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Abstract

Additive fuzzy systems can control the velocity and the gap between cars in single lane pla-

toons. The system consists of throttle and brake controllers. We first designed and tested a

throttle-only fuzzy system on a validated car model and then with a real car on highway I-15

in California. We used this controller to drive the “smart” car on the highway in a two-car

platoon. Then we designed a throttle and brake controller. The combined system controls the

platoon on downhill parts of the freeway and as it decelemtes to slower speeds. We modeled

the brake controller using the real test data from the bmke system. A logic switch for throttle

and bmke decides which system to use. The gap controller uses only data from its own sensors

and there is no communication among cars. The simulation results show that follower cars with

a combined bmke/throttle  controller can maintain a constant gap when the platoon goes down

hills and slows. An adaptive throttle controller uses a neuml system to learn the fuzzy rules for

different vehicle types.

Key Words: adaptive fuzzy systems, smart-car platoons, model-free control, ellip-

soidal rules, unsupervised clustering, supervised gradient descent, standard additive

model, function approximation.

1 Introduction

Traffic clogs highways around the world. Platoons of cars can increase the flow and mean

speed on freeways. A platoon is a group of cars with a lead car and one or more follower cars

‘Julie Dickerson is with the Electrical and Computer Engineering Department, Iowa State University, Ames, Iowa

50011.
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that travel in the same lane. Electronic links tie the cars together. Computer control speeds their

response times to road hazards so that the cars can travel more safely on their own or in platoon

groups. The lead car plans the course for the platoon. It picks the velocity and car spacing and

picks which maneuvers to perform. Platoons use four maneuvers: merge, split, velocity change,

and lane change [lo], [ll]. A merge combines two platoons into one. A split splits one platoon into

two. A lane change moves a single car into an adjacent lane. Combined maneuvers help cars move

through traffic.

Standard control systems use an input-output math model of the car “plant” and its environ-

ment. Fuzzy systems do not use an input-output math model or exact car parameters. A fuzzy

system F : R” + RP is a set of fuzzy rules that maps inputs to outputs [14]. Fuzzy systems

give a model-free estimate of a nonlinear control function. They compute a conditional mean as

Appendix I shows: F(z) = E[Y]X = z]. The fuzzy platoon controller uses rules that acts like the

skills of a human driver. The rules have the form “If input conditions hold to some degree, then

output conditions hold to some degree” or “If X is A, then Y is B” for multivalued or “fuzzy” sets

A and B. Each fuzzy rule defines a fuzzy patch or a Cartesian product A x B in the input output

state space X x Y: A x B c X x Y. To approximate a function f the fuzzy system F covers the

graph of f with fuzzy patches and averages patches that overlap [15].

The fuzzy platoon controller drives a car in or out of the platoon and acts as a distributed control

system for future freeways. It includes an integrated maneuver controller for course selection and

an individual vehicle controller for throttle, brake, and steering control as shown in Figure 1. We

implemented the individual vehicle controller only.

We designed a fuzzy controller for gap control using throttle only. The gap controller gets

data from its own sensors. We tested the fuzzy gap controller on the Interstate-15 in Escondido,

California. The controlled car followed the lead car as it changed speed and went over hills. The

system performed smoothly in all cases. But when it went down hills the controlled car got close

to the leader.

We next designed a throttle and brake controller. The combined system let us control platoons

on downhill parts of the freeway and during decelerations to slower speeds. We simulated the brake

controller using the real test data from the brake system. A logic switch for throttle and brake

picks when to use each system. This logic switch avoids frequent oscillations between the throttle
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Figure 1: Block diagram of the fuzzy platoon controller.

and the brake controller. Simulation results showed that the follower car using throttle only could

not slow down enough to avoid hitting the leader car on the downhill grade. The follower car with

a combined brake/throttle controller did not collide with the lead car.

We hand tuned the fuzzy sets and rules for the gap controller. Neural learning can also find

the rules from system input-output data. We used a neural-fuzzy system that tuned the fuzzy

rules for the velocity controller with unsupervised and supervised learning. A hybrid system [2]

used unsupervised learning to quickly pick the first set of ellipsoidal fuzzy rules. Then supervised

learning tunes the rules using gradient descent. Each rule defines a fuzzy subset or connected region

of state space and thus relates throttle response, acceleration, and velocity. Section 3 describes the

hybrid ellipsoidal learning system. The appendices formally derive the general fuzzy system and

its learning laws.

2 Additive Fuzzy Systems

A scalar-valued fuzzy system F : R” + R stores m rules of the word from “If X = Aj, then

Y = Bj” or the patch form Aj x Bj C X x Y = R” x R. The if-part fuzzy sets Aj C R” and then-

part fuzzy sets Bj c R have arbitrary set functions oj : R” + [0, l] and bj : R + [0, 11. The system

can use the JOL* ‘nf set function oj or some factored form such as aj(x) = e,!(zr) ***a:(~,)  or oj(z) =

min(aj(zl),  . . .,ujn(z,)) or any other conjunctive form for input vector z = (x1,, . . . , 3,) E R”.
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Figure 2: Architecture of an additive fuzzy system F : Rn + RP with m rules. Each input ~0 E R”

enters the system F as a numerical vector. At the set level zu acts as a delta pulse S(X - 20) that

combs the if-part fuzzy sets Aj and gives the m set values ai( aj(zo) =
J

6(X - Xo)Uj(X)dX.

The set values “fire” the then-part fuzzy sets Bj to give B(i. A standard ad%ive  model (SAM)

scales each Bj with oj(s). The system then sums the B(1 sets to give B. The system output F(xo)

is the centroid of B.

Our fuzzy systems (like most) use min to form oj from the coordinate set functions ai. Product

tends to work better for exponential or Gaussian set functions.

An additive fuzzy system [14]-[15] sums the “fired” then part sets Bj:

B = 2 BJ. = 2 aj(x) Bj . (1)
j=l j=l

Figure 2 shows the parallel fire-and-sum structure of the SAM system. A vector input CC matches or

“fires” the if-part sets Aj of each rule. The system sums the scaled then-part sets Bj and takes the

centroid of the summed sets to give the output F(x). These systems can uniformly approximate

any continuous (or bounded measurable) function f on a compact domain [15].

Figure 3 shows how three rule patches can cover part of the graph of a scalar function f : R + R.

The patch cover shows that all fuzzy systems F : R” --+ RP suffer from rule expcplosion  in high

dimensions. A fuzzy system F needs on the order of kn+p-1 rules to cover the graph and thus

to approximate a vector function f : R” --+ RP where k is the number of sets in each dimension.

4
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Figure 3: Each fuzzy rule defines a Cartesian-product patch or fuzzy subset of the input-output

state space. The fuzzy system approximates a function as it covers its graph with rule patches.

Lone optimal rule patches cover extrema.

Optimal rules can help deal with the exponential rule explosion. Lone or local mean-squared

optimal rule patches cover the extrema [16] of the approximand f-they “patch the bumps.” Better

learning schemes move rule patches to or near extrema and then fill in between extrema with extra

rule patches as the rule budget allows.

The scaling choice B(i = aj (s)Bj gives a standard additive model or SAM. Appendix I shows

that taking the centroid of B in (1) gives [14]-[17]  the SAM ratio

FUj(X)  Vj  C j

F(x)  = j=;

CajCx)  vj *

(2)

j=l

Vj is the nonzero  volume or area of then-part set Bj. cj is the centroid of Bj or its center of mass.

The ratio (2) reduces to the “center of gravity” model of Sugeno [21] and others if VI = . . . = V, > 0.

The SAM theorem (2) implies that the fuzzy structure of the then-part sets Bj does not matter.

The ratio depends on just the volume Vj and location cj of the then-part sets Bj. We need to pick

the scalar centers cj and the volumes Vj. Appendix II uses gradient descent to derivethe supervised

learning laws that tune the SAM parameters aj’ Vj, and cj. The next section shows how to apply

5
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Figure 4: A neural-fuzzy system can learn and tune the fuzzy rules with a hybrid of unsupervised

and supervised learning. Unsupervised competitive learning initializes the supervised gradient-

descent search for rules that locally minimize the mean-squared error of the function approximation.

these general learning schemes for egg-shaped or ellipsoidal fuzzy rules.

3 Learning Fuzzy Rules

Fuzzy rules can come from brains or brain-like systems. We can ask an expert for the if-then

rules or we can act as the experts ourselves and try to state the rules and tune them [9]. Or we

can use a neural (statistical) system to learn the rules from training data. This section describes

a neural-fuzzy system that learns fuzzy rules with both unsupervised and supervised learning as

shown in Figure 4.

3.1 Unsupervised  Rule Estimation with Competitive  Learning

A fuzzy rule patch can take the form of an ellipsoid [2]. This trades the generality of fuzzy rule

patches for the mathematical simplicity of quadratic forms. A positive definite matrix P defines an

ellipsoid in the q-dimensional input-output state space where q = TZ + p (Figure 5). The ellipsoid is

the locus of all z that satisfy [7]

a2 = (2 - m)TP(z - m ) (3)

where cy is a positive real number and m is the center of the ellipsoid in Rq. P has eigenvalues

Xl,.-., X,. The eigenvalues define the ellipsoid axes. The Euclidean half-lengths of the axes equal

+K, * . . , o/A. To simplify the math we used a hyperrectangle to circumscribe the ellipsoid.

The projections onto the input axes form the fuzzy sets. We used symmetric triangular sets centered

at m to approximate these ellipsoidal “shadows”. The unit eigenvectors define direction cosines for

6
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Figure 5: A positive definite matrix defines an ellipsoid about the center m of the ellipsoid. The

eigenvalues of the matrix define the length of the axes. The projections of the ellipsoid onto the

axes define the input and output fuzzy sets A and B. pZ and pY are the lengths of the ellipsoid’s

projections onto the 2 and y axes respectively.

each axis of the ellipse. The direction cosine cosyk;j is the angle between the jth eigenvector and

the ith axis for the kth ellipsoid. The projection of the kth hyperrectangle onto the ith axis has

length Pki:

Adaptive vector quantization (AVQ) systems adaptively cluster pattern data in a state space.

An autoassociative AVQ system combines the input x and the output y of the data to form xT =

[~~]y~].  Competitive learning estimates the first and second order statistics of the data with the

stochastic difference equations for the winning neuron [14]

rqt+ 1) = I(j@) + vt[(z(t) - q#)(z(t) - qj(qT - &@>I. (6)
The coefficients pt and vt must satisfy the convergence conditions of stochastic approximation [14].

In practice rut M i and vt z i. Appendix II gives the details of this learning methqd.



3.2 Supervised Ellipsoidal  Learning

A supervised neural system learns the ellipsoidal rules as it locally minimizes the mean-squared

error of the function approximation. The neural system learns the size and shape of the fuzzy rule

patches that minimize the error. The gradient descent algorithm [14] takes the gradient of the

instantaneous mean-squared error s&:

SEI, = ;(dk - F(Xk))2 . (7)

Here dl, is the desired output of the system. F(xk) is the output of the additive fuzzy system

with input Xk. Gradient descent estimates the eigenvalues, rotation angles, and centroids of the

ellipsoidal patches [2].

We assume that the fuzzy sets are the triangular projections of the bounding hyperrectangles

around the ellipsoids on the axes of the state space. The volume of the ith triangular output set is

pin is the base of the ith fuzzy rule patch projection on the qth or output axis in (4) and 7k;j are

the direction cosines. The fit (fuzzy unit) value ai is the degree to which input x belongs to

the ith fuzzy set:

q(x) = m;ln(aj(x)).

ui is the triangular input fuzzy set for the ith ellipsoid projected on the jth axis:

(9)

u;(x) =
i

1 _ Iz-',ii12
Pij for 12 - 'Zij I i pij/2

0 else.
(10)

The supervised algorithm uses an iterative form of gradient descent:

Ei(k + 1) = E;(k) + &kAEisEI, (11)

E;(k) is a concatenated vector of the ith ellipsoid’s parameters. Acr, is a diagonal matrix of decreas-

ing learning coefficients. E;(k)  contains the eigenvalues, the centroid vector, and the independent

orientation angles of the ith ellipsoid.

The chain rule of differential calculus gives the supervised ellipsoidal algorithm

1 - (12)
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c J&kf 3
j=l

The partial derivatives [2] in (12)-(15) have the form

as&- = -(& - Fk)
aFk

I‘

OFk
l$k c l$“a$[; - CZ)

j=l

d”“=

aFk j=l

dV;k=

j=l

1
AL

aa”=
Pi1

if 0 < 2 - czil 2 p;1/2

a& O else
2- -

Pi1 if -pil/2 < 2 - Czi, 5 0

dV,“=

i

ffiz if Iyiqjl L r/2

a7$j CXiSiTtyiqj
fi if I7iqjI  > r/2

CT=- Wlcosyiqjj

ax& 2 x;jd-

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(22)

(23)
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4 Controller Structure

This section presents a velocity controller for the lead car and a gap controller that keeps the

follower cars at a constant distance from the leader.

4.1 Velocity Controller

In a platoon each car tries to travel at the desired platoon velocity and maintain the correct

spacing. The leader car chooses the desired platoon velocity. When the platoon travels at a constant

velocity each car uses its own velocity controller to maintain the desired platoon velocity. These

systems use the velocity and acceleration data that the car measures. The system output is the

change in throttle angle.

The velocity controller for the ith car in the platoon has two inputs:

Au;(t) = vplatoon - vi(t)

U;(t) = U;(t).

(24)

(25)

-. The output is the change in throttle angle athrottle. So the fuzzy system defines the map F : R2 + R.

One fuzzy rule is IF (ai is zero(ZE)) AND (Au;(t) is medium negative(MN))  THEN (athrottle is

medium negative(MN)).  The velocity difference and the acceleration each have 7 fuzzy if-part sets.

The number of fuzzy rules for the velocity controller is 7 x 7 = 49. Figures 6-7 show the fuzzy sets

and rules for this controller [4].

4.2 Gap Controller

Figure 8 shows the block diagram of the fuzzy gap controller. It consists of a throttle controller

and a brake controller. The gap controller maintains a constant distance between vehicles. The gap

controller for platoon followers uses the differences in acceleration and velocity between cars and

the distance error to achieve a constant gap. The distance error Ad;(k) is the difference between

the desired gap between the cars and the actual gap. A range-finding system on each car in the

platoon measured the distance between the cars. The inputs to the gap controller for the throttle

in the ith car are:

Ah(k) = &sired  - d;(k) (26)

10
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Figure 6: Fuzzy sets for velocity controller.
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Figure 7: Fuzzy rules for velocity controller.

11



velccily  Diiemce
Gap Distance

Figure 8: Block diagram of the fuzzy gap controller that uses the brake and throttle.

Figure 9: If-part fuzzy set functions for distance difference input for the gap controller. The

narrower sets near ZERO give finer control near the desired or equilibrium position.

Au;(k)  = ~;-~(k) - vi(k) (27)

Aai(k) = CL;-l(k)  - a;(k). (28)

So the fuzzy system defines the map F : R3 + R. One fuzzy rule is IF (Aa; is ZE) AND (Au;(k)

is MN) AND (Ad;(k) is ZE) THEN (ath,.&le is MP). Figures 9 through 11 show the fuzzy set values

for the gap controller fuzzy variables Adi, Au;, and Aa;.

The distance error and the velocity difference each have 7 fuzzy if-part sets. The number of

rules for the throttle controller is 7 x 7 x 3 = 147. These rules let a platoon matain the desired gap.

The gap controller had only 3 fuzzy sets of acceleration difference as shown in Figure 11.

More acceleration sets would better predict the car response and give smoother control. But more

sets result in a larger rulebase. We implemented the acceleration input by using the estimated

12



Figure 10: If-part fuzzy set functions for velocity difference input for the gap controller.

Figure 11: If-part fuzzy set functions for acceleration difference input for the gap controller.

13



Figure 12: Gap control surface when distance difference is large negative (LN). Acceleration dif-

ference is m/sec2, velocity diference is m/set,  and throttle change unit is 0.02 degree.

Figure 13: Gap control surface when distance difference is large positive (LP).

acceleration difference as described below. Figures 12 and 13 show the control surfaces for different

values of the distance error Ad;.

The throttle actuator had a mechanical delay of 0.25 seconds. Closed-loop systems with time

delays in the loops tend to have more stability problems than systems without delays [18]. Our

controller used the acceleration data to predict the car’s motion to compensate for this delay. The

vehicle sensors did not measure the acceleration difference directly. We can estimate the acceleration

by differentiating the velocity. But this method is susceptible to noise since even small changes in

velocity make the acceleration difference change greatly. It also generates high frequency terms of

throttle change.

We instead approximate the acceleration input in (28) as the difference of the veIocity measure-

14
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Figure 14: Frequency response of our filter Hop.

ments:

Au;@) = sign(Av;(Ic)  - Au;@ - 1)) c (29)

where constant c depends on the sampling time. Aui(lc) can take only the 3 values -c, 0, or c.

This approximation prevents the acceleration difference from drifting in the presence of noise. We

used 0.05 seconds for the sampling time and c = 20 x 0.03048 = 0.6096.

The output of the throttle controller in the ith car is the change in throttle angle Ae;(Ic). The

input to the car is 0;(h)

O;(k)  = &(/I - 1) + Ad;@) (30)

where 0; (k - 1) is the prior input to the car. A low-pass filter Hop

smoothes 0;(k). So (31) gives

tlfP(k) = $9fP(k - 1) + &(k) (32)

where 6fP(lc)  is the filtered output. Figure 14 shows the frequency response of our filter Hop.

Putting (30) into (32) gives

O;L’(k)  = O;Lp(k - 1) + ;A&&). (33)

since 8;(lc - 1) in (30) becomes OcP(k  - 1). We stored the fuzzy throttle controller as a look-up

table based on the fuzzy sets and rules [8]. We scaled the output of the look-up table by l/3 to

decrease round-off errors.

15
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Figure 15: Block diagram of brake controller.

4.3 Brake Controller

The gap controller can also use the brakes. The fuzzy brake controller outputs change in brake

actuator level. It has 513 levels from 0 to 512. Then a brake model converts this level into a change

in brake force for the simulation. Figure 15 shows the block diagram of the brake controller. There

are two inputs to the brake controller for the ith car:

Adi(k) = &sired  - d;(k)

AU;@) = u;-r(lc) - v;(lc).

Figures 16 and 17 show the fuzzy set values for the brake controller fuzzy variables Ad; and Au;.

One brake rule is If Ad is Medium Positive (MP) and Aw is Medium Negative (MN) then the

change in brake actuator is Medium Small (MS). F gi ures 18 shows the 6 then-part sets for the

output fuzzy variable Abi. The sets do not have the same area and thus do not have the same Vj

terms in the SAM equation (2) for F(s).

The brake controller has 5 x 5 = 25 fuzzy rules. Figure 19 shows the fuzzy rules for the brake

controller. Nine fuzzy sets quantize the fuzzy variables Ad; and Avi.

EP: Extreme Positive

LP: Large Positive

MP: Medium Positive

SP: Small Positive

ZE: Zero

SN: Small Negative

MN: Medium Negative

LN: Large Negative

EN: Extreme Negative

Figure 20 shows the control surface of the brake controller. The brakes are on only when the distance

16
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Figure 16: If-part fuzzy set functions for distance difference input to the brake controller.

atA4
i

1
EN LN MN SN m

I -4.5 -33 -22 -11 0

Velocity difference Av in 0.1 feet per second

Figure 17: If-part fuzzy set functions for velocity difference input to the brake controller.

difference is positive (when the follower car is too close) and the relative velocity is negative (when

the follower car goes faster than the lead car).

We combined the throttle and brake outputs using a logic switch that transitions between

the brake and the throttle. Figure 21 shows how the system used the brake and the throttle for

different distance errors and velocity differences. The brake region shows when the brake is on and

the throttle is off. The brake comes on only when the car is closer than the desired distance and

the follower car goes faster than the car ahead.

A “neutral region” [12] can help avoid frequent transitions between the throttle and brake fuzzy

systems. The brake control signal does not change and the throttle is off when the inputs are in

17



1
;!E SM MS ME MG LG

0 , 0 2 4 6 8 10 +

Brake actuator level change Ab

Figure 18: Then-part fuzzy set functions for the brake actuator change. The fuzzy system F uses

just the centroids cj and the areas or volumes Vj of the 6 then-part sets to compute the output

F(a). Appendix I gives the details of this computation.
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Figure 19: Fuzzy rules for the brake controller. The if-part fuzzy sets are Av and Ad. The then-part

sets give the change Ab in the brake actuator signal.
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Figure 20: Control surface for fuzzy brake controller. The output unit is 0.15 degree change for

brake pedal.

Figure 21: Domain of look-up table for the fuzzy gap controller.
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the neutral region. Figure 21 shows the neutral region for the fuzzy brake controller. The neutral

region covers small values of the inputs Au and Ad. The neutral region is that part of the control

surface in Figure 20 that equals zero.

The hardware on the test car had limited memory and used only integer operations. It stored

the fuzzy gap controller as a look-up table based on the fuzzy sets and rules for throttle and brake

control. Figure 21 shows the domain for the look-up table. The rectangle shows the control region

for the gap controller look-up table. The white region shows the throttle system. The shaded

region shows the brake system. And the black region shows the neutral region. The horizontal axis

gives the distance difference in feet (ft). The vertical axis gives the velocity difference in &ft/sec.

We thresholded all inputs outside these limits to the maximum or minimum values of the domain.

The fourth quadrant shows the brake look-up table. One fuzzy rule for this case has the form IF

(Aw;(Ic) is MN) AND (Ad;(k) is MP) THEN (&rake is MS).

The look-up table for the throttle system had 3 x 49 x 97 = 14,259 entries. The distance

difference varied from -24 ft to 24 ft in 1 foot units and has 49 entries. The velocity difference

had 97 entries as it varied from -4.8 ft/sec to 4.8 ft/sec in l/10 ft/sec units. The look-up table

for the brake system had 25 x 49 = 1225 entries since it applied only in the 4th quadrant.

5 Car Models and Sensor System

We used two car models to test our fuzzy velocity and gap controllers. The first model was

a second-order car model that we used to check our controller design and to test the fuzzy rules.

The second model was a nonlinear “validated” longitudinal car model. The Ford Motor Company

designed this model and we used it to test our controllers.

5.1 Car Models

The second-order car model [19] had two equations of motion:

rniui = m;& - Kd;vf - dmi - m;g sin ,B; (36)

ij=-~+ u' (37)z 2 v-i{4
The force law (36) comes from Newton’s second law of motion F = mu. The term m& is the tractive

engine force that the wheels apply to the road. The variables a; and vi stand for acceleration and

20
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Figure 22: Validated car model from the Ford Motor Company.

velocity. Kdiv;2 and d,; give the aerodynamic and mechanical drag forces. m; is the total mass

of the car and cargo and r; is the engine time lag. The term m;g sin ,B; gives the acceleration due

to gravity. p; is the inclination of the hill from horizontal and g is the acceleration due to gravity

of 9.8 m/s2. The throttle angle U; is the input to the system and changes the “jerk” or rate of

acceleration. We used the coefficients [4] ri = 0.2, Kdi = 0.44, and dmi = 352.

Figure 22 shows the basic subsystems of the validated longitudinal car model that we used to

design and test our controllers. Each block of the model is a car subsystem. The engine torque

is the output of the engine subsystem. The engine torque is a nonlinear function of the air/fuel

ratio, the exhaust gas recirculation, the cylinder total mass charge, the spark advance, the engine

speed, the drivetrain load, and the throttle angle [12].  The output of the transmission subsystem

is the transmission torque and gear state. The drivetrain system computes the car’s velocity

and acceleration based on the road conditions and the car loading. Ford Motor Company [12]

“validated” or tested and tuned this proprietary math model. The inputs to this model are the

throttle angle and the brake force. The outputs are the car’s speed and acceleration.

Each car has a ra.dar system above its front bumper. The radar measures the distance and the

velocity difference between the computer controlled car and the car ahead.
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Figure 23: Brake force as a function of the actuator bit value.

5 . 2  Brake Models

We modeled the brake to test the fuzzy brake controller. The Ford-tuned car model in Figure 22

needs an input brake torque. The brake controller gives as output a bit value to the brake actuator.

We modeled the brake using brake data from VORAD Incorporated. The test car was a Lincoln

Town Car. This data gave the deceleration based on the brake actuator bit input value and the

.car velocity. Newton’s second law F = ma gave the total force that equals the input bit value for

the mass m of 4031 pounds.

The nonlinear validated longitudinal car model gave a total drag force Y in pounds:

Y =50+o.819xv+.0192xv2 (38)

V is the car velocity in miles per hour (mph). Subtracting the drag force from the total force gives

the brake force that corresponds to the brake actuator input bit value:

Fb=F-Y-D (39)

F, is the brake force and D is the force from an external disturbance such as hill. We interpolated

between data points to get the curve in Figure 23. It shows the brake force with respect to the

actuator bit value using F = mu and (38) with brake data from the Lincoln Town Car.
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6 Simulation and Test Results

6.1 Learning Fuzzy Rules

We used the hybrid learning system described in Section 3 to learn the fuzzy sets and rules

for the velocity controller. Unsupervised learning gave the first set of rules. Then we tuned these

rules to improve the controller’s response. The training data came from the car model in (36) and

(37) [19].  The ea1 der velocity controller in [4] gave 7,500 training samples in 200 trajectories for a

sport utility car. The training vectors (a, Au, dthrottle) defined points in the 3-D input-output space.

Unsupervised ellipsoid covariance learning clustered the data and computed its local statistics. The

adaptive vector quantization system had 450 synaptic vectors or local pattern classes as discussed in

Appendix II. The sum of the ellipsoid projections onto each axis of the state space gave a histogram

of the density of the pattern classes. We chose 7 if-part subsets of each of the input axes. The

center of each fuzzy set matched a peak in the histogram.

We partitioned the state space into a grid of rule patches. To find the rules we counted the

number of synaptic vectors in each cell. Clusters of synaptic vectors in fuzzy rule cell defined the

rules [14]. Appendix II gives the details of this unsupervised product - space clustering.

Then supervised learning tuned the rules to minimize the mean-squared error for the training

data. There were 49 rules. The supervised system used 30,000 cycles to tune the 49 rules. Figure 24

compares the platoon velocity for the lone unsupervised and hybrid controllers. The desired velocity

was 25 m/set.  The hybrid controller accelerated faster than did the unsupervised learning system.

The hybrid controller had no overshoot at the desired speed.

6.2 Gap Controller with Throttle Only

The hardware on the test car had limited memory and used only integer operations. We

stored the fuzzy controller as a look-up table based on the fuzzy sets and rules in Section 4.2. We

simulated small platoons over a range of velocity changes. The throttle actuator had a mechanical

delay of 0.25 seconds. We used the validated car model Figure 22 for these simulations. Figures 25

and 26 show the results for a three-car platoon that changes velocity due to terrain changes such as

hills. The desired gap distance was 9 meters. The follower cars maintained the desired gap distance

except for the transients at the start of the simulation.
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Figure 24: Comparison of the velocity controller performance after lone unsupervised learning and

after hybrid learning with unsupervised clustering and supervised gradient descent. The hybrid

controller gave a faster response and had no overshoot.

- We also simulated cases where additive measurement noise corrupted the sensor input API;(~).

The signal-to-noise ratio (SNR)

SNR = 10 log10  g decibels
4

(40)

measured the uncertainty in the sensor data. Here a; and a: stand for the variance of the velocity

difference signal Au; and the variance of the measurement noise. Figures 27 and 28 show that the

fuzzy throttle system gave robust control in the presence of noise. The noise had little effect on

the velocity of the follower car in the 2-car platoon. The noise did make the gap jiggle but never

by more than 1 meter.

6.3 Roadway Tests for Throttle  Controller

We tested the gap controller on highway I-15 in Escondido, California. We put our controller in

a Lincoln Town Car from VORAD Incorporated. The follower car got data from the radar system

on the front of the car.

The radar measured the distance and the velocity difference between the computer-controlled
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Figtire 25: Simulation results for the second follower car in a 3-car platoon. The car changes speed

in the presence of hills. It tends to maintain the desired gap of 9 meters between it and the platoon

leader. The throttle actuator had a mechanical delay of 0.25 seconds.
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Figure 26: Simulation results for the third follower car in a 3-car platoon. The third car also tends

to maintain the desired gap of 9 meters between it and the second car but it does so with more

variability.
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Figure 27: Simulation results for the follower car in a 2-car platoon when the signal-to-noise ratio

is 27db. The gap error due to noise never exceeds 1 meter.
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Figure 28: Simulation results for the follower car in a 2-car platoon when the signal-to-noise ratio

is lldb. The additive noise has less effect on the car’s velocity than on the gap it tries to maintain

with the lead car.
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car and the car ahead. The radar tracked the car ahead and had a measurement delay of 0.05

seconds. Figure 29 (a) hs ows the follower car gap as the platoon accelerated. Figure 29 (b) shows

the closing rate between the cars. Figure 29 (c) hs ows the throttle value as the car accelerated.

The desired gap was 125 feet. The follower car dropped back because the initial gap was too short.

The platoon went up and down hills in the second test. The desired gap was again 125 feet.

The follower car dropped back as the platoon started up the hill. Figure 30 (a) shows the gap

distance as the platoon went up a hill. The follower dropped back and then moved to the right

gap. Figure 30 (b) shows the closing rate between the cars. The spike at 15 seconds occurred when

the radar sensor briefly lost the lead car in the platoon. The follower car maintained a constant

throttle until the sensor detected a new target. Figure 30 (c) shows the throttle value as the car

went up the hill.

6 .4 Gap Controller with Throttle and Brake

The gap controller must use the brakes to slow the car if the engine torque is not sufficient.

We simulated cases where braking can avoid a collision as when the platoon moves up and down

hills or when the platoon slows down.

We simulated hills as external disturbances. Figure 31 shows the leader car’s velocity profile

and the external disturbances. These disturbances correspond to a 5% grade both up hill and down

hill. Figure 32 shows the simulation results with the throttle only gap controller. The car cannot

avoid a collision without braking due to the steep downhill grades.

Figure 33 shows the simulation results for a gap controller that uses both the brake and throttle.

The follower car applies the brakes so that it will not hit the leader. The gap decreases to 5 meters

before the car slows to the desired speed of 60 mph.

The follower cars also need brake control when the platoon slows down. Figure 34 shows the

simulation results without using a brake when the platoon decelerates. The leader car decelerates

from 70 mph to 50 mph starting at t = 160s. The leader car maintains 50 mph at t = 170s. The

deceleration at t = 160s forced the follower car to brake to avoid a collision. Engine torque cannot

slow the car down enough. Figure 35 shows the simulation results of the combined throttle and

brake system. The combined system avoids the collision and does not oscillate between the throttle

and brake.
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Figure 29: Follower car data as a two-car platoon accelerates on the highway. (a) shows the gap.

(b) shows the closing rate between the cars. (c) shows the throttle values for the follower cars. The

follower car drops back because the initial gap was less than the desired gap of 125 feet. The radar

had a measurement delay of 0.05 seconds.
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Figure 30: Follower car data as a two-car platoon climbs a hill. (a) shows the gap. (b) shows the

closing rate between the cars. The spike at 15 seconds shows where the radar sensor briefly lost

the lead car in the platoon. (c) shows the throttle values for the follower cars as the platoon went

uphill.
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Figure 31: Profile of leader car in a 2-car platoon. External forces that can model hills. The

triangles model both a 5% grade uphill and downhill.
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Figure 32: Simulation results for the follower car using throttle only for up and down hills. The

follower car cannot slow down enough to avoid hitting the lead car on the downhill grade (t M 170s).
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Figure 33: Simulation results for the follower car with a gap controller that combines throttle and

brakes. The cars follow the velocity and terrain profile in Figure 24. The follower car approaches

the leader but does not collide with it.
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Figure 34: Simulation results using throttle only for a lead car deceleration of 0.09g. The follower

car collides with the leader at t M 165s.
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Figure 35: Simulation results combining throttle and brake controller for a platoon deceleration of

0.09g. The follower car approaches the leader but does not collide.
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7 Conclusion

An additive fuzzy system can control the velocity and the gap of cars in single lane platoons. We

used this controller to drive the smart car on the highway in a two-car platoon. We first designed

and tested the controller using throttle only with a validated car model and then with a real car on

highway I-15 in California. Then we added the brake controller and simulated it. The next phase

of the fuzzy platoon controller will add the steering controllers so the platoon can maneuver on the

highway.

The controller worked well for coupled systems where a series of objects must track and predict

the object in front of it. Networks of these controllers could control the rate of message or car traffic

flow through electronic and physical intersections. The coupled system can differ. The distributed

structure of the fuzzy controller could apply to factory assembly lines or to robotic limb control.

Unsupervised ellipsoidal learning tuned the fuzzy rules and sets for cars of different sizes and

engine types. This gives a new way to find a fuzzy system using only data from a human driver

or other controller. Supervised learning further tuned the rules. Ellipsoidal learning can tune any

control system if it has access to input-output data as in the control of many biological or economic

processes. 0 -1n ine adaptive fuzzy control systems with ellipsoidal learning can adapt the system

over time as engine parameters and road conditions change. Future learning schemes may tune the

ellipsoidal rules with techniques other than gradient descent or may use rules of other shapes that

give a better function approximation.
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Appendix I: SAM Theorem

Theorem. Suppose the fuzzy system F : R” + R* is a standard additive model: F(x) =

Centroid(B) = Centroid(Faj(x) Bj). Then F(x) is a convex sum of the m then-part set cen-
j=l

troids:
fJCLj(X)  vj Cj

F(x) = j=; = &lj(X) Cj e (41)
Cajtx) vj j=l

j=l

The convex coefficients or discrete probability weights PI(Z),  . . . , pm(x) depend on the input x

through

Pj(“> = aj(x> vj

2 ak(X) vk

(42)

k=l

Vj is the finite positive volume (or area if p = 1) and cj is the centroid of then-part set Bj:

vj = JRpbj(yl,...,y~)dY1...dy~ > 0

Cj = sRpY bj(Yl,...,Yp)dYl...dYp

J
Rpbj(yl,...,yp)dY1...dyp

Proof. There is no loss of generality to prove the theorem for the scalar-output case p = 1 when

F : R” + RP. This simplifies the notation. We need but replace the scalar integrals over R with

the p-multiple or volume integrals over RP in the proof to prove the general case. The scalar case

p = 1 gives (43) and (44) as

vj= O”
J bj (Y)dY-ccl

r Y body
Cj = -“,

I bj (Y)dY-co

(45)

(46)

Then the theorem follows by expanding the centroid of B and invoking the SAM assumption

F(x) = Centroid(B) = Centroid(eaj(x)  Bj) to rearrange terms:
j=l

F(a) = Centroid(B) (47)
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J

co

Y b(ddy
-co

=

J

00

b(y)dy
-co

00 m

SC
Y b;(y)&

-co j=l
=

KJm

JC
b;(y)&

--03  j=l

Jm c
Y m aj (XPj (Y)&

-co j=l
=

mm

SC
aj (x)bj(Y)dY

--OO j=l

2 aj (XI Jm Y bj (Y)dY
j=l

=

gaj(x)  /- bj(Y)dY
j=l -co

5 aj(x)Vj -:y:((yJdyI
j=l 3

= m..._
C aj(x>Vj
j=l

FUj(X) vj Cj
j=l

= m

CajCx)  vj
j=l

Q.E.D.

We can further weight each rule with a scalar weight wj to give

F(X) = Centroid(cutjaj(x)  Bj)
j=l

2 WjUj(X)  Vj Cj
j=l

=

.2 WjUj(X)  Vj
j=l

(48)

(49)

(51)

(52)

(53)

(54

(55)
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The weight wj has the same form as the~area or volume weight Vj, We use w1 = . . . = w,,, > 0

in the paper. So the weighted sum (55) re uces to (41). The centroidal structure (47)-(48) of thed

fuzzy system shows that all centroidal fuzzy systems compute a conditional expectation:

I
03

Y b(x&G
F ( x )  = -“,

J

(56)
b(x, ddy-c-3

=
Jrn

wbI4dy (57)
-CO

= E[YIX =  x ] (58)

since

P(Yl4 =
b(xc, Y>

J

03 (59)
b(x, y)dy-cc

defines a conditional probability density even though b(x, y) > 1 may hold for the integrable function

b 2 0.

The SAM ratio (41) reduces to Sugeno’s [al] “center of gravity” model

gajCx) Pj
F(x) = j=‘, (60)

C aj(x>
j=l

if the peaks Pj of the then-part sets Bj equal the then-part set centroids cj and if all then-part sets

Bj have the same nonzero area or volume Vj : Pj = cj and VI = + -. = V, > 0.
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Appendix II: Learning in SAMs: Unsupervised Clustering and

Supervised Gradient Descent

A fuzzy system learns if and only if its rule patches move or change shape in the input-output

product space X x Y. Learning might change the centers or widths of triangle or trapezoidal sets.

These changing sets then change the shape or position of the Cartesian rule patches built out of

them. The mean-value theorem and the calculus of variations show [16] that optimal lone rules

cover the extrema or bumps of the approximand. Good learning schemes [2]-[3] tend to quickly

move rules patches to these bumps and then move extra rule patches between them as the rule

budget allows. Hybrid schemes use unsupervised clustering to learn the first set of fuzzy rule

patches in position and number and to initialize the gradient descents of supervised learning.

Learning changes system parameters with data. Unsupervised learning amounts to blind cluster-

ing in the system product space X x Y to learn and tune the m fuzzy rules or the sets that compose

them. Then k quantization vectors qj E X x Y move in the product space to filter or approximate

the stream of incoming data pairs (x(t), y(t)) or the concatenated data points z(t) = [x(t)jy(t)lT.

The simplest form of such product space clustering [14] centers a rule patch at each data point and

thus puts k = m. In general both the data and the quantizing vectors greatly outnumber the rules

and so k >> m.

A natural way to grow and tune rules is to identify a rule patch with the uncertainty ellipsoid

[l]-[2]  that forms around each quantizing vector qj from the inverse of its positive definite covariance

matrix I<j. Then sparse or noisy data grows a patch larger and thus a less certain rule than does

denser or less noisy data. Unsupervised competitive learning [14] can learn these ellipsoidal rules

in three steps:

lIz(t) - 4i(t)ll = minW(t> - aMI ..., II4 - qk(t)ll) (61)

(62)q;(t+ 1) =
qjCt) + Pt[Z(t)  - Qj(t)l ifi=j

Qi (t> ififj

Iqt + 1) =
{

Icj(t) + Q[(z@> - !lj(t>>T(Z(t>  - QjP)) - lj(t>l ifi=j
(63)

k--;(t) ifi#j

for the Euclidean norm ]]z]]” = Z; + * * . + .z:+,.
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The first step (61) is the competitive step. It picks the nearest quantizing vector qj to the

incoming data vector z(t) and ignores the rest. Some schemes may count nearby vectors as lying in

the winning subset. We used just one winner per datum. This correlation matching approximates a

great deal of the competitive dynamics of nonlinear neural networks. The second step updates the

winning quantization or “synaptic” vector and drives it toward the centroid of the sampled data

pattern class [13]. The third step updates the covariance matrix of the winning quantization vector.

We initialize the quantization vector with sample data (qi(0)  = z(i)) to avoid skewed groupings and

to initialize the covariance matrix with small positive numbers on its diagonal to keep it positive

definite. Projection schemes [l]-[5] can then convert the ellipsoids into coordinate fuzzy sets. Other

schemes can use the unfactored joint set function directly. Supervised learning can also tune the

eigenvalue parameters of the rule ellipsoids.

The sequences of learning coefficients {pt} and {vt} should decrease slowly [14] in the sense00 03
of cpt = 00 but not too slowly in the sense of c p: < 00. In practice pt w $. The covariance

t=1 t=1
coefficients obey a like constraint as in our choice of ut = 0.2[1- A] where N is the total number

of data points. The supervised learning schemes below also use a like sequence {pt} of decreasing

learning coefficients.

Supervised learning changes SAM parameters with error data. The error at each time t is the

desired system output minus the actual SAM output: Et = dt - F(xt). Unsupervised learning

uses the blind data point z(t) instead of the desired or labeled value dt. The teacher or supervisor

supervises the learning process by giving the desired value dt at each training time t. Most super-

vised learning schemes perform stochastic gradient descent on the squared error and do so through

iterated use of the chain rule of differential calculus.

Supervised gradient descent can learn or tune SAM systems [5], [17] by changing the rule weights

wj in (64), the then-part volumes Vj, the then-part centroids cj, or parameters of the if-part set

functions aj. The rule weight utj enters the ratio form of the general SAM system

2Wj Uj(X) I$ Cj
F ( x )  =  “=; (64)

C wj aj(x) 5
j=l

in the same way as does the then-part volume Vj in the SAM Theorem. Both cancel from (53) if

they have the same value-if w1 = . . . = w, > 0 or if VI = . . . = V, > 0. So both have the same
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.

learning law if we replace the nonzero  weight wj with the nonzero  volume Vj or Vj’:

dEtwitt+ l> = wj(t> -PLt dvlj

dEt dF
= W j ( t )  - /Lt - -dF dwj

Pjtxt)
= Wj(t)+/-hEt  -Cwj(t) [ j - F(xt)l

(65)

(66)

(67)

for instantaneous squared error Et = $(dt - F(x~))~ with desired-minus-actual error st = dt - F(xt).

We include the rule weights here for completeness. Our fuzzy systems were unweighted and thus

used wr = . . . = w, > 0. The volumes then change in the same way if they are independent of the

weights (which they may not be in some ellipsoidal learning schemes):

84
vjtt+l) = Vj(t)-/Qm (68)

3

= K(t) + Pt &t ‘e[Cj - F(Q)] (69)
3

The learning law (67) follows since e = --E and since

dF
Uj(X) Vj CjF W; a;(x) r/; - Uj(X) Vj 2 W; a;(x) K Ci

i=l i=l
-=
dWj

(5 wi u;(x)  VI2
i=l

m m

Wj C&j(X)  Vj
Cj C 20; Ui(X) Vi C wi ui(x) K ‘i

= m
[ A=’ _ i=; 1

W j  2 W; a ; ( x )  K C W; a ; ( x )  V;

i=l i=l

CWi Ui(x) K
i=l

from the SAM Theorem.

The centroid cj in the SAM Theorem has the simplest learning law:

%tt + 1) = cj(t) - pt do dcj

(70)

(71)

(72)

(73)

= cj(t)  + Pt Et pj(Xt) . (74)

So the terms wj, Vj, and cj do not change when pj M 0 and thus when the jth if:part  set barely

fires: Uj(Xt)  M 0.
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Tuning the if-part sets involves more computation since the update law contains an extra partial

derivative. Suppose if-part set function aj is a function of 1 parameters: aj = aj (mf , . . . , mg). Then

we can update each parameter with

.

(75)

(76)

Exponential if-part set functions can reduce the learning complexity. They have the form
aj = ,~j(m~,--,m~) and obey hi -amk - aj

af,(ml,...,ml)3am; * Then the parameter update (76) simplifies to
3

m:(t + 1) = m:(t) + tit Et pj(xt)[cj  - F(xt)]s *
3

(77)

This can arise for independent exponential or Gaussian sets aj (x) = fi exp{ fj (xi)} = exp{ 2 fj (xi)} =
i=l i=l

n .

exp{fj (x)1- The exponential set function aj(x) = exp{xu>(vf - x;)} has partial derivatives
i=l

+$ = I$ - xk(t) and 3 = $.
3 3

The Gaussian set function ai = exp{ -$k(” iIrn .) }
i=l

& _ (~k-m:)a3

’ 2 has mean partial derivative $$ =

zk-rnk3 and variance partial derivative
($I2

d c -
O3 (u3)” * Such Gaussian set functions reduce the

SAM model to Specht’s [20] radial basis function network. We can use the smooth update law

(77) to update non-differentiable triangles or trapezoids or other sets by viewing their centers and

widths as the Gaussian means and variances.
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