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1. Introduction

The task of a system for signal understanding is
to compute a symbolic description £ of an input
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Abstract. To interpret sensor signals like images, image sequences, or continuous speech the representation and use of task-
specific knowledge is necessary. The paper presents a framework for the representation of declarative and procedural knowledge
using a suitable definition of a semantic network. Based on that formalism a problem-independent control algorithm for the
interpretation of sensor signals is presented. It provides both data-driven and model-driven control structures which can easily
be combined to perform any mixed strategy. An explanation facility is available which makes the development of complex
knowledge bases easier and increases the acceptance of such a knowledge-based analysis system.

Zusammenfassung. UnerlidBliche Voraussetzung fiir die Interpretation von Sensordaten wie Bilder, Bildfolgen oder kontinuier-
liche Sprache ist die Darstellung und Nutzung von aufgabenspezifischem Wissen. In diesem Artikel wird ein Formalismus
vorgestellt, der deklaratives und prozedurales Wissen in einem semantischen Netzwerk reprasentiert. Auf diesem Formalismus
aufbauend ist ¢in problemunabhingiger Kontrollalgorithmus fiir die Interpretation von Sensordaten definiert. Er besitzt sowohl
datengetriebene als auch erwartungsgesteuerte Kontrollmechanismen, wodurch jede gemischte Strategie erzielt werden kann.
Eine Erklirungskomponente unterstiitzt die Entwicklung und Wartung komplexer Wissensbasen und erhoht die Akzeptanz
eines solchen wissensbasierten Analysesystems.

Résumé. L’interprétation de signaux captés comme les images, les séquence d’images ou encore la parole rend nécessaire 'usage
d’une représentation de la connaissance spécifique 4 la tiche. L article présente un environment de travail pour la représentation
de connaissances declaratives et procedurales faisant appel a un réseau sémantique dédié. Un algorithme de contréle indépen-
dant du probléme utilise ce formalisme pour Dinterprétation de tels signaux. Il permet le développement de structures de
contrdle orientées 4 la fois données et modéle. Toute combinaison, car celle-ci est facilitée, peut conduire a adopter une stratégic
mixte. Une composante explicative est disponible qui facilite le développement de bases de connaissances importantes et qui
augmente les perspectives que renferme un tel systéme d'analyse de bases de connaisances.

Keywords. Knowledge representation; semantic networks; interpretation of sensor signals; problem-independent control;
explanation facility.

signal f which

- optimally fits to the input signal,

- is maximally consistent with internally represen-
ted task-specific knowledge,

- and contains the information necessary for
further processing steps within the task-domain.
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Typical examples of signals are speech, images, or
image sequences. At least parts of the relevant
knowledge have to be represented explicitly within
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the processing system in order to speak of a knowl-
edge-based system.

The main modules of a system for knowledge-
based signal understanding are shown in Fig. I.
Four of them are essential for any task; they are
the methods for performing an initial segmenta-
tion, the representation and utilization of knowl-
edge, the representation of intermediate results of
processing, and the control of an understanding
process. The desirability of the additional modules
for knowledge acquisition, explanation and user
interface depends on the intended usage of the sys-
tem. This article concentrates on an approach to
the design and implementation of the modules for
knowledge representation and utilization, control
and explanation.

Early books and articles on knowledge-based
processing are, for example, [5, 12, 19, 20, 24, 27,
28, 40, 58]. Some examples of recent developments
are given in [25, 30, 33, 39, 42]. We may view signal
understanding as a problem-solving activity. Then
it is natural to distinguish various states of problem
solving or of processing. From the above early
references two viewpoints (and many intermediate
ones) can be distinguished:

One viewpoint is that states are represented by
the data or results computed by the system. A set
of operators, procedures, or transformations is
given to the system which allows it to transform
one state into another one which hopefully is closer
to the goal of processing (that is to a symbolic
description). Control then amounts to the selection
of a subset of the data and a transformation to
work on this subset. Only that subset of states and

state transitions relevant to interpret an input sig-
nal is generated. The approach described here is of
this type.

The other viewpoint is that states represent pos-
sible partial interpretations of the signal. Knowl-
edge constrains the set of states and of possible
state transitions. Control then amounts to a search
of a path leading from the initial state to a goal
state. States and transitions are precomputed and
represented in a network.

Of central importance to a knowledge-based
system is, of course, the formalism employed for
knowledge representation. In general, knowledge
can be represented by formal logic [38, 57], fuzzy
logic [2,7, 8, 60], frames and semantic networks
[10, 14, 17, 22, 30, 59], production systems or rule-
based systems [3, 24, 26, 52] or (artificial) neural
networks [13, 41]. It would be beyond the scope of
this contribution to discuss the relative merits of
the different approaches. This paper is based on
knowledge representation by semantic networks. A
motivation for this approach is given in [34, 45] in
detail.

Briefly, the approach to knowledge-based signal
understanding is as follows. At first a mainly data-
driven phase of processing is carried out to com-
pute an initial segmentation .« of the input signal
J- This way the signal is decomposed into segmenta-
tion objects O using no task-specific knowledge. A
segmentation object is a recursive data structure,

O=(D: Ty, (A: (T4, RU V), (P: O)*,
(S(Ao, Ap, Ax): B)*, G: R") (1)

output: task-specific

input: signals | user commands symbolic description
USER INTERFACE
[ RESULTS ]
[
| METHODS | | KNOWLEDGE | | LEARNING | | EXPLANATION
I I
[ CONTROL }

Fig. 1. The main modules of a system for knowledge-based signal understanding.
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having attributes A, parts P, structural relations S
and a judgment G. Attributes are defined by their
type T,, for example, length (of a line) or color
(of a region), and the associated value which may
be a real number # or a symbol from some
alphabet Vr: parts are themselves segmentation
objects O. for example, a “pair of parallel lines’ has
as its parts two ‘straight lines’; structural relations
occur between attributes A, of the segmentation
object or attributes Ap of its parts, for example,
the relation between the two straight lines of a
parallel line pair is the constant distance which is
treated as a fuzzy relation whose degree of fulfil-
ment is measured by a real number #; finally, the
judgment in general is a vector measuring, for
example, goodness and priority by real numbers #.

An initial segmentation is a network of segmen-
tation objects,

o ={0). (2)

Initial segmentation is followed by a phase of
mainly model-driven processing. Knowledge is
represented in a model .# of the task-domain; it
consists of concepts C of a semantic network.
Hence, a model is a network of concepts,

M=(C). 3)

Results of processing are represented as instances
I(C;) of concepts C;. We assume that the goal of
processing is itself represented by a concept, the
so called goal concept C,. Every concept has an
associated judgment G which allows one to com-
pute the judgment (or goodness, score) of an
instance. Hence we view knowledge-based signal
understanding as the problem to compute an opti-
mal instance /*(C,) of a goal concept. Now we can
define the above mentioned symbolic description
% by

B(f)=1*(Cp),
Cy)= a{r%rCna;x {GU(CY) | M, 57}, 4)
Rce)

An optimal instance can be computed by an
adaptation of the well-known A*-graph-search
algorithm to semantic networks as shown in Sec-
tion 3. Details of this approach are given below. In
summary, we treat knowledge-based signal under-
standing as an optimization problem, which seems
appropriate and necessary due to the noisy nature
of signals.

The paper gives in the next section an overview
of a special version of a semantic network devel-
oped to meet the needs of signal understanding.
Since this material is available in detail elsewhere,
for example in [30, 42, 45], the discussion will be
short. The problem of control is treated in detail
in Section 3. Additionally to [34], the top-down
and bottom-up constraint propagation and the
treatment of specializations and optional links are
described. The explanation of system resources,
that is the declarative and procedural knowledge,
as well as of system results computed during an
understanding process is presented in Section 4.
Two applications in Section 5 show that the
presented approach is able to handle different task-
domains in an efficient manner. Finally, in Section
6 we give some conclusions and an outlook on
further work.

2. The semantic network language

In this section the particular semantic network
language ERNEST is presented. There is a clear
distinction of the syntax, semantics and pragmatics
of the network (not of the task-domain). By ‘syn-
tax’ we mean the available data structures and the
necessary restrictions without regard to their rela-
tion to a particular meaning of these structures.
The meaning of the data structures, in particular
the meaning of nodes, links and substructures, is
the ‘semantics’ of the network. It is important to
note that a semantic network in an image or speech
understanding system not only has to represent
some declarative and procedural knowledge, but
also has to provide the basis for its utilization for
knowledge-based signal understanding. This aspect
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is described as the ‘pragmatics’ of the network in
the second subsection.

2.1. The syntax and semantics of the network

Contrary to other approaches, in our definition
of the network there exist only three different types
of nodes and three different types of links between
concepts. They have a well defined semantics and
we think that these structures are adequate to rep-
resent the knowledge of different signal under-
standing tasks. In [34, 45] a detailed discussion of
the epistemological adequacy of the network for-
malism can be found. In the following, the example
of a jeep is used to illustrate the realization of a
network and the meaning of the different struc-
tures. Figure 2(a, b) show a rough model of two
jeeps, and Fig. 2(c) shows the related network.

Types of nodes

In a knowledge-based system, a basic require-
ment is the ability to represent classes of objects,
events, or abstract conceptions. This is done in
ERNEST (and in other approaches to semantic
networks) by the node type concept. For our
example, this results in concepts like Jeep, Tyre,

Bodywork, and so on, which describe the common -

properties of the related objects. Furthermore, to
interpret segmented images concepts for the corre-
sponding geometrical terms exist, ie. Circle,
Polygon.

In the context of image or speech understanding
an important step is the interpretation of the sensor
signal in terms modeled in the knowledge base.
That means, one connects certain areas of the sig-
nal with concepts of the knowled ge base. For that,
the second node type, called instance, is introduced
which represents an extension of a concept found
in the sensor data. The instance is a copy of the
related concept except that the general description
is substituted by concrete values calculated from
the signal data.

In an intermediate state of processing it may
occur that instances to some concepts cannot be
computed because certain prerequisites are miss-
ing. Nevertheless, the available information can be
Signal Processing

used to constrain an uninstantiated concept. This
is done by the node type modified concept which
represents modifications of a concept due to inter-
mediate results of the analysis. For a clear distinc-
tion between a term and the related model in the
network, the following convention is used : the term
xyz is represented by the concept Xyz. An instance
to Xyz is denoted by /(Xyz), a modified concept
by M(Xyz).

Types of links

Like in all approaches to semantic networks
there exists a link type specialization which con-
nects a concept with a more general concept (i.e.
Car 2=, Jeep). Closely related to that link is an
inheritance mechanism by which a special concept
inherits all properties of its general ones, unless
they are explicitly modified.

Another well-known link type is part which
decomposes a concept in its natural components
(i.e. Car 225, Tyre). However, in image or speech
understanding, it often occurs that a certain con-
cept 1s only defined in the context of another one.
For example, if you want to find a spare tyre in an
image it can be only identified as a spare tyre in the
context of a related vehicle. Contrarily, an ordinary
tyre can be recognized without any context as the
definition of that term is independent of relation-
ships to other ones. However, the term front tyre
is context-dependent as this property can be only
determined by an appropriate context. To model
these facts a part can be marked as context-depen-
dent and vice verse a context can be explicitly
inserted in a concept. That means, Spare_tyre is a
context-dependent part (<P2%,) of Jeep and in
Spare_tyre the concept Jeep is inserted as a possible
context. Dependent on the choice of the created
concepts, there are various possibilities to design a
network. For example, if you want to model the
objects front tyre and rear tyre explicitly as con-
cepts Front_tyre and Rear_tyre are context-depen-
dent parts of Car. In the other case, where only the
concept Tyre exists, two context-independent links
from Car to Tyre are introduced. To express the
above relation for every link a functional role is
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b)
a)
a e » Jeep
part part part cdpart
Window Roll_bar Bodywork  Roof rack  Cowcatcher Spare_tyre
!
con con con n con con
i
Y \j
Circle Trapezoid Rectangle Polygon Rounded_rectangle

c)

Fig. 2. A simple graphic representation of two jeeps and the related network model.

defined (see Fig. 2(c)). Generally, for every link
such a role exists. To guarantee the clarity these
roles are omitted for the other links in Fig. 2(c).
In order to motivate the third link type, the
description of aggregation in [23] is reported: “for
example, the parts of John Smith, viewed as a phys-
ical object, are his head, arm, etc. When viewing as
a social object, they are its address, social insurance
number, etc.” Two conceptional systems are distin-
guished in this example. A concept modeling a per-
son has different parts within each of these systems.
Parts in the social system are social conceptions,
parts in the physical system are physical concep-
tions. In complex applications, more than one such
conceptional system will occur, i.e., in image under-
standing, lines, geometry, named objects, or

motions. Relationships between concepts belong-
ing to different conceptional systems are only
established by the link type concrete. Therefore,
part and specialization are restricted in the way
that they are only allowed inside the same concep-
tional system. For example, the concepts Tyre and
Circle represent terms of different conceptional sys-
tems because tyre belongs to ‘named object’, while
circle belongs to ‘geometry’. According to the fact
that circle is more concrete to the signal than tyre,

the following link Tyre =%, Circle is established.
Besides the functional role, the goal of the link,
and the slot context-dependent for every part-link
and concrete-link a judgment function can be
defined. It tests the restrictions which are valid for
a concept if it is the goal of that link. Furthermore,
Vol. 32, Nos. 1-2, May 1993



116 F. Kummert et al. / Control and explanation in a signal understanding environment

o support a constraint propagation an inverse
judgment function is possible. It propagates the
restrictions which are tested by the related Judg-
ment function. For example, if for the link
Jeep 225, Tyre a function tests the size of the tyre,
then the inverse function can propagate the admis-
sible values to Tyre. By that process, the analysis
of an image can be focused only on appropriate
hypotheses (see Section 3).

Modality sets

In the definition of a concept, there may be parts
and/or concretes (including inherited ones) which
are obligatory and others which are optional. A set
of obligatory parts and concretes together with the
associated set of optional parts and concretes is
called a modality set. In order to increase the
compactness of a knowledge base, we allow that a
concept is defined by several modality sets. Each
individual modality set is sufficient to compute an
instance. Besides the items ‘obligatory’ and
‘optional’, inherent links can be defined for such a
set. Inherent parts and concretes are those which
can be inferred from the instantiation of a concept,
but which are not manifested in the sensor signal.
For example, when secing a jeep (or after comput-
ing an instance of the concept Jeep), one may usu-
ally assume that it has an engine, although this will
not be visible under standard viewing conditions.
In our example, Jeep has the following two modal-
ity sets (see Fig. 3) representing the two jeeps of
Fig. 2(a, b). A link in a modality set is referred by
the related functional role. Except for Tyre, this is
the name of the goal concept in small letters.

modality(1):
Optional:

Inherent: -

Attributes, relations und judgments

Additionally. a concept can be described by attri-
butes which represent numerical or symbolic
features of a concept. For example, possible attri-
butes for Car are height. length or speed. The
different attributes of a concept are characterized
by a functional role which is definite for that con-
cept. For every attribute a type of value and a func-
tion for the computation of values have to be
defined. The type reflects the general data type of
an attribute and can actually be set to Boolean,
Character, Integer, Real, Set, Tree and Record.
The computation of an actual value of the attribute
can be specified by certain arguments. These argu-
ments can be attributes of the same concepts or
can be attributes of concepts which are referred by
a link part or concrete. For example, the height of
Car can be calculated from the height of Bodywork
plus the radius of Tyre. Besides these obligatory
items, a restriction, an inverse function for the
computation of a value, and a judgment function
can be defined. The restriction specifies the allowed
or expected values of an attribute. An example is
the attribute speed of Car which can be restricted
to the interval [0; 100] m/h. Similar to the inverse
judgment of a link the inverse computation of a
value supports the constraint propagation. For
example, if
- the attribute a is calculated from the attributes

b and c via a=b+c,
- for a the following restriction is known restr, =

[70; 100], and
- for ¢ the value 50 is calculated,
then by the inverse computation b=a—c a restric-
tion for b restr,=[20; 50] can be propagated. The

Obligatory: front_tyre, rear_tyre, bodywork, window, spare_tyre

roof_rack, cowcatcher

modality(2): Obligatory: front_tyre, rear_tyre, bodywork, spare_tyre

Optional:

Inherent;

roll_bar, cowcatcher

Fig. 3. Two modality sets of the concept Jeep.

Signal Processing
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judgment of an attribute reflects the quality of a
calculated value with regard to the restriction.

For every concept, relations can be specified
which define a relationship between different attri-
butes, i.e. ‘height of car<length_of car’. Every
relation has a definite functional role and a judg-
ment function. The value returned by that function
measures the degree of fulfillment of the relation.
Analogous to the inverse judgment of a link, an
inverse judgment of relation can be specified which
propagates costraints to guarantee the fulfillment
of the relation (see the next subsection).

As the results of initial segmentation are often
not perfect, an instance to a concept may be more
or less erroneous. For that reason, the definition
of a concept is completed by a judgment function
which calculates the correspondence of an area of
the sensor signal with the term defined by the
related concept. Arguments of this function are the
judgments of links, attributes and relations. The
scheme to judge an instance is not fixed. Depending
on the applications, fuzzy logic, distance measure-
ments or probabilities are used.

So far, the most important structures of the
semantic network language are presented. For a
detailed description see [34, 45].

2.2. The pragmatics of the network

Besides the adequate representation of knowl-
edge, another important aspect of a semantic net-
work is the utilization of this formalism for signal
interpretation. The main activity during an analysis
process is the computation of instances out of
concepts given certain sensor data. Computation
of instances only depends on the semantics of the
network. It will be shown that six rules are
sufficient to define the instantiation process. These
rules complete the definition of the network by
defining the pragmatics of the formalism in the
sense of the procedural semantics [16]. Different
from PSN, the rules for generating instances are
defined globally for the whole network, without
respect to a task-domain. This is possible because
the rules only make use of the semantics of the

network language, not of the meaning of concepts

in a specific network. The six rules are the basis

for the problem-independent control algorithm as
discussed in the next section.

In the following, the rules will be illustrated by
the network in Fig. 2. It is assumed that the goal
concept for the instantiation is the concept Jeep
with respect to the first modality set (see Fig. 3).
The goal of an analysis process is the interpretation
of a sensor signal in terms of the knowledge base.
This is done by instances which represent these
terms with calculated values due to the signal. The
inference process is based on the fact that if you
have all parts of an object which can be taken apart
then you can put it together. In terms of our seman-
tic network, this means: if you have for a concept
A instances to all obligatory parts and concretes
then you can instantiate concept 4. For example,
to instantiate the concept Jeep instances are
required to the concepts Tyre, Window, Bodywork
and Spare_tyre. As mentioned above, the concept
Spare_tyre is only defined in the context of Jeep;
that means, for the instantiation of Spare_tyre an
instance to Jeep is necessary. Vice versa, a complete
Jeep (due to the model) can only be instantiated if
Spare_tyre is found in the signal. This conflict is
solved in the following way:

1. You create a partial instance to Jeep which is
only based on the context-independent obliga-
tory parts Tyre, Window and Bodywork.

2. By that partial instance a context for Spare_tyre
is established and an instance can be created.

3. By the instance I(Spare_tyre) the partial
instance to Jeep can be completed.

This process is expressed by the first two rules for

instantiation. Hereby, the first step is described by

RULEI (see Fig. 4).

Because of context-dependent parts and optional
links, values do not exist for all arguments of the
activated functions. Nevertheless, the knowledge of
existing values of arguments and the function itself
can be used if the following strategy is applied.
The restriction values are also transferred to the
functions. The functions themselves decide whether

Vol. 32, Nos. 1-2, May 1993
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RULE1: Creation of Partial [nstances

F for a concept A or a modified concept M, (A} with respect to one obligatory

set of a modality of A,

instances exist for all

e obligatory concretes and

e obligatory parts which are not context-dependent from A

AND

a partial instance exists for a concept which defines a context for A
THEN build up partial instances Ip,(A) as follows:

o create for Ip,(A) an empty instance,

e insert the actual modality set,

e connect Ipi(A) with those instances referred to by the premise,

e activate the attached functions for Ip,(A) in the sequence: judgment of

links, computation of attributes, judgment of attributes, judgment of
relations, judgment of the concept A

Fig. 4. Rule for the creation of partial instances.

the existing values and the restrictions are sufficient
for the estimation of results. In the case of attri-
butes, this estimation is a new tighter restriction.
For the other cases, which are all judgments, the
estimation must be optimistic. For example, the
attribute length of Jeep is the sum of the length of
Bodywork and Spare_tyre. By knowing the length
a of Bodywork (calculated in I/(Bodywork)) and a
restriction (interval [b,¢]) for the length of
Spare_tyre (defined in the concept) a new restric-
tion [a+b, a+c)] for the length of Ip(Bodywork)
can be calculated.

In the situation of Fig. 5 instances for Tyre, Win-
dow and Bodywork are already generated. Due to
RULE] a partial instance to Jeep can be created
as Jeep has no context and no concretes, and

instances for all context-independent parts are
available. After that, RULEI is applicable for
Spare_tyre as the context is established and an
instance exists for the only concrete. To complete
the instantiation process RULE2 (see Fig. 6) is
introduced which generates complete instances out
of partial ones.

As Spare tyre has no context-dependent
parts, RULE2 is immediately applicable to
Ip(Spare_tyre) and after that a complete instance
for Jeep can be built up by RULE2. If RULEL is
always applicable 1o a concept A, then it is called
initializing concept because a partial instance can
be created only on the basis of segmentation data.
Thereby the analysis process is initialized. That
means, every concept with no context and only

Signal Processing

I, (Bodywork) I, (Tyre) L (Tyre) I, (Window) Spare_tyre
con con con con con
[, (Polygon) Iy (Circle) L (Circle) [ (Trapezoid) I;(Rounded_rectan gle)

Fig. 5. An example of a state during the analysis.
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RULE2: Creation of Instances
IF for a partial instance Ip,(A)

the modality of Ip,(A)
THEN

¢ create for I,{A) an empty instance,
e insert in [,(A) the modality set of Ip;(A),
¢ connect I(A) with those instances referred to by the premise,

¢ copy the remaining links of Ip;(A) to I;(A) i

instances exist for all context-dependent parts which are obligatory due to

create instances [,(A) out of Ip;(A) as follows:

¢ activate the attached functions for I,(A) as in RULEI

Fig. 6. Rule for the creation of instances.

with context-dependent parts can be instantiated
at once by RULEIL. In the example of Fig. 2
this 1s the case for the concepts Circle, Rectangle,
Trapezoid, Rounded_rectangle and Polygon.

Since RULEI and RULE2 only consider obliga-
tory parts and concretes, RULE3 in Fig. 7 checks
whether there are instances of optional parts or
concretes. If this is the case, an instance 1s extended
by these optional components. For example, if
there exists an instance for Roof_rack, then /(Jeep)
can be extended.

If a goal concept for an analysis process is
known, recursive application of these three rules
results in a search tree for the goal concept accord-
ing to the modalities of a concept and optional
links. By competing instances, generated for a con-
cept, this search tree is additionally expanded.
Based on the judgments for instances, the A*-
Algorithm can be used to direct the analysis
(see Section 3).

The RULESI-3 are sufficient to define the
instantiation of concepts if no modified concepts
are allowed. As mentioned above, a modified con-
cept of 4 can be computed if some instances have

been computed, but instantiation of A is not yet
possible. For example, having an instance of Body-
work a modified concept M(Jeep) can be calcula-
ted. This modified concept represents a model of a
jeep where the bodywork and therefore the loca-
tion in the image is known. This data-driven modi-
fication is described by RULE4, see Fig. 8, which
provides bottom-up constraint propagation.

The knowledge of M(Jeep) may be used to
restrict Window, Tyre and Spare_tyre, i.e., con-
cerning the location in the image. By propagating
these constraints, the number of competing
instances can be reduced. This model-driven crea-
tion of modified concepts 1s expressed by RULES,
see Fig. 9, which provides top-down constraint
propagation.

For example, as Tyre can be referred to by other
concepts than Jeep (i.e. Truck) the restriction for
the attribute radius in Tyre has to take into account
all these references. By the model-driven modifi-
cation of Tyre (due to M(Jeep)), a new restriction
for the radius of a tyre of jeep can be inserted. This
is done by the inverse judgment of the link
Jeep B Tyre by propagating the admissible

RULES3: Creation of extended instances
[F for an instance I;(A)

there exist instances which are optional due to the modality set of 1,(A)

THEN create extended instances I,(A) out of I,{A) as described in RULE2

Fig. 7. Rule for the creation of extended instances.

Vol. 32, Nos. 1--2, May 1993
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RULEA4: Data-driven modification of concepts
IF for a concept A or a modified concept M,(A) and a modality set of A
new modified concepts or new instances were created for a concept, which
is referred to as part, or concrete, or context-of by the concept A

THEN create new modified concepts Mi(A) out of A or M,(A), respectively, as
follows:

create for M (A) a new empty modified concept,

insert the actual modality set,

connect M;(A) to all instances and modified concepts referred to by the
premise and those which are already referred to by M;(A),
activate the functions like in RULEI

Fig. 8. Rule for the data-driven modification of concepts.

RULES: Model-driven modification of concepts
IF for a concept A or a modified concept M;(A)

an instance 1(B) or a modified concept M{B) exists and for a modality set
of B there exists a link B <% A or B3 A

create new modified concepts My(A) out of A or M;(A), respectively, as
follows:

THEN

o create for Mi(A) a new empty modified concept,
¢ connect M, (A) to all instances and modified concepts referred to by
M;(A),

¢ activate for My(A) the attached functions of A and B in the following
sequence:

o inverse computation of attributes of B, which have an attribute of A
as an argument,

o inverse judgment of relations of B, which have an attribute of A as an
argument,

o inverse judgment of links of B, which have A as the goal node,

o functions of A like in RULE!

Fig. 9. Rule for the model-driven modification of concepts.

values for the tyre of a jeep which are tested for this part of the knowledge base has to be investigated

link in the related judgment function. Analogous to
that, if a judgment of relation tests the requirement
‘Bodywork above Tyre’, the knowledge of the loca-
tion of I(Bodywork) is used to restrict the possible
location of Tyre. This is done by the inverse judg-
ment of relation. The inverse attribute computa-
tion works in a similar way (see Section 2.1).

The estimation of possible goal concepts is very
important for an efficient analysis. Thereby, only a
Signal Processing

and the expectations of the model can be immedi-
ately incorporated in the analysis. The establishing
of these goal concepts is possible due to initial seg-
mentation results or due to expectations on an
actual analysis. RULES6 in Fig. 10 describes this
estimation of goal concepts.

The six rules above precisely define the creation
of instances and modified concepts and allow a
problem-independent utilization of knowledge.
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OR

possible analysis goal

¢ insert the known values,

o activate for M, (A) the functions of A in the sequence of RULE1 with
exception of the attributes with known values

RULES: initial estimation of analysis goals
IF for a concept A values are known for an attribute

due to expectations inside an actual situation a concept A is given as a

THEN create modified concepts M;(A) as follows:

e create for M (A) a new empty modified concept,

;
:
i

Fig. 10. Rule for initial estimation of goal concepts.

The goal of an analysis process is not the creation
of an arbitrary interpretation but the efficient com-
putation of the optimal interpretation in the sense
of 4. To reach this goal the following control algo-
rithm determines which rule should be applied to
which data in a given situation.

3. A problem-independent control algorithm

Besides the representation of task-specific knowl-
edge the flexible and efficient use of the available
knowledge sources is necessary for the automatic
interpretation of sensor signals like images or con-
tinuous speech. Dependent on the flow of informa-
tion and the activity through the representational
layers the data-driven (bottom-up) and model-
driven (top-down) strategy are the two basic con-
trol paradigms. Unfortunately, the rnght way
strongly depends on a specific task-domain. For a
problem with unambiguous results of preprocess-
ing a data-driven analysis is suitable, because this
leads to a small number of competing interpreta-
tions. On the other hand, a model-driven strategy
is efficient for applications with small and/or
unambiguous knowledge base, because many
hypotheses, incompatible with the model, can be
excluded in an early state of the analysis. Other-
wise, a mixed top-down and bottom-up strategy
should be preferred using both the restrictions and
expectations of the knowledge base as well as the

data from preprocessing. Therefore, a problem-
independent control algorithm must have both
data-driven and model-driven control structures
which can easily be combined to any mixed
strategy.

Figure 11 shows an outline of the general control
algorithm which offers both data-driven as well as
model-driven control features. By an easy com-
bination of these structures a broad variety of
control strategies can be designed yielding a good
adaptation to a specific task-domain. The control
strategy 1s explained by the segmented image of
Fig. 12. It contains hypotheses for circles, poly-
gons, trapezoids and rounded rectangles. Besides
the correct hypotheses, one incorrect polygon,
circle and trapezoid were detected.

As the image and speech signals are ambiguous,
competing instances and thus competing interpre-
tations are calculated. To focus on the most pro-
mising interpretation the 4*-algorithm is used to
direct the analysis. Every node in the search space
represents one consistent (partial) interpretation of
the sensor signal. That means, every node » rep-
resents the complete knowledge base adapted to
the signal by the instances and modified concepts
related to n. Therefore, the search space is initial-
ized by the root node n,, and the set OPEN, which
contains the active nodes, is the empty set. Then,
as starting points of the analysis initial goal con-
cepts have to be selected. Dependent on the level
of abstraction a more data-driven or a more model-
based strategy is first performed. For example, by
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initialize the search space by the root node ng;  OPEN :=@

select initial goal concepts C, due to expectations or initial segmentation results
FOR all C;

apply RULES6 to C;

FOR every created modified concept M, (C,)

generate one successor node n,; of the root node ng and insert M(C,) in n,;

judge n; due to an optimistic estimation for the costs of an interpretation of the
signal and bring n; to OPEN

WHILE OPEN # 0

remove the best judged node n from OPEN

IF (1) the analysis goal is reached for node n

THEN stop analysis as n contains the optimal interpretation of the sensor signal

ELSIF| (2) a new instance can be created

'THEN | create a new instance by RULEL-3 and generate data driven modifications up to
the goal concept by RULE4

ELSIF' (3) all objects of n are instances but the level of interpretation is not abstract

enough

THEN estimate bottom-up new goals due to the paths in the knowledge base

ELSIF (4) a new model driven modification is possible
THEN create top-down a new modified concept by RULES

ELSIF (5) there exist not interpreted signal areas, although n contains a complete
‘interpretation of an appropriate level

;THEN"due to the model, incorporate specializations by RULE1-4 or create a modified
concept for an optional link by RULES

Fig. 11. An outline of a problem-independent control algorithm.

model determine the further processing. RULE6
\ is applied to every goal concept causing modified
concepts M, (C;). Every such modified concept is

regarded as a competing hypothesis and therefore

@ it is inserted in one successor node of n,. To process
J@ O only promising interpretations every search tree
node 7 is judged on the basis of the modified con-

cepts and instances collected in . The initial nodes
ny only contain one modified concept so that the

judgment of ny bases on the judgment of that
modified concept and on an optimistic estimation

Fig. 12. Segmented image of a jeep.

the concept Polygon (most concrete level) the
sensor data can be immediately incorporated in
the analysis. This is done by the instantiation of
Polygon. Such an instance I(Polygon) represents a
concrete polygon found in the sensor data. On the
other hand, an initial goal concept Car causes a
model-driven strategy, as the expectations of the

Signal Processing

for the costs of a complete interpretation. As the
judgment problem is for the most part problem-
dependent, a treatment of that problem would
exceed the scope of this article. An example for
a judgment function in the task-domain ‘speech
understanding’ is given in [47] and for ‘object rec-
ognition’ in [33]. In our small example we select
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Polygon as the single initial goal concept and create
M, (Polygon), so that only one node n; is in OPEN.

After that initialization phase, the A*-algorithm
begins to work. While OPEN is not the empty set,
the best judged node » is selected for further pro-
cessing. If the analysis goal is reached, i.e. the entire
sensor signal is interpreted on a level abstract
enough, then the analysis is finished and » contains
the optimal interpretation. This is not fulfilled for
node n,, so that the next condition is tested. To
guarantee a fast verification of expectations of the
model due to segmentation results, the instantia-
tion is preferredly activated. As Polygon has no
parts and no concretes, instances to that concept
can be created by applying RULEI and RULE2.
Dependent on the results of preprocessing, for
every detected polygon in the image one instance
and one successor node is created (see Fig. 13).
They represent competing partial interpretations of
the image. Generally, the instantiation is a data-
driven process which creates a new interpretation
of a signal area. In the following, every new search
tree node is judged and inserted in OPEN.

For the next iteration we assume that n, is the
best judged node. For that node the third condition
is fulfilled and new goals are estimated -bottom-up.
By this data-driven process the high-level knowl-
edge is incorporated in the analysis whereby the
search process can be reduced. The new goals are
based on expectations resulting from the knowl-
edge base and on a verified partial interpretation.
For that, starting from the old goal a connection

via instances and modified concepts is built up to
the new goal following the inverse links part-of and
concrete-of in the network. Different paths in the
network result in competing search tree nodes.
Figure 14 shows two competing search tree nodes
after the estimation of new goals. In node ns
I,(Polygon) is interpreted as a body-work of a car,
while for n¢ I;,(Polygon) is interpreted as a roof
rack. These hypotheses are expressed by the two
modified concepts M,(Car) and M,(Car) and
by the two instances I,(Bodywork) and
I{Roof rack). After the first estimation, the new
goals usually do not belong to the most abstract
level. They only represent intermediate goals which
are verified in a model-driven manner. After the
verification of these intermediate goals, new goals
in higher levels are estimated. This alternating pro-
cess is repeated until the desired level of abstraction
is achieved. Dependent on the length of the estima-
ted path more or less knowledge of the model is
used for further processing. Correspondingly, a
more or less model-driven strategy is designed.

In the next iteration, for the (best judged) node
ns a model-driven modification is possible. Due to
the new modified concept M;(Car) RULES is
applicable to Window, Roof_rack and Tyre. To
guarantee an efficient analysis only that concept is
modified which is referred to by an obligatory link
and which can most easily be instantiated. There-
fore, every concept has a priority score depending
on the length of a path from that concept to an
initializing concept. For an exact definition of the

"""""

o 1 L{Polygon) l ny

ny

My

Fig. 13. Search tree after the instantiation of Polygon.
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Fig. 14. Content of search trec nodes after the estimation of new goals.

priority of a concept see [46]. Besides this problem-
independent measure, for every link a precedence
can be defined expressing task-specific knowledge.
For example, if the goal concept 4 of a link can be
instantiated with high certainty, then 'a good
judged instance I(A) confirms the so far generated
partial interpretation. Contrarily, by a worse
judged instance the interpretation can be rejected.
By this discriminatory role, a model-driven modi-
fication of 4 has a high precedence. If the link
Car LY, Tyre has highest procedence a new
modified concept for Tyre is generated. By that
process all restrictions of M;(Car) are propagated
into M, (Tyre). This is done by activating the
inverse functions of Car for M;(Tyre) due to
RULES. Figure 15(a) shows the new generated
search tree node and the restriction of M (Tyre)
resulting from the position of I;(Polygon) in the
image. In the next step, these restrictions can be
propagated into M,(Circle) (see Fig. 15(b)).

If node ng is selected for further processing,
M,(Circle) can be instantiated. Due to the restric-
tion propagated in M,(Circle) only the circle in the
restricted area is admissible. Therefore, only one
instance and one search tree node is created (see
Fig. 16). However, in a pure bottom-up process,
due to the three hypotheses for circle, three com-
peting instances and three competing search tree

Signal Processing

nodes had to be generated. Besides the increased
efficiency, errors of the segmentation process can
be corrected by that model-driven instantiation of
a concept. For example, if a partial interpretation
predicts a segmentation primitive in a certain area
of the sensor signal and the initial segmentation
process did not find such an element, then a special
procedure for that primitive can be activated. By
that strategy, the more costly procedures are only
activated in small areas of the sensor signal by
request of high-level information.

To allow a propagation of the constraints arising
from Ii(Circle) RULE1-4 are applied to those
concepts connecting M(Circle) with the goal of
node ng (M,(Car)). By that process, a new instance
I,(Tyre) and a new modified concept M,(Car) are
created (see Fig. 16). M,(Car) contains all restric-
tions due to I;(Bodywork) and [;(Tyre). These
restrictions can be propagated in the next iteration
of the control algorithm.

After the model-driven modification of Tyre
(role rear_tyre), Circle, Window and Trapezoid
and after the instantiation of the resulting modified
concepts the concept Car can be instantiated (see
Fig. 17).

If the analysis goal is reached for node n;s, the
control algorithm stops. Otherwise, the last
condition is fulfilled and optional links and
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Fig. 15. Content of search tree nodes during the analysis.

ng
‘p}‘/ \ﬁ
I; (Bodywork) I; (Tyre)
s -
“{I, (Polygon) " I, (Circle)
Fig. 16. Content of a search tree node during the analysis.
n
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Fig. 17. Content of a search tree node during the analysis.
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specializations are incorporated in the analysis.
Due to the network of Fig. 2, one specialization
and two optional links exist. As Cowcatcher only
exists for Jeep and node n;s only contains an
instance to Car, the related link is not regarded in
that state of the analysis. The incorporation of the
remaining concepts Roof_rack and Jeep may yield
in competing interpretations, so that two compet-
ing search tree nodes are generated. One interprets
the signal as a car with a not yet detected roof rack
(see Fig. 18(b)) and the other one says there is
possibly a jeep with known bodywork, window and
tyres. As Spare_tyre is a context-dependent part
and Cowcatcher is optional, a partial instance to
Jeep was created (see Fig. 18(a)).

Assuming that node ny¢ is the best judged node
in OPEN, the related interpretation is verified.
After a top down modification of Spare_tyre and
Rounded_rectangle, the corresponding modified
concepts and Ip,(Jeep) can be instantiated
(see Fig.19). If for ny the analysis goal is

reached, the control algorithm stops. Otherwise
the optional link Jeep 275, Cowcatcher s
regarded.

In the example only the basic properties of the
control algorithm should be demonstrated. These
are the data-driven interpretation in terms of the
knowledge base (instantiation, goal estimation)
and the model-driven generation of predictions out
of the knowledge base (top-down modification,
specialization, optional links). Dependent on the
selection of initial goals and on the intermediate
estimation of new goals, almost any strategy can
be achieved.

The successful use in different task-domains (see
Section 5) indicates the quality of the presented
control algorithm. The obtained results show that
the problem-independent control algorithm is
able to handle totally different applications in an
efficient manner.

More information about the control algorithm
can be found in [18].

16
Ipy (Jeep)
/%n \\K
- I, (Bodywork) I; (Tyre) L (Tyre) I; (Window)
con con con con
L (Polygon) L (erclc) IQ(Cmclc) i (I‘rapczold)
a)
n
Iy (Car) v
// \\k
I (Bodywork) I; (Tyre) L(T yrc) } (Window) M, (Roof_rack)
con con con con
I; (Polygon) I (Clrclc) L (Circle) I,(Trapczoxd)
b)

Fig. 18. Content of search tree nodes after the incorporation of specializations and optional links.

Signal Processing
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Fig. 19. Content of a search tree node with a complete interpretation.

4. The explanation facility ELK

One advantage of knowledge-based systems is
that powerful explanation facilities can be pro-
vided. The use of such an explanation tool is
twofold:

- Tt helps the system designer to develop, inspect
and debug the knowledge base and the inter-
mediate and final results of an analysis.

- The acceptance of the system is improved
because the user can get explanations of what
the system does, how it works, why its actions
are appropriate, and when the limits of the sys-
tem are reached.

In ERNEST complex (large and highly structured)

knowledge bases must be explained. Therefore, we

called the explanation facility of ERNEST ELK -

Explanations for compLex Knowledge bases.

Three parts of ERNEST have to be explained by

ELK : the declarative knowledge, the procedural

knowledge and the results.

To be able to give flexible explanations, the
expert system needs a highly structured knowledge
base [53], for example control knowledge ought to
be stored explicitly [6]. The expert system also
needs a deep model about the domain to provide
justifications [4, 53]. ERNEST is highly structured.
Therefore, specific explanations can be generated.
However, some interesting knowledge cannot be
represented in ERNEST in a declarative manner
(for example, informations about the purpose of

the whole system or of special parts). In these cases
the system developer can integrate this knowledge
in text files which will be shown by the explanation
facility.

Many explanation facilities use a natural lan-
guage approach. The user asks questions, typical
are ‘WHY’ and ‘HOW* questions which were first
used in MYCIN [3]. In ELK we use a multimedia
approach. Graphics are more efficient than natural
language explanations with respect to showing the
structure of the network and facilitating the com-
parison between different results. An example for
such a graphic is given in Fig. 29. Natural language
is used for our on-line help system. For the domain
of image understanding the explanation facility can
also provide the analyzed images and annotate
them with the instantiated objects. For speech
understanding speech output can be integrated.

We want to explain complex knowledge bases.
For example, networks of the applications men-
tioned in Section 5 have about 100-250 concepts
and 400-800 links. According to the principle
‘divide and conquer’ we divide an explanation in
single explanation units. The access to further
detail or support explanations is provided by pick-
able objects. Therefore, we get a hypermedia
[21, 56] based system architecture.

Figure 20 shows the structure of ELK. In this
section, the three modules of ELK - the extraction
of data, the layout and the user interface — will be
discussed. Because of the use of the programming
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User interface

Data extraction MOTIF Data layout

ERNEST

X11/PostScript

Fig. 20. The structure of ELK.

language C and the software packages MOTIF',
X11? and PostScript’, ELK is portable on many
UNIX systems.

4.1. The extraction of data

The extraction module is the interface between
ELK and ERNEST. Because complex knowledge
bases must be handled, we cannot display all of the
information in one single explanation unit of the
size of a workstation screen. We must solve the
problem of extracting the information in such a
way that one single explanation unit is
understandable.

We use seven principles to separate and com-
press the available information:

1. The development of explanation units and
explanation sequences.
2. The separation of static knowledge and dynam-

. ically generated results.

3. The separation of different levels of detail.
4. The separation of different conceptional systems
. and topics.
5. The extraction of ‘important’ information.
6. The adaptation based on the user group and the
user knowledge.

' MOTIF is a registered trademark of the Open Software
Foundation.

? Xllisa regiStered, trademark of the Massachusetts Institute
of Technology.

* PostScript is a registered trademark of Adobe Systems
Incorporated.

Signal Processing

7. The adaptation according to the current inter-
ests of the user.

We already mentioned that we separate different
explanation units. For some problems one explana-
tion unit will be sufficient, but there also exist com-
plex problems where you need a sequence or a
combination of explanation units. For these com-
plex problems we define explanation sequences to
have a ‘read thread’ in the explanation.

Different explanation units and sequences must
be provided for the explanation of the static knowl-
edge in the system and the dynamic use of the
knowledge. The first sequence gives an introduc-
tion to the system, the second one helps to check
the results.

In an explanation one will first give an overview
and then discuss details. Therefore, a separation of
different levels of detail is needed. In ELK the user
can get an overview of the network, then the
graphic of one conceptional system, then details
about one concept, i.e. about the attributes (see
Fig. 21), and finally details about specific pro-
cedures. The overview of a network will be over-
loaded if the whole network of an applications with
about 250 concepts and 800 links is supposed to be
displayed at once. Therefore, we defined concept
families summarizing similar concepts. The
explanation of the results are structured in a similar
way.

Within a level of detail different conceptional
systems and topics can be distinguished. As men-
tioned before, specialization and part links are only
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network information
overview of a network
concrete hierarchy

choose concep-

tional system

choose concept

family

conceptional system
spec hierarchy
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concept family

choose

concept

Iinks attributes relations judgments
link table attribute table relation table ow chart
neighborhood flow chart ow char

Fig. 21. Some explanation units of ELK for the declarative knowledge.

allowed within a conceptional system. For the con-
nection between different conceptional systems
exists the special link type concrete. In such a way
the conceptional systems are clearly separated.
Also each concept has different slots defining expla-
nation topics like attributes or relations (see
Fig. 21).

For each topic you can focus on the ‘important’
information. However, we need a definition of the
‘importance’ of the information. One sample of
such a defintion in ELK is concerned with the
search tree of ERNEST which is generated during
the analysis of a signal. There exist search trees
with several thousands of nodes, which makes a
compression of this information very desirable. We
provide a fisheye-view [11], the pruning of the tree,
and the deletion of special node types. Figure 22
shows one example. Here paths with a low judg-
ment and nodes with exactly one successor have
been eliminated.

The explanation system is used by different
users with different knowledge. A novice will need
more information about the underlying ERNEST
ideas and less information about confusing details
of the knowledge base. On the other hand an
experienced system developer needs quick and
efficient access to every detail in the network
without being distracted by information he
already knows. For the intermediate  steps
between novice and expert it is necessary to asscss
the knowledge which the user has gained up to
this point. To adapt the explanation sequence
automatically to the user, a user model [15] is
needed.

Finally, the explanation facility should provide
an adaptation to the current interests of the user.
Here the goals of the user play the decisive role. If
he wants to build a new network, different expla-
nations are needed depending on the knowledge
acquisition module he uses (interactive or auto-
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[

]

Fig. 22. A part of a search tree (dashed arrows indicate a
sequence of nodes without branches, arrows with no goal node
mark the deletion of paths with a low judgment).

matic). If he wants to get an overview of an existing
network, he can also be interested in some details
about attributes or judgments. Displaying only
the desired information will lead to an easier
acceptance of the system.

4.2. The layout

It was our goal to achieve explanation units
which are easy to understand. Our approach fol-
lows the ideas and results presented by Bertin [1].
He describes which characteristics a graphic must
have to provide answers to different questions in
one single moment of inspection.

To achieve a well structured explanation unit
one must first analyse the given information. The
invariants of the information and the components
which are changing must be found. The compo-
nents must be examined to derive their number
and to obtain the length and the structure of each
component. There exist four structure types: assoc-
iative (i.e. all red objects), selective (i.e. distin-
guishing between red and blue objects), ordered
(i.e. small, medium, high) and quantitative (i.e.
1,2,3,..).

Signal Processing

In ERNEST we have several cntenia to structure
the information, for example:

1. We defined for every hnk a degree, for example

a concept with no part inks gets the part degree

0 and concepts with parts get a part degree

equal to the distance along part hinks to a con-

cept with no parts. Therefore, the concepts can
be ordered along their ink degrees.

Many attnbutes depend on the results of other

attnbutes. Thercfore, the analysis procedures

carry out an adequate execulion sequence.

These dependencies can be used for ordering

the attnbutes.

3. The nodes of the search tree should be ordered

according to their depth.

We have seven layout types based on how much

and which structuring information is present
Grids. Here we have two discrete axes defining a
grid for the plane. For example, the overview of
a network has the two axes concrete and special-
ization degree (sce Fig. 27 in Section 4.3),
Hierarchies. Here we have only one discrete axis.
The second dimension of the plane can be used
to minimize the number of crossings or the
length of the connection lines (see Fig. 28 in
Section 4.3).

- Trees. Here we also have only one discrete axis,
the depth of the tree, but it is easy to construct
a graphic without crossings. To minimize the
length of the connection lines every node
is placed in the vicinity of its father (see
Fig. 22).

- Neighborhoods. Here only the direct predecessors
and successors are displayed, i.e. the length of
the components is only 3. Therefore, it is possible
to use the two dimensions of the plane and also
the two diagonals and so we can represent four
quantitative structures (see Fig. 23).

~ Diagrams. Here the two dimensions of the plane
are used to show a quantitative structure in the
horizontal direction and an associative structure
in the vertical direction (see Fig. 24).

- Tables. In a table both directions of the plane
represent an associative structure.

~ Texts. In a text also unstructured data can be
provided.

)
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Fig. 24. A diagram of specch frames. The y-axis shows the
numbser of speech frames interpreted by the instances and modi-
fied concepts in the node 51.

Besides these layout types, probem dependent
explanation functions can be integrated. Here you
can use the medium and the display method which
is appropriate for your domain (also images, ani-
mations and speech output).

4.3. The user interface

The user can access the graphic with a command
and a menu interface. For each command, for each

menu, and for each ERNEST term a passive, con-
text-sensitive help is provided. The objects in the
graphics are pickable to allow a quick access to
further details. All choices listed in Fig. 21 can be
done by selecting the objects in the graphics.

Figure 25 shows the main menu of the interface.
With each menu item a pulldown menu is associ-
ated. For each explanation unit there exists one
menu item in one pulidown menu.

For example, you can select the net overview in
the network menu. Now you get a parameter menu
(Fig. 26) where you can select the options and
parameters of this explanation unit. When you
push the START button, the net overview is
created (Fig. 27).

Now you can pick every ERNEST object in this
graphic. You then get a popup menu where you
can select the detail explanation you want. For
example, you can select a concept of the highest
concrete level and choose as explanation unit the
part hierarchy of this level (Fig. 28). By selecting
again an ERNEST object or by using the main
menu you can access every explanation unit in an
efficient way.

An experienced system developer has no prob-
lems to choose the explanation units which will be
appropriate for his explanation goals. However, an
inexperienced user needs some guidance. There-
fore, in ELK special hypertexts are provided -
called adaptive explanation strategies - giving a
proposal for a sequence of explanations units.
These hypertexts are created automatically using
knowledge about explanations, the user and the
application represented in an ERNEST network.

5. Realized applications

The environment for knowledge-based signal
understanding tasks as presented in the previous
sections was used successfully for a number of
applications. The first realized system DISS con-
cerns the diagnostic interpretation of scintigraphic
image sequences of the heart [42, 48]. Another
medical application is the system AUDIGON [36].
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As well as in the system DISS, AUDIGON creates
diagnostic interpretations on the basis of magnetic
resonance images of the knee. The task is detection
and validation of gonarthroses. Within a larger
project for flexible production systems a compo-
nent for recognizing industrial parts including the
capability of performing and controlling a
sequence of actions is under development. The task
of this vision component is to control a cell in an
assembly by analyzing images of its environment,
It recognizes parts, evaluates their quality, inspects
the environment, and controls the placement of the
part [31, 33]. The other application is the system
EVAR [35]. Here, the ERNEST environment inte-
grates the various levels of a speech understanding
and dialog system into one homogeneous architec-
ture. In the following, the interpretation of image

Signal Processing

sequences of the heart and the speech understand-
ing and dialog system are presented in more detail.

5.1. Scintigraphic image analysis

The concrete and the specialization hierarchy of
the whole network is shown in Fig. 29. It integrates
knowledge about objects, motility and medical evi-
dence. Since there are about 150 concepts and 400
links for specializations, concretes and parts,
Fig. 29 can only give a condensed view of the gen-
eral structure of the network.

The lowest levels of the network are built up by
the concepts INPUT SEQUENCE DESCRIP-
TION, respectively IMAGE SEQUENCE. INPUT
SEQUENCE DESCRIPTION describes questions
to the user about the scintigram sequence to be
analyzed, that are the spatial and the time resolu-
tion and the name of the sequence. With this infor-
mation an instance of IMAGE SEQUENCE can
be created. Such instances cover both the original
image sequence and the sequence after spatial med-
ian filtering. At the conceptional system which is
characterized by OBJECT (level 2), concepts
for the objects HEART, LEFT VENTRICLE,
RIGHT VENTRICLE, and four anatomical seg-
ments of the left ventricle are defined. In the use
projection LAO 45, these are the septal (SE), the
inferio-apical (IA), the posterolateral (PL) and the
basal (BA) segment. The part relationships
between these concepts are obvious. Furthermore,
all these concepts, except HEART, are described
context-dependent from the concept they are part
from. Among the main attributes are the contours
and the volume curve of the objects. Level 3
describes form and size of the left ventricle and its
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Fig. 27. An overview of a network which has been developed for a speech understanding system.

segments and basic motility. This may be used on
level 7 to infer statements like ‘left ventricle
enlarged’. BASIS MOTILITY and MOTILITY
are specialized for a cycle and its phases of contrac-
tion, expansion and stagnation. Those concepts are
further specialized for motility descriptions of the
left ventricle and its segments. One attribute of
those concepts, which belong to the conceptional
system characterized by BASIC MOTILITY, is the
change of the area between two consecutive
images. Furthermore, the direction and the
strength of motility is obtained from the center of
gravity of objects in consecutive images. Based on
area changes the three phases of motility are

characterized by fuzzy membership functions
according to Fig. 30.

Using a set of anatomically possible volume
curves, the best fitting of motion cycles is selected.
The set of anatomically possible cycle types is spec-
ified and represented by the regular expressions

S*C*'S*E*S*E* and S, )

where C is Contraction, E is Expansion and § is
Stagnation. Based on these expressions different
cycle types are described. These types are generated
out of the expressions above by splitting up the
first expression into regular expressions which only
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Fig. 28. A part hierarchy.

use the +-operator. The concepts at level 4 (MO-
TILITY) are defined by similar terms. The main
difference is that level 3 (BASIC MOTILITY)
always relates two consecutive images i and i+1,
whereas level 4 describes larger entities, i.e., a con-
traction phase for images 1 to 7. Because of this
description in larger entities, the concepts standing
for contraction, stagnation and expansion in this
conceptional system are defined to be context-
dependent from the corresponding cycles. At this
level no types are predefined. The cycle description
is a verification of the description at the former
level. Out of this verified cycle description the
phases are extracted. Contrarily, all concepts which
describe basic motilities are independent from a
larger context. Several competing alternative
descriptions of the motility of anatomical objects

Signal Processing

may arise during these steps. Level 5 gives a
description of the motility of the left ventricle in
medical terms. The general statement is that an
anatomical interpretation of the motility of the left
ventricle during a heart beat consists of systolic
and a diastolic phase, and these phases are further
sub-divided into pre-ejection period, ejection
period, endsystolic stagnation, fast filling period,
iso volume expansion and slow filling period.
Attributes are start time, end time and ejection
fractions. The result of these interpretations is a
unique segmentation of the cycle into the described
phases out of one interpretation at the former level.
The last two conceptional systems relate motility
phases, form and proportions to statements about
medical evidence. On level 6 local diagnostic
motility descriptions are derived, i.e., hypokinetic
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Fig. 29. Network overview of the system DISS.

together with the descriptions of level 4 to get the
interpretations for the four segments and the left
ventricle. On the top level the local diagnostic
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postero-lateral segment or akinetic basal segment.
For this purpose, the anatomically motivated
segmentation of the left ventricle cycle is used



136 F. Kummert et al. / Control and explanation in a signal understanding environment

-

*
b d e - - ——-—
ni

>

i

Fig. 30. Example of a fuzzy-membership-function.

interpretations are combined with each other and
with the description of form and proportions. This
allows us to model the complete diagnostic inter-
pretations. Interpretations like ANEURYSMA are
inferred but also local interpretations can be modi-
fied. For example, if a postero-lateral hypokinesis
and an inferio-apical akinesis are confirmed with
high certainty, 1t should be checked whether the
first one is only a side effect of the second one,
because both segments are mechanically coupled.
If motility deficiency of the postero-lateral segment
is strongest in the vicinity to the inferio-spical seg-
ment only the inferio-apical akinesis will be
maintained.

A large amount of procedural knowledge is
attached to the network which builds up the knowl-
edge base of the system. In fact, the ratio of proced-
ural to declarative knowledge is about 10 to 1
concerning the required storage space. Therefore,
a full description is impossible here and probably
not necessary because a good deal is fairly straight-
forward, for example, computation of areas, cen-
ters of gravity, lengths of contours, axes of an
ellipse approximating the left ventricle, and so on.
The most complex and most sophisticated algo-
rithms are the detection of contours, the two-stage
interpretations of the volume curves of the left ven-
tricle and its four segments, and the inferences
about medical evidence. In order to describe the
analysis of an image sequence from the procedural
points of view we use some snapshots on one
example of an analysis process. The attribute
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values which will be shown are bound by those
instances which are associated to the optimal path
in the search tree. Low level methods are referred
to in the three lowest levels of the network. With
respect to the answers of the user, which are stored
in an instance of the concept INPUT SEQUENCE
DESCRIPTION, the input image sequence is
transferred into an instance of the concept IMAGE
SEQUENCE and immediately median filtered
when creating this instance, Fig. 31.

Segmentation is done by creating instances of the
concepts which belong to the conceptional system
OBJECT. Detection of the heart and the left
ventricle respectively is reported in [32]. The closed
contour of the left ventricle is partitioned into the
four anatomical segments septal, inferio-apical,
postero-lateral and basal by using a priori knowl-
edge about expected contour directions. Tests on
image sequences gave the result that on the type of
images provided by our medical partners a
sufficiently reliable segmentation is achieved by the
above procedure (about 90% correlation with the
hand segmentation by a medical doctor). Addi-
tional details are available in [29, 43]. Each of these
procedures is bound to the concepts for which they
detect the boundary. Therefore the resulting
contours are attribute values in corresponding
instances. Figure 32 shows an image sequence with
the contours of the left ventricle and four segments
IA, PL, BA, SE.

Additional attributes in the concepts of this level
are the volume curves of the objects. Figure 33
shows the volume curve of the left ventricle.

Interpretation of a heart cycle for each of the
objects left ventricle (LV), IA, PL, BA and SE, is
a two phase process executed on the levels 3 and 4
of the knowledge base. The basic idea is to use
optimal search techniques [29, 37]. Image to image
fuzzy membership values for stagnation, expansion
and contraction are used as negative cost functions.
Based on these costs, dynamic programming is
used to find the optimal fit between the volume
curve of each object and each cycle type of eq. (5).
At the next level (MOTILITY) cycles are verified
by introducing a refined alphabet, which subsumes
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Fig. 31. Scintigraphic image sequence after 7 x 7 median filtering.

also symbols for the overlapping of different motil-
ity terms and for gaps inside one phase. These
somewhat relaxed interpretations are generated in
order to allow some flexiblity in later processing
steps. Results of such a cycle description for the
left ventricle is given by

CCCC[CS1[CS)SISEVEEEE
[E-]E[SE]E[E-1EKK.

Overlapping symbols are denoted by the two ele-
mentary terms. This multilevel parsing procedure
was presented in more detail in [44]. Out of these
descriptions the motility phases are calculated with
normalized start and end points (in the time range
0.0 to 1.0). Because most diagnostic terms can only

be evaluated with respect to the global motility
behaviour of the left ventricle, an intermediate
level, called anatomical motility phases of the LV,
is introduced. Here, the cycle of the LV is divided
into the medical terms SYSTOLE, DIASTOLE,
and in a second level into Pre-Ejection-Period,
Ejection-Period, Fast-Filling-Period, Iso-Volume-
Expansion and Slow-Filling-Period. This segmen-
tation is based on the cycle description of the LV
at the former level. For the calculation of each
phase patterns in the former cycle descriptions are
searched and scored with special fuzzy membership
functions, which reflect a priori knowledge about
the start time, the duration and the ratio between
minimal and maximal area of the LV in the corre-
sponding phase. Such ratios, which are also called
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Fig. 32. Contours of the left ventricle and its four segments.

250

12
image number

Fig. 33. Volume curve of the left ventricle (LV).
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ejection fractions (ef), are themselves parameters
for the diagnostic evaluation at both top levels in
the network. Presently the system knows about 45
individual diagnostic interpretations which are rep-
resented by concepts at the levels 3, 6 and 7. These
are of the type ‘left ventricle is normally beating’,
‘the left ventricle is deformed’ or ‘the basal segment
of the left ventricle is nearly motionless’. The cer-
tainty of each statement is measured by a certainty
CF which is computed by fuzzy algebra. For
example, given a rule of inference of the form

If (neg A)v(BAC) then D

the certainty factor of D is computed from those
of 4, B and C by

CF(D):=max(1 —CF(4), min(CF(B), CF((C)))
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or, in short hand notation,
CF(D):=(neg CF(4) v (CF(B) A CF(C)).

For the very top level, ie. for COMPLETE
INTERPRETATIONS, 4, B, C and D in the equa-
tions above stand for names of concepts in the
knowledge base. Since there is an obvious one-to-
one correspondence between the rule for deriving
a conclusion and the CF of this conclusion, it is
sufficient to state only the equation for the CF.
The rules for complete interpretations at level 7
use concepts on level 6 (INTERPRETATION OF
LOCAL MOTILITY) and/or level 3 (DESCRIP-
TIONS IN FORM AND PROPORTIONS) as
arguments. One of the complete interpretations
which is only based on local motility descriptions
is akinetic motility (AKIN). The CF is given by

CF(AKIN):=CF(LV_WEAK)
 (CE(AKIN_AI)
v CF(AKIN_PL)
v CF(AKIN_BA)
v CF(AKIN_SE)).

That means an akinetic motility is stated if at least
one of the four segments shows akinetic motility
and the global left ventricle has a weak motility.
Things are somewhat more complicated on level 6
because on this level descriptions have to be
derived from motility phases. At this level the
motility of individual segments of the left ventricle
is diagnostically interpreted. This is done with the
help of two functions ¢ and u. ¢ measures the over-
lapping duration between motility phases of the
objects as achieved at level 4 and the anatomical
motility phases of the left ventricle at level 5. u
classifies parameters like the ejection fraction or the
amount of stagnation during a cycle in accordance
with objects and deseases. The result of applying
some is again a fuzzy membership value. The func-
tions u are derived from general medical knowledge
[49]. With the functions u and ¢ the CF’s for
individual diagnostic terms are determined.

The first operational version of the realized sys-
tem has about 4 MB of code. Tests on about 20
image sequences having validated diagnostic evalu-
ations by medical doctors showed that no wrong
descriptions were given by the system; however, in
about 10% of the cases the system could not give
any description.

5.2. Speech understanding and dialog

The aim of the system EVAR is the automatic
understanding of continuous German speech and
the handling of an inquiry dialog in the task-
domain intercity train connections. To have a
structure where linguistic expectations could be
used not only for the interpretation but also for
the recognition process all kinds of knowledge are
integrated in a homogeneous knowledge base. This
allows an easy constraint propagation throughout
the layers ‘dialog’, ‘pragmatics’, ‘semantics’ and
‘syntax’.Figure 34 gives an overview of the knowl-
edge base.

In the lowest level, the concept H_- WORDHYP
builds the main interface between word recognition
and linguistic analysis. Top-down, the request
resulting from the constraint propagation process
are given to the acoustic module. Bottom-up, word
hypotheses of the acoustic module are incorpor-
ated into the linguistic analysis. Besides this com-
munication, the acoustic verification of word
chains created during the linguistic analysis builds
another interface between the recognition and
understanding module. The syntactic level contains
concepts for all syntactic classes (i.. noun, verb,
adjective), for syntactical constituents (ie. noun
phrase, verbal group), and for times (i.c. time of
day, date). Each concept for a syntactic class has
a concrete link to the concept H_WORDHYP.
Larger syntactical units are built up by the syntac-
tic classes and/or by simpler syntactical units
(i.e. prepositional phrase 227, preposition, noun
phrase). The semantics is based on the valency
theory (see, i.e., [54]) and the case theory [9]. This
level contains concepts for deep cases, verb frames
and noun frames. The concepts for the deep cases
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are connected with the syntactic level by concrete
links. The deep cases are context-dependent parts
of the related frame. For each meaning of a verb
or noun a modality set exists defining the obliga-
tory and optional deep cases. The pragmatic level
reflects the task-domain ‘intercity-train-informa-
tion’. Actually, concepts are modeled for the prag-
matic goal concepts P_.CONNECT_INFO and
P TIMETABLE, for the frames restricted to the
task-domain, and the pragmatic intensions reflect-
ing the interpretations of the deep cases in the
application (i.e., P_DESTINATON, P_FROM_
TIME). The highest level contains concepts defin-
ing the admissible dialog steps of the user and the
system. Actually, the user steps request, addition,
correction and confirmation are allowed.

The system can request detail, can give timetable
information and can ask for a confirmation or for
a repetition of the last utterance.

To use extensively the expectation of the linguis-
tic knowledge base a partial interpretation is not
extended by a sequential processing of the speech
signal (left-right-analysis, island-driven strategy),
but on the basis of structural relations. This means
a new word hypothesis is accepted for a partial
interpretation if the word hypothesis satisfies the
expectation resulting from the semantic network
and satisfied the restrictions of the constraint
propagation process. As shown in Section 3, these
restrictions are collected in modified concepts. The
aim of the linguistic analysis is the instantiation of
a concept representing a user dialog step. Due to
the uncertainty of the word recognition module
and due to the diverse forms of expression in
spoken language neither a strictly data-driven nor a
pure model-driven strategy seems to be promising.
Therefore, we use a strategy working both on the
acoustic data as well as on the expectations from
the linguistic model [18].

For a goal directed search of the 4*-algorithm
a judgment vector is used reflecting the compat-
ibility, the quality, the reliability and the relevance
of a partial interpretation. In more detail, the vec-
tor has the following components:

_ Structural compatibility. This is a binary
measure, which tests the linguistic restrictions,

i.e., congruence of case, number and gender in a
noun group.

— Acoustic quality of the underlying word or word
chain hypotheses + estimate for the not covered
speech signal: The acoustic score is generated by
the EVAR word verification module and is the
negative logarithmic probability of a continuous
density Hidden Markov Model [51]. The esti-
mate bases on statistical assumptions about the
distribution of correct hypotheses.

— Number of frames of the word chain with longest
duration. As the quality of word hypotheses
reflects a distance-measure the following state-
ment is valid for hypotheses with equal quality:
hypotheses with longer duration are more prob-
ably correct hypotheses than shorter ones [50].
Therefore, this is a measure for the reliability.

— Number of masked frames. Measure of relevance,
because the analysis goal can be reached in fewer
steps.

The comparison between two interpretations is

defined by the lexical order of their judgment vec-

tors, 1.e.

(Xt - ey X)) <1y -0 V) Ixxi <y,

1<i<k AVxxi=y], I<i.

This means first x; and y, are compared. If they
are equal x, and y, are compared and so on. This
is done until one component is greater than the
corresponding one in the other vector. Moreover,
for the second and third components of the vectors,
only interval values and not the exact values are
used. Full details of the judgments are given in
[46].

Figure 35 shows the content of a search tree node
after the complete linguistic interpretation of the
first user utterance. By the network of instances,
every spoken word is assigned to a syntactic,
semantic and task-specific interpretation. The
utterance ‘ich mochte abends nach Miinchen
fahren’ (‘I want to go to Munich this evening’) is
interpreted as a request for timetable information
with destination ‘Miinchen’ (‘Munich’) and depar-
ture time ‘abends’ (‘this evening’). As no departure
place is detected the default ‘Bielefeld” is used.
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The presented results are obtained under the - No language model is used. Therefore, the per-
following experimental framework: plexity is about the lexicon size of 1081 inflected
- For the word recognition and verification task forms.
| the ISADORA system [51] is used. - The acoustic module is trained with 500

Signal Processing
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domain specific sentences from four male

speakers.

- The recognition module attains a word accuracy
of 74.5% and a sentence recognition rate of 35%.

- The linguistic analysis works with the word
hypotheses resulting from the 10 best-scored
word chains of the acoustic module.

- For each dialog the test speaker speaks the first
sentence of the dialog into the microphone and
the analysis process begins. Due to the interpre-
tation of the system a suitable answer (confirm-
ation, correction, additional information) is
given. This process is repeated until the dialog is
successfully completed or failed.

Due to the recognition rate of the acoustic module,
in many utterances not all of the spoken words are
hypothesized for the linguistic analysis. To manage
this problem the requirements for the coverage of
the speech signal with word hypotheses are reduced
to 2/3. This allows a correct interpretation of the
utterance in spite of missing spoken words.
Together with a dialog strategy which requests
information missing for a data base inquiry by a
check-back partial interpretations can be com-
pleted. Furthermore, incorrect interpretations can
be corrected by a clarification dialog. During that
dialog phase the user can confirm or correct all
parts of the interpretation until the desired infor-
mation is available.

One speaker of the training phase tested the
system by 50 dialogs. 60% of the dialogs were
completed successfully without an incorrect inter-
pretation. 14% of the dialogs could be completed
successfully after a clarification phase. For the
remaining 26% no successful dialog was carried
out. The main reason was the insufficient acoustic
analysis hypothesizing less spoken words than
needed for the coverage. Therefore, with an
improved word recognition module the results
could be improved.

6. Conclusions and further developments

The variability of the different applications, the
achieved results and the efficiency of the solutions

show that the viewpoint of knowledge-based signal
understanding as an optimization problem lead to
a powerful environment for a large class of pattern
understanding problems. The goal is achieved by
a general system shell which combines knowledge
representation and use with a flexible control algo-
rithm. This integration of different aspects and
their adaptation to each other results in both flex-
ibility and efficiency. Furthermore, the ERNEST
shell does not force a special pardigm for the
judgment of results. The restrictions on a special
calculus are weak. The only required feature is the
monotony concerning decreasing quality or
increasing costs. As a consequence, the applica-
tions make use of judgment functions which are
adequate for their fields of problems. For example,
the medical ones are working with single fuzzy
membership values, the industrial scene application
uses fuzzy components measuring quality and
priority, and last but not least the judgments in the
EVAR system are based on probabilities calculated
by hidden Markov models and heuristic measure-
ments on the linguistic relevance of hypothesis.
Because of the complexity of knowledge bases as
well as the large number of nodes in a search tree,
an explanation facility is of great importance for
such environments. Depending on the application,
it is designed for the system designer or for the user
of a system. ELK provides general tools for both
directions. Finally, it should be mentioned that
the realization only uses general tools which
are available in every UNIX-like operating
system.

Our future work concerning knowledge-based
signal understanding will be twofold. On the one
hand further applications will be developed by
using the ERNEST shell. Additionally, the system
shell itself will be improved and extended. In
order to guide the user by the selection of the
best suited explanation units, options and param-
eters a knowledge-based user interface of ELK
will be developed. ERNEST itself will be the shell
to specify knowledge about the user and about
explanation sequences. A first realization of a
system component for automatic knowledge
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acquisition will be extended and improved. Other
problems which are still unsolved concern the
selfadaption of the control algorithm to prior
runs on the same task, the integration of artificial
neural networks in semantic networks, the paral-
lelization of the system, and the development of
time synchronous control algorithms for image
sequences [55].
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