
I

Managing Risk in Software Systems

Corresponding Author:
Dr. Sharon K. Fletcher

Sandia National Laboratories
MS0777

P. 0. Box 5800
Albuquerque, NM, 87185-0777, USA

phone: 5051844-225 1 11 fax: 5051844-964 1 I1 email: skfletc@sandia.gov

Additional Authors:
R. M. Jansma, Sandia National Laboratories, MS0484, Albuquerque, NM, 871 85-0484

phone: 5051845-8254 I1 fax: 5051844-9524 I1 email: rmjansm@sandia.gov

M. D. Murphy, Sandia National Laboratories, MS0777, Albuquerque, NM, 871 85-0777
phone: 5051844-5 168 41 fax: 5051844-9641 I1 email: mdmurph@sandia.gov

Dr. G. D. Wyss, Sandia National Laboratories, MS0747, Albuquerque, NM, 87185-0747
phone: 5051844-5893 I1 fax: 5051844-3321 I1 email: gdwyss@sandia.gov

J. Lim, Sandia National Laboratories, MS9011, Livermore, CA, 94550-0969
phone: 5 101294-2973 I1 fax: 5101294-1225 11 email: jlim@sandia.gov

Abstract
A methodology for risk management in the design of software systems is presented. It
spans security, safety, and correct operation of sofhvare within the context of its
environment, and produces a risk analysis and documented risk management strategy. It
is designed to be iteratively applied, to attain appropriate levels of detail throughout the
analysis. The methodology and supporting tools are discussed. The methodology is
critiqued relative to other research in the field. Some sample applications of the
methodology are presented.

Keywords: information Jystems, risk assessment, risk management, software surety, risk-
based design

Phis work was supported by tho United
Sbks Department of Energy under
Conlrbd DE-ACo4-94AJ.85000.

f
OJSTRIBUTION OF THIS DOCUMENT IS UNLIMITE~

mailto:skfletc@sandia.gov
mailto:rmjansm@sandia.gov
mailto:mdmurph@sandia.gov
mailto:gdwyss@sandia.gov
mailto:jlim@sandia.gov

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Managing Risk in Software Systems

Abstract
. A methodology for risk management in the design of sofhare systems is presented. It
’ spans security, safety, and correct operation of sofiware within the context of its

environment, and produces a risk analysis and documented risk management strategy. It
is designed to be iteratisely applied, to attain appropriate levels of detail throughout the
analysis. The methodology and supporting tools are discussed l%e methodology is
critiqued relative to other research in the$& Some sample applications of the
methodology are presented.

Keywords: information Aystenis, risk assessment, risk management, sofhvare surety, risk-
based design

In trod uction

Previous papers at this conference have included some excellent examples, from all over
the world, of risk analyses which have been performed for real systems, from cellular
phones to banking systems. [5, 61 The authors and analysts are to be commended for their
serious efforts in identiQing and mitigating system risks up front. In sharing their
experiences, the authors pointed out difficulties such as: convincing auditors that old
controls don’t apply to new systems, reducing redundant controls, trading off privacy and
data collection, and the need to compare vastly different approaches. And, while they
seemed to
to uphold.

0

0

0

0

0

do a complete job, the analyses were apparently ad-hoc, and therefore difficult
Clearly, efforts such as these could benefit from:
more structured exploration of the risk space
documentation of risk reduction objectives
separation of objectives from how to achieve them
what-ifing & understanding interactions
demonstration & documentation of risk-related design decisions

Another previous paper at this conference [2] called for a Risk-Based Design Paradigm
with the following building blocks:

1. Quantification of risk
2. Integrated requirements
3. .Decision support

This aligns very well with what is needed to provide the benefits desired above. An even
broader view would encompass not only risk-managed design, but also operation and
maintenance of the system. The same three building blocks would apply, as long as they
were designed broadly enough to encompass all lifecycle phases. We have made progress
toward these building blocks in this broader context. This paper explains the risk
management methodology we have derived, and gives examples of its application.

Managing Risk in Software Systems 1

c

The Methodology

. Requiremenfs on fhe Mefhodology

The methodology must operate from a perspective which facilitates total risk management.
It needs to support risk-based design activities and the development of a risk-management
strategy for a system. A designer needs to be able to identi@ risk issues for a system over
its entire lifecycle, and including dynamic aspects such as transitioning among operation,
maintenance, and planned or unplanned shutdown. The designer must also be able to
explore tradeoffs among design alternatives, and to demonstrate how a proposed design
mitigates surety risks.

The problem has been cast in terms of surety risks, where surety is defined to encompass
security, safety, dependability, etc. -- all the desirable attributes of a system in addition to
its fbnctional requirements. Total risk management means striving for correct system
operation through appropriate levels of utility, integrity, access control, availability, and
safety. Every system has its own unique surety issues, threats, and needs for risk
reduction; thus every system needs a tailored risk analysis.

The methodology needs to quanti@ risk in a meaningfbl way and to produce output that is
usehl for decision making.

A Modeling Perspecfive

The perspective adopted here considers risk states (such as “data integrity lost”, “incorrect
output”, “system unavailable”, etc.) and how such states might be reached given various
starting conditions (normal operation, maintenance, etc.). The heart of the methodology is
a system risk model which depicts potential transitions between system risk states. Once
the system is modeled from this viewpoint, barriers or risk mitigators can be inserted into
the model and their effectiveness can be estimated. While this type of modeling is
common in other fields using probabilistic risk assessment, it is not yet common in the
software field. Many adaptations are required to deal with the character of software
surety risks, the large uncertainties in quantified data, and the desired kinds of decision
support.

The model must support a very broad interpretation of barriers, from software features, to
physical protections, to operational procedures, to software development methodologies,
to design techniques. These are all things that can mitigate surety risks. The modeling
technique must allow barriers and threats to exert multiple influences throughout the
system, so that an analyst can deal realistically with complexities such as: conflicts

Managing Risk in Software Systems 2

between different surety objectives, secondary effects, multiple uses of a single barrier,
multiple barriers to a single risk, etc. The modeling technique must also allow one to
define threat agents and to move them through the system in such a way that the model
reacts to the progress of the agent. For example, a threat agent may have certain
resources and motivations which get “used up” as it traverses the system, and at the same
time certain characteristics of the system may be irreparably changed by the agent.

’ Probabilistic risk assessment has been used for many years in the nuclear power, chemical,
and other industries. Over time, data can be collected and corroborated for use in these
assessments, although uncertainty of the data is always a concern. For the software
industry, almost no data of the kind needed for risk assessments even exists. Thus, the
techniques must be usehl in a qualitative sense in the beginning, with the ability to handle
a mix of qualitative and quantitative input as more data becomes available over time.
Uncertainty, or confidence, in the data must be dealt with explicitly in the analytical
techniques. Any given analysis is likely to consist of input that varies widely in both its
granularity (qualitative-quantitative) and its uncertainty.

Recalling that the objective of the analysis suggested here is risk management, attention
must be given to the form of the output. Reducing the output to some single risk number,
for example, is of little use in either improving the system or documenting a risk
management strategy.

Overview of the Risk Assessment Process

The system risk model provides a graphical depiction of potential system states and the
barriers that can affect the probabilities of state transitions. But, more than that, it is also
the formal description over which risk calculations can be defined. Thus, it is the heart of
the analysis method. However, software system designers and analysts might not be
familiar with this kind of modeling, and might have difficulty constructing meaningfid and
complete models. Thus, two matrices have been introduced as an aid to the model
building. The risk identification matrix provides a framework within which the analyst
can define perceived risk and desired risk reduction. The risk mitigators matrix provides
information on potential barriers and their nominal effectiveness.

The overall process, shown in Figure 1, is for an analyst to build a system risk model,
using the risk identification and risk mitigators matrices as guides and sources of
information. Then the analyst performs a barrier analysis for each barrier, and a threat
analysis for each threat, that is to be considered. Then an analysis engine is run to
evaluate remaining risk in the system. The job of the analysis engine is to perform
appropriate computations on all quantified input from the analyst, and to return
information on weaknesses in the system. If cost information is incorporated, then the
analysis engine returns cost/benefit information as well. The result of this process is a
risk assessment and a risk management strategy for the system.

Managing Risk in Software Systems 3

I

Figure 1. The Risk Assessment Process

Details of the Methodology

This section provides more detail on the following components of the methodology:
risk identification matrix
risk mitigators matrix
system risk model
process:

building the model
barrier analysis
threat analysis
analysis engine

risk evaluation
costhenefit evaluation

The risk identification matrix, Figure 2, provides a hierarchy of risk sources for software-
based systems. The rows of the matrix represent “Surety Objectives”, and the columns
represent “Aspects” of a system which might give rise to risks. The cells of the matrix
contain sources of risk. The intent is for each cell to contain, ideally, all possible relevant
sources of risk for any system, arranged as pieces of a hierarchy.

The matrix is read:
“There is a [surety objective] risk relative to [system aspect] due to [risk].”

Examples:
* “There is an [access control] risk relative to [system composition : network] due to

[passwords exposed on network].”
’ * “There is an [integrity] risk relative to [information] due to [processing error].”

* “There is a [utility] risk relative to [state changes : shutdown] due to [shutdown-
startup not synchronized].”

* “There is an [availability] risk relative to [processes] due to [system overload].”
* “There is a [safety] risk relative to [interfaces] due to [unchecked input].”

Although a more traditional view of impacts-assets [11 is accommodated within this
framework, it is much broader, giving rise to exploration of system dynamics (State
Changes), architecture choices (Composition), and correct operation (Utility). The
intended purpose of the matrix is to guide the analyst’s thinking into all relevant areas of
risk and to suggest, but not limit, risks that should be considered. For a particular system
undergoing analysis, the risk identification matrix will be both pruned and extended by the
analyst to contain and prioritize only those risks of sufficient consequence and likelihood
that they need to be mitigated. Consequences that should be considered include mission-
related, political/social, health & safety, environmental, and regulatory/legal; these form a
third dimension on the matrix.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employes, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness. or usefulness of any information. apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Managing Risk in Software Systems 5

hw = hardware
sw = software
nw = network
usr = user/operator

op = operational
mt = maintenance
sh = shutdown
ae = abnormal event

Figure 2. Risk Identification Matrix

The risk mitigators matrix has the same format as the risk identification matrix, but
contains mitigators corresponding to risks. The intent is that the mitigators not be limited
to hardware and software technologies, but include rules and procedures, design and
development practices, and cover the lifecycle spectrum. Thus credit can be given for
using a proven real-time design architecture, for using a highly rated software
development methodology, for a trusted path delivery mechanism, for a fail-safe design,
and so on.

Figure 3 illustrates one way of diagramming the system risk model.

Managing Risk in Software Systems 6

intruder
alters data

Figure 3. Graphical System Risk Model

Elements of the model are system states, represented by circles; transitions, represented by
lines between circles; and risk mitigators, represented by the barrier symbol along
transitions. The example in Figure 3 illustrates how one mitigator (use a reputable
application) can mitigate two transitions, and how a variety of mitigators (visual scan, d i e
overwrite check) can be considered for mitigating a single transition. In the example
shown, the risk being explored is loss of information integrity in a spreadsheet. This
would be only a part of some system’s total risk model. Presumably, the analyst has
deemed this high enough in likelihood and consequence to warrant this level of breakdown
and analysis.

Barrier analysis is the instantiation and refinement of a risk mitigator’s ability to mitigate
system specific risks. While the analyst may draw on the Risk Mitigators Matrix for
nominal information on barriers, the information may need to be adjusted or supplemented
to reflect how the barrier will function in the particular system at hand. Several
characteristics of risk mitigators are considered, including how much technology vs. how
much rules-and-procedures (rap) are involved, perceived strength, cost to implement, ease
of use, outside dependencies. In the example, preventing the user from accidentally
altering data by requiring a visual scan is entirely rap, not very strong, and hard to use.

Managing Risk in Software Systems 7

Providing the user a “diff’ tool is a stronger technology, easier to apply, and still has some
rap component (the user must remember to use it). Providing some sort of automatic
overwrite check is stronger yet, has even less of a rap component (the user must still
respond appropriately), but may be implemented in such a way as to have a high
annoyance factor which may cause the user to ultimately defeat it. All these
considerations lead to an estimate of each barrier’s ability to reduce the likelihood of

.transition to the undesired next state.

Threat agents may be active or passive. Active threat agents may have characteristics
such as motivation, skills, knowledge, time and other resources. They are willing to incur
some amount of cost and risk, in order to gain the perceived value of their target. Passive
threats, representing unintentional faults in the system, may have other characteristics. In
either case, as a threat unfolds into the system, the agent’s characteristics and the system’s
surety elements may both be altered by the interactions.

The analysis engine combines transition probabilities, threat estimates, barrier estimates,
and risk reduction requirements to yield information on remaining risk. In particular, the
engine identifies paths in the risk model where risk is still too high. Uncertainty analysis
accompanies the calculations, so that the engine can target highly uncertain calculations
for refinement. If costs are included for the barriers, then the analysis engine can also
produce costhenefit information.

Iterative refinement is basic to the way in which an analysis should be carried out. The
analyst should first work in the context of a high level system risk model, input estimates,
run the analysis engine, and examine the results. High risk paths can then be strengthened
with additional barriers, or can be broken down into more detail. Highly uncertain paths
that are determined to be of sufficiently high consequence call for better estimates, and
they may also benefit from refinement. Once the highest level risks have been adequately
addressed, the analyst may wish to incorporate additional risks into the model and
continue the analysis. The analyst will be able to see the total impact of old and new
barriers on all risks.

Tool Support

In order for a rich and comprehensive methodology such as this to be viable, good tool
support is a must. A Windows-based toolset, B A S I S (Risk Based Analysis of the Surety
of Information Systems), has been developed, consisting of a matrix builder, model
builder, analysis engine, and output engine. It has been constructed for flexibility,
particularly in the analysis and output engines, so that different computations and formats
can be explored.

A Critique of the Methodology

In this section, the methodology is critiqued and compared to other related research.

The Risk Matrices. Others have produced categorizations similar to our “Surety
Objectives” and “System Aspects”, notably in references [l] and [4]. In [4], Parker
; introduces a list of “security attributes” consisting of confidentiality, authenticity, integrity,

utility, and availability, which he quite reasonably derived by subdividing the traditional
security definition of confidentiality, integrity, availability. The differences in his list and
our Surety Objectives could be summarized as: we added safety, replaced confidentiality
with the broader concept of access control, and did not call out authenticity. While all
such lists are arguable, the differences are subtle and certainly not critical for carrying out
a risk analysis. Our goal is for the matrices to guide thinking into all relevant areas, so it is
not necessary for categories to be totally independent.

The more interesting list is the System Aspects: here, we feel we are uniquely broad.
In [11, a perspective is taken which is based on protection of “assetsyy, defined as
hardware, software, and information. Then “impacts” to assets are considered, such as
destruction, modification, and disclosure, and how such impacts might be mitigated, such
as threat reduction, vulnerability reduction, detection and recovery, etc. Parker starts with
the assets list, expands software into applications and operating systems, adds users, and
renames it “levels of abstraction.” [4] We attempted to be even broader, to get away from
the static protection-of-assets view, and to introduce system architecture and dynamics.
The composition^' aspect, for instance, includes risks that would be inherent in certain
choices of platforms, network, and communications architectures. “State Changes”
includes risks that might be present in maintenance procedures and in cases of abnormal
system shutdown, etc. The “Interfaces” aspect brings in the context in which the system
actually functions.

We hope that this combination of Surety Objectives and System Aspects will encourage
the analyst to take a dynamic, whole system, whole lifecycle perspective on risk
management. For example, while a narrow view of sabotage might focus on virus
protection in an operational system, a whole lifecycle view will encompass protection
throughout design, implementation, delivery, and maintenance. And while a narrow view
of network security might focus on encrypting communications, a whole system view will
explore whether network nodes have compatible security policies and whether they
exchange sufficient security information to uphold the policies. And while a narrow view
of integrity might address mechanisms within a properly operating database, a dynamic
view will also look at shutdown-startup synchronization issues.

The third dimension of our Risk Identification Matrix, Consequences, is kept separate
from probabilities throughout the analysis. Those who are interested in computing loss
expectancies typically multiply probabilities and consequences. This kind of forced data
reduction is not usefid for the risk management we hope to accomplish.

In the cells of the Risk Identification Matrix lie Risk Sources. Recall that the intended
purpose of the matrix is to guide the analyst in identifLing risks, and to initiate the
construction of a System Risk Model. The model depicts progressions through various
states. Risk sources from the matrix map to states in the model, but the analyst may have
to add additional states around what has been mapped in. If hierarchies of risk sources
(states leading to other states) can be provided in the matrix, then these can be mapped to

. subgraphs of the model, giving more of a head start on building the complete model, and
‘the process can be automated to some degree. We believe this is a fairly unique approach
to model building. The risk hierarchies constructed to date will be presented at the
conference.

The Svstem Risk Model. We believe this risk-state modeling approach is unique in its
application to software system risk assessment. The form of the diagram in Figure 3,
which we prefer for its visual simplicity, does not convey the interaction complexity that is
actually possible in the model. Each barrier can actually influence transitions anywhere in
the model, not just between two states, as the figure might imply. This approach is
patterned somewhat after the “Influence Diagram” which is gaining in popularity in the
probabilistic risk assessment community. [3]

The Analvsis E n pine. Quantification of probabilities, barrier effectiveness, and threat
characteristics is certainly difficult. There is almost no data today, and as such data begins
to be collected, it will have a high degree of uncertainty. This is why the analysis engine
must accommodate varying degrees of uncertainty and granularity (qualitative -
quantitative) in its logic and math. Any math that is applied to probabilities, barriers, and
threats is righthlly arguable. We are essentially producing a complex theory of risk,
which has no physical basis on which to be validated. This is indeed troublesome. The
RBASIS tools are built to be flexible, so that different math and logic can be tried. Even if
such a theory of risk can never be,validated to a satisfactory degree, we hope that this
methodology will be used in a qualitative sense to produce better risk-managed systems.

The Output Engine. The output must be in a form usefbl for decision making. It is used
to improve the system via hrther risk reduction, to add data or detail where the analysis is
weak, and to document risk-based design decisions. These up-front requirements on the
output are, to our knowledge, much more challenging than typically found for risk analysis
tools. Thus, we felt the tool design warranted a separate output engine. Just as the
RBASIS analysis engine is built flexibly to allow for experimentation and improvement, so
is the output engine.

Trial Applications

The first trial application is applying the methodology to the RBASIS toolset itself
Consider that we are aiming to provide the software community a tool for risk
management. Surely there are risks in trusting such a tool -- risk to the user’s mission,
and perhaps regulatory or social (embarrassment) risks as well -- should the tool mislead

Managing Risk in Software Systems 10

the user about system risks. Because the tool needs to be a sound and usefid product, it
was subjected to a risk analysis. This analysis is carried out at a high level to guide the
design and development of the toolset. This analysis and others will be presented at the
conference.

.Summary
I

The risk assessment methodology presented here is intended to facilitate risk-based design
of software systems, and, as well, risk management strategies for the lifetime of the
system. It is unique in its broadness, bringing together a wide range of Surety Objectives
and System Aspects into a framework where interactions and tradeoffs can be considered.
It provides a structured approach to exploring the risk space, documenting risk reduction
objectives, exploring alternatives for risk reduction, and documenting design decisions.

Challenges remain in obtaining quantified data for risk analyses and validating mathematics
on that data. Meanwhile, the methodology is supported by a toolset which accomodates a
spectrum of qualitative-quantitative analyses.

References

1. Proceedings of the 4th International Computer Securitv Risk Management Model
Builders Workshop. August 6-8, 1991. Sponsored by NIST and the University of
Maryland.

2. Fletcher, S. K., “The Risk-Based Information System Design Paradigm,” Proceedings
of the IFIP SEC’94 Conference, May 23-27, 1994, Curacao, NA.

3. Jae, M., and Apostolakis, G. E. “The Use of Influcnce Diagrams for Evaluating Severe
Accident Management Strategies,” Nuclear Technology, Volume 99, 1992, pp 142-1 57.

4. Parker, D., “Restating the Foundation of Information Security,” Proceedings of the
14th National Computer Security Conference, October, 1991, Washington DC.

5. Stoll, F., “The Need for Decentralization and Privacy in Mobile Communications
Networks,” Proceedings of the IFIP SEC’94 Conference, May 23-27, 1994, Curacao,
NA.

6 . Vahtera, P. and H. Salmi, “Security in ED1 Between Bank and It’s Client,”
Proceedings of the IFIP SEC’94 Conference, May 23-27, 1994, Curacao, NA.

Managing Risk in Software Systems 11

