observed. Thus, if the analytic approach can be
extended to Tl > 1 cases, a pronounced benefit will

(&Th,TI=,.Coh=5%)

Figure 14.

184 J. SYSTEMS SOFIWARE
1993; 20~169-187

be obtained. For Tl > 1 conditions, the Markov chain
approaches infinity two dimensionally, as depicted in
Figure 4, some parameters, p and 9, are too compli-
cated to determine analytically. The mathematical
analysis with further approximation might be a feasi-
ble approach. This interesting research area requires
further investigation.

5. CONCLUSIONS

This study was concerned with the performance
analysis of a simple load-balancing algorithm with
different service disciplines. The six disciplines we
investigated were Fl, LTF, RTF, LQF, SQF, and F2.
The analysis of the policies was carried out using
two approaches, i.e., simulation and mathematical
method.

The mathematical modeling of the Markov pro-
cess of the entire system appeared to be computa-
tionally intractable. Thus, we made some assump-
tions and applied a decomposition technique to solve
the simplified Markov process using the Z transform
and matrix-geometric solution techniques.

The policies were tested over a large range of
parameter values. Some salient observations are as
follows.

An extremely simple adaptive load-balancing algo-
rithm that only collects local status information
yields dramatic performance improvement over no
load balancing.

The optimal Th of the policy, under a realistic
value of Coh, is 1 for p 5 0.5, 2 for 0.5 < p < 0.9,
and 3 for p 2 0.9.

The performance of the load-balancing algorithms
is insensitive to the effect of the Tl at low and
medium-sized system loads. The improvement in
performance caused by this effect will approach
saturation when the Tl is greater than some spe-
cific values.

The Coh is an important parameter that will affect
the selection of Th and Tl. For low-overhead
systems, low Th and high Tl are appropriate; high
Th and low Tl are suitable for systems with higher
overheads.

Network traffic resulting from task transfers is a
function of the system load, Th, and Tl.

The Fl discipline performs better than the partial
disciplines under a wide range of system loads and
various Tl conditions.

For partial disciplines, the RTF policy results in
the best performance under low-overhead envi-

R.-C. Liu and S.-D. Wang

ronments. However, the SQF policy performs very
well for systems with higher overheads.

l The deviation of analytic results caused by decom-
position approximation is always acceptable at low
and medium-sized system loads. At high system
loads, N = 10, the deviation might be > 13%.
However, it would be reduced to an acceptable
value for large systems.

APPENDIX A

Here we give the closed-form representation of E[Q]
of the Fl discipline. From the Markov chain in
Figure 2, we can show that

Pi =
(P + Pd'Po for i I Th,

(p + pl)Th pfpThP,, , for i 2 Th,
(A-1)

where Pi denotes the probability that the queue
length of the node is i. From the conservation of
probabilities, Cy= a Pi = 1, we can solve for P,,, which
give us

1 -(p+ PdTh + (p+ PJTh
-1

PO =
l-P-P, 1 - Pl 1 . (A.2)

The mean number of tasks in the node is

E[Q] = 5 iPi
i=l

mP+ PdTh

1-P-P, 1
1

(1 - P,Y
P

O’

The recursive substitution technique, which is used
to compute the mean transferred task arrival/de-
parture rate. is described as follows:

1.
2.

3.
4.

Set y to an initial value.
Compute the probability distribution using equa-
tions A.1 and A.2.
Compute y, = hProb[Q 2 Thl.
If I-y, - yI < E, where E is an arbitrary small
constant, stop iteration. Otherwise, set y := y1
and go to step 2.

The iterative scheme described above is based on
the fact that Prob[Q > Th] is a nondecreasing func-
tion of y. This is because the node queue length
increases with an increasing y for Tl = 1. Hence,

Load Balancing with Priority Queueing

the Prob[Q > Th] also increases with an increasing
y. Numerical experiences indicate that regardless of
the initial value of y and how small E is, the
iteration always converges to a fixed point.

APPENDIX B

Here we derive the closed-form expression of E[LQ]
and E[RQ] of the LTF policy using the 2 transform
technique. From the Markov chain in Figure 3-a, we
can write down the equilibrium equations as follows:

(P + ~~)~(O,O~ = P(O, 1) + P(l,O),

(1 + p + PI)P(l,O) = PP(O,O) + P(XO),

(1 + p + PI)P(2,0) = PP(l,O) + P(3,0),
(B.1)

(1 + P,)P(3,0) = PP(2,O).

(1 + p + p,)P(O,i) = p,P(O,i - 1)

+P(O,i+ 1) +P(l,i),izl,

(1 + p + pI)P(l,i) = p,P(l,i - 1)

+ pP(0, i) + P(2, i), i2 1,

(1 + p + p1)P(2,i) = p,P(2,i - 1)
(B.2)

+ pP(1, i) + P(3, i), i2 1,

(1 + p1)P(3,i) = p,P(3,i - 1)

+ pP(2,i), irl.

Define the following Z transformations as

Z,(z) = i P(O,i)z’,
j=”

l,(z) = i P(l,i)z’,
i=O

a

12(z) = I3 P(2, i)z’,
i=o

13(z) = CP(3,
j-0

i)zi.

(B.3)

From equations B.1, B.2, and B.3, and using some
algebra, we obtain

(1 + P + P,IZ,(Z)

= P,ZZ,(Z) + ;Z”W

(1 + P + PI)ZI(Z) (B.4)

.I. SYSTEMS SOFTWARE 185
1993; 20:169-187

= P,ZI,(Z) + P4dZ) + b(Z)?

(1 + P + P,)&(Z)

= P,%(Z) + PZ,(Z) + 13(z),

(1 + P,)ZdZ)

= P,Zl3@) + Pi,(Z)-

From equations B.4, let z = 1. Using the fact that
Z,(l) + Z,(l) + Z,(l) + Z,(l) = 1, we obtain

Zl(l> = PZ”(l),

Z,(l) = P2ZriW1

Z,(l) = P3Z”W> (B.5)

I
Z,(l) = 1 + p + p2 + p3.

Therefore, the mean local task queue length is ob-
tained from

EELQI = Z,(l) + 21,(l) + 31,(l)

p + 2p= + 3p3

= 1 + p + p2 + p3 .

From equation B-4, take derivative and let z = 1, we
obtain

Z;(l) = PG(l) + P,Ul)T

Ml) = PG(l) + P,D,W + W)L P-6)

C(1) = Phi(l) + PlV3U) + Z,(l) + 4U)lT

where the prime (‘) denotes the derivative with
respect to its argument. Since Z;(l) = ICY= ,LP(O, i),
applying the fact that PCO, i + 1) = p,Cs;=oP(j, i),
for i r 0, and substituting them into the summation,
we have

Z;(l) = p&,1 + E[RQ]). (B-7)

From equations B.5, B.6, and B.7, after some alge-
braic manipulations, we finally obtain the mean re-
mote task queue length:

E[RQ] = Z;(l) + Z;(l) + Z;(l) + Z;(l)

p,(p6 + 3~’ + 6p4 + lop3 + 6p2 + 3p + 1)

= (1 + p + p2 + p3)[l - p,(l + p + p= + p”)] .

186 J. SYSTEMS SOFTWARE
1993; 20:169-187

R.-C. Liu and S.-D. Wang

The mean remote task arrival rate is

Y = hProb[LQ = Th,]

= AZ,(l) =
hP3

1 + p + p2 + p3 *

APPENDIX C

Here we describe the analytic queueing analysis of
the LQF policy (Tl = 1 and Th, = 3) in detail. Anal-
ysis of the RTF and the SQF policies can be per-
formed by the same procedures as the LQF policy
and is omitted.

Let Xi = [P(O, i), P(1, i), P(2, i), P(3, i)] be the
probability vector that the node has i remote tasks
and x=[X,,X,,X, ,... I. From the Markov chain
in Figure 3c, we can write down the equilibrium
equations that lead to the matrix equation x * G =
0, which describes the behavior of the system at
equilibrium, where G is the infinitesimal generator
of the Markov chain and * is the operation of
matrix multiplication. G has the structure of a block
tridiagonal matrix of the form

&I Z&i

&I B,, B,*

B*, B,* B,,

G= B,, B33 AlI

B43 A, A2

A2 A, .

. A2 .

We define the components of internal matrices of
the infinitesimal generator G at the end of this
appendix. Consider the following nonlinear matrix
equation

Ao+R*A,+R2*A2=0 (C-1)

such that R is its nonnegative solution. We can
show that R is an upper triangular matrix. Let
R = [rij], where

rij = 0, V i > j,

111 = r22 = r33

= [(A+Y+z-~-(A+Y+cL)*-~Y~]~‘~

21.L
7

Y
r44 = -,

ZJ

Ar,1
r12 = rz3 =

(A + Y + 1-4 - 4r11 + r2d ’

r -
Ar33

34 - (Y + P) - cLh3 + r44) ’

r12(A + ~23)

r13 = (A + y + ZJ) - &rii + r33) ’

r23(A + cLr34)
r -

24- (Y+CL) -b4r22+r44)‘and

Ar,, + I*(r12r24 + r13r34)
r14 =

(Y + p) - P(‘11 + f-44) .

Thus, the diagonal elements of R can be described
explicitly in terms of the parameters of the Markov
process. Once the diagonal elements are deter-
mined, the elements above the diagonal are com-
puted from the value of the diagonal elements. The
following theorem has been proven by Neuts [12].

Theorem. The Markov chain, with infinitesimal
generator G, is positive recurrent if and only if
S’(R) < 1, all the eigenvalues of R lie inside the
unit disk, and the stochastic matrix B[R], defined
below, has a positive left invariant vector, eigenvec-
tor, [X,,, Xi, X2, X,]. Normalizing the eigenvector
IX,, X,, X2, X,1 by <X0 + X, + X2>* e + X3 *(I -
RI-’ * e = 1, where e = [l, l,l, llT, T denotes the
transpose of a vector, and Z is the identity matrix of
size 4, then the invariant probability vector X of G
is given by Xi = X3 * Ri-3, for i 2 3.

In the case of the LQF policy, because R is a
upper triangular matrix, its eigenvalues are its diago-
nal elements. It is clear that W(R) < 1 if y < Z_L.
However, for Tl = 1 cases, the value of y is always
smaller than that of the A. The matrix B[RI, given

by

rBoo B”, 0 0

42 0
B22 B23

B32 B33 + R * B43

aperiodic matrix. The vector
the left eigenvector of B[R].
conditions stated in the above

4” 41
B[Rl = o B

21

1 0 0

is an irreducible,
[X0, Xi, X2, X31 is
Therefore, the two
theorem are satisfied. We now assume that all the
values of all parameters are known. First, we calcu-
late the components of the R matrix. The boundary
conditions are determined by solving a system of
linear equations [X0, Xi, X2, X,1 * B[Rl = 0, and
the remainder probability vectors are obtained from

Load Balancing with Priority Queueing

X, = X, * R’- ‘, for i 2 3. Thus, the performance
measures are

E[LQ] = i Xi *e,=(XO +X1 +Xz)*e,
j-0

-t-X,*(1-R)-‘*e,, (C.2)

E[RQ] = iix,*e=(X, + 2X,)*e
i=o

+3X,*(1-R)-‘*e

+X,*(1 - R)-‘*e, (C.3)

where e, = [0, 1,2, 31T.
The components of internal matrices of the in-

finitesimal generator G are listed as follows:

-A-y A 0 0

B,= ;
I

-A-y-/l A 0

cr. -A-y-p 1 h '

-A-y-p h

4, =
F -A- y-p

0 P

0 0

41 =

-h-y-p A

J322 =

0 -A-y-f.l

0 It
0 0

--A--y-EL A

B,, =

0 -h-y-p
0 0
0 0

CL -r-CLJ

0

A

-A-y-p

P

0
A

-A-y-p

LL

0

A

-A-y-/k

P

-

-

0
0

A ’

-Y--CL 1

0

0

A ’

Y-P 1
0
0
h '

Y-P 1

J. SYSTEMS SOFTWARE 187
1993; 20:169-187

-A- y-p A 0 0

0 -A-y-p A 0 A,=
0 0 -h-y-p A

0 0 0 --Y--P

B,,=B,,=B*~=A,=y*I,B,,=A,=~**.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

M. Livney and M. Melman, Load Balancing in Homo-
geneous Broadcast Distributed Systems, Perjkn. EuaE.
Rev. 11, 47-55 (1982).
H. S. Stone, Multiprocessor Scheduling with the Aid
of Network Flow Algorithms, IEEE Trans. Sofhyare
Eng. SE-3, 85-93 (1977).
H. S. Stone, Critical Load Factors in Two Processor
Distributed Systems, IEEE Trans. Sofnyare Eng. SE-4,
254-2.58 (1978).
S. H. Bokhari, Dual Processor Scheduling with Dy-
namic Reassignment, IEEE Trans. SofnYare Eng. SE-5
341-349 (1979).
A. N. Tantawi and D. Towsley, Optimal Static Load
Balancing in Distributed Computer Systems, J. ACM
32, 445-465 (1985).
D. L. Eager E. D. Lazowska, and J. Zahorjan, A
Comparison of Receiver-Initiated and Sender-Ini-
tiated Adaptive Load Sharing, Perform. Et?ai. 6, 53-68
(1986).
Y. Wang and R. Morris, Load Sharing in Distributed
Systems, IEEE Trans. Comput. C-34, 204-217 (1985).
M. N. Lionel, C. W. Xu, and T. B. Gendreau, A
Distributed Drafting Algorithm for Load Balancing,
IEEE Trans. Software Eng. SE-11, 1153-1161 (1985).
L. Kleinrock, Queueing Systems, Vol. 2: Computer Ap-
p&cations, Wiley, New York, 1976.

10. J. D. C. Little, A Proof of Queueing Formula L = /tW,
Oper. Res. 9, 383-387 (1961).

11. L. Kleinrock, (&eueing S~~~e~, Vol. I: Theory, Wiley,
New York, 1975.

12. M. F. Neuts, Matrix Geometric Solutions in Stochastic
Models: An Algotithmic Approach, Johns Hopkins Uni-
versity Press, 1981.

13. P. Heidelberger and S. S. Lavenberg, Computer Per-
formance Evaluation Methodology, IEEE Trans. Com-
put. C-33, 11951220 (1984).

14. PAWS 3.0 User’s Manual, Scientific and Engineering
Software, Inc., Austin, Texas, 1987.

15. N. S. Matloff, Probability Modeling and Computer
Simulation, PWS-KENT, Boston, 1988.

