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Almtract. The parameter estimation of multiple transient signals (waves) impinging on a uniform linear array is addressed. 
Each transient signal is assumed to be a sum of complex exponentials, arriving at the array from a different direction. The 
method we use to solve this problem is a novel generalization of the subspaee decomposition and matrix pencil approach 
which has been previously used for processing one-dimensional transient signals. Simulation results show that this method can 
be near efficient statistically. 

Zusammenfassnng. Es wird die Parametersch~itzung transienter Signale (Wellen) untersucht, die auf eine gleichfrrmige, lineare 
Antennenanordnung einfallen. Jedes transiente Signal wird als eine Summe komplexer Exponentialfunktionen angenommen, 
die an der Antennenanordnung aus verschiedenen Richtungen eintreffen. Die von uns gebrauchte Methode zur Lrsung des 
Problems ist eine neuartige Verallgemeinerung der Unterraumzerlegung und des Bandmatrixansatzes, der ffir die Verarbeitung 
eindimensionaler transienter Signale gebraucht wurde. Simulationsergebnisse zeigen, dab diese Methode beinahe statistisch 
wirksam (efficient) sein kann. 

Rmmr.  Nous nous intrressons dans cet article ~i l'estimation des paramrtres de signaux transitoires multiples arrivant sur un 
rrseau uniforme linraire. Chaque signal transitoire est suppose ~tre la somme d'exponentielles complexes arrivant sur le rrseau 
d'une direction diffrrente. La mrthode que nous utilisons pour rrsoudre ce problrme est une grneralisation originale de la 
dreomposition sur sous-espaces et de l'approche par matrices 'pencil' qui a drj~i 6t6 utilis~e auparavant pour le traitement de 
signaux transitoires mono-dimensionnels. Des rrsultats de simulation montrent que cette mrthode peut ~tre proche de 1 'efficacit6 
au sens statistique. 

Keywords. Multiple transients, complex exponentials, parameter estimation, subspace decomposition, matrix pencil, multiple- 
target identification, wideband wave direction finding. 

1. Introduction 

In  m a n y  app l i ca t ions ,  the  s tudy  o f  t r an s i en t  sig- 

na l s  m o d e l e d  by  the  s u m  o f  complex  e x p o n e n t i a l s  

is i m p o r t a n t .  Gene ra l l y ,  the t r a n s i e n t  s ignals  c an  

Correspondence to: Yingbo Hua, Department of Electrical 
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Parkville, Victoria 3052, Australia. 

be  processed  for  cha rac t e r i za t i on  o f  a sys tem (such 

as a r a d a r  ta rge t  [1]). T o  o u r  knowledge ,  however ,  

all  s tudies  o f  t r an s i en t  s ignals  have  o n l y  focused o n  

s ing le - t r ans ien t  s ignals ,  i.e., o n e - d i m e n s i o n a l  t r ans -  

ient  s ignals  [2, 4]. I n  this  pape r ,  we will address  a 

m o r e  genera l  a n d  m o r e  difficult  p r o b l e m :  es t imat -  

ing  the  p a r a m e t e r s  o f  m u l t i p l e  t r an s i en t  s ignals  

a r r iv ing  at  a u n i f o r m  l inear  a r r a y  f rom dif ferent  

0165-1684/92/$05.00 © 1992 Elsevier Science Publishers B.V. All rights reserved 
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directions. The multiple-transient signals can be 
used for (simultaneous) characterization of 
multiple systems such as multiple radar targets. 
Study of the multiple-transient problem appears 
not available in our research literature, and no 
method is available for solving this problem except 
a few general parameter estimation approaches 
(like the least square error approach) which are 
computationally too expensive. We will develop a 
method directly based on the multiple-transient 
signals. The method to be developed is a novel 
generalization of the subspace decomposition and 
matrix pencil (SDMP) approach which has been 
previously used for the single-transient problem. In 
the noiseless case, the SDMP method yields the 
exact values of the desired parameters. In the noisy 
case, the SDMP method can be near efficient sta- 
tistically, as shown in simulation. 

The following sections will be organized as fol- 
lows. In Section 2, the multiple-transient problem 
is formulated and analyzed. In Section 3, the 
SDMP method is developed. In Section 4, simula- 
tion results are presented. 

2. The problem formulation 

We assume a uniform linear array of identical 
omnidirectional sensors on which several plane 
waves arrive from different directions. Then, the 
array output can be modelled by 

Yk,h = Xk,h + nk.h , (2.1) 

with 
I 

x~,h = ~ si(k + rh) ,  (2.2) 
i = l  

d sin 0i 
r i -  - - ,  (2.3) 

v~t 

where Xk,h and nk,h are the signal and noise com- 
ponents, respectively; k (= 0, 1 . . . . .  K - 1 )  the 
index of temporal samples (snapshots) ; h 
(= 0, 1 . . . . .  H - 1 )  the index of spatial samples 
(sensors) ; &(k) the ith signal received at the sensor 
zero; I the total number of impinging waves during 
Signal Processing 
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the K snapshots; d the distance between adjacent 
sensors; 0e the arrival angle of the ith signal against 
the broadside; v the velocity of all impinging 
waves; ~t the sampling (snapshot) time interval. 

We assume further that, during the K snapshots, 
each transient signal is a sum of complex exponen- 
tials, i.e., 

J (i) 

si(k) = ~. boz ~, (2.4) 
j = l  

where z~j is thej th  (signal) pole of the ith signal, b,j 
the associated amplitude, and J( i )  the number of 
poles associated with the /th signal. {z0; j= 
1 . . . . .  J(i)} are assumed to be distinct. Then, 
using (2.4) in (2.2) leads to 

1 J (i) 

- k+~,  (2.5) E E O o z o  • 
i=1 j = l  

The objective now is to estimate the spatial 
parameters { ri ; i = 1 . . . . .  I}, which are one-to-one 
functions of the angular parameters {Oi; i= 

1 . . . . .  I} via (2.3), and the temporal parameters 
{b~j, z/j ; j =  1 . . . . .  J( i ) ,  i=  1 . . . . .  I}, given the 
observed data {Yk.h ; k = O, 1 . . . . .  K -  1, h = 

0, 1 . . . . .  H -  1 }. The order parameters, I and J(i), 
are assumed to be known (or chosen). 

Since Xk.h is linearly dependent on the amplitudes 
b 0, the amplitudes can easily be found by solving 
a set of linear equations once the other parameters 
are available. Hence, the important task is to find 
z 0 and r;. 

We now write xk,h in the following form: 
K - - I  H - - I  

Xk,h = Z Z b o z ~ ,  (2.6) 
k = 0  h = 0  

where 

g o -  Zo. (2.7) 

Clearly, Xk,h is a two-dimensional exponential sig- 
nal as opposed to the one-dimensional exponential 
signals treated in [ 1, 2, 4]. This form suggests that 
the methods developed for one-dimensional expo- 
nential signals can be used to find z~ and g0 if both 
{z,j; j = l  . . . . .  J ( I ) ,  i = l  . . . . .  I} and { g o ; J =  
1 . . . .  , J ( I ) ,  i=  1 . . . . .  I} are distinct. Specifically, 
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z 0 (if distinct) can be found (using methods in 
[1, 2,4]) from the multiple sequences (or mea- 
surements) {Xk ,h ;k=O,  1 . . . . .  K - l }  for h = 

0, 1 . . . . .  H - l ,  and go (if distinct) from the 
multiple sequences {Xk,h ; h=0 ,  1 . . . . .  H -  1} for 

k = 0, 1 . . . .  , K -  1. However, there are two impor- 
tant remaining issues about the two-dimensional 
problem which cannot be answered from the know- 
ledge that has been developed for the one-dimen- 
sional problem. The first issue is how a better 
method can be developed directly based on the 
two-dimensional structure of Xk.h to find z 0 and g0 
regardless whether they are distinct or not. Note 
that the assumption of distinct 0, and distinct 
{z 0 ; j =  1 . . . . .  J(I)} does not imply the distinction 
of {z i i ; j  = 1 . . . . .  J ( I ) ,  i=  1 . . . . .  I} and {g0;j = 
1 . . . . .  J ( I ) ,  i= 1 . . . . .  I}. The second issue is how 
we pair the estimated z o and go so that (2.7) can be 
used to find r,. These two issues will be answered in 
the next section• 
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significantly the estimation accuracy as will be 
shown in Section 4. 

3.1. The structure o f  the noiseless general ized data 
matr ix  

For convenience, we will let 

{b o ; j =  1 . . . . .  J( i ) ,  i= 1 . . . . .  I} 

= { b o } = { b p ; p =  l . . . . .  P}={bp} ,  

{z o ; j  = 1 . . . . .  J ( i ) ,  i = 1 . . . . .  I} 

. . . . .  P} :{z , ,}  

and 

[go ;J= 1 . . . . .  J ( i ) ,  i= 1 . . . . .  I} 

= { g 0 }  : ; p =  1 . . . . .  e }  = {g,,}, 

where 

3. The S D M P  method 

I 

P =  Z J( i ) .  
i--I 

Our approach starts from the following gen- 
eralized data matrix: 

X =  .' X2. 

LX.- 'N-,  x .  N 

xN 1 XN+I 

X H -  I 

(3.1) 

where the submatrix Xh (h=0 ,  1 . . . . .  H - 1 )  is 
defined as 

F x ( 0 ;  h)  

_ / x ( l : h )  
Xh = 

L x ( K - M - 1 ; h )  

x ( 1 ;  h )  x(M;h) ] 
x ( 2 ;  h)  x ( M +  1 ; h ) ]  

x ( K -  M; h) x(K -~ 1 ; h) I 

(3.2) 

in which x ( k ;  h)--Xk,h (for simple text processing 
purpose). M and N are changeable integers. Note 
that if M - - - K - 1  and N = 0  (or M = 0  and N =  
H -  1) then X becomes the 'original' data matrix 
(i.e., the two-dimensional array of  Xk,h). However, 
the choice of different values of  M and N affects 

Using (2.6) in (3.2), we get the decomposition 

h T 
Xh = Z K -  MBG~ZM + ~ , (3.3) 

where 

Zm = (3.4) 

I 1 1 

ZI Z 2 

Z71 I m - I 
Z2 

1j Zp 

zrfl - I 

B = diag[bl, b2 . . . . .  be], (3.5) 

Gd = diag[gt, g2 . . . . .  gP]. (3.6) 

The superscript T denotes the matrix transpose, 
and the superscript h the exponential power h. Z,, 
has the dimension m × P. Note that Z X - M  is Z,~ 
with m replaced by K - M ,  and Zg+l  is Z,, with 
m replaced by M +  1. Substituting (3.3) into (3.1) 
yields 

X = Z K  M,H--NBZTM+I,N+I, (3.7) 
Vol. 28, NO. 1, July 1992 
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where ZK-M,H-  N and ZM÷I,N+ 1 a r e  defined by 

(38) 

which has the dimension mn x p. 
We now construct four matrices: Xa, Xb, Xc and 

Xa from X as follows. 

The two integers M and N can be adjusted so 
that ZX-M.M--N, ZM, N+I and ZM+I.N in (3.14) and 
(3.15) are all of the full rank P. Obviously, each of 
the above three P-column matrices must have no 
less than P rows, which means that M and N must 
satisfy 

( K - M ) ( H - N ) > ~ P ,  (3.16) 

M(N+ 1) >~P, (3.17) 

RULE I. 
Xa is X with its ( M + l ) t h ,  2 ( M + l ) t h  . . . . .  
(N+ 1)(M+ 1)th columns deleted; 
Xb is X with its 1st, ( M + l + l ) t h ,  . . . ,  
(N(M+ 1)+ 1)th columns deleted; 
X, is X with its last M +  1 columns deleted; and 
Xd is X with its first M +  1 columns deleted. 

Following the approach leading to (3.3) and 
(3.7), we can similarly show the following 
decompositions: 

,T Xa = Zx -  M.n- NBZ'M.N + l, (3.9) 

.r 
Xb = Z K -  M,H- NBZdZ~t'I,N + 1, (3.1 O) 

Xc = Z K - M , H - N B Z T +  I,N, (3.11) 

,T Xa = ZX-M.~-NBGaZ~,N+ 1, (3.12) 

where Ga is defined in (3.6); ZK-M,H-N, ZM, N+I 
and ZM+~,N are defined by (3.8); and 

Za = diag[z~, z2 . . . . .  ze ]. (3.13) 

Now, the two matrix pencils X b -  zXa and Xa-gX~ 
can be expressed as 

Xb--ZX~=Zx_M.I~_NB(Za--zlp)ZVM,N+~, (3.14) 

Xd--gX,=ZK_M,H_NB(Ga--gIp)Z~+,.N. (3.15) 

where le is the P × P identity matrix, and z and g 
are complex variables. Based on (3.14) and (3.15), 
it can be shown [2] that if the P-column matrices 
ZK-M.U-N, ZM.N+1 and ZM+I.N in (3.14) and 
(3.15) are all of the full rank P, then {ze} are the 
P rank reducing numbers (generalized eigenvalues) 
ofXb - zXa, and {gp} are the P rank reducing num- 
bers of Xa-gXc.  

(M+I)N>~P. (3.18) 

Depending on the signal parameters, the above 
conditions may not be sufficient for the three P- 
column matrices to be of the full rank P. However, 
we conjecture that the following (more restrictive) 
conditions: 

K-P>~M>~P, (3.19) 

H -  P>>. N>>. P, (3.20) 

are sufficient (provided that each signal contains 
distinct poles and arrives at the array from a 
different direction). Although a general proof of 
the sufficiency appears difficult and has not been 
obtained, it can be shown (see Appendix A) that 
(3.19) and (3.20) are sufficient when all transients 
have an identical set of (signal) poles, i.e., when 
{z o ; j =  1 , . . . ,  J(i)} are the same for all i. 

Since the P-column matrices ZK- g.n-  s,  
ZM, N+I and ZM+I,N in (3.14) and (3.15) are sub- 
marices of ZK-M.~I-N o r  ZM+I,N+ 1 in (3.7), the 
'necessary' conditions (3.16)-(3.18) or the 
'sufficient' conditions (3.19)-(3.20) are also the 
corresponding conditions for the noiseless gen- 
eralized data matrix X to be of the rank P. 

3.2. Estimating the poles 

Based on the structure analysis of the generalized 
data matrix X, the poles can be estimated as fol- 
lows. Let Y be defined as X with X~,h replaced by 
the noisy measurement Yk.h. Since X has the rank 
P, we need a rank-P matrix Yr such that the Frob- 
enious matrix norm II Y -  YT II V is minimized. Such 
YT is known to be given by the rank-P singular 

Signal Processing 
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value decomposition (SVD) truncation: 

P 

YT = 2 (TiUilJn = u s v H ,  ( 3 . 2 1 )  

i - i  

where 

U = [/.81, u 2 . . . . .  Up], (3.22) 

S =  diag[o-i, o'2 . . . .  , o'p], (3.23) 

V= [Vl , v2 . . . . .  ve ]. (3.24) 

o-l > O'z > '  • • > O'p are the P largest singular values 
of Y. (If P is unknown, it can be chosen to be the 
number of dominant singular values of Y.) u~ and 
v~ are the corresponding principal left and right 
singular vectors of Y. The superscript H denotes 
the conjugate transpose. 

Note that the columns of U span the principal 
column subspace of Y, and the columns of V span 
the principal column subspace of yH. Also note 
that Y for M =  Ml and N =  N1 is equal to yT for 
M = K -  Mi and N = H -  N~, and hence U for M = 
Mi and N = N I  is equal to V* (i.e., V conjugate) 
for M = K -  M1 and N = H -  N1. Therefore, U and 
V are similarly structured, and any information 
obtained from V for M = M I  and N = N I  can be 
similarly obtained from U for M = K -  M1 and N = 
H - N l .  In the sequel, only V will be used. 

Now, Y~, Y~, Y~ and Yd (the noisy version of 
X,, Xb, Xc and Xd) should be constructed from Yr 
according to Rule 1. Then, it follows from (3.21) 
that 

V~ = U S V ~ ,  (3.25) 

Yb = U S V ~ ,  (3.26) 

Y,. = U S V ~ ,  (3.27) 

Ya = USV~a , (3.28) 

where Va, Vb, V,. and Vd are defined as follows. 

R U L E  2. 

Va is V with its ( M + l ) t h ,  2 ( M + l ) t h ,  
(N+  1) (M+ 1)th rows deleted; 
Vb is V with its 1st, ( M + l + l ) t h ,  
( N ( M +  1) + 1)th rows deleted; 

V,. is V with its last M + 1 rows deleted; and 
Vd is V with its first M +  1 rows deleted. 

Then, we have 

llb - z Yu = US( V~b -- z V~ ), (3.29) 

Y a -  g Y,. = US( V~d - g V~,. ). (3.30) 

The above equations imply that in the noiseless 
case, the generalized eigenvalues of Y b - z Y a  are 
those of V h - z V ~ ,  the generalized eigenvalues of 
Y,~-gYc are those of Va-gV, , .  Hence the poles, 
{Zp} and {gp }, can be retrieved from the smaller 
matrix pencils: lib -- z V,, and lid-- g Vc, respectively. 

The above technique for constructing matrix 
pencils is a generalization of  the state-space method 
used in [5]. The resulting matrix pencils l ib- -zV,  
and I'd-- g Vc can be further compressed and filtered 
before the generalized eigenvalues are computed. 
Several algorithms for solving the generalized eig- 
envalue problem are recently reviewed in [3] and 
available in the references thereof. 

3.3. Pairing the poles 

Again based on the structure analysis of X, we 

know from (3.7) and (3.21) that in the noiseless 
case, range(Z~t+ I.N+ l) ---- range(V*), provided that 
the sufficient conditions (3.19) and (3.20) are satis- 
fied. This means that in the noiseless case, 

span[zl®gl,  z2®g2 . . . . .  ZP®gp] 

= span[v*, v* . . . . .  v*] 

L span[v~+ l, v~+z . . . . .  v~'M+ 1 )(N+ I)], 

(3.31) 

where Vp for p > P are the nonprincipal right singu- 
lar vectors of ¥, ± denotes the orthogonality, ® 
the Kronecker product, Zp = [ 1, Zp, zp 2 . . . . .  zff] v, 
gp = [1, gp, g~ . . . . .  gff]v and Zp®gp is the pth col- 

umn of ZM+ 1,N+ 1. It suggests that we can find the 
correct pairing between the estimated {zp,} and 
{gp,,} by minimizing the following cost function: 

g = ~ ]vf(Zp,®gp,,)l 2, (3.32) 
p>P 

with respect to p" for each p'. 
Vol. 28. No. 1, July 1992 
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4. Simulation results 

Assume that the array output is given by 

yk.h=s~(k+ rlh) +s2(k+ r2h) + crnk.h, (4.1) 

where 

sl(k)=al exp(alk) cos(colk + ~b~), (4.2) 

s2(k) = a2 exp(a2k) cos(co2k + ~b2). (4.3) 

Here k = 0 ,  1 . . . . .  24; h=0 ,  1 . . . . .  9; a ,=a2  = 1; 
a~ = -0 .05 ;  a e = - 0 . 1 ;  co~ =0.5; co2= 1.0; r~=0.1; 
r2 =0.2; ~b, =0  and ~b2 =90 °. The above data set 
indicates that there are two signals arriving at the 
uniform linear array of H =  10 sensors from the 
two directions that correspond to rl and r2, and 
each signal consists of a complex conjugate pair of 
poles (i.e., Zl l=exp(al+jcol) ,  z j2=exp(a , - jcol ) ,  
z2t=exp(az+jco2) and z22=exp(a2-jco2)). The 
number of temporal samples (snapshots) is K =  25. 
o'nk.h is the noise with deviation equal to or, where 
nk,h was generated by using IMSL routine 
G G N M L  (which generates pseudo-white Gaussian 
noise of deviation one). 

In Tables 1-5, statistical results are given for the 
spatial parameters (r, and re) and the temporal 
parameters (angular frequencies co, and 092). After 
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Table 3 

Deviations of co~ divided by CRW/2=0.2601 x 10 4 

M = 2  3 4 5 6 

N =  1 9.66 6.10 1.60 1.29 1.27 
2 13.02 7.42 4.98 1.57 1.34 1.30 
3 13.07 6.75 3.76 1.65 1.44 1.37 
4 11.43 6.06 2.78 1.73 1.49 1.41 
5 10.57 5.01 2.48 1.75 1.47 1.40 

Table 1 

Deviations of r~ divided by CRBU2=0.1041 x 10 3 

M = 2  3 4 5 6 7 

N =  1 2.56 1.82 1.89 1.91 1.96 
2 2.52 2.97 1.23 1 27 1.32 1.35 
3 9.84 2.10 1.12 1.15 1.17 1.22 
4 10.78 3.47 1.33 1.20 1.19 1.23 
5 10.38 4.10 1.49 1.23 1.24 1.28 

Table 2 

Deviations of v2 divided by CRB~/2=0.7903 x 10 -4 

M = 2  3 4 5 6 7 

N = 1 2.36 2.08 1.53 1.34 1.36 
2 12.72 3.07 1.37 1.06 1.05 1.20 
3 8.97 3.38 1.52 1.11 1.17 1.30 
4 6.77 3.64 1.99 1.40 1.27 1.38 
5 3.42 2.26 1.52 1.16 1.09 1.25 

Signal  P r o c e m i n g  

Table 4 

Deviations of 0)2 divided by CRBW2=0.4927 x 10 4 

M = 2  3 4 5 6 7 

N =  1 6.89 7.57 2.58 1.38 1.34 
2 7.00 5.84 6.90 2.43 1.35 1.32 
3 5.36 5.04 5.76 2.21 1.33 1.23 
4 5.60 5.44 4.95 1.89 1.28 1.16 
5 6.26 5.86 4.65 1.74 1.22 1.17 

Table 5 

Square rooted efficiencies as functions of rr 

O" T 1 T 2 (D I 0 )  2 

0.001 1.32 1.05 1.34 1.35 
0.01 1.32 1.04 1.35 1.36 
0.02 1.32 1.03 1.35 1.36 
0.05 1.32 1.02 1.36 1.39 
0.07 2.81 12.03 97.14 51.75 

the estimates of {Zp} and {gp} were obtained by 
using the SDMP method, they were correctly 
paired and then used to yield the estimates of { ri} 
according to (2.7). {coi} were obtained by using 
cog= [Im(log(z0)) ]. (Note that j can be either 1 or 
2 in the above computation without affecting the 
results since zi, is always the complex conjugate of 
Zi2. ) 

For o- = 0.001 (SNR = -20  log,0 o- = 60 dB), 
Tables 1-4 show 20-run sample deviations of the 
four parameters: r , ,  r2, col and co2, divided by the 
corresponding (square rooted) Cram6r-Rao 
bounds. The Cram6r-Rao bounds were computed 
with the ten unknowns: a, ,  a2, a , ,  a2, co,, o92, ¢, ,  
4~2, r, and r2, assuming that the noise is white 
Gaussian. Note that the Cram6r-Rao bounds are 
the diagonal elements of the inverted Fisher's infor- 
mation matrix [6]. From these tables, it can be 
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seen that  the efficiencies (i.e., ratio o f  variance over 

C r a m 6 r - R a o  bound)  are close to one (the optimal 

value) when M~>6 and N>~2. 

For  M = 6 and N =  2, Table 5 shows the square 

rooted (20-run) efficiencies o f  the estimated r l ,  r2, 

o~1 and (D 2 as functions o f  the noise level or. It can 

be seen that the efficiencies stay constant  (nearly 

optimal)  until cr reaches threshold 0.07 ( S N R =  

23 dB). 

Note  that our  experience in simulation has sug- 

gested that  good  choices o f  M and N satisfy 
2 1 2 1 gK>~M>~gK and ~H>~N>~gH as supported by 

Tables 1 4. This result is similar to that  for the 

single-transient problem studied in [2]. 

5. Conclusions 
The multiple-transient problem has been studied 

in detail. The S D M P  method  has been developed 

for solving this problem. The simulation results 

have shown that  this method  can be near efficient 

statistically. This method  is also the most  efficient 

in computa t ion  a m o n g  all near or exact op t imum 

methods  known so far. 

Appendix A 
In the following, we will show that  the condit ions 

(3.19) and (3.20) are sufficient for Z x - M , H - N ,  

ZM,N+ ~ and ZM+ l,N to be o f  the full rank P when 

{zij ; j =  1 . . . . .  J( i)} (distinct poles o f  the ith sig- 

nal) are the same for  all i. 

It is easy to verify that  '(3.19) and (3,20) are 

sufficient for ZK-M,H-N, ZM,N+ 1 and ZM+I, N to be 
o f  the full rank P '  is equivalent to ' the condit ions 

m >~ P and n/> P are sufficient for Zm,, to be o f  the 
full rank P ' .  

Then, it can be seen that  a l though { z o ; j =  

1 . . . .  , J ( i ) ;  i = 1 , . . . ,  I} or  { z p ; p =  1 . . . .  , P}  are 

not  distinct, {go ; J =  1 . . . . .  J ( i ) ;  i =  1 . . . . .  I} or  
• . . . , T t  { g p , p =  1, P}  are distinct because g 0 = z 0  

where { ri ; i = 1 . . . . .  I} are distinct. 
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We can rearrange the order  o f  rows o f  Zm., SO 

that  the resulting matrix becomes 

c o z  ° q 

Z ' ,  = G, ZJ. l ,  (A . I )  

I 
G,Z' f f -  l J 

where Za is defined by (3.13), and 

Ig 
l 1 

Gn = gl. g2. 

7:-1 g~-i  

"'" --el ] . . . g p  

. . . g n ' -  

(A.2) 

Note  that r a n k ( Z ' , , )  = rank(Z, , , ) .  Since n >/P and 

{gp} are distinct, G, is o f  the full rank P. Further-  

more,  since G, is the top  n-row submatrix o f  

Z ' , ,  Z ' ,  is o f  the full rank P, and hence so is 

l m , n  • 
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