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Abstract. We present a statistical analysis of the subspace decomposition and matrix pencil (SDMP) method for estimating 
parameters of multiple transient signals arriving at a uniform linear array. This analysis supports several observations obtained 
via simulation. 

Zusammenfassung. Wir pr~isentieren eine statistische Analyse der Unterraumzerlegung und des Matrix-Pencil-Verfahrens 
(SDMP) zur Sch~itzung der Parameter vielfacher transienter Signale, die von einem gleichf6rmigen linearen Array empfangen 
werden. Diese Analyse st/itzt verschiedene Beobachtungen, die mittels Simulationen gemacht wurden. 

R6sum/~. Nous pr6sentons une analyse statistique du sous-espace de d6composition de la m6thode SPDM pour l'estimation des 
param6tres des signaux transitoires multiples arrivant ~ un tableau lin6aire et uniforme. Cette analyse appuie plusieurs 
observations obtenues par simulation. 

Keywords. Multiple transients; parameter estimation; subspace decomposition; matrix pencil; first-order perturbation; statistical 
analysis. 

1. Introduction 

In a recent paper by Hua and Sarkar [3], the subspace decomposition and matrix pencil (SDMP) method 
was developed for estimating temporal and spatial parameters of multiple transient signals arriving at 
a uniform linear array. Each transient is modeled as the sum of complex exponentials. The temporal 
parameters are frequencies, damping factors and residues of each transient. The spatial parameters are the 
angles of arrival of multiple transient waves. The SDMP method is based on an eigen-decomposition of 
a generalized data matrix which is formed by stacking a sequence of submatrices of array outputs. The 
eigen-decomposition is then used via matrix pencil to yield the desired parameters. The SDMP method was 
shown via simulation to have a near-optimum accuracy. In this paper, we present a first-order perturbation 
analysis of this method. Results of this analysis support several observations reported in [3]. 

The approach of our analysis follows that shown in [-1,2], where several basic perturbation properties of 
matrix pencil are provided. We note that there are indeed many approaches available for statistical analysis 
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of ar ray  processing algori thms,  see e.g. [4-7] .  But due to the unique structure inherent in the signal model  
and the S D M P  method,  there is no other  approach  as efficient as that  in [1, 2]. 

Section 2 summarizes  the S D M P  method  developed in [3] for easy reference. The nota t ions  used are 
consistent with those in [3]. Section 3 outlines the first-order analysis of the S D M P  method  and provides 
expressions for the first-order per turbat ions  in the est imated parameters :  damping  factors, frequencies and 

time delays (due to angle of arrival). Section 3 provides a few numerical  examples  which show some insights 
into the S D M P  method.  

2. Summary of the SDMP method 

Given the ar ray  outputs  Yk.h for k -- 0, 1 . . . . .  K - 1 and h = 0, 1 . . . . .  H - 1, where K is the number  of 
snapshots  and H the number  of sensors, the S D M P  algor i thm (for details see [3]) is as follows. 
- Choose  2-D moving  window sizes M and N. These two integers should satisfy K - P > / M  ~> P and 

H - P ~> N ~> P, where P is the sum of number  of poles (or exponentials)  in each impinging transient  wave. 
- F o r m  the following generalized da ta  matr ix  of the size (H - N ) ( K  - M )  x (N  + 1)(M + 1): 

I Yo Y1 "" YN 1 
y =  Y1 Y2 "'" YN+I 

where 

I YO, h Yl,h "'" YM, h 1 
Yh = Yl,h Y2,h "'" YM+I,h . 

YK-M l,h YK M,n "'" Yr  1.h 

Compu te  P dominan t  right singular vectors (or dominan t  row subspace) of Y, and call them the 
(P-column) matr ix  V. Then define 
Va = V without  its (M + 1)th, 2(M + 1)th, . . . ,  (N + 1)(m + 1)th rows, 
Vb = Vwi thou t  its 1st (M + 1 + 1)th, 2(M + 1) + l th  . . . . .  N ( M  + 1) + l th  rows, 
Vc = V without  its last M + 1 rows, and 
Vd = V without  its first M + 1 rows. 

- Compu te  the generalized eigenvalues (rank reducing numbers)  {zp: p = 1 . . . . .  P} and {gp: p = 1 . . . . .  P}  

of the matr ix  pencils Vb -- Z Va and Vd -- g Vc, respectively. 
- Pair  zp and gp by maximizing the M U S I C  spectrum (see [3] for details). 
- Compu te  the damping  factors ~p = Re{log(zp)}, the frequencies o~p = Im{log(zp)} and the time delays 

Zp = Re  {log(g~)/log(zp) }. 

Signal Processing 
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- Organize ~p and ~op into groups, where each group is associated with one transient signal, by identifying the 
distribution clusters formed by r ,  for p = 1, 2 . . . . .  P. 

3. S t a t i s t i c a l  a n a l y s i s  

Our focus here is to evaluate the first-order perturbations in the estimated damping factors, frequencies 
and time delays. It is clear that a first-order perturbation analysis is to yield the following: 

50 = wTc, (1) 

where 50 is the perturbation in an estimated parameter 0, w is the noise vector (which is real in this paper) and 
c is the sensitivity coefficient vector. The objective of the following discussion is to find c. 

It is shown in [2] that 'the SVD truncation' does not change the first-order perturbation. Using this 
observation, we can show that, to the first-order approximation, computing the generalized eigenvalues of 
Vb-  z V~ and Vd-  y V~ as required in the SDMP method is equivalent to computing the generalized 
eigenvalues of Yb-- zYa and Yd-- YYc, respectively, where Ya = Y without its (M + 1)th, 
2(M + 1)th . . . . .  (N + 1)(M + 1)th columns, Yb = Y without its 1st, (M + 1 + 1)th, 2(M + 1)+ l th . . . . .  
N(M + 1) + lth columns, Yc = Y without its last M + 1 columns, and lid = Y without its first M + 1 

columns. 
Following the approach in El], we can show that the first-order perturbations in the generalized 

eigenvalues of Yb - -  zYa and Yd -- ,qYc are, respectively, 

pH(~  Yb - -  2p~ Ya)qp ( 2 )  
~Zp = H ' ppXaqp 

= r , " X c s ~  ' ( 3 )  

where 6 Ya, 6 Yb, 8 Yc and ~ Yo are the additive noise matrices in Ya, lib, Y¢ and Yo, respectively, p .  and qp are, 
respectively, the left and right generalized eigenvectors of the noiseless matrix pencil Xb -- zXa, rp and s. are, 
respectively, the left and right generalized eigenvectors of the noiseless matrix pencil XO -- .qX¢. zp and yp 
are the noiseless generalized eigenvalues. Note that the X's are the noiseless version of the Y's. 

We know (see [3] for details) that 

X , =  Zr-M.H-N B ZT N+I, 

Xb= ZK M.H-N B Z J T .  N+I, 

X~= ZK M.H-N B ZL+I.N, 

X~= ZK ~.u-N B G J L + I . ~ , ,  

where B is the diagonal matrix of the signal amplitudes b,, Zd the diagonal matrix of the poles zp, Go the 
diagonal matrix of the poles 9p, and the other Z matrices are defined by z~ and ,qp. Then we can show 
(following the approach in [1]) that 

pH = rp H = pth row of pseudoinverse of Z~-M. H u, 
qp = pth column of pseudoinverse of Z~, N+ 1, 
sp = pth column of pseudoinverse of zT+  1, N, 
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and then 

H pp Xaq  p = bp ,  

= 
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(4) 

(5) 

These two equations simplify the denominators  of (2) and (3). The numerators  of (2) and (3) can be treated as 

follows. Based on the structures of 6Ya, 6Yb, 6Yc and 8Yd, we can show that 

Yb - -  zv5  Ya = ~ Y ( P b  - zpPa),  (6) 

~ Y a  - 9~,~Yc = 6 Y ( P a  - 9pPc) ,  (7) 

where 6Y is the additive noise matrix, i.e. {rig, h: row index k = 0 , 1  . . . . .  K - l ;  column index 
h = 0, 1, . . . ,  H - 1}, in the generalized matrix Y formed from the array outputs,  Pa is the identity matrix 

I(M+ I)(N+ 1)×(M+ I)(N+ 1) without  its (M + 1)th, 2(M + 1)th . . . . .  (N + 1)(M + 1)th columns, Pb is the identity 

matrix I(M + 1)(N+ 1)×(M + 1)(N+ 1) without  its (M + 1 + 1)th, (2(M + 1) + 1)th, . . . ,  ( N ( M  + 1) + 1)th columns, 

Pc is the identity matrix I(M+ 1)(N+ I)×(M+ ~)(N+ 1) without  its last M + 1 columns, and Pd is the identity matrix 
I(M+I)(N+~)×(M+I)(N+I) without  its first M + 1 columns. 

Furthermore,  we can show that 

j , . % v :  w%, (8) 

where the noise vector w is formed by cascading the columns of the noise matrix 6Y, and Pp is 

a K H  x ( M  + 1)(N + 1) matrix defined by the H x (N + 1)-block matrix: 

" ' "  0 

m 

Pp, o 

P p ,  1 

0 

Pp, o 

Pp, 1 "'" 

P p , ( H - N - 1 )  "'" 0 

0 P p , ~ n - N  11 "'" Pp, o 

0 "'" Pp, 1 

= 

0 0 ... N-l)_ 

where the K x (M + 1) matrices Pp, t for t = 0, 1 . . . . .  (H - N - 1) are defined as 

' . t =  

m m 

Ptr M)t + l, v 0 . . .  0 

P ( K - M ) t + Z , p  P l r - M ) t + l , p  "'" 0 

P ( g -  M)t + 2, p "'" 

P ( K -  M)t + ( K -  M), p "'" 

0 P ( K - M ) t + ( K - M ) , p  "'" P ( g - M ) t + l . p  

0 0 "'" P ( g - M } t + 2 ,  p 

0 0 "'" P ( K - M ) t + ( K - M ) ,  p 

where p~, v is the j th  element of pp. 
Signal  P rocess ing  
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Combining  (2)-(8), we can easily find c~. p and cq. p so that 

5zp = wTc~, p, (9) 

~gp = wTcg, p. (10) 

Then it follows that the first-order perturbat ions in the damping  factors, frequencies and the time delays are, 
respectively, 

6 0 ) , = I m  ~ 6 z p  = I m  wXcz. p l  , (12) 
Zp) 

Tp Tp 
8zp  = R e  f g p l o g ( g p ) ~ g p  zplog(zp)--  ~2p t 

Tp  wTc z l (z t} (13) 
Provided that the noise vector w is real-valued, from (11)-(13), we can easily find c~. p, c~. p and c~. p so that 

gap = wTc~, o, (14) 

Stop = wTc,o, p, (15) 

~zp = wTc~, v" (16) 

With (14)-(16), the variance of the first-order perturbat ions can be obtained for any noise covariance matrix. 

But for a simple discussion, we assume in the next section that the noise is white, i.e. the noise covariance 
matrix is a diagonal  matrix with the diagonal elements equal to a 2. 

4. Numerical results 

To show a few numerical examples and verify the theoretical result obtained in the previous section, we 
assume a uniform linear ar ray  of 10 sensors (H = 10) on which there are two arriving transient waves (I = 2). 
For  a time interval of 25 snapshots (K = 25), the sampled array outputs  can be expressed as 

Yk.h = sl(k + zlh) + s2(k + z2h) + tTrlk, n, 

with 

sl(k) = al e x p ( - ~ l k )  cos(0)lk + ~bl), 

SE(k) = aEexp( -~2k)  cos(0)2k + ~b2), 

where k = 0, 1 . . . . .  K -- 1, h = 0, 1 . . . .  , H - 1, al  = a2 = 1, ~1 = - - 0 . 0 5 ,  ~2 -7" - - 0 . 1 ,  0) 1 = 0 .5 ,  0)2 = 1.0, 

t~l = 0,  b E  "~-- 7E/2, 27 1 = 0 .1 ,  T 2 = 0 . 2  a n d  l'lk. h is  white noise. These are the same data  as considered in [3]. 
Figures 1-3 show the 3-D plots of  the deviations (normalized by the C r a m e r - R a o  lower bound  or  CRB) of  

the estimated ~tl, 0)1 and z~, respectively. The plots for ct2, 0)2 and z2 are omitted because of their similarity. 
The simulation results shown in these plots are based on 200 independent runs with the (Gaussian white) 
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Fig. 1. Theoretical (a) and simulated (b) dev(6~l )/CRB 1/1 versus 
M and N (normalized CRB = 1). 

(b) 

Fig. 2. Theoretical (a) and simulated (b) dev(6~Ox)/CRB v2 ver- 
sus M and N (normalized CRB = 1). 

noise deviat ion a = 0.001. There are three major  observat ions that  can be obta ined from these plots. First, 

the theoretical results are consistent  with the simulation.  Second, the variances of all estimated parameters 

are close to the CRB when good choices of the window sizes M and N are used. The est imation variance is 

almost invar iant  to a large number  of good choices of M and N a round  M = ½K and N = ½H, respectively. 

Third, the est imation variances of the parameters  ~1, o91 and zl (associated with the first dimension)  are more 

Signal Processing 
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(b) 
Fig. 3. Theoretical (a) and simulated (b) dev(Szl) /CRB 1/2 versus M and N (normalized CRB = 1). 

sensitive to the window length M (associated with the first dimension)  than to N (associated with the second 

dimension).  Similarly, ~z, ~o2 and ~z are more sensitive to N than to M. 

Figure 4 shows the deviat ion of  the time delay rl for M = 12 and N = 5 as a function of the noise deviation 

a. The plots for other parameters are similar and hence omitted. It can be seen from this figure that the 

consistency between the theoretical result and the s imulation holds up to a = 0.1, which is equivalent to 
Vol. 35, No. 2, January 1994 
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Fig. 4. Input versus output deviation of zl for M = 12, N = 5; theoretical and simulated results compared to CRB. 

S N R  ~ 3 dB, where  

( 2 k ,  
S N R =  1 0 1 0 g l o \  K H t r  2 j .  

5. Conclusions 

W e  have presen ted  a sensi t iv i ty  ana lys i s  of the S D M P  m e t h o d  for mu l t ip l e  t r an s i en t  waves. This  analys is  

has led to the closed forms of the f i rs t -order  p e r t u r b a t i o n s  in the e s t ima ted  pa ramete r s :  d a m p i n g  factors,  

f requencies  a n d  t ime delays. The  theore t ica l  resul ts  have also been  verified via s imula t ion .  The  n e a r - o p t i m u m  

pe r fo rmance  of, as well as some  ins ights  into,  the S D M P  m e t h o d  has n o w  been  s u p p o r t e d  by  b o t h  ana lys i s  

a n d  s imula t ion .  
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