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Abstract 

There are two main parts in this paper. The first part presents a knowledge representation and reasoning scheme, called 
tree-searched neural networks (TNN). The TNN is based on a well-known intuitive knowledge representation (IKR) and can 
reduce the number of the processing nodes in the neural networks. The second part proposes a self-organizing adaptive fuzzy 
controller (SOAFC) based on the TNN model. It can help acquire control knowledge and thus can reduce the dependence 
on experts. Furthermore, designers do not need to predefine all membership fimctions to cover whole input space domain. 
For improving its performance further, we design a D-controller which is included within the SOAFC. Whether the fuzzy 
controller is incorporated with the D-controller or not, it is also guaranteed to be globally stable. Simulation results show 
that this approach has faster convergence speed, results in better transient response, and in addition requires less total control 
energy. 

Keywords: Fuzzy sets; Neural networks; Process control; Adaptive controller 

1. Introduction 

Fuzzy logic controllers (FLCs) are used more 
and more generally and they have been shown to 
be specially effective in the control o f  mathemat- 
ically ill-understood processes. FLCs have several 
significant advantages over conventional control ap- 
proaches such as robustness and conformability to 
the linguistic rules. The rules in these FLCs normally 
come from experienced human operators or experts. 
But control concepts and operators' experience are 
generally difficult to be completely incorporated into 
the rule base. This could be a main disadvantage 
o f  FLCs. Another drawback is lack of  mathematical 
proof o f  stability for the fuzzy systems. This may be 
the reason why fuzzy control has not been accepted 
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in some area of  applications. Recently there are many 
papers discussing this issue [16, 17, 26]. During the 
past several years, a lot o f  algorithms for developing 
self-organizing or self-learning fuzzy systems have 
been proposed [4, 13, 19, 20, 23]. 

Fuzzy rule representations are proposed in many 
papers [5, 24, 25], but few are aimed to be suitable 
for hardware implementation. Some representations 
are based on neural networks and require too many 
processing units. This drawback not only destroys the 
applicability of  fuzzy systems but also incurs large 
cost for hardware implementation. In this paper, we 
shall combine a tree structure and neural networks as 
its database and inference engine, respectively. Thus 
the neural networks will not need so many processing 
units. 

Basically, fuzzy logic reasoning can be viewed as 
one kind of  combination of  the complete or partial 
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matching rules. I f  the distances between the rules 
are small, the performance will be found better as 
compared with the sparse rule base [6]. Also for im- 
proving the performance further, more rules should 
be explored for more critical situations. A technique 
for generating rules is described in [25]. It needs 
I/O pairs, off-line calculates matching degrees of  I/O 
pairs and predefines membership functions to decide 
the final selected rules. No more new rules are gen- 
erated on-line. So it could be thought as an off-line 
rule-generating technique. 

In the past, designers of  FLCs should define the 
membership functions covering a whole input domain 
and construct the rules for all possible conditions in 
order to satisfy the property of  completeness.  Other- 
wise in certain circumstance, no fuzzy rules will be 
fired. To write down all of  the fuzzy rules is also a 
time consuming and difficult job even for experts. 

A method based on TNN aiming at self-generating 
fuzzy logic rules is proposed here. By developing the 
self-organizing system, both the control rules and the 
domain basis are obtained automatically. We apply 
the adaptation law described in [ 17] to update the rules 
in the rule base. Its superiority comes from its abil- 
ity in generating new rules and eliminating the use- 
less rules. The approach proposed here is an on-line 
rule-generating algorithm which only generates the 
necessary rules. In fact, it is also satisfactory for 
completeness if new rules are generated. In other 
words, it generates rules along the trajectory of the 
states. This will reduce the rule base size especially 
in multi-input FLCs. Another advantage is that it is 
not necessary to predefine ranges of  the states. I f  
we set a threshold value and firing strengths are not 
larger than that, this means there is no rule satisfying 
the current states [12]. Hence generating a new rule 
for current states is necessary. Thus no matter where 
the states are, the self-organizing FLCs can always 
find matching rules. It can decrease the distances of 
the rules and obtain better inference result by set- 
ting a larger threshold value. Note, by this approach, 
we must make a trade-off between decreasing rule 
distances and reducing rule number. 

In Section 2, we briefly describe the basic fuzzy 
logic and inference process. In Section 3, the conven- 
tional knowledge representations for fuzzy rules are 
introduced and the TNN model is proposed. In Section 
4, we propose an approach to generate new fuzzy rules 

and incorporate a new D-controller (SOAFC+D) to 
improve its transient performance. We also prove that 
the nonlinear system is globally stable while applying 
the SOAFC+D. In Section 5, the unstable plant in [17] 
and other systems are simulated. Simulation results 
demonstrate the superiority of  SOAFC+D. In Section 
6, conclusions and future research are summarized. 

2. Basic fuzzy logic systems 

In this section, we shall simply describe some basic 
concepts of  fuzzy set theory and fuzzy logic used in 
this paper. The more detailed discussions can be found 
in [7]. 

For an n-input and single output fuzzy system, 
it implements a mapping from U C ~" to ~. As- 
sume the universes of  discourse of  the n-inputs are 
U1, U 2 , . . . ,  Un, respectively; i.e. U = U1 × U2 × . . .  
× U,.  For Ui, i = 1,2 . . . . .  n, there are m i member- 
ship functions defined. Each membership function 
#Ai maps the input to the interval [0, 1]. Each fuzzy 
set can be viewed as a linguistic term and in fact it 
is a condition of the premise of a fuzzy rule. Since 
there are n inputs and the ith input has m i member- 
ship functions, it comes at most m~ • m 2 . . . m n  rules. 
The Cartesian product of  A~ . . . . .  An is a fuzzy set 
in the product space U1 × U2 × . .-  × U, with the 
membership function 

/-ZAI x ... xA,,(Ul,//2, • • •, Un) 

= min[#a, (ul), #A=(U2) . . . . .  /ZA,,(U,)] (1) 

or 

~A~ x ... xA,,(ul, U2,. • •, Un) 

= #a, (u l ) ' /~<  (u2)""/~,~°(u,) (2) 

where ui E U~. For calculating firing strengths for 
each rule, we assume that there are n conditions in the 
premise of  each rule and its consequence is described 
only by a crisp set. Each condition is represented with 
a linguistic fuzzy set Ai. #a, is the matching degree 
of input ui and the ith condition. Then for a specific 
rule, the firing strength is obtained through Cartesian 
product (1) or (2). Next, we shall combine all the firing 
rules by a defuzzifying strategy. Assume the form of 
the ith rule is: 
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Rule i: if uj is A] and. . ,  and u, is A / 

then u is ai,  (3) 

i is the fuzzy set of the j th condition of the where A j  

ith rule, and ai is a fuzzy singleton for simplicity. Let 
the firing strength of the ith rule be pg; i.e. 

pi = min[#A, (ul),/~A~(u2 ) . . . . .  #A,,(U,)] (4) 

o r  

]A i ~- ]AA,(Ul) • ]AA2(U2) ' . .  #A,,(Un). ( 5 )  

Table 1 
An example of  look-up table. 

NL NS ZE PS PL 

NL NL NL PL PL PL 
NM NL NL NL PL PL 
NS PL NM NL PS NL 
ZE PL PM ZE NM NL 
PS PL NS PL PS NL 
PM NL NL PL PM PL 
PL NL NL PL PL PL 

The concept of defuzzification is: the larger the firing 
strength is, the more it contributes and the defuzzifying 
formula is written as 

U = Z ]2i " a #i. (6) 

3. Fuzzy knowledge representation 

3.1. Review of knowledge representation 

A rule base can be viewed as the brain of a fuzzy 
controller. How to describe the knowledge in the brain 
is an important issue. A good rule base for fuzzy sys- 
tems should contain the following properties: 
• high speed: search the matching rules fast, 
• flexibility: add, modify or delete rules easily, 
• simplicity: an intuitive and clear rule base is easily 

understood, 
• low cost: it must not cost too much for hardware 

implementation. 
Almost all recent papers about fuzzy logic mainly 

discussed theory and learning algorithms of fuzzy 
rules, because these jobs seem the kernels in this field. 
On the other hand, if the knowledge representation of 
fuzzy rules can be improved, it could not only speed 
up the fuzzy reasoning process but also reduce the 
sizes of fuzzy rule bases. This will also be helpful 
for hardware design and implementation. In the past, 
the fuzzy rules were generally described as linguistic 
statements of the form: 

IF (Conditions) THEN (Actions). (7) 

Such exhibition is not efficient enough as the infer- 
ence engine must spend much time to check every 
predicative condition in the IF-THEN rule base. The 

IF-THEN rules can be described as the form of look- 
up tables, and it is still widely applied. An example 
of look-up tables is shown in Table 1, where PL, ZE 
and NS, respectively, represent linguistic terms "posi- 
tive large", "zero" and "negative small" and so on. In 
fact, a look-up table is an explicit representation if the 
dimension of the rule base is low. When the dimen- 
sion of the rule base is higher than two, this method 
will be difficult to accommodate to this situation. It 
must include many look-up tables as Table 1 to com- 
plete the representation of all the rules. This will be 
too complex and time consuming to search the firing 
rules. In [6], a look-up table is reduced from 3 to 2 
dimensions, whereas the fuzzy rules must be regular 
in some sense. 

3.2. An intuitive knowledge representation based on 
neural networks ( IKR ) 

Recently, a knowledge representation combining 
neural networks with fuzzy logic seems a promising 
approach in artificial intelligence [3, 5, 1 l, 21]. The 
main advantage of neural networks is fast compu- 
tation due to parallel processing. Therefore, many 
researchers have applied neural networks not only 
as a database but also as an inference engine [5, 
11]. Another advantage of neural networks is that 
it has mature learning algorithms. For example, the 
back-propagation (BP) learning algorithm and the 
learning vector quantization algorithm are most pop- 
ular approaches for learning internal representation. 
The BP algorithm can to some extent approximate a 
fuzzy controller mapping by repeatedly updating the 
weights [ 11]. But it has serious problems - adding 
a new rule, removing a useless rule or modifying 
a bad rule will be difficult; i.e. it contradicts the 
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Xl 

X2 

Fig. 1. The configuration of IKR. 

aforementioned second property of a good fuzzy 
rule base. In other words, the approach only suits 
static rule bases. In the following, we shall rec- 
ommend an intuitive knowledge representation for 
fuzzy rules. It can suit both static and dynamical 
rule base. As shown in Fig. 1, only three layers are 
required. 

The nodes in the first layer just transmit input values 
to the next layer directly. The second-layered nodes 
are used to compute firing strength for fuzzy rules. 
Firstly, we must define membership functions. In the 
second layer, the membership functions used most 
often are the Gaussian or triangular functions. The 
Gaussian function is given by 

gG(x) = exp I - - l  (x-- w)2 ] (8) 

where tr is called the width of the Gaussian function 
because the larger the value of a is, the more the 
Gaussian spreads out, and w is called the center. The 
triangular function is 

~(1 I x - w [  if I x - w [  < b, 
gT(X) = b (9) 

L 0 otherwise, 

where b and w are the half-base length and base center 
of a triangular function, respectively. Both (8) and (9) 
achieve maximum value (=1.0) while x = w. Note 

that no matter which of the two membership function 
is used, it is in fact a function of Ix - w[ and the 
larger the Ix - w I is, the smaller the membership value 
is. 

For an n-input system, we define the second-layer 
input a s  [x i - w i [  for 1 ~< i ~< n, which is similar to the 
distance measure in Kohonen's feature map [9]. A 
basic structure of a node in IKR is shown in Fig. 2 [5]. 

x 1  x n 
x 2 

Fig. 2. Basic structure of a node in a neural network. 
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In the conventional approach, the net input of  a node 
is given by 

net-input = f (xl . . . . .  x,; w l . . . . .  w , )  

~- ~ XiW i. (10) 
i=1 

The output of  the node is an activation value 

output = a( f ) (11 ) 

where a(.) denotes the activation function; for exam- 
ple a sigmoid function. 

In IKR, we define the function f in the second layer 
by 

f ( x l  . . . . .  x n ; w l , . . . , w , )  

= max(Ix1 - wll . . . .  , Ix, - w,I) (12) 

and 

output = 9T(f )  or g o ( f ) .  (13) 

The outputs of  nodes in layer 2 are the firing strengths 
for fuzzy rules, which correspond to the results of  ap- 
plying max-min compositional operation. The number 
of  the nodes in the second layer represents number of 
the fuzzy rules. 

For an on-line system, inference speed is the most 
important issue. Hence we assume that the conse- 
quences of  the rules are singleton sets [7]; i.e. their 
membership functions are simply pulses rather than 
triangular or Gaussian functions. The singleton set is 
defined as 

1 i fx  = v, 
s(x) = 0 otherwise. (14) 

There is only one node in the third layer. Assume v; is 
the weight connecting the ith node in layer 2 and the 
node in output layer. Then the weights are recorded as 

vi = ai (15) 

where ai is the action part of  the ith rule. The third- 
layer node achieves a defuzzifying job. Assume the 
output for the ith node in layer 2 is/~i, that is the firing 
strength of the ith rule. The node output in layer 3 is 
given by 

U = /~i " a Pi. (16) 

Thus the fuzzy inference result is extracted from IKR. 

The IKR is very clear and just completes fuzzy in- 
ference step by step. Nevertheless, while the rules are 
copious or the dimension of rule base is high, the pro- 
cessing units will be numerous. 

3.3. Tree-searched neural networks as a knowled,qe 
representation 

As for hardware realization, too many processing 
units could result in large implementation cost and dif- 
ficulty in design. For reducing the number of the pro- 
cessing units, we first consider a set of membership 
functions shown in Fig. 3 in domain X. The linguistic 
labels are marked beside the curves. We can find that 
the membership functions of VNL, NS  and PM are al- 
most nonoverlapping, where VNL stands for linguistic 
"very negative large", and so on. Suppose we define 

= minmax{#vN£(X),l~xs(X),t~e,u(x)tx E X } ,  (17) 
xEX 

where I~vN£ is the membership function for linguistic 
term VNL and so on. e is a very small positive number 
or zero. There is only one of the membership values 
for the three functions could be larger than ~ for any 
x E X; in other words, only one node is necessary to 
complete the three membership functions. The other 
two membership values can be thought zeros without 
influencing the fuzzy inference almost. Similarly, the 
other six functions can be achieved by two nodes, 
since we could ignore them if the membership values 
are smaller than ~:, that is the concept of ~-cut [4, 
14]. If we define the or-cut of  a fuzzy set A, A,:, as 
follows: 

A,:={x[/~A(x)>~t~}, 0 < e ~ < l ,  x C X ,  (18) 

therefore, it is only necessary to compute ]2A(X ) i fx  E 
Me. 

Hence we provide a modified knowledge represen- 
tation as Fig. 4. Basically the inference engine is the 
same as Fig. 1, except the weights in the second and 
third layers are dynamical and are determined accord- 
ing to the input states. We use tree structure as a 
database and the weights are put into it. Fig. 4(a) is 
an example showing how a tree in TNN stores para- 
meters of fuzzy rules. This is equivalent to the fuzzy 
rules in Fig. 4(b), if the membership functions of lin- 
guistic terms "1" and " - 1 "  are almost nonoverlapping. 
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0.9 /~ / i  / i  

o.= : i / '~ : i 

0.7 / ~ / i / i 

0.6 : i l  ! :  i 

0.5 / ! i  ~/ i 

o.4 ' :i i 

i.i 
0.1 

0 
- 1 .0 - 0 . 5  0 . 0  0 . 5  1.0 

(a) 

Fig. 3. An example of  membership functions. 

x I x 2 

[A,0) [0,11 [-1,0) [0,11 

[-2,-1,-1,0] [-I,0,0,11 1-I,0,0,11 [0,1,1,2] 

Input 

" Condition Vector 

• Action Vector 

Co) 
x 2 

-1 0 1 

-1 -2 -1 0 

Xl 0 -1 0 1 

1 0 1 2 

Fig. 4. (a) An example of  a tree memorying parameters of  fuzzy rules. (b) The same parameters as (a) are represented by a look-up table. 

The advantages of  using trees as knowledge base 
are (1) searching is quick and (2) there are exis- 
tent algorithms for adding and deleting subtrees. 
This is the reason why we use trees as a database. 
Note the depth of  the trees used for memorizing 
the weights is usually shallow. It would not cost 
too much time to search. Thus, the neural network 
is a pure inference engine and no more a database 
n o w .  

Assume each element in input vector is normal- 
ized to [ - 1 ,  1]. When an input vector is fed into the 
fuzzy controller, it will search the suitable weights 
from the trees and send to the neural network to get 
the approximate fuzzy inference result. Referring to 
Fig. 4, for example xl = 0.3 and x2 = -0 .3 ,  we 
will search the centers 0, 1 for input Xl and - 1 ,  0 
for input x2 and place these centers on the weights 
in the second layer and ignore other membership 
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functions. Evidently, there are at most 4 rules 
fired. The weights of the third layer are - 1 ,  0, 
0, 1, which are the consequence parts of the 4 
fuzzy rules; i.e. these weights are decided by 
the searching results of the second layer. In fact, 
this process would not slow down the inference 
since while searching the third-layer weights, the 
second-layer nodes are also progressing with their 
jobs. Thus 5 nodes could be economized in this 
case. 

How many nodes are required while applying TNN 
model? Assume q is the threshold for generating rules 
and the membership functions are all defined as (9). 
For input xi, the half-base length is hi. Then for an 
n-input system, at least (F1/(1 -~/)l)" nodes in the 
second layer are required, where I" 7 is the ceiling 
function. Note the number of the nodes required 
in layer 2 is independent of half-base length of 
the membership functions but it is dependent only 
on ~/. 

If we choose (8) as membership functions, the 
membership values are nonzero except for the in- 
put xi where Ixi - wi[ is infinity. We will discard 
it if membership value is smaller than ~ ( >  0). 
For the same system, at least ( F ~ ] ) "  
nodes in the second layer are needed; similarly 
it is also independent of width of the Gaussian 
function. 

Suppose that each node could perform p member- 
ship functions and there are q terms in each dimen- 
sion. Then for an n-input fuzzy controller, IKR will 
require q" nodes in the second layer for all fuzzy rules; 
nevertheless the TNN just needs ([q/p])n nodes in 
the second layer to represent the qn rules. Then we 
have 

Total node number of TNN 

Total node number of  IKR 

= n + ( F q / p T ) n + l  
n+qn+ 1 

(19) 

For example, q = 9, p =- 3 and n = 3, the node 
number of TNN is almost reduced to 31/733 of IKR. 
It is very evident that the number of  the processing 
units has been reduced significantly. 

generating algorithm for IKR is: 

begin 
i f  (maximal  firing strength) < ~l, 
{ 

add a node, 
ca lcu la te  ar+l ,  

the second-layer weights are written as the 
current states, 

the third-layer weight is equal to ar+l, 
) 

end. 

And the following is the rule-generating algorithm 
for TNN: 

begin 
i f  (maximal  firing strength) < rl, 
{ 

j o r  i = 1 to n 
{ 

i f  Ixi - ci, m I > d, 
{ 

le t  ci, m ~ xi ,  

add a subtree and insert Ci, m into the 
condition vector, 

} 
) 
ca l cu la t e  ar+ l , 

connect the matching terms for  each input, 
put  ar+l and relative consequences to the new 

action vector, 
} 

end. 

In the TNN algorithm, d is a threshold for gener- 
ating new term defined by user and ci, m is the center 
closest to xi. And how to calculate ar+l is stated in 
the next section. 

4. A self-organizing adaptive fuzzy controller 
(SOAFC) 

3.4. Rule-generating algorithms 4.1. Self-generating rule 

In this subsection, we give the rule-generating algo- 
rithms for both, the IKR and TNN models. The rule- 

In this section, we shall show how and when to 
generate new rules. In the past, the design of a FLC 
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was intensively dependent on expertise. Setting all 
membership functions, writing all the control rules 
and deciding scaling factors are all done by human 
experts. Furthermore, some parameters are neces- 
sary to be determined by the boring trial-and-error 
procedure. 

In fact, operators' experience is difficult to be 
transformed into the rule form completely. There- 
fore, many rules coming from experts also need to be 
improved. By this reason, several self-learning and 
self-organizing algorithms have been widely studied. 
In the following, our objective is to design a FLC and 
without experts' help. 

In the first, we consider an nth-order nonlinear 
system of  the form 

x (~) = f ( x , A  . . . . .  x(n-I)) + bu, y = x, (20) 

where f is an unknown continuous function, b is a pos- 
itive unknown constant, and u, y E [~. Define the state 
vector x = (xl,x2 . . . . .  x,)  T = (x,~ . . . .  ,x~n--l)) T E ~n. 

Suppose the upper bound of  I f (x) l  and lower bound 
of  b are known as f u  and bL, respectively. There are 
two parameters, the width and the center, in a Gaus- 
sian function (8). For simplicity, the width a o f  the 
membership functions is thought a constant and is de- 
fined by users. The centers are the only parameters 
that can be adjusted. I f  there are some available lin- 
guistic rules or numerical data, they are easily put 
into the IKR or TNN as prior knowledge. The de- 
sired output is ym(t) and tracking error is e = y,, - y. 
Assume we consider that e is in the interval [-0~, a] 
with high possibility, where a is a positive value set 
by users. But e can be out o f  the interval, for in- 
stance, in the case o f  additive large noise. So in fact, 
it is not necessary to definitely confine the range o f  
e. Let the magnitudes o f  the consequences o f  fuzzy 
rules be all constrained below 34o which is allow- 
able maximal consequence o f  fuzzy rule. At first, we 
just consider a S1SO FLC. I f  no prior fuzzy rules can 
be applied initially, two boundary rules are defined 
as  

R l: IF e is L i, THEN u is min(fU/bL,Mo),  

(21) 

R2: IF e is Lz, THEN u is max( - - fU/bL , -Mo) ,  

where 

I tL , ( x )=exp( - -~ - - -~ (x - -~ )2 ) ,  

Pz2(x) = e x p (  -- ~---~(x + ct) 2) 

and the Li stands for the ith linguistic term. The mean- 
ing is that a possible largest control is given while 
the error is also the largest. The two rules may not 
be "rules o f  thumb", but they at least would not drive 
the state to the wrong way in the beginning and de- 
crease the possibility touching the bound Mx of  state 
x, where M~, defined by users, is allowable maximal 
magnitude o f  x. I f  ~ is not defined, two initial rules 
should be given. The initial rules could also be trained 
if  they are fired. Clearly, only the two rules are in- 
sufficient to complete a good control. In the situation 
that no experts can provide rules, the only way is to 
generate rules through on-line learning. 

Assume there are r rules, Rt ,Rz , . . . ,Rr ,  in the rule 
base at time t. Let Cl,C2,...,c~ and al ,a2, . . . ,ar  are 
the centers o f  LI ,Lz , . . . ,Lr ,  and the consequences 
o f  Rl, R2 . . . . .  R,-, respectively. Now while signal e(t) 
is fed to the controller, compute the firing strengths 
#1,#2 . . . . .  pr for the r rules by the neural network 
mentioned in the last section. I f  the condition 

max/~i < q, i =  1,2 . . . . .  r (22) 

holds, this means that the existing r rules cannot satisfy 
current circumstance. Hence a new rule should be gen- 
erated for current state. ~/should be defined as a pos- 
itive value near 1.0 by users to decrease the distances 
between rules, since a small q may lead to a sparse 
rule base and bad performance. In fact, defining q is 
equivalent to giving the lower bound of  the distances 
between rules. The first step is to find the two neigh- 
bor rules Ru and R~ such that cu < e(t) < Q,, where 
u,v E {1,2 . . . . .  r ) ,  and Vw E {1,2 . . . . .  r} - {u,v}, 
either Cw > c~, or Cw < Cu is satisfied. Then a new 
rule is generated by interpolation: 

Rr+l: IF e is L~+l, THEN u is at+l, (23) 

where 
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and 

ICr+l--cu[(a,:--au). (25) a~+l = a u + s g n ( c ~ + l - c , ) .  

In fact, it can produce two rules at once to speed up 
the rule-generating rate. The other rule is symmetric 
to (23)-(25 ) 

IF e is L~+2, THEN u is a~+2, (26) Rr+2 : 

where 

/~L,+:(X) : exp (-- 2~(x + c,-+l )2 ) 

and 

ar+ 2 ~ --ar+ I. 

(27) 

(28) 

Generating one or two rules at once are decided by 
users and they are also dependent on limitation o f  rule 
base size. For many cases, more rules are required 
while error approaching zero, then q can be dynam- 
ically increased to reduce distance between rules. 
Furthermore, for restricting rule base size, the rule 
number must be below F. When (22) holds and r = F, 
it means the rule base is full and acquires a new 
rule. We shall replace the farthest rule with the new 
rule. The farthest rule is considered the rule Rk which 
satisfies 

k = arg max leO) - ci]. (29) 
1 <~i<~r 

This substitution can be done just replacing the 
weights in IKR; while in TNN, it needs to delete a sub- 
tree and add another subtree. From the introduction in 
this subsection, the algorithm is evidently an on-line 
approach of  generating rules. Based on this point, it 
is obviously different with the off-line method in [25]. 

Note if by any chance, the error is out of  the interval 
[ - ~ ,  ~], an extrapolation similar to interpolation can be 
applied to generate a better fuzzy rule. Find two closest 
rules R, and &, to the current state, i.e. c~ < c~, < e(t) 
or e(t) < c, < c~,, and the extrapolation formula 
is the same as (25). The magnitude of  the conse- 
quence of  new rules should also be smaller than or 
equal to M0. We have 

ar+, = max { -Mo,  min [Mo, a~ + sgn(cr+, - c,,) 

1} x [c~, - cu[ (a, - au) • (30) 

For describing how to generate a new fuzzy rule 
with multiple antecedents, we give two distinct vec- 
tors cl, c2 and define c~ > c2 if all the elements of  
cl - c2 are greater than or equal to Os. Thus the in- 
terpolation (extrapolation) method is similar to the 
fuzzy rules with single antecedent, For interpolation, 
finding rules R,, and R~, such that c,, < e(t) < c,,, 
u,v ~ { l ,2  . . . . .  r} and Vw E { l ,2  . . . . .  r } -  {u,v}, 
either Cw > c,: or c,,, < c~ is satisfied. For extra- 
polation, find two closest rules R,, and R~ such that 
c, < ¢,. < e(t) or e(t) < c,, < c,. holds. Then we 
have 

a r + l = m a x { - M o ,  min[Mo, a , + s g n ( c , . + l - c , , )  

× I1 , -  ,,11 ( < ' -  a , , )  , ( 3 1 )  

where ]1" [] is some kind of  distance measurement, for 
example Euclidean, and 

1 if Vci > 0, 
sgn[(cl,c2 . . . . .  cn) w] = - 1  if Vci < O, (32) 

0 otherwise. 

4.2. Review oJ'adaptive fuzzy  systems 

The adaptation law in [17] will be simply described 
in this subsection. Since the adaptive fuzzy controller 
is globally stable, we shall apply this approach through 
this paper. For simplicity, the notations are the same 
as in [ 17]. 

The control is a combination of  a fuzzy control 
uc(xlO ) and a supervisory control us(x): 

u = u~(xlO,~) + Us(X). (33) 

The fuzzy control is: 

Uc(X l O,~) = OS 4(x),  (34) 

where 0 = (al, a2 . . . . .  ar) is a parameter vector which 
can be viewed as the consequence of  the rules and 
~(x) = (~l (x), ~2(x) . . . . .  ~r(x))T is a regressive vec- 
tor and can be thought as the firing strength vector. In 
[17], the dimension of  the regressive vector is fixed 
because the rule number is fixed, Here, since the rule 
number is increased with time, the dimension of  the 
regressive vector is also increased. Whenever a new 
rule is generated, 0 can be considered as another initial 
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parameter vector. Then keep the elements in regres- 
sive vector and adjust the parameter vector using the 
adaptation law in [17]. Although 0 is viewed as an ini- 
tial vector, in fact its elements are in better situations, 
because some elements have been trained and the new 
elements are generated by interpolation rather than at 
random. Hence the elements are not changed gravely 
while it is in steady state and it is expected that the 
system owns better transient response. Furthermore, it 
still keeps globally stable and could be proved as in 
[17]. 

Let 0* be the optimal parameter vector. Define the 
Lyapunov function candidate 

V = leTpe2 + 2-b?? ~T~b' (35) 

where y is a positive constant and can be thought as 
an updating rate and 

~b = 0* - 0. (36) 

Our task now is to decide Us and adaptation law of 
parameter vector such that/? ~< 0. The result is shown 
in the following: 

u~(x) = I~ sgn(eTp,b) 

x[lu¢l+ ~-~(fU +ly~)[+lkTe[) 1, (37) 

whereI{" = 1 i f V  > l ? andll* = 0 i f  V~<l?(Pis  
a upper bound defined by users) and p,, is the last 
column of P which is solved from Lyapunov equation. 

The adaptation law is 

yeTp,¢(X) if([0[ < Mo) or 
([01 = Mo and 

0 = eTpnOT¢(x) <~ 0), (38) 

Prj{~eTp,~(x)} if  (]0[ >-Mo and 
eTpnOT~(x) > 0), 

where 0 -~ --q~, the projection operation Prj{*} and 
the detailed proof is described in [17]. Note the di- 
mension of 0 now increases with time. In (38), the 
condition [0] >>-Mo is little different with [17]. Since 
we shall use C language to simulate the control sys- 
tem, the sampling time is fixed and the value of 
the 101 may be a little larger than Mo between two 
period time. Hence if we wish O<~Mo all the time, 

a value smaller than 114o should be replaced in prac- 
tice. Using the MATLAB command "ode23" may 
let O<<.Mo almost always hold, but two consecutive 
control actions must be completed in very short time. 
Whether the fuzzy inference can be achieved in so 
small period time in practical applications should be 
considered. 

4.3. Combine a D-controller 

In the traditional PID control, the mathematical 
analysis is consummate. For example, the effect of  an 
I- or D-controller can be found in the control textbook 
[15]. Basically, a D-controller can do well for the 
transient performance of a control system. Due to the 
slow convergent speed of the conventional adaptive 
control, we shall combine the fuzzy controller with a 
D-controller, i.e. 

ld = Uc(X]O ) "q- Us(X ) + Ud(X ) (39) 

where 

Ud = sgn( eX p, b~ )kdk (40) 

and kd is a positive constant and k is the second 
element of  vector e = (e,~ . . . .  ,en-1). We can 
easily find sgn(eTpnbk) is available. The rea- 
son why we define (40) will be explained in 
the next subsection. The SOAFC in this sec- 
tion simply considers error rather than change 
of error. In fact, we can also on-line generate a 
two-input (error and change of error) fuzzy con- 
troller, if  the desired parameters are supported 
[6]. But the parameters must be designed by control 
experts. Since the error and change of error are two 
different scales, we need one or more parameters 
similar to PD controller to combine linearly the 
two states into a control. These parameters are 
generally the keys to a better response. For re- 
ducing the dependence of  experts, we shall just 
discuss a one-dimensional rule-generating fuzzy 
system. In (39) and (40), it also contains a para- 
meter kd. Whereas the kd can be assigned an 
arbitrary positive value below an upper bound 
given by users, it can improve the adaptive fuzzy 
control system without causing instability. An 
analysis of the stability is discussed in the next 
subsection. 
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4.4. Stabi l i ty  analysis 

In this subsection, we shall simply describe the 
proof o f  stability applying the approach in the last sub- 
section. Referred to [17], the first step is to specify the 
kl . . . . .  kn such that all roots o f  

s n + kls n-I + . . .  + kn = 0 (41) 

are in the open left-half-plane and specify a positive- 
definite n × n matrix Q. After manipulating, the error 
dynamic equation is 

e (m = --kTe + b[u* - u e ( x l O , ~ )  - Us(X) - Ud], (42) 

where 

1 y~)  kVe] (43) u* = ~ I - f  ( x ) +  + . 

Eq. (42) is equivalent to 

= Ace + bc[u* - Uc(X[O,~) - Us(X) - Ud],  (44) 

where e = (e , k  . . . . .  eCn-1)) T and 

AC 

bC ~-  

0 
0 

0 
-An 

0 

i1 

1 0 0 . . .  0 0 

0 1 0 . . -  0 0 

: : : ' . .  : : 

0 0 0 --- 0 1 
- k n - i  . . . . . . . . . . . . .  kl 

(45) 

Define Ve = ½eTpe, where P is a symmetric 
positive-definite matrix satisfying the Lyapunov 
equation 

A T p  + PAc = - Q ,  (46) 

where Q is also a positive-definite matrix. Applying 
(40), (44) and (46), we have 

f'e : -½eT  Qe + eTpbc[u * - Uc(XlO,~)  

- U s ( X )  - U d ]  

<<. - ½eTQe + ]eTpbcl(lu*l + [ucl) -- eTpbcus 

--eT pbcud. (47) 

Substituting (37), (40) and (43) into (47) and con- 
sidering 11" = 1 case, we have 

I?e <~ -- ½eT Qe -- eTpnbsgn(eTp,  bk)  . kdk 

<~ -- ½eT Qe 

~<0. (48) 

While ll* = 0, let the minimal approximation error 
be 

= Uc(X I O* ) - u*. (49) 

The error equation (44) can be written as 

= Ace + be[u* - Uc(XlO) - Us(X) - Ud] 

= A c e + b c [ u c ( x l O * )  - u c ( x l O)  - us(x)  

- -  U d - -  ~l] 

= Ace + bc[~T~(x) -- us -- Ud -- ~] (50) 

where q5 = 0* - 0. Define the Lyapunov function 
candidate 

1 b r 
V = ~ e T p e  + -~,~ ~. (51) 

We have 

= - ~ e T Q e  + eTpbe(g~T~(x) -- us -- Ud -- ft) f~ 

+b-g; 6 
), 

= - - l e T Q e + b - d p T [ T e T p n ~ ( X ) + 6 ]  
Z 3~ 

--eTpnb(us + Ud + ~). (52) 

I f  we choose the adaptive law 

0 = ?eTpn~(x),  (53) 

and Ud = sgn(eTp,bk)kdk,  kd > 0 and us = 0 (be- 
cause 11" --- 0), 

I T T T T (z = _ 2 e  Q e - s g n ( e  pnbr)kde  p ,  b k - e  pnb~ 

<~ - ½eT Qe - eTpnbff. (54) 
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Table 2 
The comparison of the adaptive controller and SOAFC(+D). 

Adaptive controller SOAFC(+D) 

1 Define mi fuzzy sets 
2 Define mi memberships functions, including 

widths ai and centers wi for 1 <~i<~n 

3 Construct the fuzzy rule base 
4 Construct fuzzy basis functions 

Assign a 
Define ~/ 
kd (if D-controller is included) 

(ifkd is dynamic) 
Give two initial rules 

A fuzzy system has been proven to be an universal 
approximator. I f  there are enough fuzzy rules, ~ will 
approach zero and lead to P ~< 0. Furthermore, for con- 
straint ]0[ <~Mo, we can choose adaptive law as (38). 
The system can also be guaranteed globally stable if 
the adaptation law is chosen as (38), a supervisory 
control as (37) and the D-controller as (40). We al- 
ways have V~ ~</7". Note lie is bounded implies e is 
bounded; in other words, x is also bounded. 

I f  the parameter kd is considered dynamical, we 
assume kd is limited below the bound 6, where ~ is 
a positive number. How to adjust kd can be found in 
[22]. Note whether kd is dynamic or not, it not only 
keeps the system globally stable but also improves 
transient response of the system by using (40). 

4.5. Comparison o f  the adaptive controller and  

S O A F C (  + D ) 

For a FLC, several design tasks should be done 
before the controller begins to work. In the following, 
we shall discuss the design issues between adaptive 
FLC [17] and SOAFC(+D). The off-line processes 
are the same, e.g. specify kl , . . . ,kn and Q > 0, solve 
the Lyapunov equation and design parameters M0, Mx 
and M,. The difference between the initial controller 
constructions of  the two models are listed in Table 2. 

From Table 2, we can find there are fewer jobs to 
be done in SOAFC(4-D). Especially, it is not neces- 
sary to construct the entire fuzzy rule base. In other 
words, the SOAFC(+D) has stronger learning abil- 
ity. It not only learns the action part but also condi- 
tion parts. Furthermore, while the error is accidentally 
out of bound set by users, the previous adaptive con- 
troller would not handle such circumstance, but the 

SOAFC(+D) can also generate a rule by extrapola- 
tion to control the situation. 

4.6. Comparison between S O A F C  and M R A C  

Model reference adaptive control (MRAC) is a ba- 
sic and effective approach in the field of adaptive con- 
trol. In this subsection, we simply compare SOAFC 
with MRAC. 

The disadvantages of MRAC are the following: (a) 
it is difficult to deal with nonlinear plants, (b) it re- 
quires some information, such as mathematical form 
and relative degree for linear time-invariant system, 
(c) it usually lacks prior  knowledge for application. 
On the other hand, SOAFC has more adaptive para- 
meters than MRAC in general and it is difficult to con- 
trol MIMO systems. 

5. Simulation 

In this section, we choose two controlled systems 
firstly. Their mathematical models are respectively 

Case A: 

1 - e -x(t) 
Y~(t) -- - -  + u( t )  (55) 

1 4- e -x~t) 

and 
Case B: 

l 
Yc(t) -- 1 4- e -x(t~) 4- u(t).  (56) 

Our control objective is to regulate the plant output 
to the origin. Basically, both the two plants are unsta- 
ble systems without control. The difference between 
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Fig. 5. An adaptive fuzzy controller for Case A. 

the two cases is while state x( t )  tracking to the ori- 
gin, it does not need control anymore in Case A if  
without any disturbance, but Case B must own a con- 
stant action to keep x(t)  = 0. The parameters are cho- 

sen as 7 --- 1.0, Mx = 1.5, M0 = 2.0, f u  = 1.0 and 
bL = 0.5 for both cases. We define the width ~ in 

1 Gaussian function is 3, and it is not necessary to con- 
struct every membership function. Since Mx is defined 
to be 1.5, we can assume the state error e(t)  will be 
in the interval [ - 2 ,  2] with very high possibility. ~ is 
set to be 9; that is, there are at most 9 rules in the 
rule base. Then we define two boundary fuzzy control 

rules: 

Rt: IF e(t)  is PL,  THEN u is rain ,Mo , 

R2" 

(57) 

) IF e(t)  is NL,  THEN u is max bL 

where / ~ e t . ( u ) = e x p ( - ( u -  2) 2) and ]~NL(IJ) = 

e x p ( - ( u  + 2)2). The threshold q is defined as 0.8. It 
means one or two rules will be added to the rule base 
while all the firing strengths are smaller than 0.8 as 
mentioned in the last section. We use C language to 

simulate the control problems and choose sampling 
time h = 0.02 s. For comparing the results, the initial 

state x(0) is chosen as 1.0, the same as [17]. 
Fig. 5 shows the outcomes for Case A, where curves 

1 and 2 are the simulation results obtained by using 
9 random rules and two rules described as is (57), 
respectively. They both can track to the origin; espe- 
cially curve 2 owns a very good transient response, 

whereas the curve 1 touches the boundary and fires 

the supervisory control us several times. We can also 
find there are several points in curve 1 a little larger 
than Mx. Let us consider the other plant Case B. The 

results are shown in Fig. 6 by using the same rules as 
in Fig. 5. We find the performances are not acceptable. 

Their convergent speeds are very very slow. Clearly, 
for curve 2, only applying two rules is not enough to 

control the system; i.e. it uses a rather sparse rule base. 
Furthermore random rules may cause the problem as 
shown in Fig. 7. The marks on the curves stand for the 

centers of the rules. We can see the action of the rule 
centered 1 and - 1  are stronger than the rule centered 
2 and - 2 ,  respectively. That contradicts our intuition. 
It is due to this that the rules centered 2 and - 2  are 
not trained completely. Hence the rule base evidently 

contains several bad rules. 
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Fig. 8. A SOAFC simulations for Case A and B. 

Fig. 8 shows the simulations of  SOAFC that uses 
the two boundary rules (57). It could control the 
state x( t )  to zero much faster than Fig. 6 for both 
Case A and Case B, but their undershoots seem 
rather large. Fig. 9 displays adaptation and gen- 
eration of  rules. The curves from infinite falling 
down stand for the new generated rules. We can 
find the actions are not changed much from gen- 
eration to steady state. That is due to the genera- 
tion o f  new rules by interpolation rather than by 
random. For improving its transient response, a D- 
controller is combined with the original SOAFC. 
Assign kd = 30.0 through the following simula- 
tions. At first, we combine a simple D-controller 
which is 

ud  = kd • ~. ( 5 8 )  

Fig. 10 shows the simulation result. From Fig. 10, 
we see that it owns a little faster convergence speed 
than Fig. 8, but their undershoots are not improved. 
From Fig. l 1, if the proposed D-controller (40) is 
included, the smaller undershoot can be found and 
settling time is smaller than others. Furthermore, an 
advantage of  such controller is that it contributes 
less control energy than other aforementioned con- 

trollers, and it is still guaranteed that it is globally 
stable. 

Table 3 lists the total control energy from 0 to 20 s 
for every controller we apply. In Table 3, AFC repre- 
sents adaptive fuzzy controller in [17]. From Table 3, 
we can find the total control energy of  AFC using two 
boundary rules is smallest for Case A, but it cannot 
control Case B well. Hence, the S O A F C + D  is better 
than others. In Case B, except the AFC by random 
rules, the control energies o f  the other controllers are 
almost the same. 

For comparing MRAC and SOAFC+D,  we choose 
the example in [18]. Consider the linear controlled 
plant 

~fCp(t) = ap(t)Xp(t) + kp(t)u(t), (59) 

where ap = 1.0 and kp = 2.0 are unknown (sign ofkp 
is known), and a reference model is described by the 
first-order differential equation 

fern(l) = amXm(t) + kmr(t), (60) 

w h e r e  am = - 1 . 0 ,  km = l.O and r(t)  = 5.0. The 
control input is chosen as 

u = ~(t)Xp(t) + k( t )r( t ) ,  (61) 
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Fig. 9. An example of adaptation and generation of rules. 

Table 3 
The total control energy of adaptive controller and SOAFC. 

Case A Case B 

AFC using 9 random r u l e s  3 3 8 . 0 7 0 7  638.2547 
AFC using two rules 57.8256 569.5872 
SOAFC 125.9191 566.9734 
SOAFC + kd • ~ 97.0321 552.4740 
SOAFC + sgn(eTpnb~)kd~ 75.2068 551.5142 

and the adaptive laws are 

~( t ) :-- - sgn( kp )e( t )Xp (t), ( 62 ) 

/~(t) = - sgn(kp )e(t)r(t) .  (63) 

Let initial values ~(0)  and k(0) be both chosen as 
0 s. Fig. 12 shows the simulation results of  MRAC 
and SOAFC+D.  Fig. 13 illustrates the simulation 
lesults while ap = 2.0 and kp --- 1.0. The tracking 
error of  MRAC is the best one we can achieve by 
changing adaptive gain. From Figs. 12 and 13, we can 
find SOAFC+D cause smaller oscillation and faster 
convergence than MRAC. The control energy of 
MRAC and SOAFC+D are 449.823 and 269.796 for 
Fig. 12, respectively, and are 1394.025 and 1062.216 
for Fig. 13. 

6. Conclusion 

In this paper, an alternative knowledge representa- 
tion is proposed first. The TNN model of fuzzy rule 
base is more intuitive than conventional BP learn- 
ing. So a rule could be added, deleted or modified 
without affecting other rules. In other words, it is not 
necessary to update all the weights renewedly. The 
IKR may require large processing units to implement 
when there are numerous rules. Thus we propose the 
model TNN. It could definitely decrease the num- 
ber of the processing units. This can help hardwares 
design, manufacture and even reduce the cost. Sec- 
ondly, a SOAFC(+D)  is provided. It can generate 
rules by itself and use the adaptation law in [17] 
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to adjust the consequences  o f  the firing rules. That  

could  release much  dependence  on experts,  since it 

is not  necessary  to wri te  down  all the rules by them. 

Furthermore,  we design a D-cont ro l le r  and combine  

it with FLC to speed up the convergence  rate, and we  

also s imply  prove  it is g lobal ly  stable i f  applying the 

proposed  D-cont ro l le r  we design. F rom simulations,  

it owns  several  advantages,  e.g. decreasing settling 

t ime and undershoot  (overshoot )  and requir ing less 

control  energy.  The  future work  is to deve lop  a mult i-  

input S O A F C + D  and the parameters ,  for  example  kd 

should be adjusted by an adaptat ion law and can keep 

the system global ly  stable. 
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