
. . . .

E L S E V I E R Fuzzy Sets and Systems 80 (1996) 295-313

FUIZY
sets and systems

A self-organizing adaptive fuzzy controller
C h i e n - H u i L e e , S h e n g - D e W a n g *

Department of Electrical Engineering, EE Building, Rm. 441, National Taiwan UniversiO,, Taipei 106, Taiwan

Received June 1994; revised May 1995

Abstract

There are two main parts in this paper. The first part presents a knowledge representation and reasoning scheme, called
tree-searched neural networks (TNN). The TNN is based on a well-known intuitive knowledge representation (IKR) and can
reduce the number of the processing nodes in the neural networks. The second part proposes a self-organizing adaptive fuzzy
controller (SOAFC) based on the TNN model. It can help acquire control knowledge and thus can reduce the dependence
on experts. Furthermore, designers do not need to predefine all membership fimctions to cover whole input space domain.
For improving its performance further, we design a D-controller which is included within the SOAFC. Whether the fuzzy
controller is incorporated with the D-controller or not, it is also guaranteed to be globally stable. Simulation results show
that this approach has faster convergence speed, results in better transient response, and in addition requires less total control
energy.

Keywords: Fuzzy sets; Neural networks; Process control; Adaptive controller

1. Introduction

Fuzzy logic controllers (FLCs) are used more
and more generally and they have been shown to
be specially effective in the control o f mathemat-
ically ill-understood processes. FLCs have several
significant advantages over conventional control ap-
proaches such as robustness and conformability to
the linguistic rules. The rules in these FLCs normally
come from experienced human operators or experts.
But control concepts and operators' experience are
generally difficult to be completely incorporated into
the rule base. This could be a main disadvantage
o f FLCs. Another drawback is lack of mathematical
proof o f stability for the fuzzy systems. This may be
the reason why fuzzy control has not been accepted

* Corresponding author.

in some area of applications. Recently there are many
papers discussing this issue [16, 17, 26]. During the
past several years, a lot o f algorithms for developing
self-organizing or self-learning fuzzy systems have
been proposed [4, 13, 19, 20, 23].

Fuzzy rule representations are proposed in many
papers [5, 24, 25], but few are aimed to be suitable
for hardware implementation. Some representations
are based on neural networks and require too many
processing units. This drawback not only destroys the
applicability of fuzzy systems but also incurs large
cost for hardware implementation. In this paper, we
shall combine a tree structure and neural networks as
its database and inference engine, respectively. Thus
the neural networks will not need so many processing
units.

Basically, fuzzy logic reasoning can be viewed as
one kind of combination of the complete or partial

0165-0114/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved
SSDI 0165-0114(95)00205-7

296 C.-H. Lee, S.-D. Wang~Fuzzy Sets and Systems 80 (1996) 295-313

matching rules. I f the distances between the rules
are small, the performance will be found better as
compared with the sparse rule base [6]. Also for im-
proving the performance further, more rules should
be explored for more critical situations. A technique
for generating rules is described in [25]. It needs
I/O pairs, off-line calculates matching degrees of I/O
pairs and predefines membership functions to decide
the final selected rules. No more new rules are gen-
erated on-line. So it could be thought as an off-line
rule-generating technique.

In the past, designers of FLCs should define the
membership functions covering a whole input domain
and construct the rules for all possible conditions in
order to satisfy the property of completeness. Other-
wise in certain circumstance, no fuzzy rules will be
fired. To write down all of the fuzzy rules is also a
time consuming and difficult job even for experts.

A method based on TNN aiming at self-generating
fuzzy logic rules is proposed here. By developing the
self-organizing system, both the control rules and the
domain basis are obtained automatically. We apply
the adaptation law described in [17] to update the rules
in the rule base. Its superiority comes from its abil-
ity in generating new rules and eliminating the use-
less rules. The approach proposed here is an on-line
rule-generating algorithm which only generates the
necessary rules. In fact, it is also satisfactory for
completeness if new rules are generated. In other
words, it generates rules along the trajectory of the
states. This will reduce the rule base size especially
in multi-input FLCs. Another advantage is that it is
not necessary to predefine ranges of the states. I f
we set a threshold value and firing strengths are not
larger than that, this means there is no rule satisfying
the current states [12]. Hence generating a new rule
for current states is necessary. Thus no matter where
the states are, the self-organizing FLCs can always
find matching rules. It can decrease the distances of
the rules and obtain better inference result by set-
ting a larger threshold value. Note, by this approach,
we must make a trade-off between decreasing rule
distances and reducing rule number.

In Section 2, we briefly describe the basic fuzzy
logic and inference process. In Section 3, the conven-
tional knowledge representations for fuzzy rules are
introduced and the TNN model is proposed. In Section
4, we propose an approach to generate new fuzzy rules

and incorporate a new D-controller (SOAFC+D) to
improve its transient performance. We also prove that
the nonlinear system is globally stable while applying
the SOAFC+D. In Section 5, the unstable plant in [17]
and other systems are simulated. Simulation results
demonstrate the superiority of SOAFC+D. In Section
6, conclusions and future research are summarized.

2. Basic fuzzy logic systems

In this section, we shall simply describe some basic
concepts of fuzzy set theory and fuzzy logic used in
this paper. The more detailed discussions can be found
in [7].

For an n-input and single output fuzzy system,
it implements a mapping from U C ~" to ~. As-
sume the universes of discourse of the n-inputs are
U1, U 2 , . . . , Un, respectively; i.e. U = U1 × U2 × . . .
× U,. For Ui, i = 1,2 n, there are m i member-
ship functions defined. Each membership function
#Ai maps the input to the interval [0, 1]. Each fuzzy
set can be viewed as a linguistic term and in fact it
is a condition of the premise of a fuzzy rule. Since
there are n inputs and the ith input has m i member-
ship functions, it comes at most m~ • m 2 . . . m n rules.
The Cartesian product of A~ An is a fuzzy set
in the product space U1 × U2 × . .- × U, with the
membership function

/-ZAI x ... xA,,(Ul,//2, • • •, Un)

= min[#a, (ul), #A=(U2) /ZA,,(U,)] (1)

or

~A~ x ... xA,,(ul, U2,. • •, Un)

= #a, (u l) ' /~< (u2)""/~,~°(u,) (2)

where ui E U~. For calculating firing strengths for
each rule, we assume that there are n conditions in the
premise of each rule and its consequence is described
only by a crisp set. Each condition is represented with
a linguistic fuzzy set Ai. #a, is the matching degree
of input ui and the ith condition. Then for a specific
rule, the firing strength is obtained through Cartesian
product (1) or (2). Next, we shall combine all the firing
rules by a defuzzifying strategy. Assume the form of
the ith rule is:

C.-H. Lee, S.-D. WanglFuzzy Sets and Systems 80 (1996) 295-313 297

Rule i: if uj is A] and. . , and u, is A /

then u is ai, (3)

i is the fuzzy set of the j th condition of the where A j

ith rule, and ai is a fuzzy singleton for simplicity. Let
the firing strength of the ith rule be pg; i.e.

pi = min[#A, (ul),/~A~(u2) #A,,(U,)] (4)

o r

]A i ~-]AA,(Ul) •]AA2(U2) ' . . #A,,(Un). (5)

Table 1
An example of look-up table.

NL NS ZE PS PL

NL NL NL PL PL PL
NM NL NL NL PL PL
NS PL NM NL PS NL
ZE PL PM ZE NM NL
PS PL NS PL PS NL
PM NL NL PL PM PL
PL NL NL PL PL PL

The concept of defuzzification is: the larger the firing
strength is, the more it contributes and the defuzzifying
formula is written as

U = Z]2i " a #i. (6)

3. Fuzzy knowledge representation

3.1. Review of knowledge representation

A rule base can be viewed as the brain of a fuzzy
controller. How to describe the knowledge in the brain
is an important issue. A good rule base for fuzzy sys-
tems should contain the following properties:
• high speed: search the matching rules fast,
• flexibility: add, modify or delete rules easily,
• simplicity: an intuitive and clear rule base is easily

understood,
• low cost: it must not cost too much for hardware

implementation.
Almost all recent papers about fuzzy logic mainly

discussed theory and learning algorithms of fuzzy
rules, because these jobs seem the kernels in this field.
On the other hand, if the knowledge representation of
fuzzy rules can be improved, it could not only speed
up the fuzzy reasoning process but also reduce the
sizes of fuzzy rule bases. This will also be helpful
for hardware design and implementation. In the past,
the fuzzy rules were generally described as linguistic
statements of the form:

IF (Conditions) THEN (Actions). (7)

Such exhibition is not efficient enough as the infer-
ence engine must spend much time to check every
predicative condition in the IF-THEN rule base. The

IF-THEN rules can be described as the form of look-
up tables, and it is still widely applied. An example
of look-up tables is shown in Table 1, where PL, ZE
and NS, respectively, represent linguistic terms "posi-
tive large", "zero" and "negative small" and so on. In
fact, a look-up table is an explicit representation if the
dimension of the rule base is low. When the dimen-
sion of the rule base is higher than two, this method
will be difficult to accommodate to this situation. It
must include many look-up tables as Table 1 to com-
plete the representation of all the rules. This will be
too complex and time consuming to search the firing
rules. In [6], a look-up table is reduced from 3 to 2
dimensions, whereas the fuzzy rules must be regular
in some sense.

3.2. An intuitive knowledge representation based on
neural networks (IKR)

Recently, a knowledge representation combining
neural networks with fuzzy logic seems a promising
approach in artificial intelligence [3, 5, 1 l, 21]. The
main advantage of neural networks is fast compu-
tation due to parallel processing. Therefore, many
researchers have applied neural networks not only
as a database but also as an inference engine [5,
11]. Another advantage of neural networks is that
it has mature learning algorithms. For example, the
back-propagation (BP) learning algorithm and the
learning vector quantization algorithm are most pop-
ular approaches for learning internal representation.
The BP algorithm can to some extent approximate a
fuzzy controller mapping by repeatedly updating the
weights [11]. But it has serious problems - adding
a new rule, removing a useless rule or modifying
a bad rule will be difficult; i.e. it contradicts the

298 C.-H. Lee, S.-D. Wang/Fuzzy Sets and Systems 80 (1996) 295-313

Xl

X2

Fig. 1. The configuration of IKR.

aforementioned second property of a good fuzzy
rule base. In other words, the approach only suits
static rule bases. In the following, we shall rec-
ommend an intuitive knowledge representation for
fuzzy rules. It can suit both static and dynamical
rule base. As shown in Fig. 1, only three layers are
required.

The nodes in the first layer just transmit input values
to the next layer directly. The second-layered nodes
are used to compute firing strength for fuzzy rules.
Firstly, we must define membership functions. In the
second layer, the membership functions used most
often are the Gaussian or triangular functions. The
Gaussian function is given by

gG(x) = exp I - - l (x-- w)2] (8)

where tr is called the width of the Gaussian function
because the larger the value of a is, the more the
Gaussian spreads out, and w is called the center. The
triangular function is

~(1 I x - w [if I x - w [< b,
gT(X) = b (9)

L 0 otherwise,

where b and w are the half-base length and base center
of a triangular function, respectively. Both (8) and (9)
achieve maximum value (=1.0) while x = w. Note

that no matter which of the two membership function
is used, it is in fact a function of Ix - w[and the
larger the Ix - w I is, the smaller the membership value
is.

For an n-input system, we define the second-layer
input a s [x i - w i [for 1 ~< i ~< n, which is similar to the
distance measure in Kohonen's feature map [9]. A
basic structure of a node in IKR is shown in Fig. 2 [5].

x 1 x n
x 2

Fig. 2. Basic structure of a node in a neural network.

C.-H. Lee, S,-D. WanglFuzzy Sets and Systems 80 (1996) 295~13 299

In the conventional approach, the net input of a node
is given by

net-input = f (xl x,; w l w ,)

~- ~ XiW i. (10)
i=1

The output of the node is an activation value

output = a(f) (11)

where a(.) denotes the activation function; for exam-
ple a sigmoid function.

In IKR, we define the function f in the second layer
by

f (x l x n ; w l , . . . , w ,)

= max(Ix1 - wll , Ix, - w,I) (12)

and

output = 9T(f) or g o (f) . (13)

The outputs of nodes in layer 2 are the firing strengths
for fuzzy rules, which correspond to the results of ap-
plying max-min compositional operation. The number
of the nodes in the second layer represents number of
the fuzzy rules.

For an on-line system, inference speed is the most
important issue. Hence we assume that the conse-
quences of the rules are singleton sets [7]; i.e. their
membership functions are simply pulses rather than
triangular or Gaussian functions. The singleton set is
defined as

1 i fx = v,
s(x) = 0 otherwise. (14)

There is only one node in the third layer. Assume v; is
the weight connecting the ith node in layer 2 and the
node in output layer. Then the weights are recorded as

vi = ai (15)

where ai is the action part of the ith rule. The third-
layer node achieves a defuzzifying job. Assume the
output for the ith node in layer 2 is/~i, that is the firing
strength of the ith rule. The node output in layer 3 is
given by

U = /~i " a Pi. (16)

Thus the fuzzy inference result is extracted from IKR.

The IKR is very clear and just completes fuzzy in-
ference step by step. Nevertheless, while the rules are
copious or the dimension of rule base is high, the pro-
cessing units will be numerous.

3.3. Tree-searched neural networks as a knowled,qe
representation

As for hardware realization, too many processing
units could result in large implementation cost and dif-
ficulty in design. For reducing the number of the pro-
cessing units, we first consider a set of membership
functions shown in Fig. 3 in domain X. The linguistic
labels are marked beside the curves. We can find that
the membership functions of VNL, NS and PM are al-
most nonoverlapping, where VNL stands for linguistic
"very negative large", and so on. Suppose we define

= minmax{#vN£(X),l~xs(X),t~e,u(x)tx E X } , (17)
xEX

where I~vN£ is the membership function for linguistic
term VNL and so on. e is a very small positive number
or zero. There is only one of the membership values
for the three functions could be larger than ~ for any
x E X; in other words, only one node is necessary to
complete the three membership functions. The other
two membership values can be thought zeros without
influencing the fuzzy inference almost. Similarly, the
other six functions can be achieved by two nodes,
since we could ignore them if the membership values
are smaller than ~:, that is the concept of ~-cut [4,
14]. If we define the or-cut of a fuzzy set A, A,:, as
follows:

A,:={x[/~A(x)>~t~}, 0 < e ~ < l , x C X , (18)

therefore, it is only necessary to compute]2A(X) i fx E
Me.

Hence we provide a modified knowledge represen-
tation as Fig. 4. Basically the inference engine is the
same as Fig. 1, except the weights in the second and
third layers are dynamical and are determined accord-
ing to the input states. We use tree structure as a
database and the weights are put into it. Fig. 4(a) is
an example showing how a tree in TNN stores para-
meters of fuzzy rules. This is equivalent to the fuzzy
rules in Fig. 4(b), if the membership functions of lin-
guistic terms "1" and " - 1 " are almost nonoverlapping.

300 C-H. Lee, S.-D. Wang/Fuzzy Sets and Systems 80 (1996) 295-313

0.9 /~ / i / i

o.= : i / '~ : i

0.7 / ~ / i / i

0.6 : i l ! : i

0.5 / ! i ~/ i

o.4 ' :i i

i.i
0.1

0
- 1 .0 - 0 . 5 0 . 0 0 . 5 1.0

(a)

Fig. 3. An example of membership functions.

x I x 2

[A,0) [0,11 [-1,0) [0,11

[-2,-1,-1,0] [-I,0,0,11 1-I,0,0,11 [0,1,1,2]

Input

" Condition Vector

• Action Vector

Co)
x 2

-1 0 1

-1 -2 -1 0

Xl 0 -1 0 1

1 0 1 2

Fig. 4. (a) An example of a tree memorying parameters of fuzzy rules. (b) The same parameters as (a) are represented by a look-up table.

The advantages of using trees as knowledge base
are (1) searching is quick and (2) there are exis-
tent algorithms for adding and deleting subtrees.
This is the reason why we use trees as a database.
Note the depth of the trees used for memorizing
the weights is usually shallow. It would not cost
too much time to search. Thus, the neural network
is a pure inference engine and no more a database
n o w .

Assume each element in input vector is normal-
ized to [- 1 , 1]. When an input vector is fed into the
fuzzy controller, it will search the suitable weights
from the trees and send to the neural network to get
the approximate fuzzy inference result. Referring to
Fig. 4, for example xl = 0.3 and x2 = -0 .3 , we
will search the centers 0, 1 for input Xl and - 1 , 0
for input x2 and place these centers on the weights
in the second layer and ignore other membership

C-H. Lee, S.-D. Wang~Fuzzy Sets and Systems 80 (1996) 295-313 301

functions. Evidently, there are at most 4 rules
fired. The weights of the third layer are - 1 , 0,
0, 1, which are the consequence parts of the 4
fuzzy rules; i.e. these weights are decided by
the searching results of the second layer. In fact,
this process would not slow down the inference
since while searching the third-layer weights, the
second-layer nodes are also progressing with their
jobs. Thus 5 nodes could be economized in this
case.

How many nodes are required while applying TNN
model? Assume q is the threshold for generating rules
and the membership functions are all defined as (9).
For input xi, the half-base length is hi. Then for an
n-input system, at least (F1/(1 -~/)l)" nodes in the
second layer are required, where I" 7 is the ceiling
function. Note the number of the nodes required
in layer 2 is independent of half-base length of
the membership functions but it is dependent only
on ~/.

If we choose (8) as membership functions, the
membership values are nonzero except for the in-
put xi where Ixi - wi[is infinity. We will discard
it if membership value is smaller than ~ (> 0).
For the same system, at least (F ~]) "
nodes in the second layer are needed; similarly
it is also independent of width of the Gaussian
function.

Suppose that each node could perform p member-
ship functions and there are q terms in each dimen-
sion. Then for an n-input fuzzy controller, IKR will
require q" nodes in the second layer for all fuzzy rules;
nevertheless the TNN just needs ([q/p])n nodes in
the second layer to represent the qn rules. Then we
have

Total node number of TNN

Total node number of IKR

= n + (F q / p T) n + l
n+qn+ 1

(19)

For example, q = 9, p =- 3 and n = 3, the node
number of TNN is almost reduced to 31/733 of IKR.
It is very evident that the number of the processing
units has been reduced significantly.

generating algorithm for IKR is:

begin
i f (maximal firing strength) < ~l,
{

add a node,
ca lcu la te ar+l ,

the second-layer weights are written as the
current states,

the third-layer weight is equal to ar+l,
)

end.

And the following is the rule-generating algorithm
for TNN:

begin
i f (maximal firing strength) < rl,
{

j o r i = 1 to n
{

i f Ixi - ci, m I > d,
{

le t ci, m ~ xi ,

add a subtree and insert Ci, m into the
condition vector,

}
)
ca l cu la t e ar+ l ,

connect the matching terms for each input,
put ar+l and relative consequences to the new

action vector,
}

end.

In the TNN algorithm, d is a threshold for gener-
ating new term defined by user and ci, m is the center
closest to xi. And how to calculate ar+l is stated in
the next section.

4. A self-organizing adaptive fuzzy controller
(SOAFC)

3.4. Rule-generating algorithms 4.1. Self-generating rule

In this subsection, we give the rule-generating algo-
rithms for both, the IKR and TNN models. The rule-

In this section, we shall show how and when to
generate new rules. In the past, the design of a FLC

302 C-H. Lee, S.-D. Wang/Fuzzy Sets and Systems 80 (1996) 295-313

was intensively dependent on expertise. Setting all
membership functions, writing all the control rules
and deciding scaling factors are all done by human
experts. Furthermore, some parameters are neces-
sary to be determined by the boring trial-and-error
procedure.

In fact, operators' experience is difficult to be
transformed into the rule form completely. There-
fore, many rules coming from experts also need to be
improved. By this reason, several self-learning and
self-organizing algorithms have been widely studied.
In the following, our objective is to design a FLC and
without experts' help.

In the first, we consider an nth-order nonlinear
system of the form

x (~) = f (x , A x(n-I)) + bu, y = x, (20)

where f is an unknown continuous function, b is a pos-
itive unknown constant, and u, y E [~. Define the state
vector x = (xl,x2 x,) T = (x,~ ,x~n--l)) T E ~n.

Suppose the upper bound of I f (x) l and lower bound
of b are known as f u and bL, respectively. There are
two parameters, the width and the center, in a Gaus-
sian function (8). For simplicity, the width a o f the
membership functions is thought a constant and is de-
fined by users. The centers are the only parameters
that can be adjusted. I f there are some available lin-
guistic rules or numerical data, they are easily put
into the IKR or TNN as prior knowledge. The de-
sired output is ym(t) and tracking error is e = y,, - y.
Assume we consider that e is in the interval [-0~, a]
with high possibility, where a is a positive value set
by users. But e can be out o f the interval, for in-
stance, in the case o f additive large noise. So in fact,
it is not necessary to definitely confine the range o f
e. Let the magnitudes o f the consequences o f fuzzy
rules be all constrained below 34o which is allow-
able maximal consequence o f fuzzy rule. At first, we
just consider a S1SO FLC. I f no prior fuzzy rules can
be applied initially, two boundary rules are defined
as

R l: IF e is L i, THEN u is min(fU/bL,Mo),

(21)

R2: IF e is Lz, THEN u is max(- - fU/bL , -Mo) ,

where

I tL , (x)=exp(- -~ - - -~ (x - -~)2) ,

Pz2(x) = e x p (-- ~---~(x + ct) 2)

and the Li stands for the ith linguistic term. The mean-
ing is that a possible largest control is given while
the error is also the largest. The two rules may not
be "rules o f thumb", but they at least would not drive
the state to the wrong way in the beginning and de-
crease the possibility touching the bound Mx of state
x, where M~, defined by users, is allowable maximal
magnitude o f x. I f ~ is not defined, two initial rules
should be given. The initial rules could also be trained
if they are fired. Clearly, only the two rules are in-
sufficient to complete a good control. In the situation
that no experts can provide rules, the only way is to
generate rules through on-line learning.

Assume there are r rules, Rt ,Rz , . . . ,Rr , in the rule
base at time t. Let Cl,C2,...,c~ and al ,a2, . . . ,ar are
the centers o f LI ,Lz , . . . ,Lr , and the consequences
o f Rl, R2 R,-, respectively. Now while signal e(t)
is fed to the controller, compute the firing strengths
#1,#2 pr for the r rules by the neural network
mentioned in the last section. I f the condition

max/~i < q, i = 1,2 r (22)

holds, this means that the existing r rules cannot satisfy
current circumstance. Hence a new rule should be gen-
erated for current state. ~/should be defined as a pos-
itive value near 1.0 by users to decrease the distances
between rules, since a small q may lead to a sparse
rule base and bad performance. In fact, defining q is
equivalent to giving the lower bound of the distances
between rules. The first step is to find the two neigh-
bor rules Ru and R~ such that cu < e(t) < Q,, where
u,v E {1,2 r) , and Vw E {1,2 r} - {u,v},
either Cw > c~, or Cw < Cu is satisfied. Then a new
rule is generated by interpolation:

Rr+l: IF e is L~+l, THEN u is at+l, (23)

where

C.-H. Lee, S.-D. WanglFuzzy Sets and Systems 80 (1996) 2 9 5 3 1 3 303

and

ICr+l--cu[(a,:--au). (25) a~+l = a u + s g n (c ~ + l - c ,) .

In fact, it can produce two rules at once to speed up
the rule-generating rate. The other rule is symmetric
to (23)-(25)

IF e is L~+2, THEN u is a~+2, (26) Rr+2 :

where

/~L,+:(X) : exp (-- 2~(x + c,-+l)2)

and

ar+ 2 ~ --ar+ I.

(27)

(28)

Generating one or two rules at once are decided by
users and they are also dependent on limitation o f rule
base size. For many cases, more rules are required
while error approaching zero, then q can be dynam-
ically increased to reduce distance between rules.
Furthermore, for restricting rule base size, the rule
number must be below F. When (22) holds and r = F,
it means the rule base is full and acquires a new
rule. We shall replace the farthest rule with the new
rule. The farthest rule is considered the rule Rk which
satisfies

k = arg max leO) - ci]. (29)
1 <~i<~r

This substitution can be done just replacing the
weights in IKR; while in TNN, it needs to delete a sub-
tree and add another subtree. From the introduction in
this subsection, the algorithm is evidently an on-line
approach of generating rules. Based on this point, it
is obviously different with the off-line method in [25].

Note if by any chance, the error is out of the interval
[- ~ , ~], an extrapolation similar to interpolation can be
applied to generate a better fuzzy rule. Find two closest
rules R, and &, to the current state, i.e. c~ < c~, < e(t)
or e(t) < c, < c~,, and the extrapolation formula
is the same as (25). The magnitude of the conse-
quence of new rules should also be smaller than or
equal to M0. We have

ar+, = max { -Mo, min [Mo, a~ + sgn(cr+, - c,,)

1} x [c~, - cu[(a, - au) • (30)

For describing how to generate a new fuzzy rule
with multiple antecedents, we give two distinct vec-
tors cl, c2 and define c~ > c2 if all the elements of
cl - c2 are greater than or equal to Os. Thus the in-
terpolation (extrapolation) method is similar to the
fuzzy rules with single antecedent, For interpolation,
finding rules R,, and R~, such that c,, < e(t) < c,,,
u,v ~ { l ,2 r} and Vw E { l ,2 r } - {u,v},
either Cw > c,: or c,,, < c~ is satisfied. For extra-
polation, find two closest rules R,, and R~ such that
c, < ¢,. < e(t) or e(t) < c,, < c,. holds. Then we
have

a r + l = m a x { - M o , min[Mo, a , + s g n (c , . + l - c , ,)

× I1 , - ,,11 (< ' - a , ,) , (3 1)

where]1" [] is some kind of distance measurement, for
example Euclidean, and

1 if Vci > 0,
sgn[(cl,c2 cn) w] = - 1 if Vci < O, (32)

0 otherwise.

4.2. Review oJ'adaptive fuzzy systems

The adaptation law in [17] will be simply described
in this subsection. Since the adaptive fuzzy controller
is globally stable, we shall apply this approach through
this paper. For simplicity, the notations are the same
as in [17].

The control is a combination of a fuzzy control
uc(xlO) and a supervisory control us(x):

u = u~(xlO,~) + Us(X). (33)

The fuzzy control is:

Uc(X l O,~) = OS 4(x), (34)

where 0 = (al, a2 ar) is a parameter vector which
can be viewed as the consequence of the rules and
~(x) = (~l (x), ~2(x) ~r(x))T is a regressive vec-
tor and can be thought as the firing strength vector. In
[17], the dimension of the regressive vector is fixed
because the rule number is fixed, Here, since the rule
number is increased with time, the dimension of the
regressive vector is also increased. Whenever a new
rule is generated, 0 can be considered as another initial

304 C-H. Lee, S.-D. Wang~Fuzzy Sets and Systems 80 (1996) 295 313

parameter vector. Then keep the elements in regres-
sive vector and adjust the parameter vector using the
adaptation law in [17]. Although 0 is viewed as an ini-
tial vector, in fact its elements are in better situations,
because some elements have been trained and the new
elements are generated by interpolation rather than at
random. Hence the elements are not changed gravely
while it is in steady state and it is expected that the
system owns better transient response. Furthermore, it
still keeps globally stable and could be proved as in
[17].

Let 0* be the optimal parameter vector. Define the
Lyapunov function candidate

V = leTpe2 + 2-b?? ~T~b' (35)

where y is a positive constant and can be thought as
an updating rate and

~b = 0* - 0. (36)

Our task now is to decide Us and adaptation law of
parameter vector such that/? ~< 0. The result is shown
in the following:

u~(x) = I~ sgn(eTp,b)

x[lu¢l+ ~-~(fU +ly~)[+lkTe[) 1, (37)

whereI{" = 1 i f V > l ? andll* = 0 i f V~<l?(Pis
a upper bound defined by users) and p,, is the last
column of P which is solved from Lyapunov equation.

The adaptation law is

yeTp,¢(X) if([0[< Mo) or
([01 = Mo and

0 = eTpnOT¢(x) <~ 0), (38)

Prj{~eTp,~(x)} if (]0[>-Mo and
eTpnOT~(x) > 0),

where 0 -~ --q~, the projection operation Prj{*} and
the detailed proof is described in [17]. Note the di-
mension of 0 now increases with time. In (38), the
condition [0] >>-Mo is little different with [17]. Since
we shall use C language to simulate the control sys-
tem, the sampling time is fixed and the value of
the 101 may be a little larger than Mo between two
period time. Hence if we wish O<~Mo all the time,

a value smaller than 114o should be replaced in prac-
tice. Using the MATLAB command "ode23" may
let O<<.Mo almost always hold, but two consecutive
control actions must be completed in very short time.
Whether the fuzzy inference can be achieved in so
small period time in practical applications should be
considered.

4.3. Combine a D-controller

In the traditional PID control, the mathematical
analysis is consummate. For example, the effect of an
I- or D-controller can be found in the control textbook
[15]. Basically, a D-controller can do well for the
transient performance of a control system. Due to the
slow convergent speed of the conventional adaptive
control, we shall combine the fuzzy controller with a
D-controller, i.e.

ld = Uc(X]O) "q- Us(X) + Ud(X) (39)

where

Ud = sgn(eX p, b~)kdk (40)

and kd is a positive constant and k is the second
element of vector e = (e,~ ,en-1). We can
easily find sgn(eTpnbk) is available. The rea-
son why we define (40) will be explained in
the next subsection. The SOAFC in this sec-
tion simply considers error rather than change
of error. In fact, we can also on-line generate a
two-input (error and change of error) fuzzy con-
troller, if the desired parameters are supported
[6]. But the parameters must be designed by control
experts. Since the error and change of error are two
different scales, we need one or more parameters
similar to PD controller to combine linearly the
two states into a control. These parameters are
generally the keys to a better response. For re-
ducing the dependence of experts, we shall just
discuss a one-dimensional rule-generating fuzzy
system. In (39) and (40), it also contains a para-
meter kd. Whereas the kd can be assigned an
arbitrary positive value below an upper bound
given by users, it can improve the adaptive fuzzy
control system without causing instability. An
analysis of the stability is discussed in the next
subsection.

C.-H. Lee, S.-D. Wang~Fuzzy Sets and Systems 80 (1996) 295-313 305

4.4. Stabi l i ty analysis

In this subsection, we shall simply describe the
proof o f stability applying the approach in the last sub-
section. Referred to [17], the first step is to specify the
kl kn such that all roots o f

s n + kls n-I + . . . + kn = 0 (41)

are in the open left-half-plane and specify a positive-
definite n × n matrix Q. After manipulating, the error
dynamic equation is

e (m = --kTe + b[u* - u e (x l O , ~) - Us(X) - Ud], (42)

where

1 y~) kVe] (43) u* = ~ I - f (x) + + .

Eq. (42) is equivalent to

= Ace + bc[u* - Uc(X[O,~) - Us(X) - Ud], (44)

where e = (e , k eCn-1)) T and

AC

bC ~-

0
0

0
-An

0

i1

1 0 0 . . . 0 0

0 1 0 . . - 0 0

: : : ' . . : :

0 0 0 --- 0 1
- k n - i kl

(45)

Define Ve = ½eTpe, where P is a symmetric
positive-definite matrix satisfying the Lyapunov
equation

A T p + PAc = - Q , (46)

where Q is also a positive-definite matrix. Applying
(40), (44) and (46), we have

f'e : -½eT Qe + eTpbc[u * - Uc(XlO,~)

- U s (X) - U d]

<<. - ½eTQe +]eTpbcl(lu*l + [ucl) -- eTpbcus

--eT pbcud. (47)

Substituting (37), (40) and (43) into (47) and con-
sidering 11" = 1 case, we have

I?e <~ -- ½eT Qe -- eTpnbsgn(eTp, bk) . kdk

<~ -- ½eT Qe

~<0. (48)

While ll* = 0, let the minimal approximation error
be

= Uc(X I O*) - u*. (49)

The error equation (44) can be written as

= Ace + be[u* - Uc(XlO) - Us(X) - Ud]

= A c e + b c [u c (x l O *) - u c (x l O) - us(x)

- - U d - - ~l]

= Ace + bc[~T~(x) -- us -- Ud -- ~] (50)

where q5 = 0* - 0. Define the Lyapunov function
candidate

1 b r
V = ~ e T p e + -~,~ ~. (51)

We have

= - ~ e T Q e + eTpbe(g~T~(x) -- us -- Ud -- ft) f~

+b-g; 6
),

= - - l e T Q e + b - d p T [T e T p n ~ (X) + 6]
Z 3~

--eTpnb(us + Ud + ~). (52)

I f we choose the adaptive law

0 = ?eTpn~(x), (53)

and Ud = sgn(eTp,bk)kdk, kd > 0 and us = 0 (be-
cause 11" --- 0),

I T T T T (z = _ 2 e Q e - s g n (e pnbr)kde p , b k - e pnb~

<~ - ½eT Qe - eTpnbff. (54)

306 C.-H. Lee, S.-D. Wang~Fuzzy Sets and Systems 80 (1996) 295~13

Table 2
The comparison of the adaptive controller and SOAFC(+D).

Adaptive controller SOAFC(+D)

1 Define mi fuzzy sets
2 Define mi memberships functions, including

widths ai and centers wi for 1 <~i<~n

3 Construct the fuzzy rule base
4 Construct fuzzy basis functions

Assign a
Define ~/
kd (if D-controller is included)

(ifkd is dynamic)
Give two initial rules

A fuzzy system has been proven to be an universal
approximator. I f there are enough fuzzy rules, ~ will
approach zero and lead to P ~< 0. Furthermore, for con-
straint]0[<~Mo, we can choose adaptive law as (38).
The system can also be guaranteed globally stable if
the adaptation law is chosen as (38), a supervisory
control as (37) and the D-controller as (40). We al-
ways have V~ ~</7". Note lie is bounded implies e is
bounded; in other words, x is also bounded.

I f the parameter kd is considered dynamical, we
assume kd is limited below the bound 6, where ~ is
a positive number. How to adjust kd can be found in
[22]. Note whether kd is dynamic or not, it not only
keeps the system globally stable but also improves
transient response of the system by using (40).

4.5. Comparison o f the adaptive controller and

S O A F C (+ D)

For a FLC, several design tasks should be done
before the controller begins to work. In the following,
we shall discuss the design issues between adaptive
FLC [17] and SOAFC(+D). The off-line processes
are the same, e.g. specify kl , . . . ,kn and Q > 0, solve
the Lyapunov equation and design parameters M0, Mx
and M,. The difference between the initial controller
constructions of the two models are listed in Table 2.

From Table 2, we can find there are fewer jobs to
be done in SOAFC(4-D). Especially, it is not neces-
sary to construct the entire fuzzy rule base. In other
words, the SOAFC(+D) has stronger learning abil-
ity. It not only learns the action part but also condi-
tion parts. Furthermore, while the error is accidentally
out of bound set by users, the previous adaptive con-
troller would not handle such circumstance, but the

SOAFC(+D) can also generate a rule by extrapola-
tion to control the situation.

4.6. Comparison between S O A F C and M R A C

Model reference adaptive control (MRAC) is a ba-
sic and effective approach in the field of adaptive con-
trol. In this subsection, we simply compare SOAFC
with MRAC.

The disadvantages of MRAC are the following: (a)
it is difficult to deal with nonlinear plants, (b) it re-
quires some information, such as mathematical form
and relative degree for linear time-invariant system,
(c) it usually lacks prior knowledge for application.
On the other hand, SOAFC has more adaptive para-
meters than MRAC in general and it is difficult to con-
trol MIMO systems.

5. Simulation

In this section, we choose two controlled systems
firstly. Their mathematical models are respectively

Case A:

1 - e -x(t)
Y~(t) -- - - + u(t) (55)

1 4- e -x~t)

and
Case B:

l
Yc(t) -- 1 4- e -x(t~) 4- u(t). (56)

Our control objective is to regulate the plant output
to the origin. Basically, both the two plants are unsta-
ble systems without control. The difference between

C.-H. Lee, S.-D. Wang/Fuzzy Sets and Systems 80 (1996) 295-313 307

8
0

-0.5

-1

-1.5

-2

'1
1.5 -'-, , , ' ' ' ! ! !

'i
0.5

! :

I

2 4 6 8 10 12 14 16 18 20

Time(See)

Fig. 5. An adaptive fuzzy controller for Case A.

the two cases is while state x(t) tracking to the ori-
gin, it does not need control anymore in Case A if
without any disturbance, but Case B must own a con-
stant action to keep x(t) = 0. The parameters are cho-

sen as 7 --- 1.0, Mx = 1.5, M0 = 2.0, f u = 1.0 and
bL = 0.5 for both cases. We define the width ~ in

1 Gaussian function is 3, and it is not necessary to con-
struct every membership function. Since Mx is defined
to be 1.5, we can assume the state error e(t) will be
in the interval [- 2 , 2] with very high possibility. ~ is
set to be 9; that is, there are at most 9 rules in the
rule base. Then we define two boundary fuzzy control

rules:

Rt: IF e(t) is PL, THEN u is rain ,Mo ,

R2"

(57)

) IF e(t) is NL, THEN u is max bL

where / ~ e t . (u) = e x p (- (u - 2) 2) and]~NL(IJ) =

e x p (- (u + 2)2). The threshold q is defined as 0.8. It
means one or two rules will be added to the rule base
while all the firing strengths are smaller than 0.8 as
mentioned in the last section. We use C language to

simulate the control problems and choose sampling
time h = 0.02 s. For comparing the results, the initial

state x(0) is chosen as 1.0, the same as [17].
Fig. 5 shows the outcomes for Case A, where curves

1 and 2 are the simulation results obtained by using
9 random rules and two rules described as is (57),
respectively. They both can track to the origin; espe-
cially curve 2 owns a very good transient response,

whereas the curve 1 touches the boundary and fires

the supervisory control us several times. We can also
find there are several points in curve 1 a little larger
than Mx. Let us consider the other plant Case B. The

results are shown in Fig. 6 by using the same rules as
in Fig. 5. We find the performances are not acceptable.

Their convergent speeds are very very slow. Clearly,
for curve 2, only applying two rules is not enough to

control the system; i.e. it uses a rather sparse rule base.
Furthermore random rules may cause the problem as
shown in Fig. 7. The marks on the curves stand for the

centers of the rules. We can see the action of the rule
centered 1 and - 1 are stronger than the rule centered
2 and - 2 , respectively. That contradicts our intuition.
It is due to this that the rules centered 2 and - 2 are
not trained completely. Hence the rule base evidently

contains several bad rules.

308 C.-H. Lee, S.-D. Wang/Fuzzy Sets and Systems 80 (1996) 295-313

1.5 I
1 i ~ : ~ ! ~ ! !

0.5 ! i i i i J : i

o i ~ . . . , , ~ , , , , , ,

/

0 2 4 6 8 10 12 14 16 18 2 0

T i m e (S e e)

Fig . 6. A n a d a p t i v e f u z z y cont ro l le r for Case B.

3

2

1

0

i . i 2
-1 i i ... ; "'--'"

- 2 .

-3
0 2 4 6 8 10 12 14 16 18 2 0

T i m e (S e e)

Fig . 7. A bad rule b a s e c a u s e d by in i t ia l ly r a n d o m rules,

C - H . Lee, S.-D. Wany/Fuzzy Sets and Systems 80 (1996) 295 313 309

1

0 .8 ..

0 . 6 ... : ..

04 . i . ~ ~

0 .2 i i i i i i i i i

o i i ! : ~ i i i
i c ~ ' i i i i i

-0.2
0 2 4 6 8 10 12 14 16 18 20

T i t m (S e c)

Fig. 8. A SOAFC simulations for Case A and B.

Fig. 8 shows the simulations of SOAFC that uses
the two boundary rules (57). It could control the
state x(t) to zero much faster than Fig. 6 for both
Case A and Case B, but their undershoots seem
rather large. Fig. 9 displays adaptation and gen-
eration of rules. The curves from infinite falling
down stand for the new generated rules. We can
find the actions are not changed much from gen-
eration to steady state. That is due to the genera-
tion o f new rules by interpolation rather than by
random. For improving its transient response, a D-
controller is combined with the original SOAFC.
Assign kd = 30.0 through the following simula-
tions. At first, we combine a simple D-controller
which is

ud = kd • ~. (5 8)

Fig. 10 shows the simulation result. From Fig. 10,
we see that it owns a little faster convergence speed
than Fig. 8, but their undershoots are not improved.
From Fig. l 1, if the proposed D-controller (40) is
included, the smaller undershoot can be found and
settling time is smaller than others. Furthermore, an
advantage of such controller is that it contributes
less control energy than other aforementioned con-

trollers, and it is still guaranteed that it is globally
stable.

Table 3 lists the total control energy from 0 to 20 s
for every controller we apply. In Table 3, AFC repre-
sents adaptive fuzzy controller in [17]. From Table 3,
we can find the total control energy of AFC using two
boundary rules is smallest for Case A, but it cannot
control Case B well. Hence, the S O A F C + D is better
than others. In Case B, except the AFC by random
rules, the control energies o f the other controllers are
almost the same.

For comparing MRAC and SOAFC+D, we choose
the example in [18]. Consider the linear controlled
plant

~fCp(t) = ap(t)Xp(t) + kp(t)u(t), (59)

where ap = 1.0 and kp = 2.0 are unknown (sign ofkp
is known), and a reference model is described by the
first-order differential equation

fern(l) = amXm(t) + kmr(t), (60)

w h e r e am = - 1 . 0 , km = l.O and r(t) = 5.0. The
control input is chosen as

u = ~(t)Xp(t) + k(t)r(t) , (61)

310 C.-H. Lee, S.-D. Wang/Fuzzy Sets and Systems 80 (1996) 295-313

-1

-2

-3
0

: ' * "] . : i .

, i . . . ' " . - . ' .

, • , . . . o

"'-,'"i--~-:- ~ -~ ~ ~~
. . . ~ : : : : - . ' S . ' . ' ~ ' : . ' . : . ~ " . " .

. ~ -:: - ~. ; ; ;

2 4 6 8 10 12 14 16 18 20

Time(Se~)

Fig. 9. An example of adaptation and generation of rules.

Table 3
The total control energy of adaptive controller and SOAFC.

Case A Case B

AFC using 9 random r u l e s 3 3 8 . 0 7 0 7 638.2547
AFC using two rules 57.8256 569.5872
SOAFC 125.9191 566.9734
SOAFC + kd • ~ 97.0321 552.4740
SOAFC + sgn(eTpnb~)kd~ 75.2068 551.5142

and the adaptive laws are

~(t) :-- - sgn(kp)e(t)Xp (t), (62)

/~(t) = - sgn(kp)e(t)r(t) . (63)

Let initial values ~(0) and k(0) be both chosen as
0 s. Fig. 12 shows the simulation results of MRAC
and SOAFC+D. Fig. 13 illustrates the simulation
lesults while ap = 2.0 and kp --- 1.0. The tracking
error of MRAC is the best one we can achieve by
changing adaptive gain. From Figs. 12 and 13, we can
find SOAFC+D cause smaller oscillation and faster
convergence than MRAC. The control energy of
MRAC and SOAFC+D are 449.823 and 269.796 for
Fig. 12, respectively, and are 1394.025 and 1062.216
for Fig. 13.

6. Conclusion

In this paper, an alternative knowledge representa-
tion is proposed first. The TNN model of fuzzy rule
base is more intuitive than conventional BP learn-
ing. So a rule could be added, deleted or modified
without affecting other rules. In other words, it is not
necessary to update all the weights renewedly. The
IKR may require large processing units to implement
when there are numerous rules. Thus we propose the
model TNN. It could definitely decrease the num-
ber of the processing units. This can help hardwares
design, manufacture and even reduce the cost. Sec-
ondly, a SOAFC(+D) is provided. It can generate
rules by itself and use the adaptation law in [17]

C.-H. Lee, S.-D. Wang~Fuzzy Sets and Systems 80 (1996) 295-313 31t

o.g

0.6

0.4

0.2

-0.2
0

. I1 i ~ ¢ I ~ i i

.........i ~ ~ ,,-------,~

2 4 6 8 10 12 14 16 18 20

Tia~(Sex)

Fig. 10. Simulations of SOAFC combining a normal D-controller simulations,

.0.8

0.6

0.4

0 .2

-0.2
0

.......... i i ..

I i
2 4 6 8 10 12 14 16 18 20

Time.(Scc)

Fig. 11. Simulations of SOAFC combining a designed D-controller simulations.

3 1 2 C.-H. Lee , S . -D . W a n g ~ F u z z y S e t s a n d S y s t e m s 80 (1 9 9 6) 2 9 5 - 3 1 3

1 . 5] s!

1 ~ " . i . ~ ~ ~ ! ~ ~
I 1

I t ! ! ! !

F : ~ i i i i i i i
0 . 5 l-i.-.', i . /~ : i i ~ :: i ::

o ~ i " ~ z ".-, --- -~ :~

- 0 . 5 .. " ... ' . . ' : :. : : ,. ! ~ ! !

: ~ , : ~ : ~ ~ : : I i, ' ' .
I] : : ? : : : : :

- 1 . ~ " ; ~ ;

_ 1 . 5 1 i i
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9

T I M E (se~)

F i g . 12. S i m u l a t i o n r e s u l t s o f M R A C a n d S O A F C + D w h i l e ap = 1.0, kp 2 . 0 (M : M R A C , S : S O A F C + D) .

m

,.sq
1 k ! A . ~ ! ! ! ! ~ I

! , ' , , ! ! ~ ~ • ! ::

0 . 5 . : :

: , : i : e 1 • • • :

0 ; 'I ~ .
::, ; :: . : , , ~ - , ~ . . ~ - -

. . . . i i : i i
i : t : / : : : :

~0~5

• S : ~ . : : ~ ! i

•] i i ~ : ~ ~ ~ .~ i ~ . .. i i i _ 1 :.

_ 1 5 1 .

0 O . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9

TIME (se, c)

F i g . 13. S i m u l a t i o n r e s u l t s o f M R A C a n d S O A F C + D w h i l e a p = 2 . 0 , kp = 1.0 (M : M R A C , S : S O A F C + D)

C.-H. Lee, S.-D. Wang~Fuzzy Sets and Systems 80 (1996) 295 313 313

to adjust the consequences o f the firing rules. That

could release much dependence on experts, since it

is not necessary to wri te down all the rules by them.

Furthermore, we design a D-cont ro l le r and combine

it with FLC to speed up the convergence rate, and we

also s imply prove it is g lobal ly stable i f applying the

proposed D-cont ro l le r we design. F rom simulations,

it owns several advantages, e.g. decreasing settling

t ime and undershoot (overshoot) and requir ing less

control energy. The future work is to deve lop a mult i-

input S O A F C + D and the parameters , for example kd

should be adjusted by an adaptat ion law and can keep

the system global ly stable.

References

[I] W.W. Armstrong and J. Gecsei, Adaptation algorithms for
binary tree networks, IEEE Trans. System Man Cybernet.
SMC-9 (1979) 276-285.

[2] H.R. Berenji, Learning and tuning fuzzy logic controllers
through reinforcements, IEEE Trans. Neural Networks 3
(1990) 724-740.

[3] F. Bouslama and Akira lchikawa, Application of neural
networks to fuzzy control, Neural Networks 6 (1993)
791-799.

[4] Chen-Wei Xu and Yong-Zai Lu, Fuzzy model identification
and self-learning for dynamic systems, IEEE Trans. System
Man Cybernet. SMC-17 (1987) 683~89.

[5] Cbin-Teng Lin and C.S. George Lee, Neural-network-based
fuzzy logic control and decision system, IEEE Trans.
Comput. 40 (1991) 1320-1336.

[6] Chir-tlo Chang, Feng-Hsin Huang and J.Y. Cheung, Design
of a fuzzy controller using input and output mapping factors,
1EEE Trans. Systems Man Cybernet. 21 (1991)952-960.

[7] Chuen-Chien Lee, Fuzzy logic in control systems: fuzzy
logic controller part I and II, IEEE Trans. Systems Man
Cvhernet. 20 (1990) 404-435.

[8] Chuen-Tsai Sun, Dynamic compensatory pattern matching in
a fuzzy rule-base control system, Proc. Amer. Control Conj.,
Boston (1991) 502 505.

[9] R. Hecht-Nielsen, Neuroeomputin9 (Addison Wesley,
Reading, MA, 1990).

[10] Flisao lshibuchi, Ryosuke Fujioka and Hideo Tanaka, Neural
networks that learn from fuzzy if-then rules, IEEE Trans.
Fuzz)' Systems I (1993) 85-97.

[11] Junhong Nie and D.A. Linkens, Neural network-based
approximate reasoning: principles and implementation,
Internat. J. Control 56 (1992) 399M-13.

[12] Junhong Nie and D.A. Linkens, Learning control using
fuzzified self-organizing radial basis function network, IEEE
Trans. Fuz-'y 5,),stems I (1993) 280 287.

[13] Jyh-Shing R. Jang, Self-learning fuzzy controllers based on
temporal back propagation. IEEE Trans. Neural Neln'orks
3 (1992) 714--723.

[14] Kiyohiko Uehara and Masayuki Fujise, Fuzzy inference based
on families of ~-Ievel sets, IEEE Trans. Fuzzy Systems I
(1993) 111-124.

[15] B.C. Kuo, Automatic Control Svs'tent.s (Prentice-Hall,
Englewood Cliffs, N J, 1991).

[16] R. Langari, A nonlinear lbrmulation of a class of fuzzy
linguistic control algorithms, Proc. Anter. Control ('otl[[,
Chicago (1992) 2273 2278.

[17] Li-Xin Wang, Stable adaptive fuzzy control of nonlinear
systems, IEEE Trans. Fuzz)' Systems 1 (1993) 146 155.

[18] Narendra and Annaswamy, Stable Adaptive Systems
(Prentice-Flail, Englewood Cliffs, N J, 1989).

[19] T.J. Procyk and E.H. Mamdani, A linguistic self-organizing
process controller, A utomatica I 5 (1979) 15-30.

[20] S. Shao, Fuzzy self-organizing controller and its application
for dynamic processes, Fuzzy Sets and ~v.s'tenls 26 (1988)
151 164.

[21] Shin-icbi Florikawa, Takeshi Furuhashi and Yosbiki
Uchikawa, On fuzzy modeling using fuzzy neural networks
with the back-propagation algorithm, 1EEE 7)'ans. Neural
Networks 3 (1992) 801-806.

[22] Shi-Zhong He, Shaohua Tan and Chang-Chieb Hang, Control
of dynamical processes using an on-line rule-adaptive
filzzy control system, Fuzzy Sets aml Systems 54 (1993)
11 22.

[23] K. Sugiyama, Rule-based self-organizing controller, in: M.M.
Gupta and T. Yamakawa, Eds., Fuzzy Contputin¢l (North-
Holland, Amsterdam, 1988) 341- 353.

[24] Toru Yamaguchi, Naoki lmasaki and Kazuhito Flaruki, Fuzzy
rule realization on associative memory system, Proc. 1990
htternat. JohTt Con[[on Neural Networks, San Diego (1990)
[1720-11723.

[25] L.X. Wang and J.M. Mendel, Generating fuzzy rules
by learning from examples, IEEE Trans. Systems ~l/[an
(~'bernet. 22 (1992) 1414 1427.

[26] B.H. Wang and G. Vachtsevanos, Fuzzy dynamic systems: an
application of fuzzy associative memory with an intermediate
layer. Amer. Control Cot~/;, Boston (1991) 12 13.

