Elsevier

Signal Processing

Volume 22, Issue 1, January 1991, Pages 3-23
Signal Processing

Image processing
Morphological transformations of binary images with arbitrary structuring elements

https://doi.org/10.1016/0165-1684(91)90025-EGet rights and content

Abstract

This paper proposes a versatile algorithm for computing dilations and erosions of digital binary pictures with structuring elements of arbitrary size and shape. The first step consists in a tracking of the contours of the image under study and their encoding as loops. In a second step, the structuring element is efficiently propagated along the different loops thanks to its encoding in a customized data structure. The algorithm turns out to be extremely fast whatever the utilized elements. Moreover, even when simple shapes like squares or hexagons are considered, it is faster than most existing implementations. Finally, the present paper provides some examples of application, which highlight the practical interest of arbitrary structuring elements in the field of mathematical morphology.

Zusammenfassung

Dieser Aufsatz stellt einen anpassungsfähigen Algorithmus für die Bestimmung von Dilatationen und Erosionen binärer Bilder mit Hilfe beliebiger Structurierender Elemente vor. Der erste Schritt besteht darin, die Umrisse des betrachteten Bildes zu erfassen und sie als Schleifen zu Kodieren. In einem zweiten Schritt wird das strukturierende Element, das mittels einer geigneten Datenstruktur dargestellt ist, entlang den Schleifen verbreitet. Der Algorithmus arbeitet schnell und wirksam mit allen möglichen strukturierenden Elementen. Des weiteren, selbst wenn das Element eine einfache Form hat, wie ein Viereck oder ein Sechseck, sind die Rechenzeiten kürzer als bei den meisten existierenden Implementierungen. Am Ende des Aufsatzes werden Anwendungsbeispiele erläutert, die zeigen daβ die Verwendung beliebiger strukturierender Elemente für die mathematische Morphologie von groβem Interesse ist.

Résumé

Cet article propose un algorithme souple et performant pour déterminer des dilatations et érosions d'images binaires avec des éléments structurants quelconques. La premiére étape consiste en un suivi des contours de l'image considérée et en leur codage sous forme de boucles. Dans un deuxième temps, l'élément structurant, représénté sous la forme d'une structure de donnée appropriée, est efficacement propagé le long de ces boucles. L'algorithme s'avère extrêmement rapide quel que soit l'élément structurant employé. En outre, même lorsque cet élément est une forme simple, comme un carré ou un hexagone, les temps de calculs sont inférieurs à ceux de la plupart des implémentations existantes. La fin de l'article est consacrée à des exemples d'application, qui prouvent que l'utilisation d'élément structurants quelconques présente un grand intérêt pratique en morphologie mathématique.

References (28)

  • C. Gratin

    Elaboration d'un logiciel de morphologie mathématique sur micro-ordinateur

  • C. Lantuéjoul et al.

    On the use of geodesic metric in image analysis

    J. Microscopy

    (1981)
  • C. Lantuéjoul et al.

    Geodesic methods in image analysis

    Pattern Recognition

    (1984)
  • B. Laÿ

    Recursive algorithms in mathematical morphology

    B. Laÿ

    Acta Stereologica

    (1987)
  • Cited by (64)

    • Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer's disease

      2022, Computer Methods and Programs in Biomedicine
      Citation Excerpt :

      In this case, we discarded the deformed images generated and used only the deformed meshes. The binary masks defined by the meshes were expanded with a morphological dilation [50,51] operation, using a 3-D sphere structuring element with an eight-voxel radius to incorporate the surrounding structures (e.g., the amygdala and parahippocampal gyrus) around the two hippocampi. The landmarks were detected and matched using the Phase Congruency (PC) based detector proposed by Villa-Pinto and Ferrari [52] and described using both the original PC descriptor and its adaptation of the spider web descriptor proposed by Ankerst et al. [53].

    • Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy

      2020, Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy
    • Operators which are translation invariant

      2020, Advances in Imaging and Electron Physics
    • Segmentation of liver and vessels from CT images and classification of liver segments for preoperative liver surgical planning in living donor liver transplantation

      2018, Computer Methods and Programs in Biomedicine
      Citation Excerpt :

      The largest object is retained for further processing and other objects are removed. The largest object is then eroded using the binary erode image filter [36,37] in ITK [32] by five pixels determined by an exhaustive experiment to further remove any falsely identified objects that do not belong to the liver (Fig. 2.c). Five to six slices are selected every 40 slices in the binary volume as candidates for seed point identification.

    • MARGA: Multispectral Adaptive Region Growing Algorithm for brain extraction on axial MRI

      2014, Computer Methods and Programs in Biomedicine
      Citation Excerpt :

      Dilation. In order to restore the initial size before the erosion, a dilation operation [28,29] have to be applied with the same structural element used in the erosion step. In our implementation we use the ITK implementation.6

    View all citing articles on Scopus

    Present address: Division of Applied Sciences, Harvard University, Pierce Hall, Cambridge MA 02138, USA.

    View full text