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Abstract 

In this paper, a real-time cascade adaptive notch filter scheme for sinusoidal parameter estimation is proposed. The 
second order recursive maximum likelihood algorithm is used to estimate the sinusoidal frequencies. It is suitable for 
real-time operations because only 13 multiplications, 14 additions and 1 division are required in each iteration. After 
adaptive notch filters have converged, the simplified recursive least square algorithm is then used to compute the 
amplitudes and phases of sinusoids quickly. The error surface analysis indicates that our scheme is unimodal and results 
in guaranteed convergence. Extensive computer simulations are also included to demonstrate its performance. 

Zusammenfassung 

In dieser Arbeit wird ein Echtzeitsystem einer adaptiven Kaskade yon Kerbfiltern zur Sch/itzung yon Sinus-Para- 
metern vorgeschlagen. Der Maximum Likelihood Algorithmus zweiter Ordnung wird zur Sch/itzung yon Sinusfrequen- 
zen benutzt. Er ist zur Echtzeit-Operation geeignet, da nur 13 Multiplikationen, 14 Additionen und 1 Division in jeder 
Iteration erforderlich sind. Nachdem die adaptiven Kerbfilter eingelaufen sind, wird der vereinfachte Recursive-least- 
squares-Algorithmus zur schnelleren Berechnung der Amplituden und Phasen yon Sinussignalen benutzt. Die Feh- 
leranalyse zeigt, dab unser System unimodal ist und Konvergenz garantiert. Ausfiihrliche Computer Simulationen 
werden zur Demonstration der Eigenschaften angef/ihrt. 

R~sum~ 

Dans cet article, un schema temps-r6el bas~ sur des filtres 'notchs' adaptatifs en cascade pour l'estimation de 
param&res sinusoidaux est propos6. L'algorithme de maximum de vraisemblance r6cursif du second ordre est utilis6 
pour restimation des fr6quences sinusoidales. I1 est adapt6 pour les op6rations temps-r6els car seulement 13 multiplica- 
tions, 14 additions et 1 division sont requise fi chaque it6ration. Une fois que les filtres adaptatifs 'notch' ont converg6s, 
ralgorithme r6cursif simplifi6 d'estimation aux moindres carr6s est alors utilis6 pour calculer rapidement les amplitudes 
et les phases des sinusoides. L'analyse de la surface d'erreur indique que notre sch6ma est unimodal et que la convergence 
est guarantie. De nombreuses simulations sur ordinateurs sont 6galement incluses pour d6montrer les performances du 
sch6ma. 
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1. Introduction 

Adaptive notch filters are very useful in many 
signal processing applications such as the retrieval 
of sinusoids in noise, eliminating sinusoidal power 
line disturbance in a measurement signal. Examples 
are in the areas of radar, communications, control, 
biomedical engineering and others. In early work, 
most adaptive notch filters are implemented as 
direct form high order IIR filters [1, 8-10]. This 
form suffers from two drawbacks. One is that stab- 
ility monitoring is difficult, the other is, the frequen- 
cies of the sinusoids need to be determined from the 
filter coefficients by using root finding. Thus, the 
cascade form adaptive notch filters are developed 
in the literature I-3-6]. 

Recently Martin and M'sirdi both have used 
cascade adaptive notch filter schemes to estimate 
sinusoidal parameters in real time independently. 
In this paper, we propose another scheme to solve 
the same problem. There are three main differences 
between our scheme and theirs. First, Martin and 
M'sirdi used the original signal as reference to 
update amplitude and phase, but we used the en- 
hanced signal as reference. As a result, our scheme 
is more accurate in amplitude and phase estimation 
than theirs. Second, M'sirdi used conventional re- 
cursive least square (RLS) algorithm to estimate 
amplitude and phase, but we will show that the 
RLS algorithm can be simplified. Third, error sur- 
face analysis indicates that Martin's scheme is 
multimodal, but ours is unimodal. Thus, Martin's 
scheme may converge to local minima. 

This paper is organized as follows. First, the 
real-time cascade adaptive notch filter scheme is 
developed in Section 2. Next, error surface analysis 
is presented in Section 3. Finally, some computer 
simulations are demonstrated in Section 4. 

2. Cascade adaptive notch filter scheme 

Consider the following noisy sinusoidal signals. 

p p 

y(t) = ~ ,4/cos(ogit + c~i) + v(t) = ~ si(t) a t- v(t) 
i = 1  i = 1  

(1) 

where ~oi is the unknown angular frequency, Ai is 
sinusoidal amplitude, q~i is an initial phase, and v(t) 
is zero-mean white noise with variance tr 2. Assume 
that the number of the sinusoids p is known in 
advance. The problem considered in this paper is as 
follows. Given the noisy samples y(t), using the 
cascade adaptive notch filter scheme, estimate tn~, 
Ai, and q~i in real time. 

2.1. Adaptive notch filter scheme 

The proposed adaptive notch filter scheme is 
shown in Fig. 1 for p = 2 case. The major building 
blocks of the scheme are several second-order 
adaptive notch filters and amplitude/phase es- 
timators. The estimation procedures of this scheme 
can be divided into the following two steps. First, 
use cascade adaptive notch filters with recursive 
maximum likelihood (RML) algorithm to extract 
every sinusoidal signal ~i(t) from input signal y(t) 
and to estimate sinusoidal frequencies tbi. Second, 
each estimated frequencies 03~ and enhanced sine 
wave gi(t) are sent to the amplitude/phase estimator 
in order to obtain estimate values of amplitude and 
phase. Now, let us describe every building block in 
the following. 

2.2. Second-order adaptive notch filter with 
R M L  algorithm 

The ith second order notch filter in Fig. 1 is 
realized by 

1 "-~ ai Z - 1  Jr- z - 2  

Hi(z) = 1 + raiz-1 + rZz - 2 (2) 

which is also used by Nehorai [8] and M'sirdi 
[5, 6]. Its notch frequency to~ and 3 dB rejection 
bandwidth B W are given by 

o)~ = arccos , (3) 

B W  = 7t(1 - r). (4) 

Let the input and output signals of notch filter Hi(z) 
be yi(t) and ei(t) respectively. Then notch filter 
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estimator 1 
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Second order adaptive 
notch filter with RML 
algorithm 
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Second order adaptive 
notch filter with RML 
algorithm 

Fig. 1. Proposed adaptive notch filter scheme for sinusoidal parameter estimation. 

e2(t) 

parameter  a~ is updated by minimizing the cost 
function 

J (a i ,  t) = ~ 2 ' - " e i (n ) .  (5) 
n = l  

Because only second-order notch filter is used here, 
conventional high order R M L  algorithm can be 
simplified as follows [8]. 

The  s e c o n d - o r d e r  a d a p t i v e  n o t c h  f i l t e r  w i th  R M L  
a l g o r i t h m  

l n p u t  signal:  y~(t) 

O u t p u t  signal:  gi(t), el( t)  

100 
In i t ia l i za t ion :  ai(0) = 0, pi(0) = E ( y 2 ( t )  ) 

q, , (  - l )  = ~ , ( o )  = o ,  

y ~ ( -  1) = yi(O) = 0 

el( - 1) = el(O) = O, 

20)  = 0.9, 2o = 0.99, 

ro = 0.99, r(1) = 0.8, r~ = 0.99 

M a i n  loop: 

(1) ~i ( t )  = r ( t ) e i ( t  - l) -- y i ( t  - l) 

(2) ~hi(t) = ~pi(t) - a , ( t  - 1 ) r ( t ) ~ i ( t  - 1) 

- r2 ( t )O i ( t  - 2) 

(3) ~,(t) = y , ( t )  + y , ( t  - 2) 

- rZ( t )e i ( t  - 2) - ai(t  - 1)~bi(t) 

p i ( t -  1) 
(4) p,(t) = 

2(t) + pi( t  - 1)q;~(t) 

(5) ai(t)  = a~(t - 1) + p,( t )~b,( t )~,( t )  

(6) e~(t) = y i ( t )  + y , ( t  - 2) 

- r2 ( t )e i ( t  - 2) - a i ( t ) ~ i ( t )  

(7) g,(t) = y ~ ( t ) -  e , ( t )  

(8) 2(t + 1) = 2o2(0 + (1 - 20) 

(9) r( t  + 1) = ror( t )  + (1 - r o ) r ~  

E n d  loop. 

Note that the frequency estimate tbl can be evalu- 
ated from Eq. (3). This algorithm takes only 13 
multiplications, 14 additions, and 1 division in each 
iteration, so it is suitable for real time operations. 
Also, the R M L  algorithm is an asymptotically effi- 
cient parameter estimation algorithm, so its accu- 
racy is high. 

2.3.  A m p l i t u d e ~ p h a s e  e s t i m a t o r  

Assume that the estimated frequency and en- 
hanced sine wave received from adaptive notch 
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filter are o5~ and ~(t), respectively. Using both sig- 
nals, the following vector equation may be written. 

X,O,  = C , ,  ( 6 )  

where 

Vcos(lrb0 cos(2o31)... Cos(to3i)IT ' 

X~ = Lsin(lo3i) sin(2cbi) sin(to3i) ] 

0 ,=  [a(t) b(t)] T, 

C, = [g,(1) ~,(2) ... ~,(t)] T. 

Notice that M'sirdi and Martin use input signal y(t) 
to construct vector C, [4, 6], i.e., 

C, = [y,(1) y,(2) ... y,(t)] T. 

This is a difference between our scheme and theirs. 
Then the well-known least square solution is given 
by 

O, ~--- ( X T X t )  - 1 x T c  t 

= R ( t ) -  1D(t), 

where 

R ( t )  = ~ x T x t ,  

D(t) = ~ xTCt .  

Moreover, D(t) obeys the following recursive for- 
mula: 

2 
D(t) = t -- 1 D(t -- 1) + ~i(t)[cos(tblt ) sin(cblt)] T. 

t 7 

(9) 

Finally, we propose a simplified RLS algorithm to 
estimate amplitude and phase as follows: 

Simplified R L S  Algorithm 

Input: &i and gi(t) 

Output: Ai(t) and dpi(t) 

Initialization: Oi(O)= [0 0] T 

Main Loop: 

(1) O(t) = a,O(t - 1) + 2(1 - at) 

x gi(t)[cos(o3it) sin(e3it)] T 

(2) Ai(t) = x/a2(t) + bE(t) 

( - b ( t ) ~  
(3) ~bi(t)= arctan \ a(t) J 

End Loop. 

Note that at = (t - 1)/t. However, in order to pro- 
duce a forgetting effect, at may be fixed to be a con- 
stant. In the following simulation we choose 
a, = 0.99. 

Thus, the desired amplitude and phase estimates 
are given by 

-4i = ~/a2(t) + b2(t), 

. I / - -  b( t) '~ 
q~, = arctan ~ a - ~ j -  ) .  

Because cosine and sine are orthogonal, it is easy to 
show that 

lim R(t)  = I, (7) 
t ---~ a9 

where I is the identity matrix. This expression 
means that when t increases R(t) converges to 
identity matrix. Thus, computing R(t)  is redundant 
when t is large. It can be omitted. Therefore, the 
least square solution can be reduced to 

Ot = D ( t ) .  ( 8 )  

2.4. A Comparison to other schemes 

(A) Accuracy: In amplitude and phase estima- 
tion, we use enhanced signal gi(t) as reference signal, 
but M'sirdi and Martin use original signal y(t) as 
reference. Also, signal to noise ratio (SNR) im- 
provement factor 1-8] is 

SNR(g,(t)) 1 
- - -  ( 1 0 )  

SNR(y(t)) 1 - r' 

so SNR of ~i(t) is much higher than SNR of y(t) 
when r approaches unity. As a result, our scheme 
has better accuracy than M'sirdi's scheme in ampli- 
tude and phase estimation. 

(B) Complexity: Because M'sirdi uses conven- 
tional RLS algorithm to update amplitude and 
phase, its complexity is proportional to p2. But we 
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use simplified RLS algorithm to estimate amplitude 
and phase, so complexity is only linear with p. 
Thus, M'sirdi's scheme is less efficient than ours in 
complexity. 

(C) A simple example: In order to compare our 
scheme with M'sirdi's scheme more clearly, 
a Monte Carlo simulation is tested under input 
data length 1000 and different SNR on the VAX 
computer. The input signal is 

y(t) = A cos 0.2rtt + + A cos 0.3~t + + v(t) 

(11) 

where A is determined in term of SNR. Table 1 and 
Table 2 summarize the bias and standard deviation 

of sinusoidal parameters calculated from 40 inde- 
pendent trials. From these results it is easy to see 
that our scheme has better statistical accuracy than 
M'sirdi's scheme. Moreover, the CPU time of each 
trial in our scheme is 1.18 s, but the CPU time in 
M'sirdi's scheme is 1.48 s. Thus, our scheme is su- 
perior to M'sirdi's scheme in both accuracy and 
complexity. 

3. Error surface analysis of cascade adaptive 
notch filters 

Error surface analysis is very useful for under- 
standing the convergence of adaptive recursive fil- 
ters and provides valuable insight [7, 11]. There are 

Table  1 
Stat is t ical  results  of M's i rd i ' s  scheme 

SNR N /ix A ~1 /i2 L ~2 
(dB) 

Bias × 10 * 

3 157.1 0.0846 

6 142.4 0.0806 

9 1000 114.8 0.0605 
12 91.28 0.0425 

Standard deviation × 10 4 

3 900.8 0.5384 

6 897.6 0.3752 
9 1000 887.4 0.2672 

12 882.1 0.2132 

- 230.8 

- 205.8 
- 194.8 

- 189.4 

689.8 0.305 245.5 

455.7 0.258 174.5 

385.8 0.209 - 144.3 
335.6 0.201 - 108.1 

491.1 1091 0.5612 446.9 

349.7 1061 0.3992 336.9 

248.8 1053 0.3024 274.8 
185.3 1026 0.2063 193.8 

Table  2 
Stat is t ical  results  of our  scheme 

SNR N / i ,  f l  ~ ,  /i2 f2 ~2 
(dB) 

Bias × 1 O- 4 

3 115.8 0.0846 -- 212.1 -- 517.2 0.305 

6 84.99 0.0806 -- 195.3 -- 352.3 0.258 
9 1000 -- 82.63 0.0605 -- 179.4 -- 296.1 0.209 

12 45.76 0.0425 -- 174.7 - 253.2 0.201 

Standard deviation × 1 O- 4 

3 797.8 0.5384 429.6 726.4 0.5612 
6 777.2 0.3752 303.5 712.7 0.3992 

9 1000 768.1 0.2672 213.9 706.9 0.3024 
12 750.8 0.2132 164.5 679.9 0.2063 

- 161.7 

- 133.6 
-- 109.8 

- 104.9 

395.8 
299.6 
245.5 
174.5 
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(a} Input signal 
y(t) 

Output 
error e(t) 

y Adaptive Algorithm I- 
Fig. 2(a). Simultaneous adaption scheme: the cascade second-order adaptive notch filters are updated simultaneously. 

0.0 95 

1.95 0.05 

Fig. 2(b). Three-dimensional plot of the mean square error 
E(e2(t)) versus the notch filter parameters k~l and k21 for two 
sinusoids inputs (p = 2). 

two different ways to adjust cascade adaptive notch 
filter's parameters.  One is that  the filter coefficients 
are updated simultaneously for all stages such as 
Mart in 's  scheme. The other  is that  the filter coeffic- 
ients are updated individually in each stage, for 

example in M'sirdi 's and our  schemes. Until now, 
compar ison  between these two adapt ions  has not  
been very clear and has not  appeared in the open 
literature. In this section, we will use the error 
surface analysis to discuss their difference. The re- 
sults tell us the error surface of  simultaneous adap- 
t ion scheme is multi-dimensional and has local 
minima. And the error surface of  individual 
adapta t ion  is strictly one-dimensional,  unimodal  
and has guaranteed convergence. The one- 
dimensional  solution search space in individual 
adapt ion  is much smaller and easier to handle than 
the multi-dimensional one in simultaneous adap- 
tion. 

3.1. S imul taneous  adaptive scheme 

Fig. 2(a) shows the system that the cascade adap- 
tive notch filters are updated simultaneously. The 
input signal consists of p sinusoids in addit ion to 
white noise, as expressed in Eq. (1). Mart in  has 
chosen a low coefficient sensitivity biquad as de- 
sired second-order  notch filter, i.e. 

2 -  ki2 1 - -  2(2-kiz-k21)Z2-ki2 1 ql- Z - z  

Hi(z) - 2 1 - (2 - ki2 - k'Z,1)z -1 + (1 - klz)z -2 

(12) 

where k i 2 =  1 - r  2 and kil = 2 x / l - ( k 1 2 / 2 )  
sin(~o~/2) if r is pole radius and ~o~ is notch 
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to} .95 
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,,.,.J 

16 r 

f 

1 k21 

--.._~ 

16 

I / , \ I IIII t ! I o-°~ 
I 1.95 

0.0 kl I 

Fig. 2(c). Error surface contour plot and the trajectories of three simulations initialized at the points (k 11, k21 ) = (a) ( 1.2, 1.2), (b) (1.0, 1.0) 
and (c) (1.8, 0.8) respectively. 

frequency. The objective of the simultaneous ad- 
aptation algorithm is to adjust the k~l's such that 
the output mean square error E(e2(t)) is minimized. 
During adaption, 3 dB rejection bandwidth is kept 
constant by choosing a fixed value for kg2's. It is 
easy to show that the mean square error is 

E(eZ(t)) = ~ A~ a2 ~ ~-IH(eJ~")l 2 + In(z)l 2dz, 

I13) 

where c is a counterclockwise unit circle contour, 
and H(z) = I]f= xHi(z). The first term of Eq. (13) is 
closed-form formula, we can calculate it exactly by 
computer. However, the second term is difficult to 
simplify by the Cauchy's residue theorem, so we use 
numerical integration, such as Trapezoid rule, to 
compute its approximate value through the follow- 
ing equation: 

IH(z)12 z - ~ -.[H(eJ'°)12de°" (14) 
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Now, we consider an example with the input signal 
a s  

y(t) = x/26cos(0.2rct) + x / ~ c o s  .6r:t + ~ + v(t). 

(15) 

M'sirdi's scheme and ours is Hi(z) which is 
expressed in Eq. (2). In each stage, the objective 
of the adaptive algorithm is to adjust al such 
that the mean square error E(e{(t)) at each 
stage is minimized. For  the first stage, it is easy to 
show that 

A 3D plot of the mean square error E(e2(t)) versus 
the two notch parameters k~l, k2~ is depicted in 
Fig. 2(b) for r = 0.95. From the plot, we observe 
that the local minima are at four ditches 
kll = 0.603, kll = 1.579, k21 = 0.603, and 
k21 ~- 1.579. When the notch parameters are up- 
dated and converge to one of these four ditches, the 
cascade adaptive notch filter can only eliminate one 
sinusoid, while the other will still exist. Further- 
more, we observe that there are two minima at deep 
troughs (kll,k21) = (0.603, 1.579) and (1.579, 
0.603). When the notch parameters are adjusted 
and converge to one of two troughs, the cascade 
adaptive notch filter can eliminate two sinusoids 
successfully. In order to understand the conver- 
gence behavior of Martin's algorithm, we use his 
algorithm to adjust the parameters of notch filter. 
These examples are illustrated in Fig. 2(c). Initial 
points of the three examples are (kll, k12)= 
(1.2, 1.2), (1.0, 1.0), and (1.8, 0.8). In each example, 
the parameters are adjusted by 1000 iterations. As 
a result, we find that the trajectory initialized at 
(1.0, 1.0) converges to (0.603, 0.603). Even though it 
is updated 4000 iterations, it still stays there. This 
situation means that the two notch stages both 
converge to the same sinusoid's frequency which is 
not the desired minimum solution. From the above 
description, we know that there are two local mini- 
mums at (0.603, 0.603) and (1.579, 1.579). Therefore, 
mean square error surface of cascade adaptive 
notch filter which is updated simultaneously is 
multimodal, so a judicious choice of the initial 
parameters is important. 

3.2. Individual adaptive scheme 

Fig. 3(a) shows the system that cascade adaptive 
notch filters are updated individually. The input 
signal is still p sinusoids in an additive white noise 
as above. The second-order notch filter used in 

E(e~(t)) = ~ A{ i=1 2 - [ H 1  (eJ°'i)12 

(16) 

Fig. 3(a) shows the error surface of E(eZ(t)) versus 
al when the input signal is 

(17) 

It is interesting to see that the error surface is 
one-dimensional and has two distinct minima asso- 
ciated with each frequencies, so the first stage will 
converge to one of the two sinusoid's frequencies. 
Because the second order notch filter's frequency 
response is unity gain and zero phase everywhere 
except near the notch frequency, the other sinusoid 
signal and noise pass through the filter Ha(z) 
almost undistortedly. Thus the mean square output 
error of the second stage is 

E(eZ(t)) = 
v 2 A~ (r E dz 

i=l.i+-k 2 [H2(eJ°i)12 + ~ j  [H2(z)12z 

(18) 

where k is the sinusoid removed by the first stage. 
The whole situation of the second stage is the same 
as the first stage, and one of the other sinusoids will 
be eliminated by the second stage. Repeat this pro- 
cess until all of the sinusoids are eliminated individ- 
ually in each stage. Fig. 3(c) shows the learning 
curves of the parameters ai, i - -  1, 2 in the two 
stages when the input y(t) is expressed in Eq. (17). 
This figure reveals that two sinusoidal frequencies 
can be estimated correctly and quickly by 
cascading notch filters. Therefore, the error 
surface of second order notch filter which is up- 
dated individually is unimodal and has no local 
minima. 
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Fig. 3. (a) Individual adaption scheme: the cascade second order adaptive notch filters are updated individually. (b) The error surface 
plot of the mean square error E(e2(t)) versus the notch filter parameter al for two sinusoidal inputs. (c) The learning curves of the two 
stage notch filter parameters al and a2 for two input sinusoids. [(1) solid line: first stage, (2) dot line: second stage] 

4. Computer simulations 

Some exper iments  are run on the VAX 11/780 
c om pu te r  to test the p roposed  scheme for 
sinusoidal pa rame te r  es t imat ion and the t racking 
per formance  with R M L  algori thm. 

Example 1. (Tracking stationary input). In the 
example,  the input  signal is 

(19) 

Fig. 4 shows the learning curves of  each sinusoidal 
pa ramete r s  of  p roposed  scheme respectively. As 

a result, bo th  stages converge to the correct solu- 
t ion as expected. 

Example 2. (Tracking non-stationary input). In the 
example,  we will s tudy the t racking behavior  of  
p roposed  scheme for the non-s ta t ionary  input. We 
make  some compar i sons  with Mart in ' s  s imultan- 
eous adap t ion  scheme in a various condition. The 
scenario of  the exper iment  is similar to the Exam-  
ples 1-4  in Ref. [3]. Four  different cases are inw.st- 
igated as follows: 

(A) Two sinusoids are not close to each other in 
frequency. Let the input  signal be 

y(t) = 

{ x/~cos (0 .3n t )  + x/~cos(0.27zt) + v(t) if t ~< 400, 

x/ /~cos(0.ant)  + x//~6cos(0.2nt) + v(t) if t > 400. 
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Fig. 4. (a) The learn ing  curve  of the amp l i t ude  in the first stage. (b) The learning curve  of the frequency in the first stage. (c) The learning 
curve of the phase  in the first stage. (d) The learn ing  curve of the amp l i t ude  in the second stage. (e) The learn ing  curve of the frequency in 

the second stage. (f) The learn ing  curve of the phase  in the second stage. 

After 400 samples, one sinusoid's normalized fre- 
quency is changed from 0.3 to 0.4 suddenly. Fig. 
5 shows the learning curve of frequencies of 2 stage 
second-order system. The first stage converges to the 

sinusoid with frequency 0.3 in the beginning and 
then tracks the sinusoid at 0.4 quickly. The second 
stage always deletes the sinusoid at 0.2 without 
change. 
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Fig. 5. The learning curves of frequencies of 2 stage second-order systems for two input step changed sinusoids which are separated in 
frequencies. [(1) solid line: first stage, (2) dot line: second stage] 

(B) (Two sinusoids are close to each other in fre- 
quency.) The input signal is 

y(t) = 

{ x/~cos(0.3nt) + x~6cos(0.Z5r~t) + v(t) if t <<. 400 

x/26cos(0.4rtt) + x~cos(0.25rtt) + v(t) if t >400. 

Two sinusoids in this example are closely spaced at 
normalized frequencies of 0.25 and 0.3. Refering to 
Fig. 6(a), the first stage converges to 0.3 and the 
second stage converges to 0.25 in the beginning. 
Also, a 'ripple' effect occurs in the first stage be- 
cause of the influence of nearby sinusoid at 0.25. 
When the input frequency at 0.3 is step changed to 
0.4 after 400 samples, the first stage starts tracking 
and switches converged frequency from 0.3 to 0.25. 
This is because the frequency at 0.3 is much closer 
to 0.25 than the frequency at 0.4. It will force the 
second stage to change converged frequency from 
0.25 to 0.4. This means that the first stage has 
higher priority than the second one during the 
adaption process. In addition, the same situation is 
tested for Martin's simultaneous adaption scheme. 
Refering to Fig. 6(b), the result is interesting and 
quite different from Fig. 6(a). The first stage 
changes converged frequency from 0.3 to the dis- 

tant frequency at 0.4 instead of the close one at 0.25, 
and the second stage always converge at 0.25 with- 
out change. This is because the simultaneous adap- 
tion algorithm minimizes the final output mean 
square error. The advantages of Martin's scheme 
are that it has no 'ripple' effect and it has global 
tracking mechanism. However, large complexity 
and heavy computation are required for Martin's 
scheme. Simplicity and comparable performance 
can be obtained by our individual adaption 
scheme. 

(C) (Two sinusoids are close in frequency with 
large power difference.) The input signal is 

y(t) = 2w/~0 cos(0.24rtt) + x~cos(0.28rtt)+ v(t). 
(20) 

The input consists of two closely spaced sinusoids 
with SNR of 20 and 0 dB at frequencies 0.24 and 
0.28 respectively. Refering to Fig. 7, after the first 
stage converges to the large power sinusoid at 0.24, 
the second stage quickly tracks the sinusoid with 
the smaller power. No ripple effect is seen in this 
case due to the very little effect with the smaller 
power sinusoid has. 
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frequencies of 2 stage second-order systems for two input step changed sinusoids which are closely spaced in frequencies. [Simultaneous 
adaption scheme: (1) solid line: first stage, (2) dot line: second stage.] 

(D) (Sixth-order adaptive notch filter system.) The 
input signal is 

Refering to Fig. 8, the first stage tracks the time- 
varying sinusoid switched from 0.3 to 0.25 instead 

) 'x/~cos(0.257tt) + x /~cos(0 .3n t )  + x /~cos(0 .5n t )  + v(t) if t ~< 400 

y(t) = ~V/~cos(0 .25nt  ) + x/~cos(0.nr t t )  + ~x//~cos(0.5nt ) + v(t) if t > 400 
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Fig. 8. The learning curves of frequencies of 3 stage second-order systems for three input step changed sinusoids which are separated in 
frequencies, [(1) solid line: first stage, (2) dot line: second stage, (3) dash line: third stage.] 

of 0.4. This is because the frequency at 0.3 is much- 
closer to 0.25 than the frequency 0.4. This forces the 
third stage to jump from 0.25 to 0.4. A similar 
situation happened also in case (B) as above. The 
second stage always stays at the distant sinusoid at 
0.5 without change. 

5. Conclusion 

In this paper, we have proposed a cascade adap- 
tive notch filter scheme for sinusoidal parameter 
estimation and tracking. Our scheme uses en- 
hanced signal as reference of amplitude/phase 
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estimator. This improves the accuracy of amplitude 
and phase estimation. Also, the RLS algorithm 
is simplified to adjust the amplitude and phase. 
Error surface analysis indicates that our scheme 
is unimodal and results in guaranted conver- 
gence. 
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