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Abstract
In this paper we present a consistent estimator for a linear filter (distributed lag)
when the independent variable is subject to observational error. Unlike the
standard errors-in-variables estimator which uses instrumental variables, our
estimator works directly with observed data. It is based on the Hilbert transform
relationship between the phase and the log gain of a minimum phase-lag linear
filter. The results of using our method to estimate a known filter and to estimate
the relationship between consumption and income demonstrate that the method
performs quite well even when the noise-to—signal ratio for the observed
independent variable is large. We also develop a criterion for determining whether
an estimated phase function is minimum phase-lag.
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0. Introduction

This paper presents a mnovel approach to the problem of estimating the
discrete-time impulse response {h(k)} of a linear filter when both the input signal
x(t) and the output signal

y(t) = Y. h(k)x(t-k) (0.1)
k=0

are corrupted by additive noises whose spectra are of unknown shape. The
corrupted signals are {x’(t) = x(t) + ¢(t)} and {y’(t) = y(t) + €(t)}, respectively.
The noises satisfy the following three assumptions: (1) {¢(t)} is uncorrelated with
{e(t)}, (2) {¢(t)} is uncorrelated with {x(t)}, and (3) {e(t)} is uncorrelated with
{y()}-

The problem of estimating {h(k)} is an important one in several areas of
geophysical signal processing. One is magnetotelluric resistivity measurements. If
(0.1) is a model of magnetotelluric measurements of electromagnetic impedance,
then {h(k)} is the impulse response of the earth, {y(t)} is the electric field, and
{x(t)} is the magnetic field at a point on the earth’s surface. There are several
sources for the noises. The primary ones are the electronic noises in the instruments
measuring reflection responses or electric and magnetic fields. The instrumentation
noise is usually independent of the signals, and the noise in one instrument is
usually independent of that in another, so that the three assumptions above are
likely to be satisfied.

If the input noise can be observed, its spectrum can be estimated, and the
standard cross spectrum approach will yield an asymptotically unbiased estimate of

the frequency transfer function, which can then be Fourier transformed to yield an



estimated impulse response. This method is equivalent to fitting the impulse
response by least squares. In addition, if the input process is nongaussian and has a
non zero skewness, then it is possible to estimate the impulse response of a non—
minimum phase filter using the cross bispectrum between input and output as
described by Hinich and Wilson (1992). The cross bispectrum approach works as
follows: the cross bispectrum between input and output is estimated along with the
bispectrum of the input. The ratio of the cross bispectrum to the input bispectrum
yields an asymptotically unbiased and asymptotically gaussian estimate of the
frequency transfer function.

When the noises cannot be observed, the standard cross spectrum approach
to estimating the filter’s response will yield a biased estimate since the noise
covariances confound the true signal covariances in the covariance function of the
observed time series. The cross bispectrum approach will also yield a biased
estimate of the transfer function since the bispectrum in the ratio will be the sum of
the input signal’s bispectrum and the bispectrum of the additive noise in the input.

It is not possible to observe the noise alone in most applications. In
magnetotelluric measurements, for example, the input and output signals are the
magnetic and electrical fields, and neither one can be turned off to observe the noise.
The term errors—in—variables is used in the statistics literature to designate a linear
model where one or more of the "independent" variates have errors with unknown
variances. Our impulse-response model is a special case of errors-in—variables.
This problem is intractable unless one makes some identification restrictions which
can be checked.

One approach for obtaining asymptotically unbiased estimates of the impulse
response where there are errors-in—variables is to find a series {z(t)} that is

correlated with {x(t)} but is uncorrelated with the noise {¢(t)}. The {2(t)} is called



an instrumental variable [Reiersol (1945)]. An asymptotically unbiased estimate of
the impulse response can be obtained using the ratio of the cross spectrum of {z(t)}
and {y(t)} to the cross spectrum of {z(t)} and {x(t)}. We will present an
instrumental variable for the special case when {¢{t)} is white noise, but show that
it produces poor results.

In this paper, we present an alternative method for estimating the impulse
response for noisy input and output measurements. Our method is a refinement of
that developed by Boehl, Bostick, and Smith (1977); Clay and Hinich (1981); and
Hinich (1983). It is based on the Hilbert transform relationship between the phase
and log gain of a linear filter, and we will call our estimate the Hilbert Transform
Estimate (HTE). We use the discrete-time Hilbert transform to develop a method
that yields an asymptotically unbiased estimate of the impulse response up to a
scale multiple under the critical assumption that the filter is minimum phase
(invertible). If in addition there is a band of frequencies where both the input and
output noises have no variance, then the model is fully identified and the scale
factor is estimable.

Our approach also allows us to check the minimum phase assumption. Thus,
the critical assumption may be rejected by data analysis. That is a plus for our
method.

Since the HTE uses the frequency domain approach to the estimation of
linear filters, a frequency domain representation of the errors in variable problem is
presented in Section 1. The Hilbert transform relationship between the log gain and
the phase is also presented in this section. The HTE is derived in Section 2. Two
problems which arise in empirically implementing the HTE — namely, unwrapping
the phase and determining whether an arbitrary phase is minimum phase — are

discussed in Section 3. Section 4 presents the results of using the HTE with



artificial data and compares these results with those obtained using instrumental

variables. The final section contains a summary.

1. The Errors in Variables Problem and the Hilbert Transform
1.1. The Case of No Observational Errors
Assume that {h(k)} is absolutely summable (the filter is stable). Thus, the

transfer function of the filter,

H(w) = Y, h(k) exp(-iuk)
k=0

exists for 0 ¢ w < 27. |H(w)| is the gain and ¢(w) = arctan[ImH(w)/ReH(w)] is its
phase. Further, assume that {x(t)} is a mean zero, stationary time series with an
absolutely summable covariance function. Under these assumptions on {x(t)}, its
spectrum S{w|x) exists.

Thus, from (0.1) the cross spectrum between {x(t)} and {y(t)} is
S(wlxy) = H(w)S(w|x)
which can be rearranged to yield
H(w) = 8(w|%,y)/8(w|x)- (1.1)

That is, the transfer function of the filter is equal to the ratio of the cross spectrum
of input and output to the own spectrum of the input.

This is the standard cross spectrum approach to the estimation of the



transfer function. When {x(t)} and {y(t)} are observed without error (or, more
precisely, when the covariance function of {x(t)} and the cross covariance function
of {x(t)} with {y(t)} are known), the transfer function of the filter can be recovered

using (1.1).t

1.2. The Case of Observational Errors

The transfer function of the filter cannot be recovered without bias using
(1.1) when the input and output are only observable with error. Specifically,
assume that only the series {x’(t)} and {y’(t)} are observable and that, for all

=0, £1, £2, ...,
x’(t) = x(t) + ¢t (1.2)

and
v’ (t) = y(t) + €(t) (1.3)

where {1(t)} and {e(t)} are mean zero, stationary noise processes with absolutely
summable covariance functions. Each is assumed to be uncorrelated with both
{x(t)} and {y(t)}, and they are assumed to be uncorrelated with each other.

Under these assumptions on {x(t)}, {y(t)}, {(t)}, and {e(t)},

S(w|x’,y7) = S(w|x,y).

That is, the cross spectrum of the observed input and output is the same as the

cross spectrum of the true input and output. Since S(w|v) # 0, then in general,



S(w]x’,y7)/S(w]|x’) = H(w)/[L + 5(w|¥)S(w|x)] # H(w).

This is the frequency domain analog of the well-known result that ordinary least
squares (OLS) estimates are biased when there are errors in variables because the
covariance matrix of the observed independent variables does not equal the
covariance matrix of the true variables. This implies that if there were no errors in
variables problem, the phase of estimated filter obtained with OLS would be similar
to the phase of the cross spectrum [see Brillinger (1981, Section 6.3)]. Note that if
S(w|v) =0 for frequencies in a band w, < w < wy, then S(w|x’,y’)/S(w|x") =
H(w) in that band. We will use this result in Section 3.4.

1.3. The Hilbert Transform

Since it is not possible to recover H(w) using (1.1) and the observed data
when the input and output are subject to observational error, we adopt a different
approach. It is based on two important results. First, the phase function of the
filter is identical to the phase function of the cross spectrum of the observed series,

¢x,y,(w). That is

He) = by (1)

This result follows immediately from (1.1) and the definition of the phase. Second,
in a special case, knowledge of the phase of a linear filter is sufficient to determine
the transfer function of the filter. This special case is that in which the filter is

minimum phase; that is, it is stable and causal and its z—transform



H,(z) = é} h(k)z¥ | (1.4)

has no zeros on |z| < 1.
It is well known that the real and imaginary parts of an analytic function are

related by the Hilbert transform.2 When H(z) has no zeros on |z| < 1,
log H,(z) =log |H(z)| + i arg H(z) (1.5)

exists. It is important to note that in (1.5) the complex logarithm is defined to be
continuous, so that the real and imaginary parts of log Hc(z) will be analytic and
satisfy the conditions of the Hilbert transform. We also normalize arg Hc(z), 50
that H,(0) = 1.

Consequently, when a linear filter is minimum phase, its phase and log gain

will be related by the Hilbert transform. Specifically, in this case

2T
log |H(w)| = (27r)-1 f(; Hw’ )eot[(w-w’)/2]dw’ + ¢ (1.6)

for 0 w< 2, where c is a scaling constant which arises because {h(k)} and
{ch(k)} have the same phases but different gains. The integrand in (1.6) has a

singularity only at w = w’ where the principal value of the integral exists.

1.4. A Useful Result
When H,(z) has zeros on |z| <1, (1.5) does not exist for all z. The

Argument Principle [see Conway (1978, Section 5.3) or Titchmarch (1939, Section



3.41)], however, relates the number of zeros of H (z) and the change in the phase of
the filter on the unit circle. Specifically, ¢(7) — #(0) = 7, where n is the number of

zeros of H,(z) on |z] < 1.

2. Derivation of the HTE

Let ¢(w) denote an asymptotically unbiased and asymptotically gaussian
estimator of ¢(w) which converges in mean square to the phase of the filter for any
frequency in (0,27) and assume a sample of N observations which occur at times t =
0,1,.. N—13 With this sample we can obtain discrete estimates of the phase at
the angular frequencies Wy = 2xj/K for j=0,1,..,K—-1 and N/K>1 integer.
This grid of frequencies is chosen because it can provide a sequence of
asymptotically independent phase estimates (see Appendix A). We denote this
estimated phase sequence by {&S(wJ)} and note that éﬁ(wj) = ——&J(wx__j).

The discrete number of phase estimates means that we cannot use (1.6)

directly with {(}(wj)} to estimate the log gain. Cizek (1970) derives a discrete sum

approximation to (1.6) which he calls the discrete Hilbert transform. Let

Ofor k =0, K/2
Wk)=({-ifor 0 <k < K/2 (2.1)
ifor K/2 <k ¢ K-1

and

K—1
o) = K ;) W) explivy ). (2.2)

Then the discrete Hilbert transform of {&(wk)} is



K-1
log |Hi(u)| =J20 Hwy) o) (23)

fork=0,.. K-1.4
Thus, {log |f[(wk)|} is an estimator of {log |H(w)|} and, under our
assumptions on { ¢(wj)}, it will be an asymptotically unbiased estimator of
{log |H(w)| +c}.  Comsequently, {|H(up)l} = {expllog |H(w)[]} is an
asymptotically unbiased estimator of {c|H(w)|}.
Define

H(w) = |H(w,)| explip(w,)] (2.4)

fork =0, ..., K—1. From above, {ﬁ(wk)} is an asymptotically unbiased estimator
of {H(w, )} up to a scalar multiple. Consequently, {h(k)} can be estimated (up to a
gscalar multiple) from the observed processes by taking the inverse discrete Fourier

transform of the estimator of the transfer function; that is
K-1

h(k) = K1 Z H(w,) exp(iw:k) (2.5)
j=0 J J

fork =0, ..., K~ 1. The estimator {ﬂ(k)} will be subsequently referred to as the
Hilbert transform estimator (HTE). The large sample properties of the HTE are
givén by (A.5) in Appendix A.

3. Problems in Empirically Implementing the HTE



3.1. Unwrapping the Phase
The theoretical discussion of the Hilbert transform relationship between the

phase and log gain assumed that the phase function was continuous with domain
(—w, ). When the phase of an arbitrary linear filter is calculated according to
¢(w) = arctan[ImS(w|x’,y’)/ReS(w|x’,y)], however, the domain of the phase
function is usually assumed to be [, #) with the result that discontinuities will
occur whenever ¢(w) = 7 due to the modulo 27 operation of restricting ¢(w) to its
principal value.5 This point is illustrated in Figure 1a where we plot the minimum
phase filter (1 L + 0.99L%)% = 1 — oL + 2.981.2 — 1.981.3 + 0.9801L% where L is
the lag operator.

Removing these discontinuities to obtain a continuous phase function is
known as unwrapping the phase. When ¢(w) is a piecewise continuous function on
[-7, 7), the phase can be unwrapped using an algorithm suggested by Lii and
Rosenblatt (1982). They suggest constructing a continuous phase function $(w)

from ¢(w) according to

M) = §() + 2ma(w) (3.1)

where p(w) is an integer multiple of an indicator function chosen to ensure
continuity of the phase function. The unwrapped phase of the linear filter in Figure
la is illustrated in Figure 1b.

As Figure 1 clearly illustrates, unwrapping a continuous phase function
appears to be straightforward since the discontinuities will only occur when
¢(w) = 7. However, we face the more difficult phase unwrapping problem of
removing the discontinuities induced by the modulo 2r operation given only a

sequence of K phases, {¢(wj)}, all of which are in [-r, 7).8
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The approach we use to unwrap phase sequences is an adaptation of the Lii
and Rosenblatt procedure (3.1). Specifically, we choose a sequence of integers

{p(j)} such that the unwrapped phase sequence {;;'S(wj)l a(wj) = ¢(wj) + 2xp(j)}

satisfies

|#w) - By )] <3 (3:2)

where the scalar 7 < r < 27 and ¢(0) = 0. That is, {$(w)} is obtained by adding
integer multiples of 2x to {¢(wj)} until the absolute difference between any adjacent
elements of the resulting phase sequence is less than some value r.

The difficulties in choosing {p(j)} can be illustrated once again using the
filter (1 -L + 0.99L2)2. The sequence of discrete unwrapped phase points for this
filter at the angular frequencies w; = 27j/120, j= 0, ..., 60 is shown in Figure 2a,
and the correctly unwrapped phase sequence is shown in Figure 2b. Correctly
unwrapping the phase sequence requires the choice of p(j) = -1 for 21 ¢ j < 29 and
p(j) = 0, otherwise. This unwrapped phase sequence satisfies (3.2) for r > 57/4.

Other choices of {p(j)} will yield incorrectly unwrapped phases, however.
One such case is shown in Figure 3. Here the phase sequence is unwrapped
incorrectly with p(j) = 1, j= 20 and j > 30 and p(j) = 0 otherwise, yielding a phase
sequence which satisfies (3.2) for r > 7. Since the examples in Figures 2b and 3
clearly illustrate that the choice of {p(j)} can affect the unwrapped estimated phase
sequence used in the HTE and therefore the estimated transfer function, we suggest
that investigators pay careful attention to this part of the estimation procedure
especially if they have reason to believe that the filter might have roots close to the

unit circle.

11



3.2. A Minimum Phase Criterion for Estimated Phase Sequences
The HTE requires that the unwrapped estimated phase sequence is that of a

minimum phase filter. This point raises the question of whether there exist
conditions which an arbitrary unwrapped estimated phase sequence must satisfy if it
is to be that of a minimum phase filter. The result in Section 1.4 suggests a set of
necessary conditions: The unwrapped estimated phase sequence { fﬁ(wk)} is that of a

minimum phase filter if
#(0) = (=) = 0. (3.3)

We will refer to (3.3) as the minimum phase criterion.

There are two ways in which the minimum phase criterion can be used when
the HTE is implemented empirically. The first occurs when theory delivers enough
restrictions to determine a priori that the linear filter is minimum phase. In this
case, since (3.3) determines the end points of the unwrapped estimated phase
sequence, it may also help determine how the other points in the estimated phase
sequence are unwrapped. To return to the example of the filter (1 -L + 0.99L2)2,
knowledge that the linear filter is minimum phase would rule out the unwrapped
phase in Figure 3.

The second occurs when theory does not deliver enough restrictions to
determine a priori that the linear filter is minimum phase. In this case, the HTE
should be used only when the unwrapped estimated phase sequence satisfies (3.3).

Of course, the choice of {p(j)} will be important again since it can affect the
determination of whether an estimated phase sequence is minimum phase. This is
clearly illustrated by example in the previous section. When the phase sequence

from the filter (1-L + 0.99L2)2 was not unwrapped at all or was correctly

12



unwrapped as in Figures 2a and 2b, then (3.3) would have been satisfied. However,
if the phase sequence from this filter had been unwrapped incorrectly as in Figure 3,
then (3.3) would not have been satisfied and the unwrapped estimated phase

sequence would not have been identified as that of a minimum phase filter.

3.3. Screening for Poor Estimates
In Theorem B in Appendix B we prove that when a transfer function is

obtained from a phase function using (1.6), the inverse Fourier transform of this
transfer function will have the property that h(0) = 1. This result suggests that
ﬂ(O) from the HTE should always equal unity.

We found, however, that when the HTE was used with estimated phase
sequences which had large jumps, it yielded estimates of ﬂ(O) which were quite
different from unity. We also found that in these cases, {ﬂ(k)} was not stable in the
sense that 2§=0 Iil(k)l did not converge as T -+ K. Thus, in our empirical analysis

we use |h(0) — 1| as a criterion to screen for poor estimates.

3.4. Estimating the Filter’s Scale Factor

The coherence function 7{w|x,y) between a process {x(n)} and {y(n)} is

defined as follows:

Aol xy) = |S(wlxy) | /[S(w]x)S(w]y) 2. (3.4)

Since S(w|y) = |H(w)|?S(w|x) and S(w|x’,y’) = S(w|x,y), it follows from (3.4)
that the squared coherence between {x’(t)} and {y’(t)} is

P(@lx5y7) = 1/[1 + s(w|x)][1 + &(w]y)] (3-5)

13



where x(w|x) = S(w|v)/S(w|x) and k(w|y) = S(w| €)/S(w]y) are the noise-to—signal
ratio functions for the input and output signals, respectively. Thus if S(w|v) =
S(w|€) = 0 for frequencies w in a band w, <w< wp, then Y(w|x’,y’) =1 in the
band.

The estimated squared coherence is obtained from the estimates of the cross
spectrum S(w|x’,y’) and the spectra of the observed signals. If the estimates of
coherence is greater than 0.9 for at least one frequency W then the estimate of the
gain |H(w, )| is a good estimate of the unknown scale factor which is not estimable
from the Hilbert transform method.

Hopefully, there will be a number of frequencies where the estimated
coherence will be high. If so, then the estimates of the gains for those frequencies

should be averaged to obtain a more reliable estimate of the scale factor.

4. Results With Artificially Created Data
4.1 The Artificial Data

The artificial data used in the evaluation of the HTE and the comparison
with instrumental variables estimates (IV) is generated as follows: First, an input
series {x(t)} is generated according to an AR(1) with a lag coefficient of 0.5 and a
white noise error variance of unity. Second, an output series {y(t)} is generated
according to (1.1) with filter weights h(0) = 1.0, h(1) =-1.5, h(2) = 1.0,
h(3) =-0.5, h(4) = 0.25, and h(k) =0 for k > 5. Since this filter is stable and
causal and has no zeros on |z| < 1, it is minimum phase. Finally, observational
errors are added to {x(t)} and {y(t)} to obtain {x’(t)} and {y’(t)} [see (1.2) and
(1.3)]. The assumed observational error processes {¥(t)} and {e(t)} are white with

variances equal to f§ var[x(t)} and 8 var[y(t)], respectively. The observation length

14



of the series is N = 512,

4.2 The Bias in OLS Estimates

We first determine whether there is an errors in variables bias in the OLS
estimates of the filter. The mean OLS estimates for 1000 trials and various f§ are
plotted against the true values of the filter in Figure 4. The bias using OLS is
marked even when the noise—to—signal ratio is as small as f = 0.25. Further, the

bias increases with g.

4.3 HTE Estimates

The filter is estimated with the HTE as follows: First, a phase sequence of
length N is estimated from {x’(t)} and {y’(t)} using the method discussed in
section A.2 of Appendix A. This method is based on estimated cross spectra
obtained by averaging M (M < N/K) adjacent cross periodogram ordinates. Next, a
{p(j)} is chosen so that the unwrapped estimated phase sequence satisfies (3.2) with
r = 3x/2, and this sequence is checked to determine if the minimum phase criterion
(8.3) is satisfied. If it is, an asymptotically independent estimated phase sequence
of length K = 16 to be used in the HTE is obtained by selecting every N/K-th
estimated phase from the original sequence. This estimated phase sequence is then
used in (2.3) to obtain the HTE of the filter.

Several different experiments are run, each of which originally consists of
1,000 trials. Selected results are presented in Table 1 for those trials for which (3.3)
is satisfied and for which |f1(0) —1| €0.05. A summary of what we find is as

follows:

1. The estimated filter weights track the pattern of actual filter weights
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quite well. This can be seen both in the actual sample estimates and in the
small root mean square errors (RMSEs) of the estimates. Note that this
holds even when 8 = 1, that is, even when the variance of the noise equals
that of the signal. The results also show that the estimates of the sum of the

filter weights are biased upward with the bias increasing as § increases.

2. The estimated standard errors of the filter coefficients are close to the
sample standard deviations of the estimators when = 0.25 or = 0.5.
When A = 1, the estimated standard errors are always somewhat larger than
the sample standard deviations. Thus, the approximate large sample
variance of the HTE given by (A.5) appears to be an upper bound on the

actual standard errors of the estimates of the filter weights.

3. As the number of weights used to smooth the periodograms (M)
increases, the estimated coefficients are more likely to be biased toward zero.
Further, the bias is larger, the larger is §. However, a bias—variance tradeoff
is also evident. As M increases, the sample standard deviations of the
estimates decrease. Additionally, the RMSEs of the estimates decrease as M
increases presumably due to the fact that the estimates of h(5) through h(15)

are closer to zero the larger M.

4.4 Comparison of HTE and IV Estimates

Using the same data we compare the HTE estimates with IV estimates. We

use x’(t—j-1) as the instrument for x(t—j). Since the errors in {x’(t)} are white,

this procedure should produce asymptotically unbiased estimates of the filter

coefficients.
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The comparison of the HTE estimates with the IV estimates is given in
Figure 5 for § = 0.25 and § = 0.5. (Since the HTE estimates for these value of g
given in Table 1 are very close to each other, we have only plotted the HTE
estimates for M = 27.) This Figure shows that the HTE estimates outperform the
IV estimates. This is confirmed by the RMSEs. For the I'V estimates, the RMSEs
are 2.04 when # = 0.25 and 2.36 when § = 0.5. In contrast, for the HTE estimates
for these f’s are 0.093 and 0.139, respectively. Additionally, the sample standard
deviations of the HTE estimates were never larger than one-third those of the IV

estimates.

4.5 HTE Estimates with Colored Noise
We also evaluate the HTE when the noise contaminating the {x’(t)} process

is colored. Specifically, we generated {x(t)} and {y(t)} as above and added an
AR(1) error with p = 0.5 for {1(t)}. The observational error on {y(t)} was white
noise.

The results are presented in Table 2 for those trials for which (3.3) is
satisfied and for which |h(0)—1] € 0.05. The results are quite similar to those
when all observational errors were white: the HTE estimates track the actual
pattern of filter weights quite well and the estimated standard errors are close the
the sample standard errors. If fact, comparing the results in Tables 1 and 2, the

HTE track the filter weights better for colored noise than for white noise.

4.6 Ability to Detect Nonminimum Phase Filters

This section presents some evidence on the significance level and power of a
hypothesis test of whether a phase function is minimum phase based on the

minimum phase criterion (3.3). Specifically, we reject the null hypothesis that the
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actual phase function is minimum phase if the estimated phase sequence does not
satisfy (3.3).

To obtain some evidence on the significance level of such a test, we

'determine the number of times the null hypothesis is rejected in the experiments

discussed above. It is rejected 5 times in 1,000 trials when § = 0.25, 29 times in
1,000 trials when § = 0.5, and 102 times in 1,000 trials when £ = 1.0.

To obtain some evidence on the power of such a test, we generate a new
{y’(t)} series using the procedure discussed above but substituting for {h(k)} the
stable, causal filter h’(0) = 1.0, h’(1) = -2.1, h’(2) = 1.6, h*(3) = 0.7, h"(4) =
0.5, and h’(k) = 0 for k > 5. Since {h’(k)} has two zeros on |z| < 1, it is not
minimum phase. The filter {h’(k)} is selected since it has approximately the same
gain as {h(k)} but a different phase. With these new data, the null hypothesis is
correctly rejected 960 times in 1,000 trials when § = 0.25, 835 times in 1,000 trials
when = 0.5, and 628 times in 1,000 trials when g = 1.0.

To obtain further evidence on the power of such a test, we generated another
{y’(t)} series using a maximum phase filter {h"(k)} with a gain approximately the
same as that of {h(k)}. A maximum phase filter is one which has the number of
zeros on |z| < 1 equal to the number of its nonzero coefficients. Specifically, we
used the filter h"(0) = 1.0, h"(1) = 2.0, h"(2) = 4.0, h"(3) = —6.0, h"(4) = 4.0,
and h"(k) = 0 for k > 5. With these data the null hypothesis is correctly rejected in
all 1,000 trials when # = 0.25, 997 times in 1000 trials when 8 = 0.5, and 967 times
in 1,000 trials when § = 1.0. Thus, we conclude that this test of the hypothesis that
the true filter is minimum phase has good power, especially when the true filter is
maximum phase or the noise-to—signal ratio is not too large.

We also have done some experimentation to determine how the results are

affected by changing M, the number of weights used to smooth the cross—
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periodogram or by changing r, the maximum absolute difference allowed between
adjacent elements of the unwrapped phase sequence. Not unexpectedly, we find
that increasing M or increasing r raises the significance level but reduces the power
of the test.
5. Summary

In this paper we have presented a method for estimating linear filter models
when both the dependent and independent variables are observed with error. This
method is based on the Hilbert transform relationship between the phase and the log
gain of a minimum phase filter. We have demonstrated that this estimator is
asymptotically unbiased and have presented its approximate large sample variance.
Tests with artificially created data showed that our estimator tracked a known filter
quite well and that its estimated standard errors were, for the most part, upper
bounds on the sample standard deviations. |

The limitation of the Hilbert transform estimator is, of course, that it
requires the linear filter to be invertible (minimum phase). While this restriction
may be expected to be satisfied a priori in many natural science applications, the
same is not true in economic applications where theory often does not provide
enough restrictions on the linear filter. Nonetheless, because we have also developed
a criterion for determining whether an estimated phase sequence is minimum phase,
our technique can have applications even if it is not possible to determine a priori

that the filter to be estimated is invertible.
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Endnotes
1 For further discussion of this no observational errors case, see Brillinger (1981) or

Jenkins and Watts (1968).

2 See Tretter (1976, section 4.10) or Papoulis (1962, section 10.2) for a derivation

and discussion of the Hilbert transform.

3 There are several related approaches to obtaining consistent, asymptotically
gaussian, and mean square convergent estimators of ¢(w) for the observed processes.
One such approach is discussed in Appendix A. Consistent estimators and their

asymptotic properties are also discussed in Brillinger (1981, chap. 5).

4 In order to investigate the properties of (2.3) as an approximation to the discrete
Hilbert transform (1.7), for each of the angular frequencies w; we obtained the true
gain and phase of the AR(1) series

x(t) = 0.5x(t — 1) + n(t)

fort =0, .., N—1. Next, we calculated a log gain using (2.3) and the true phase.
Finally, we computed the RMSE between this gain and the true gain. The results
showed that (2.3) is an extremely good approximation to (1.7) for reasonable sample

sizes.

5 This discussion ignores the case in which the filter has one or more unit roots. In
this case, the phase function will have a discontinuity of /2 at each frequency for

which a unit root occurs.

8 In order to determine the effects of not unwrapping the estimated phase sequence
before calculating the log gain with the discrete Hilbert transform, we used a

wrapped phase sequence for the filter (1 - .95L)3 in (2.3). The resulting log gain
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had a cusp at both points where the phase sequence exhibited large jumps. These

cusps were eliminated when the unwrapped phase sequence was used instead.
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A.2. Cross Spectrum and Phase Estimators

Let the cross spectrum estimator at frequency 0 < wy be the average

m

~ _ *
S(uylxy) = M1 kZ DFT(j+k|xN) DET(j+k|y,N)
=

where m = (M-1)/2, M << N, and an asterisk denotes the complex conjugate. [If
0 < w, < #M/N, then average the DFT(j+k|§,N)* DFT(j+k|y,N) for 0 < w, <
W, + 7M/N. A similar constriction of bandwidth holds when x(1 - M/N) < Wy <
7.] From Theorems 7.3.1 and 7.3.2 in Brillinger (1981), the expected value of
é(wolx,y) is 8(w,|x,y) + O(M/N) and its variance is O(M_l).

The estimator of the phase at W, is given by
Hw,) = arctan[Im S(w |x.y)/Re S(w,|x,y)]. (A.1)
Expanding (A.1) in a Taylor series about S(w, | x,y) yields
Hwg) = $(w,) + e(w,)

where the expected value of the error in the estimated phase, e(wo), is of order

M/N. The large sample variance of the phase estimator is

varl(wp)] = (2M)™ [77%(w,) - 1] + O(M™?) (A.2)

where

() = 15(wy |31 % [S(u | %) S(wy [ 1) (A.3)
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denotes the squared coherency [see Hinich and Clay (1968)]. Let M = N® with 0 <
@ < 1. Then (A.2) and (A.3) demonstrate that ¢(w,) is an asymptotically unbiased
estimator of ¢(w,) as N - w if 72(w0) > 0.

Assume for convenience that K = N/M is an integer, and let w, = 22kM/N
(or 27k /K). The correlation between c}&(wj) and <}S(wk), j # k, is O(1/MN) since the
discrete Fourier transform for the frequency grid {27n/N} have cross correlations of
order O(1/|n —n’|N) for n # n’ if the two time series have well behaved cumulants
[Brillinger (1981, Theorem 4.4.2)]. Thus, we can obtain a set of (K/2 + 1)
approximately uncorrelated phase estimates from a sample of size N. Denote this
estimated phase sequence as {&(wj)}. Since M = N®for0 < a< 1,K = NI,

as N - .

A.3. Variance of the Log Gain

The estimated phase sequence {(}S(wj)} can be transformed to obtain a

discrete approximation to the log gain with the discrete Hilbert transform. That is,
log| B(w,)| = DHT(k| $K),

which is (2.3) rewritten, and
vec{log| H(w )| —log| E(w,)|} = vec{DHT(k|¢,K)} = Be.

Thus,

cov[vec{log| H(w,)|}] = BVB’
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where V. = Elee’] = cov[@] is the covariance matrix of the errors in the estimated

phase. Specifically,

var[f(w; ;)] j=K-k#1, K/2+1
V=llvyll={-varlg(w,_pli=k #1, K/2+1
0, otherwise

A.4. Variance of the Coefficients

The estimate of the complex gain for frequency w, using this approach is
H(u) = expllog| H(w)| + id(w)] (A4)
Expanding (A.4) in a Taylor’s series about H(w, ) yields
H(w) - B(u,) = H(w)[DET(k|¢,K) + ie(K)].
Therefore,
veo{H(u4) ~ H(wy)} = vec{H(w, )[DHT(k|&,K) + ie(k)]}
=IL(B +il)e

where T = diag[H(w )]

Since
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K—1
h(n) - h(n) = K* 1;) [E(w,) - B(w,)] exp(iv k),

vec{h(n) - h(n)} = K Flvec{H(w,) - H(uy)} = K FIL(B + il)e.

The elements of vec{ﬁ(n) —h(n)} are real. Therefore, the covariance matrix of the

filter weights is
W = covlvec{h(n)}] = E[vec{h(n) — h(n)} vec{h(n) - h(n)}’]

=k Eir(B + inv(e + i)' c'E (A.5)

A.5. A Conjecture
Let P be the length of a linear filter. That is, when the linear filter is written

as a polynominal in the lag operator, P — 1 is the largest power of L with a nonzero

coefficient. Then, we conjecture:

If (P + K/2-2) > K, then w;; # 0 for alli. Otherwise, wy; = 0 and w;; =0
fori > (P + K/2).

This conjecture arises from calculations of W for various known filters. We have
been unable to prove it. Nonetheless, it is consistent with the findings with
artificial data both in this paper and in Hinich and Weber (1984). Further, there
are intuitive reasons why there might be no more than (P + K/2 — 2) nonzero
variances. Since the phase function is odd and constained to be zero at w=0, =,

there are only K/2 -1 discrete phase points which are being estimated, and since
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h(0) is constrained to be zero by the Hilbert transform (see Appendix B), there are
only P — 1 filter weights to be estimated.
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Appendix B: Proof that h(0) =1
The following two lemmas are used in the proof of the theorem:
Lemma B.1. | g’r cot[(A — w)/2]d\ = 0 for every w.

Proof. Consider the minimum phase filter h(0) = 2 and h(k) = 0 for k > 0. This

filter’s transfer function is the constant 2, and thus its phase is zero for all w. From

(1.7),

27
0= j(; log|2| cot[a(A - w)/2]dA

and the result then follows.o
Lemma B.2. [ gwlogl H(w)|dw = 0 for 2 minimum phase filter.

Proof. Reversing the order of integration when integrating both sides of (1.7),

27 2x 27
fo log| H(w)|dw = 271 j;, fo cot[(w—2)/2] 4()) dwdA =0

from Lemma B.1.0

Theorem B. When log|H(w)| is obtained from the phase function ¢(w) by (1.7),
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H(w) = exp{log| H(w)| +i¢(w)}, and

27
h(k) = (27) " f; H(w) exp(ivk)dw,

then h(0) = 1.

Proof. Since H (z) has no zeros or poles in |z] < 1,

2z
log|H(0)| =fo log| H(w)|dw

by Jensen’s theorem [Titchmarsh (1939, p. 125)]. From Lemma B.2, log|H,(0)| =
0 and thus log|h(0)| = 0.0
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Figure 1

Phase of the Filter (1 - L + .991.%)2

(a) Before unwrapping
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Figure 2
Phase sequence of the filter (1 - L +.99L

(a) Without unwrapping

)2

(b) Correctly unwrapped
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Figure 3

An incorrectly unwrapped phase sequence of the filter (1 — L + .99L2)2
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Table 1--HTE Estimates of a Known Fllter
White Noise Errors

Parameter Sample Std, Mean Est.
or Statistic Actual Mean Deviation Std. Ervor
Coefficients h(0) 1.0 1.01 0.014 0.015
1.00 0.012 0.007
1.0 0.017 0.034%
1.01 0.015 0.018
1.01 0.022 0.084
1.01 0.019 0.047
h(1) -t.5 -1.49 0.129 0.131
~1.48 0.095 0.094
-1.48 0.196 0.204
-1.48 0.145 0.149
-1.45 0.297 0.336
-1.47 0.227 0.249
nh(2) 1.0 1.01 0.182 0.178
0.990 0.132 0.130
0.999 0.276 0.283
0.992 0.200 0.202
0.958 0.U427 0.486
0.980 Q.304 0.345
h(3) -0.5 -0.496 0.189 0.194
-0.480 0.142 0. 142
-0.488 0.276 0.300
-0.481 0.213 0.216
-0.483 0.427 0.475
-0.469 0.320 0.358
h(4) 0.25 0.259 0.196 0.199
0.244 0.146 0.145
0.255 0.287 0.308
0.249 0.220 0.220
0.266 0.430 0.485
0.240 0.326 0.366
h(5) 0.0 -0,002 0,197 0.201
-0.003 0.146 0.146
0.010 0.290 0.314
-0.001 0.214 0.222
0.001 0.429 0.515
0.008 0.326 0.375
h(6) 0.0 0.004 0.200 0.202
-0.005 0.148 0.146
0.004 0.291 0.318
0.001 0.219 0.223
0.022 0.447 0.512
0.001 0.338 0.378
Sum of K-1 0.25 0.308 0.253
Coefficients T h(k) 0.274 0.158
k=0 0.341 0.343
0.306 0.245
0.369 0.443
0.338 0.338
RMSE 0.126 0.050
0.093 0.037
0.183 0.070
0.139 0.054
0.272 0.118
0.207 0.083
8/M/ Number of Trials 0.25 15 949
: 0.25 27 992
0.50 15 756
0.50 27 937
1.0 15 405
1.0 27 695



Table 2--HTE Estimates of a Known Filter
Colored Errors

Parameter Sample Std. Mean Est.
or Statistic Actual Mean Deviation Std. Error
Coefficients h(0) 1.0 1.00 0.011 0.006
1.01 0.015 0.018
h(1) -1.5 -1.48 0.095 0.094
-1.U48 0.148 0.160
h(2) 1.0 0.991 0.118 0.115
0.996 0.176 0.181
h(3) -0.5 -0.479 0.120 0.120
-0.480 0.179 0.187
h(4) 0.25 0.243 0.121 0.120
' 0.251 0.183 0.185
h(5) 0.0 -0.002 0.121 0.120
-0.003 0.180 0.186
h(6) 0.0 -0.006 0.121 0.120
0.002 0.182 0.186
Sum of K-1 0.25 0.280 0.177
Coefficients ) h(k) 0.318 0.279
k=0
RMSE 0.081 0.029
0.121 0.045
8/M/ Number of Trials 0.25 27 990
0.50 27 931



