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Abstract. Fractal stochastic processes are examples of semi-Markov processes where the signal behaviour is a function of the

prefiltering bandwidth. In this paper we develop schemes for estimating such fractal models when they are hidden (imbedded)

in noise. We reformulate this hidden fractal model (H FM) problem in the scalar case as a higher order scalar or first order

2-vector homogeneous hidden Markov model (H MM) problem in which the state consists of the signal augmented by the

time to the last transition. With this reformulation, we can apply HMM signal processing techniques to obtain optimal

estimates of the signals and signal model parameters, including transition probabilities and noise statistics. Also, the signal

levels and fractal dimension can be estimated.

Zusammenfassung. Fraktale stochastische Prozesse sind Beispiele von Semimarkovprozessen, wobei das Signalverhalten eirw

Funktion der Vortilterbandbreite ist. In diesem Beitrag entwickeln wir Methoden fiir die Schiitzung solcher fraktaler Modelle,

die in Rauschen ‘versteckt’ (eingebettet) sind. Wir formulieren dieses Problem der Bestimmung eines hidden fractal model
(H FM) im skaleren Fall neu als ein Problem zur Bestimmung eines homogenen hidden Markov model (HMM), das entweder

skalarwertig und von hoherer Ordnung ist oder vektorwertig mit zwei Komponenten und von erster Ordnung. Dabei besteht

der Zustand aus dem Signal, vermebrt urn die Zeit his zum Ietzten Ubergang. Mit dieser Neuformulierung konnen wir

HMM-Signalverarbeitungstechniken anwenden, urn die optimalen Schatzwerte fiir die Signale und Signalmodellparameter

einschlie131ich der Ubergangswahrschei nlichkeiten und der Rauschstatistiken zu erhaften. Ebenso ktinnen die Signal pegel

und die fraktale Dimension geschiitzt werden.

Resum6. Les processus stochastiques fractals sent des exemples de processus semi markoviens pour Iesquels Ie comportment

du signal est fonction de la Iargeur de bande du prefiltrage. Nous dtveloppons dam cet article des m6thodes permettant
d’estimer de tels modeles fractals quand ils sent caches (immerges) clans Ie bruit, Nous reformulons Ie probl~me de ce modele

fractal cacht (en anglais hidden fractal model, HFM) clans Ie cas scalaire comme un probleme de mod~le de Markov cache

(en anglais hidden Markov model, HMM) scalaire d’ordre sup6rieur ou vectoriel de dimension deux et d’ordre un clans
Iequel I’&tat est constitui par Ie signal augment< du temps jusqu’ii la derni>re transition. A I’aide de cette reformulation, nous

pouvons appliquer Ies techniques de traitement de signaux HMM afirr d’obtenir [es estimations optimales des param?tres du
signal et du mod.51e de signal, ce qui inclue Ies probabilitts de transition et la statistique du bruit, De plus, Ies niveaux de

signal et la dimension fractale peuvent eux aussi $tre estimt%.
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1. Introduction

Discrete-state hidden Markov models (HMMs)

with time-invariant transition probabilities have

been widely used to model noisy physical systems

in areas such as communication systems, speech

processing and biological signal processing.

However, in some physical systems, the rate of

transition from one state to another could well be

a function of the bandwidth of the preprocessing

filters, referred to by some authors as the time scale

in which it is observed and so the transition prob-

abilities depend on the time to the last transition.

Such ‘fractal’ stochastic processes have time-

varying transition probabilities described in terms

of a fractal dimension. The longer the time spent

in a particular state, the greater the probability of

remaining in the particular state. The notion of an

HMM then generalizes naturally to that of a hidden

fractal model (HFM), being a useful and broad

class of HMMs that are non-homogeneous, i.e.,

with time varying transition probabilities. HFMs

can be characterized in terms of state signal levels,

time-varying state transition probabilities and

noise characteristics. In this paper one scheme for

estimating such HFMs is proposed.

This paper has been in part motivated by our

curiosity to see if HMM signal processing tech-

niques naturally generalize for HFMs, and if so,

whether there is any incentive for working with

such techniques instead of HMM techniques in

some of the areas of application of HMM signal

processing. One particular class of signals of inter-

est to our work is that reported in the biophysical

literature concerning ion channel currents in cell

membranes [14]. Our previous work has been with

first order HMM representations of ion channels

[3]. However, other workers [8-10] suggest that

fractal models [11] could be more relevant than

first order hlarkov models. Their proposed

schemes cannot cope with background noise.

However, often the channel currents are very small

and obscured by unavoidable background noise.

In such cases when a fractal process is imbedded

in noise, these techniques are inadequate (as we

SIgn<Il Prcxe,.,ng

shall illustrate in simulation studies) and so

motivate a more sophisticated HFM processing

approach.

The paper is organized as follows: In Section 2

we formulate the scalar HFM problem as a 2-vector

HMM problem and review learning and estimation

objectives of HMM schemes. In Section 3, estima-

tion and re-estimation schemes are presented for

vector HMMs. These schemes are also formulated

for higher order hidden Markov models. In Section

4, we present simulation studies. Finally, some

conclusions are presented in Section 5.

2. HFM signal processing

2.1. Finite state fractal models

Binary-state continuous-time fractal model

For simplicity we first describe the simplest

binary-state fractal model, termed a channel with

an open state and closed state. Later the more

general case of having N, states is considered.

Define kl(r)At and kz(t)At as the time-varying

transition probabilities of leaving the open and

closed states, respectively, in the time interval At.

These probabilities are in terms of the time to the

last transition, denoted t.Let P(t) be the probabil-

ity that the channel remains in the closed state

over the interval [0, t].It can then be shown [9, 10]

that

dP(t)
P([)k, (t)=–~

‘r P%=-.lk(t)dt(2.1)

Of course, j_(t)= –P(t)k, is the associated proba-

bility density function since P(t) = j&f(T) dr.

When the kinetic rate constants kl( t), kz( I) are

independent of the time to the last transition and

are then denoted by kl, k2, the model is first order

homogeneous Markov. For fractal models, the

kinetic rate constants are assumed to be time-

dependent as follows [9]:

kl(t)=klti ‘>1, kz(t)=kzt’-’)z,

lSD,, D*<2, (2.2)
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where D,, D~ are termed the fractal dimensions.

Thus the transition rate matrix H is

[

–klr’ ‘]’ kit’ ‘]’
H=

k2 [
1 112 1_k,~l-l~,.(2.3)

The corresponding transition probabilities are the

solutions of the matrix differential equation A(t) =

H([) A(f), A(0)= 1, where A(t) =(a,, ([)), a,,(f)=

P(sr=q,lso= q,). Itis not in general possible to

obtain an expression for these transition prob-

abilities in a closed form. However when D, = Dz

then A(t) = exp(~~l If(m) da) and the transition

probabilities can be obtained in a closed form.

Clearly, the smaller the time to the last transition,

the greater the probability of a transition in a

subsequent relatively small time interval At. There

is an analogy with the more familiar example of

fractal coastlines, where the ‘ruggedness’ is

invariant of the spatial resolution. For a channel

with fractal kinetics, the degree of ‘flickering’, or

more precisely the fractal dimensions D1, Dz are

invariant of the temporal resolution which is deter-

mined by the bandwidth of the measurement

apparatus. This means that the effective rate con-

stant of the channel is higher when measured at a

finer temporal resolution.

Substituting k,(t) from (2.2) into (2.1) yields

expressions for the distribution P(z) and density

function ~(f):

( k,
P(t) =exp –——— 2–111

)2–D, r ‘

( )

(2.4)

f(t) =k, t’ “I exp -~t’-”,
1

Thus P(t) satisfies the Weibull distribution [4].

Also ~(t) is the frequency histogram of closed

times. Notice that for a first order Markov process,

D = 1 and log(j”(t)) versus t is a straight line.

The rate of channel openings and closing should

depend inversely on the time scale, so that D,> 1.

To normalize the probability distribution requires

that Iim, +(l P(t) exists, which is true only if D, <2.

Thus the fractal dimension Di is restricted to the

range 1 G D, <2.

Computing the jiractal dimensions

One commonly used technique for the noise-free

observations is described in [8, 9]. It is shown in

[8] that D, is overestimated on the average by 10

percent. However, because of the simplicity of this

scheme we shall use a similar analysis with signal

estimates derived from HFM processing in Section

3.3.

Discrete-time fractal model

We now consider the discrete-time version of

the continuous time fractal model obtained by

appropriate Iowpass (anti-aliasing) filtering and

sampling at greater than or equal to the Nyquist

sampling rate. The filter bandwidth then deter-

mines the temporal resolution.

Let ~ = 1/T, be the sampling frequency.

Define the discrete-time transition probability

matrix A(h)= (a,,(h)), where a,,(t~)~

P(sL+, = q, ISL= q,), and tkis the time to the last
transition at time k, i.e., the time the process Sk

has spent in the current state q,. For convenience

we work with the number of discrete-time samples

after the last transition rather than the actual time.

Thus for a sampling time interval of T,, t~ is quant-

ized to a finite number ZVrof possible integer values

r,, . . ..r~t. Without any computational effort and

memory constraints, it would be reasonable to take

~, as the integer i, for i = 1, . . . . N,. An upper bound

on N, is the total number of observations in the

data set. However, as described later, state aggrega-

tion allows N, to be bounded by more realistic

values, usually 5 to 10.

The discrete transition probabilities of the

sampled fractal process cannot be obtained in an

analytical form in general. However, it is easily

shown that

al, (t~)–azl(t~)

‘azz(tk)–a~~(t~)

( l;-[]’– (tk- 1)’-’”
= exp ICI

2–D,

t;-’” –
+ kz

(t, -1)’-~’

)2–D, “
(2.5)

?,AuEu.t 1991V,>l ?4, No
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This illustrates the behaviour of the transition

probabilities: with increasing ?L,u,, ( t~) and a,,(t~ )

increase and asymptotically approach 1; alz(tk ),

azl( r~) asymptotically approach O. We shall also

use (2.5) subsequently when dealing with state

aggregation.

If D, = D~ then it is easily shown that A( t~) can

be expressed in a closed form as

1

[

k,+k, c(~, ) k,–k, c(t/J
A(tk)=— 1k,+k2 k,–k,c(tJ k,+k2c(t~) ‘

(C(tk)=exp – )~(ti’%-l )’-”) .

(2.6)

Notice that when D, = 1, the transition prob-

abilities are independent of time and Sk reduces

to a homogeneous first order Markov process.

Multi-state discrete-time semi- Markov model

We now ‘generalize’ the two-state discrete-time

fractal model to a discrete semi-Markov model

with a finite arbitrary number of states. Consider
a discrete-time, finite-state stochastic process

sk, ks O, where for each k, Sk is a random variable

taking on a finite number N, of possible states

91, ..., qN,. The fractal model is a particular case

of semi-Markov models whose transition prob-

abilities are functions of the time to the last

transition:

a,, (t~):tk*[O, l] for i,je[l, N,]. (2.7)

2.2. Reformulation of fractal models as

Markov models

Define the 2-vector process Sk as Sk = ( t~, Sk)

for each k >0. Clearly Sk is a finite-state process

with N = N, AT, states. Here N, is taken as the

maximum duration time in any state considering

the observation sequence of length T. It is easily

shown that the 2-vector stochastic process Sk, as

defined above with ~, = i for i = 1, . . . . N, is a

homogeneous, first order Markov process. Notice

Stgml Pr0ce5sIng

that

{

t~+l ifsk,, =s~ and tA<N,,
1~+, =

1 otherwise.

(2.8)

So tk+jdepends only on tk, Sk and .v~,, Also from

(2.8) we have

[

a,, (rk) if SK=(~l,, q,)

and S~, l=(7), +1, q,),

1<~,, <N,,

P(S~+ll S~)= au(r~) if SK=(~l,, q,) (2.9)

and S~+l=(l, q,),

i#j, lSrl, SN,,

o otherwise,

which is independent of k.

REMARK. If for some integer N{< N,, r, is

defined more generally as r, = i, i = 1, . . . . N; – 1

and r~; = i: NjSi<N, in Lemma 2.1, the first

order Markov property still holds. However, it is

readily shown that sk is then not necessarily

homogeneous. For certain functions a,, (r~) that

‘saturate’ beyond some tk,Sk is homogeneous and

aggregation of states in the saturation region is

possible as discussed below.

NOTATION. We denote the set of N =

N,N, states {(7,, q!), . . . . (TN,, q~,)} as {(?I,

Q.,,. ... Q~}, although not necessarily in the

same order. We will denote elements of this set by

integer subscripts, usually m or n. So a fractal

model with the set of states {T/,, q,} is viewed as a

vector Markov model with states {Q,,,}. Also for

Qm=(n, qt) and Q.=(n, q,), where w ~=
[l, NI, n,T,=[l, N,l, q,,q,=[l, N,], denote the
transition probabilities of the homogeneous Sk

process by A = (a~n):

aW!.‘a,k,,~,,,~p(s~+l= Q,, ISL = Q,,l).

(2.10)

2.3. Aggregation

For computational purposes it is important to

pose the question if it is possible to quantize the
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time to the last transition to N!< T states, with

arbitrarily small error for N\ suitably large? We

propose to do so by ‘aggregating’ [5] the states

(7&, q,), (7~+[, q,), . . ., (7~,, q,) into an ‘aggre-

gated’ state

Q~;.t={(~~;>q,), (~~;+,,q,),..., (T~,,q,)}.
(2.11)

Consider a norm bound e z O such that

la,,(t~) -a,,(t~-,)l<c fori,je[l, N,l

and N~<tL<N, =T. (2.12)

For the special case when s = O, our objective is

accomplished by virtue of the following definition

and theorem from [5].

DEFINITION. A Markov chain can be strictly

aggregated with respect to aggregated states, if for

every a priori (non-aggregated) state probability

vector n, the aggregated process is a (first order)

Markov chain and the transition probabilities do

not depend on the choice of m.

THEOREM 2.1 (Strict aggregation property) [5].

A necessary and sujicient condition for a Markov

chain to be aggregated with respect to a set of aggre-

gated states is that the transition probabilities have

the same value ,jor all possible transitions between

any pair of aggregated states. These common transi-

tion probabilities form the transition matrix ,for the

aggregated chain.

e aggregation property

The aggregation (2.1 1) under (2.12) with E non-

zero leads to errors that can be bound in terms of

E as follows:

IP(SL=Q,, ISL-l=Q,,,,..., S,GQ,)

–P(SLGQ. lS~-l EQnl)l SE. (2.13)

We see that the aggregated process at time k

depends on the states at time k –2, . . . . 1 only by

an amount E. Moreover, with e + O, Sk tends to a

first order Markov chain. So according to the above

definition and theorem, the Markov chain Sk

can be aggregated with respect to the partition

{(~1, qr), . . . . (~~_l, q,), QN,,}, where Q~;,, is
defined in (2.11). The fractal model with transition

probabilities that asymptotically converge (see

(2.5)) satisfies (2.12) and so can be aggregated.

For the rest of this paper we set N, = N;<< T where

N/ is suitably large to result in negligible error. Of

course, now (2.8) is modified as

[

tk+l if .Y~~l= Sk and t~ < N,,

t~+, = t~ if s~+l =s~ and t~ = N,,

1 otherwise.

(2.14)

Transition probability matrix sparseness

Notice that with T), = h for h < N, = N;, the

relationship between (2.7) and (2.10) for 1< r,, <

N, is

a!, (Th)=a( /,,ll,(h+l,l)

and (2.15)

a,,(7},)=a(f)., ),(1,j), i#~.

Clearly A has (N,N, )2 = N2 elements. However,

since tk+, is restricted as in (2.14) to only three

possible values, simple calculations show that

Nz– N~N, elements of A are zero. For i, j G

[1, . . . . N,], only the following elements of A are

not necessarily zero:

a(h,t),(},+,,, ), Th # N,;
(2.16)

a,k,,~,{l,,l, i#j; and a(N,, r),(N,. t).

Consequently, in any scheme to estimate A, only

the N~N, elements of A in (2.16) need be

estimated.

2.4. Hidden models

Fractal and Markov processes imbedded in

noise are called hidden fractal models ( HFMs)

and hidden Markov models (H MMs), respectively.

Consider that the fractal process Sk and hence the

associated vector Markov process Sk = (tk,Sk)are

hidden, that is indirectly observed by measure-

ments y~. We denote the sequence .VI, YZ, . . , .VL

Vol 24 No 2, Augu\l 1991
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by Y,. The vector of probability functions b( ) =

(b,,,( ))= f’(y~ ISk = Q,,,) where Q,,,= (T,,, q,)

is assumed invariant of the times k and 7,1.

So b,. (y~)= b,(yk)=P(yklsk =g, ). Also assume

the independence property P( yk ISk= q,, s., =

%, YL-I) = p( .Pk I SL= %). Further assume that the
initial state probability vector m = (m,n) is defined

from mm= P(SI = Q~ ). The transition probabilities

A are defined as in (2.10). The vector HMM for

the Sk process is denoted A = (A, b( ), n). Of

course A also denotes the HFM for the Sk process.

A special case of interest is when the measure-

ments y~ consist of a signal corrupted by zero

mean, normally distributed white noise as follows:

yk=sk+wk, w, - NIO, m~,]. Then b,(yk)=
(UZZ mW)-l exp( –(yL –q1)2/(2u~.)).

2.5. Learning and estimation objectives

Given the fractal signal model reformulated as

a Markov model as described above, and given

observations y,, yz, . . . . yL denoted Y~, there are

three-related HMM problems which can be solved

[7, 13] and interpreted to yield results for H FMs.

(1)

(2)

Evaluate the likelihood of a given model A,

generating the given sequence of data, denoted

P( Y~IA,). This allows comparison of a set of

models {A,} to select the most likely, given the

observations. In simulation studies presented

subsequently we use this likelihood function

to compare different order Markov models and

fractal models.

Estimate signal statistics such as a posteriori

probabilities for an assumed model A and data

sequence. For a fixed interval T, estimate

yLIT=(yhlT(m ));

(2.17)
yh17’(m)&p(sk = Qm Y~, A).

From ykl~( m), maximum a posteriori (MAP)

state estimates conditioned on A, denoted

{!$, 1A}, are

f$YAp= Q., (2.18)

where

n ‘arg max Ykl T(m).

l-m- N

S,!..1 Proces5cw

Of course if Qn = (7},, q,) then .f~A’= q, in

(2.18).

(3) Processing of the observations based on a

model assumption A, and adjustment (re-esti-

mation) of the model parameters (functions)

(A, b( ), m), such that the likelihood of the

updated model ~ = (A, b( ), ti) given the

observation sequences, P( Y, I~) > P( Y~ IA),

and repeating until convergence. The objective

is to achieve the most likely model A‘1[

amongst the set A = (A, b( ), n), given the

observations.

3. Estimation and re-estimation

We now proceed to solve Problems 1 to 3 above

for the HFM reformulated as an HMM. The for-

mulae of this section turn out to be identical to

more familiar ones for scalar HMMs, as in [3],

but with scalars Sk replaced by 2-vectors Sk and

the states q,, q, replaced by Q,,,, Q. which can be

associated with the pair of scalar states ( ~},,q,) and

(71, %).

Forward-backward procedure

Recursive formulae for updating the forward

variable ak and the backward variable fl~ are

readily calculated [3, 13] for Q,, = (7/,, q,) for any

lS7~<N,as

(a,(n)= ~ ak-, (m)a,,,,,
)

b,(.v, )>
“, 1

~1(~)=~.b,(y]),

A(m)=,,:,a~,.b,(.v~+,)ph+,(n), p,(m)=l.

(3.1)

Updating ak and /3k requires the order of N2M

multiplications and additions at each time instant

k because only N~M components of A are not

necessarily zero, see (2.16). Also to avoid numeri-

cal problems, appropriate scaling must be used as

in [13].
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The optimal a posterior probabilities associated

with Problem 2 are given from [3, 13] as

a~(m)~k(m)
yk-= (v,(m)); yk(m)= ~

X a~(m), pk(m)
m-l

(3.2)

Then using (2.1 8) we obtain MAP fixed-interval

smoothed estimates. The likelihood function,

which is the end result of the Problem 1, is calcu-

lated as

Lr~P(Y~l A)= ~ cr~(m). (3.3)
“! I

Ilaurn - Welch re-estimation ,formulae

Re-estimation of A, m are given from [ 13]

1- ,

,~,[k(m,n)

G,,,. = p, ~

Z Z L(wn);
!,l ,1-1

(3.4)

;Ill(m, n)
,1

F,n = ,V ~ >

Z Z ~l(m, n)
“,-.1,,-1

where ~k(m, n)=crk(m)am,,,bn (yk+, )/3k+1(n). For

updating b( ) see [13]. It is proved in [7] that with

the re-estimation formulae the model ~ =

(~, ~( ), H) is more likely than A, given the

observations, in that P( Y~ I~) z P( Y~ IA).

Fractal analysis

We propose two ways of computing the fractal

dimensions and initial setpoints.

( 1) When an analytical expression for the transi-

tion probabilities of the semi-Markov process

exists (e.g. the fractal dimensions of a fractal

process are equal for the various states), the

parameters of the function a,, (see (2.7)) are

obtained by fitting functions of the form a,, to

the Baum–Welch estimates a(h,, ),th+l, )), 1 ~

Th ~ ~, (see (2.15)) in a least squares sense.
However, because of the finite length of the

(2)

observation sequence, for large values of 71,it

is often the case that there are not sufficient

such transitions to get a reliable estimate of

at}i,t~.(~),,]. AIso, we ignore a(l,,),(~ l,,) since it
includes all events outside the bandwidth of

interest. Thus typically for a few thousand

observations, It makes sense to use a, h,, 1,()) +1., )

only for 2 ~ 7~ ~ 5 (say) in the least squares fit.

When the fractal dimensions for the various

states are unequal then using the same analysis

techniques mentioned in Section 2.1 with the

MAP state estimates (2.18) of the most likely

model, the fractal dimensions and initial set-

points can be calculated.

4. Computer studies

4.1. Simulations and discussion

HFM data

Let us first work with simple scalar binary level

processes (N, = 2). We study various 10000 point

sample paths of fractal processes with fractal

dimensions D, = 1.0, 1.2, 1.5, 1.8, i e {1, 2}. In gen-

erating the various sample paths, the NAG library

random generator G05CAF was used. The states

q, are separated by intervals Aq = 1.

Transition probability estimates. The solid lines in

Figs. la and lb show the transition probability

f –h h=ltol Oof theestimates af,,,l~,~h+l,,] or 7},— ,

noise free sample paths. In Fig. la the initial set-

points were taken as k, = 0.255. In Fig. lb different

initial setpoints were taken for different fractal

dimensions: for D, = 1.0, 1.2, 1.5 and 1.8, we selec-

ted k, = 1.95, 1.9, 0.7, 0.55, respectively. (For com-

parison we also show the true transition prob-

abilities. ) Not surprisingly, with finite length data

segments, fOr 7h >6, the estimates of the transition

probabilities associated with the generated noise

free sample paths differ significantly from those of

the fractal signal generating system. The differen-

ces increase with increasing I-h. Also, increasing

the data length to 100000 for example, is not

enough to eliminate such differences for large 7h.
Val 24, No 2. A“&l,l 1991
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SW.] Pmcewng



Fig. lb.

v Kri~hnamurthy et al. / On hidden .frac[aj model $igna/ processing

1

0.9

Transition 13.8
probability

estimates
0.7

$, (Q

0.6

0.5

0.4

0.3

0.2
.
L 2 3 4 5 6 7 8 9 m

Time to the last transition
$

Transition
probability

estimates

$,,(Q

..”

1 2 3 4 5 6 7 8 9 10

Time to the last transition i

estimates in absence of noise

---- estimates in presence of noise

Estimates for computer generated HFM data with k,=l.95, 1.9, 0.7, 0.55 for D=l.0, 1.2, 1.5, 1.8,

185

respectively

Vol ?4, No 2, August 1991



186 V Krishnurnurthy et al, / On hidden Jracta[ model signal pr(jce.wing

Further increases only detect inadequacies in the

random number generator.

Actually, aggregation so that 7~/ h decreases

with increasing h, would effectively smooth the

curves so that they approach the exponential shape

of the idealized fractal model. Case studies on this

are omitted since they add no further insights. In

the absence of this aggregation, the departure of

the noise-free transition probability estimates of

finite data length sequences from the idealized

fractal model behaviour reveals the inadequacy of

the random number generator. It points out the

advantage of our approach of first allowing more

general model estimates than fractal models, and

then approximating these by fractal models.

To the computer generated 10000 point fractal

sample paths is added zero mean Gausian noise

with standard deviations VWof 0.25 and 0.5, respec-

tively. The dotted lines in Figs. la and lb show

the transition probability estimates of these hidden

fractal processes using 10 repeated applications of

the Baum-Welch re-estimation formulae. Notice

that the Baum-Welch estimates after 10 passes

follow the noise free estimates reasonably closely.

Of course as UWincreases, the estimates deteriorate.

The results show the robustness of our scheme in

the presence of white measurement noise with

known mean and variance.

Model likelihood. We study in more detail the

sample path generated from a fractal model with

fractal dimensions D, = 1.5, and initial setpoints

k, = 0.7 as described above. Based on the statistics

of the generated noise free sample path over 10000

points, the estimated fractal dimensions are D, =

1.554 and Dz = 1.508. These are calculated by least

squares fitting (2.6) to U(l,,,l,(),, ,,,, for 1 ~ 71,<6. TO

the computer generated fractal model data was

added zero mean Gaussian noise with standard

deviations crw of 0.1, 0.25, 0.5 and 1. The states q,

are separated by intervals Aq = 1. ( For complete-

ness, after 10 successive applications of the Baum -

Welch re-estimation formulae, b, was calculated

using a least squares fit to be 1.533 when m. = 0.25,

and 1.450 when cr. = 0.5).

To quantitatively compare how well vafious

scalar HMM and HFM models fit the data, we

calculate the likelihood function L (see (3.3)). Let

us denote the most likely nth-order HMM estimate

by A(”) and the most likely HFM estimate with the

time to the last transition taking N, values as A\NI).

Also define L(”) L P(Y~l A’’’)P(YrlA (A)))) and

LjNI)~P( YTIA}NI))/P( Y~l A(l)). Figure 2a shows

400

300

200

100

n Iu.
12346810 12!4

1 1 I I

HMM order n N, forHFM

Noise standard
deviation

■ ol

❑ 025

E405
Ealo

Fig. 2a. Comparison of HMMs and HFMs for HFM data in terms of log likelihood functions log L“” and log L~%I’normalized to

the first order HMM case.
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HMM order n Ntfor HFM
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Fig. 2b. Comparison of improvement in log likelihood function fortraining andtesting data sets

log(L(n)) for n = 1 to 3 and log(LjN]) for N, taking

on values between 4 and 14. We can draw the

following conclusions:

(1)

(2)

(3)

(4)

When the noise has a small variance, there is

a dramatic increase @ L(”) with increasing n.

This shows that higher order HMMs model

the HFM data much better than lower order

HMMs. The increase in L(n) with increasing

n, however, is less significant when the

variance of the noise increases. Notice also

that log(L{2) – L(’ ~) is much greater than

log(L(3) – L(2)). Simulations suggest a decaying

‘exponential’ improvement in log(L(”)) with

increasing n. The noise variance determines

the rate of ‘exponential’ decay.

Simulations show that when using an HFM

model, L~N1) increases with increasing N,.

Again, the relative increase decreases with

increasing noise variance. Also in our example

there is no significant improvement for N,> 6.

Since computational cost is proportional to

N,, there is incentive to use a minimum N,

without sacrificing significantly on the likeli-

hood function.

In all cases the convergence rate of the likeli-

hood function to its final value decreases with

increasing noise variance.

Simulations not reported here also show that

the larger the fractal dimension and the initial

setpoints, the greater the improvement in th~

likelihood function when using higher ordel

HMMS and HFMs compared to first order

HMM processing.

The estimated models from the above sample

paths (training data) were used to see how well

they fit other sample paths with the same statistics

(test data). For UW= 0.1,0.25 the increase in L(n)

and L~NIwith increasing n and N, for the test data

were very close to that for the training data. Figure

2b compares the relative improvements for u. =

0.5, 1. Notice that there is still an increase in L(n)

and L,NI with increasing n and N,; however it is

less than that for the training data. Thus with

increasing Uw,,the increase in L(n) and L~I with

n, N, for the test data gets smaller compared to

the training data.

Signal estimates. Figure 3a shows a typical segment

(200 points) of the above computer generated frac-

tal signal Sk. Zero mean, white Gaussian noise with

standard deviation u. = 0.5 is added to Sk yielding

the observations y~. Using these observations,

HFM processing is used to obtain the MAP signal

estimates fk, see (2.18).

Figure 3b compares the signal estimation

capabilities of HFM processing with first order

scalar HMM processing for fractal processes cor-

rupted by zero mean white Gaussian noise of

different variances. The number of errors per 1000

Vol 24, No 2, AUCUS1 1991
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-1
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Fig. 3a. HFM signal estimation.

points is plotted versus the noise standard devi-

ation normalized to the state spacing level Aq. The

signal estimates were obtained as the MAP signal

estimates after 10 successive applications of the

Baum-Welch re-estimation formulae.

Notice in Fig. 3b that the HFM signal estimates

are significantly better than the first order HMM

estimates when the fractal dimension D, is rela-

tively large (e.g., D, = 1.95). For relatively small

D, (e.g., D, = 1.4), however, despite large vari-

ations in the likelihood functions, simulations

show that the actual number of errors in the signal

estimates do not differ significantly with different

HMM and HFM model classes. This is not surpris-

ing since for low values of the fractal dimension

and initial setpoint, ag( t~) does not vary sig-

nificantly with tkand so the HFM approaches a

first order HMM. This demonstrates the robustness

Slgndl Proceswng
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of lower order HMM schemes in signal estimation.

Thus for signal estimation purposes of HFMs with

low initial setpoints and fractal dimensions, scalar

first order HMM processing remains relatively

attractive compared to HFM or higher order HMM

processing due to its computational efficiency.

Comparison with histogram evaluation of HFM data

Here, we compare our HFM techniques with a

conventional fractal analysis method in Section 2.1

which neglects noise.

We used the techniques described in Section 2.1

on the above hidden fractal data to estimate D, in

a least squares sense. Not surprisingly, with

increasing noise variance, both the error probabil-

ity (the number of errors in state estimates divided

by the number of observations) as well as the error

b, in the estimate of D, increase dramatically when

using this technique (see Fig. 4). This illustrates

the usefulness of the HFM schemes in noisy

environments. Notice that with increasing noise

variance, the histogram techniques estimate D, as

being close to 1, irrespective of their true value

(see Fig. 4(b)). This suggests that in noisy environ-
ments the conventional analysis technique

wrongly models fractal processes as homogeneous

scalar first order Markov processes.

As discussed above, there is no significant

difference in the number of errors in signal esti-

mates with different classes of HMM and HFM

models with fractal dimensions close to 1. Also,

scalar first order HMM processing is much more

computationally efficient than higher order HMM

or HFM processing. Is it then possible to use first

order HMM processing to obtain signal estimates

and then use the histogram techniques described

above? Simulations show that this does not yield

results comparable to HFM processing unless the

noise standard deviation is significantly smaller

than the state level spacing (usually less than a

quarter of the state level spacing).

First-order HMM data

From the conclusions in the previous subsection

it might be inferred that using a larger n or N, is

Sign. I Proccming
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Fig, 4. Comparison of HFM and existing histogram schemes.

better in modelling an observation sequence (in

terms of the likelihood function) than a smaller n

or N,. However, this is not so as illustrated below.

A 10000 two-state (N, = 2) scalar first-order

Markov chain with transition probabilities a,, =

0.8, a,, = 0.2, i #j was generated with states separ-

ated by Aq = 1. To this was added zero mean

Gaussian noise with standard deviation w. of 0.25.

Simulations show that there is no increase in L(n’

or L$~’) with increasing n and N,.

Thus fitting HMMs and HFMs to an observation

sequence is not analogous to polynomial fitting

where a higher order polynomial always improves

the fit.

4.2. Cell membrane data

The data to model currents through ion channels

in cell membranes was obtained as follows: An

outside-out membrane patch was excised from a
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HMMand HFM Plant Models

Fig. 5. Comparison of HMMs and HFMs for ion channel data.

cultured hipocampal neuron. In response to the

application of 10 I.LM y-aminobutyric acid, the

channel was activated to allow chloride ions to

cross the membrane [3]. The resulting analog sig-

nals were then digitized by lowpass filtering to

5 kHz using a 4-pole Bessel filter and sampling at

10 kHz.

(I) Comparison. We compared the performance

of first and higher order HMM and HFM schemes

in modelling the above data. Figure 5 shows the

performance in terms of the likelihood functions

L’“’ and L\~I’ for a 10000 point data segment.

From Fig. 5, we conclude that using a higher order

HMM or an HFM with a larger N, fits the observa-

tions better than a first order HMM.

(2) Determining the fractal dimensions. Here we

compute the fractal dimensions using the second

method in Section 3.3. The open and closed dur-

ations measured from the MAP signal estimates

were used to construct the histograms of various

bin sizes. Figure 6(a) shows the histograms for the

open state for different bin sizes. The lines on each

histogram are obtained from least squares fits using

the second through fourth bins. The negative value

of the slopes are the effective rate constants ,&fi.

Figures 7a and 7b are plots of log k,fi versus

log ~etifor t-he open and closed times. From Figs.

7a and 7b the fractal dimensions for the open and

[,

‘~’
‘{’
1! i. 1 ..–

h
12 8 r,,.

100

kJIu

1

Fig. 6. Open-time histograms.

closed states are calculated to be 1.625 and 1.868.

The approximately straight lines in Figs. 7a and

7b show that these channels can be reasonably

represented by a model with fractal kinetics.

We do not claim here that HFMs for ion chan-

nels in cell membranes are better than HMMs in

all cases. Whether the gating kinetics of single

channel currents can best be described by Markov

or fractal models is in dispute, see [6, 12]. We

propose that the HFM techniques be employed in

extensive studies to identify the approximate

model class most consistent with the gating

behaviour of single channel currents.

5. Conclusions

Existing techniques for estimating fractal

stochastic processes assume that there is insig-

nificant noise present in the observations. In this

~<,1~h,N<> 2, Augu, [ 19VI
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ing level transition probabilities and noise statis-

tics. Also the fractal dimensions can be estimated.

We have demonstrated their effectiveness by means

of simulation studies and also illustrated their

application to a biological signal processing

problem.
0

LLL, ,

100

t eff (ins)

Fig. 7a. Determining the fractal dimension of open state

10 [(b)
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Fig. 7b. Determining the fractal dimension of closed state.

paper we have proposed schemes for estimating

fractal stochastic processes with discrete levels

which are imbedded in white (or near white) noise.

The key is to reformulate the signal model as a

hidden semi-Markov model and apply known esti-

mation techniques. These yield optimal estimates

of the signals and signal model parameters, includ-

Sign.1 F’r.c.55tng
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