
ELSEVIER Signal Processing 48 (1996) 123- 134 

In-place in-order mixed radix fast Hartley transforms 

Soo-Chang Pei*, Sy-Been Jaw 

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC 

Received 2 September 1994; revised 10 March 1995 and 3 October 1995 

Abstract 

This paper presents two Fortran programs that calculate the mixed radix discrete Hartley transform (DHT) using 
a general odd length p-point DHT module and several short length Winograd DHT (WDHT) modules. Each program 
has its own advantages such as simplicity for implementation or minimum arithmetic complexity. New efficient radix-3, 
odd radix-p FHT algorithms and short WDHT modules have been developed to be incorporated into a general FHT 
algorithm. It allows a much wider selection of transform sizes, and calculates the DHT in order. 

Zusammenfassung 

Diese Arbeit stellt zwei Fortran-Programme vor, die die diskrete Hartley-Transformation (DHT) fur gemischte 
Basiszahlen (mixed radix) berechnen. Dabei werden ein allgemeiner p-Punkte DHT Modul fur ungerade Langen und 
einige Winograd DHT (WDHT) Module fur kurze Llngen benutzt. Jedes Programm hat seine eigenen Vorteile wie die 
Einfachheit einer Implementierung oder minimale arithmetische Komplexitlt. Es wurden neue Radix-3, sowie FHT 
Algorithmen fur ungerade Basiszahlen p und kurze WDHT Module entwickelt, die in einen allgemeinen FHT-Algorith- 
mus eingearbeitet werden konnen. Dies erlaubt eine vie1 grol3ere Auswahl von Transformationslangen und berechnet die 
DHT in der richtigen Reihenfolge. 

Ce papier presente deux programmes en Fortran qui calculent la transformee de Hartley discrete a rayon melanges 
DHT en utilisant un module DHT p-point general a longueur impaire et plusieurs modules DHT de Winograd 
a longueur courte. Chaque programme a ses propres avantages tels que la simpliciti d’impltmentation ou la complexite 
arithmitique minimum. De nouveaux algorithmes FHT p-rayon impair, rayon-3 et de courts modules WDHT ont ete 
developpi: pour Ctre incorpores dans un algorithme FHT general. 11 permet une selection bien plus large des tailles de 
transformee et calcule la DHT dans l’ordre. 
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1. Introduction with 

Recently, the discrete Hartley transform (DHT) 
has been considered as an interesting alternative to 
the Fourier transform for spectrum analysis and 
convolution of real signals [2]. Hence it is very 
desirable to have fast algorithms for its realization; 
several fast Hartley transform (FHT) algorithms 
have been developed in these years for efficient 
transformation of real data. Bracewell [3] demon- 
strated a radix-2 decimation-in-time FHT algorithm 
for transform lengths equal to a power of 2. Pei [S] 
developed a split-radix FHT algorithm to reduce its 
complexity. Sorensen et al. [9] further showed that 
most FHT algorithms closely resemble their FFT 
counterparts. In particular, they suggested a prime- 
factor mapping technique [S, 93 to construct a prime 
factor FHT using short length modules. Recently, 
Lun and Siu proposed a new prime factor FHT 
without extra additions [6]. These prime factor algo- 
rithms still limit the available transform sizes to 
products of the small DHT module sizes. This paper 
aims to expand the range of sizes available by devel- 
oping two mixed radix FHT programs. Several effi- 
cient radix-2/3/4/p FHT algorithms and short 
Winograd DHT modules have been integrated to 
become a very general and useful software tool. 
It allows a much wider selection of transform sizes, 
and calculates the DHT in order. A special section 
on the Hartley transform and its applications has 
been recently reported in 171 for good overview. 

N,N;’ = 1 (modNl), (4) 

N1 NC ’ = 1 (mod NJ, (5) 

for nl,kl =O,l, . . . . N1-1 andn,,kz=O,l ,..., 
N2 - 1. This gives from (1) 

H(N,N;’ kl + N1 N; ‘k,) 

Defining the two-dimensional arrays fi and 2 gives 

fi(k,, k,) = H(N,N,-‘k, + NIN;lkZ), (74 

%, n2) = x(&n1 + NlnJ G’b) 

and 

fi(k,, W 
NI-lNz-1 

=.;o.;o ( 
2nl,n2)cas[27r(F$+e)]. 

This prime factor mapping is very unique that 
the original length N transform kernel can be de- 
composed into a pure two-dimensional Nr x N2 
DHT kernel without generating any coupling 
twiddle factors. 

2. Prime factor index mapping 

The discrete Hartley transform of the N-point 
sequence x{n) is given by 

N-l 

By direct analogy with the two-dimensional 
FFT, one takes the one-dimensional DHTs of the 
rows one by one, and then transform the columns. 
The temporary output T(kl, k,) is of the form [4] 

N,-lNz-I 

H(k) = 1 x(n)cas(2xnk/N), 
n=O 

case = costl + sine, (I) 

for k = 0, 1, . . . , N - 1. If the sequence length can 
be factored into two mutually prime factors 
N = N1 NZ, then the following substitutions [S, 91 
can be made: 

T(h,b) = c 1 ~(nl,n;?)cas(2xn,kllNl) 
nl=OnZ=O 

x cas (2m2k2/N2). (8) 

Eq. (8) is not the two-dimensional Hartley trans- 
form; however, the result can be converted to the 
desired two-dimensional Hartley transform of Eq. 
(7~) as follows: 

Since 

n = Nznl + Nlnz (modN), 

k = N2N;‘kl + NIN;‘kZ (modN), 

(2) 

(3) 

2cas(a + b) = casacasp + cascrcas( -B) 

+ cas( - 01)casP 

(6) 

(7c) 

- cas( - ol)cas( - /I), (9) 
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the desired Hartley transform Z?(k,, k,) can be 
expressed as a sum of four temporary transforms: 

2fi(k,, k,) = T&l, kz) + T&r, Nz - kz) 

+ T(NI - kl, k,) 

- T(Nr - kl, N2 - k2). (10) 

Finally, we use the index mapping (Eqs. (2) and (3)) 
to recover H(K) from A(K,, K,). 

3. Radix-3 FHT algorithm 

When the number of data samples is close to 
a power of 3, rather than a power of 2 or 4, the 
radix-3 FHT algorithms [l, lo] can be used effec- 
tively. Anupindi et al. [l] have developed an effi- 
cient radix-3 FHT algorithm, which is not in-place 
and needs some special “trit-reversed” input data 
ordering [l]. Zhao [lo] proposes another novel 
radix-3 algorithm which requires less arithmetic 
complexity than the above algorithm; however, this 
new algorithm is actually partially in-place and 
needs extra data transfer load at each decomposi- 
tion stage. This is due to the fact that the two 
N/3-point DHTs H1 (k) and H_ 1(k) in Zhao’s algo- 
rithm [lo] need to be subtracted from each other 
and time-reversed to get B(k) = H,($N - k) - 
H_,(iN - k) [lo]. These time consuming data 
transfer or time-reversal operations are carried out 
in the “Arrange” unit of Figs. 1 and 2 in [lo]. For 
fast transform performance analysis, data transfer 
load is also a critical and important factor to be 
considered as well as multiplication and addition 
complexity. In this paper, a truly in-place in-order 
radix-3 algorithm is presented. This algorithm 
eliminates the time-consuming data transfer load, 
needs only conventional radix-3 digit-reversed in- 
put ordering, and keeps the same arithmetic com- 
plexity as Zhao’s algorithm [lo]. 

Assume the DHT of Eq. (1) for a real N-point 
sequence x(n) needs to be computed with N = 3*. 

A radix-3 decimation-in-time (DIT) FHT algo- 
rithm is found by decomposing (1) as follows: 

H(k) = “‘5 ’ x(3n) cas j2rrnk) 
n=o \l*IJ / 

TTck N/3-1 

+ cosN C x(3n + 1)cas 
n-0 

2,rk N/3- 1 
+ siriN C x(3n + 1)cas 

n-0 

&k N/3-1 

+ cosN C x(3n + 2)cas 
n-0 

drrk N/3-1 
+ siriN 1 x(3n + 2)cas 

n=o 

(11) 

Define 

N/3-1 

H,(k) = C x(3n)cas 
n=O 

N/3-1 

H,(k) = C x(3n + 
n=O 

N/3-1 

(1-N 

H*(k) = 1 x(3n + 
n=O 

and 

(124 

(13) 

then Eq. (11) becomes 

H(k) = H,(k) + H,(k)cose + H,( - k)sinQ 

+ Hz(k)cos2e + H,( - k)sin28. Pa) 

H(-k)=H,(-k)+H1(-k)cose 

-H,(k)sin8 + H2( - k)cos2e 

- H,(k) sin 28. UW 

where H( - k) = H(N - k) and Hi( - k) = 
Hi(tN - k) for i = 0, 1,2. 

H(k + +N) = H,(k) - +H,(k) cos e 

-i&H1(k)sintI -+H,( - k)sin8 

+ f&z,( - k)cos8 

- fH,(k) cos 28 + Q?H,(k) sin 28 

-+H 1( - k)sin28 

- +$H,( - k)cos2e, Wa) 
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H(-k++N)=H,(-k)-+H,(-k)cosd 

+ i,,hH,( - k)sin8 

+ +H, (k) sin 8 + +aH, (k) cos 0 

- $H,( - k)cos28 

- ifiH,( - k)sin 28 

+iH,(k)sin28 

- &,bH,(k)cos 28, (W 

factors are equal to 1 and 0, respectively. Then Eqs. 
(14)-(16) become 

H(0) = H,(O) + [H,(O) + H&N, 

H@V = H,(O) - +CHd0) + H,(O)1 

+ &%fMO) - H,(O)l, 

W%W = f&(O) - +CHd0) + Hz(O)1 

H(k + $V) = H,,(k) - +HJk)cod 

+f$Hr(k)sinO -+H,( - k)sine 

- +fiH,( - k)cos6’ 

- f,/bW) - H,P)l. (17c) 

This 3-point butterfly needs only one multiplica- 
tion, six additions and one right shift (multiplied 

by f). 

- $H,(k)cos28 - +$H,(k)sin20 

- iH,( - k)sin20 

+ &hH,( - k)cos28, (164 

H( - k + $V) = H,( - k) - &H,( - k)cos 0 

For our proposed algorithm, the above de- 
composition of an N-point DHT into three 
+N-point DHTs only q re uires $(iN - 1) 6-point 
butterflies for k # 0 plus one additional 3-point 
butterfly for k = 0. Assume the number of multipli- 
cations and additions required for an N-point 
DHT are M(r) and A(r), respectively, where N = 3’, 
then 

-&,bH,( - k)sinti M(r) = 3M(r - 1) + i(fN - 1) x 10 + 1 

+ +H,(k)sine-&,,/?Hl(k)cose 

- +H,( - k)cos 28 

+ $,,hH,( - k)sin 28 

- &H,(k) sin 20 

=3M(r-l)+SN-4, (lga) 

A(r) = 3A(r - 1) + f($N - 1) x 16 + 6 

=3A(r-l)+$N-2. 

+ $J?H2(k)cos 28, 

0 < k < +($A/ - 1). (16b) 

Notice that at each stage both the kth term and the 
(*N - k)th term from each length-jN DHT (i.e. the 
six terms Hi(k) and Hi( - k), i = 0, 1,2) are re- 
quired for the computation of one output point 
H(K). Thus the above six terms in the conventional 
DIT FHT two 3-point butterflies can be combined 
into a 6-point butterfly in Fig. l(a) to avoid over- 
writing an element that will be needed later [9]. 
This results in saving of both data transfer load and 
the number of multiplications. Each 6-point butter- 
fly requires 10 multiplications and 16 additions 
totally. The three outputs of H(O), H(N/3) and 
H(2N/3) for k = 0 in Eqs. (14)-(16) are reduced into 
a 3-point butterfly in Fig. l(b), also the twiddle 

For Zhao’s algorithm in [lo], the “trit” de- 
composition [l, lo] into three +N-point DHTs 
requires ($N - 1) 3-point butterflies for k # 0 and 
one 3-point butterfly for k = 0 plus additional 
data transfer for B(k). Each 3-point butterfly for 
K # 0 needs five multiplications, instead of four 
multiplications in Fig. 1 of [lo], and eight addi- 

tions. Multiplication by i$J has been neglected 
carelessly and it needs be counted in Zhao’s 
3-point butterfly, then we obtain the multiplica- 
tions as M(r)=3M(r-l)+(jN--1)x5+1 
= 3M(r - 1) +$N -4 and the additions as 

A(r) = 3A(r - 1) + ($N - 1) x 8 + 6 = 3A(r - 1) 
+$N-2. 

We get exactly the same arithmetic complexity in 
both algorithms, however, the proposed algorithm 
is unique in normal digit reversal decomposition 
for radix-3, and has eliminated the time consuming 
data transfer load at each decomposition stage. 

U7b) 

(lgb) 
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ks0. @-2&/N. 
H;(k) 

HOC-k) 

H,(k) 

H, C-k) 

H2W 

H2(-k) 

(a) 

k-0 

Ho(O) 

H,(O) 

H2(0) 

(b) 

0 H(k) 

H+k) 

H,!$+k, 

H(s-k) 
3 

H(z+k) 
3 

W-k) 

’ H(O) 

Fig. 1. (a) 6-point radix-3 FHT butterfly for k # 0. (b) 3-point radix-3 FHT butterfly for k = 0. 

Using the initial conditions M(1) = 1 and A( 1) = 6, 
we obtain 

M(r) = $rN - 2N + 2, A(r) = $N - N + 1, 

algorithms, thus making such mixed radix FHTs 
quite flexible and useful. 

where r = log, N. (19) 
4. Odd radix-p FHT algorithm 

The above algorithm can be effectively used by 
zero padding when the transform length is equal to 
or close to a power of 3. More importantly, it can 
be combined with radix-2 FHTs to form an efficient 
algorithm of composite length 2k3’. Note that the 
density of DHT lengths covered by length 2k3f 
FHTs is much higher than that of single radix 

In this section, we will develop a general odd 
radix-p FHT algorithm although it is not optimal 
in minimum arithmetic complexity. However, it 
does have its simplicity advantage for software im- 
plementation, and it is suitable for any specific odd 
radix FHT algorithm. A radix-p DIT FHT algo- 
rithm is decomposed into several length-N/p 
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DHTs in a similar way as radix-3 FHT (i.e. Hi(k) 
and Hi( - k), i = 0, 1,2, . . . ,P). 

p-1 

H(k) = H,(k) + 1 [Hj (k) cos (2njk/N) 
j=l 

+ Hj ( - k) sin (2njk/N)]. (20) 

H k+y 
( > 

p-1 

= H,(k) + 1 Hj(k) cos (27tjk/N) cos (2rcjjm/P) 
j=t 

- Hi(k) sin (2njk/N) sin (2rrjjm/P) 

+ Hj ( - k) cos (2njk/N) sin (2rtjjm/P) 

+ Hj ( - k) sin (2njk/N) cos (2rcjm/P). (21) 

Let 9 = 2nk/N, assume P is odd; Eq. (21) then 
becomes 

H k+y 
( > 

(P-l)/2 

= H,(k) + 1 {[Hj(k)cosjd + Hj( - k)sinj0 
j= 1 

+ Hp-j(k)Cos(p - j)0 

+ Hp-j( - k)sin(p - j)e]cos(2njm/p) 

+ [Hj ( - k) cos j0 - Hj (k) sin j0 

- Hp-j( - k)cos(p - j)0 

+ Hp -j (k) sin (p - j) 01 sin (2njjm/p)} 

and 

> 
(P-1)/2 

(22) 

= H,(k) + c {[Hj(k)cosje + Hj( - k)sinj6’ 
j=l 

+ Hp-j(k)Cos(p -j)fl 

+ Hp-j( - k)sin(p -j)e]cos(2nm/p) 

- [Hj ( - k) cos j0 - Hj (k) sin je 

- Hp-j( - k)cos(p - j)e 

+ HP-j(k) sin(p -j) f3] sin (27cjm/p)}, 

k=O,l , . . . ,i(N/p - 1) and 

m = 0, 1, . . . ) gp - 1). (23) 

The same redundant terms in Eqs. (21)-(23) can be 
used for computation saving. Similar expressions 
for H(-k), H(-k+y) and H(-k+yN) 
are not listed here for saving space. 

For k = 0, Eqs. (22) and (23) are reduced to 

H y = H,(O) 
( > 

(p-l)/2 

+ 1 { CHj (0) + Hp -j (011 COS (Wjm/p) 
j=l 

+ CHj (0) - Hp -j (011 sin Pjjm/p)} , (24) 

,(vN) = H,(o) 

(P-1)/2 

+ jzl { CHj (0) + Hp - j K91 COS @W/p) 

- [H,(O) - HP-j(O)]sin(2njm/P)). (25) 

Eqs. (22)-(25) are general radix-p butterfly forms 
of Eqs. (14)-(17) in radix-3 case. Each radix-p 
butterfly requiring about (p + 1)’ - 4 multiplica- 
tions/additions, the total number of multiplica- 
tions/additions is approximately equal to 

(p2 + 2p - 3) operations/butterfly 

butterflies/stage 

x (log, N) stages x 
p2 + 2p - 3 

2P 
N log, N 

for N = pr. (26) 

5. Winograd short-length DHT modules 

It is well-known that the short-length Winograd 
DFT modules [S] can get the minimum number of 
multiplications for prime-length transforms. The 
algorithm can be expressed as 

X(k) = DFT, C-441 = $,C,Tp Cx(41, (27) 

where Tp is a J x p pre-weave incidence matrix oper- 
ator, S, is a p x J post-weave incidence matrix oper- 
ator and C, is a J x J diagonal matrix with complex 
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entries, and J is the number of multiplications. 
The incidence matrices TP and S, are matrices, 
whose elements are - 1, 0 or 1, leading only 
to additions and subtractions. The diagonal matrix 
C, is decomposed into its real and imaginary 
parts by 

X(k) = DFT, [x(n)] = S, [C,” + jCL] Tp [x(n)] 

= S,C~Tp[x(n)] + jS,C~T,[x(n)]. (28) 

Since the DHT is equivalent to subtracting the 
imaginary part from the real part of the DFT X(k), 
we get 

H(k) = DHT, [x(n)] 

= S, C,” Tp Cx (41 - S, C:, Tp Cx (41 

= S,[C,R - C;] T,[x(n)] = S,e;T,[x(n)], 

(29) 

where Cp” = C,” - Ci is the new diagonal matrix 
with real entries for the Winograd DHT module, 
and the matrices S, and Tp are the same as 
the corresponding Winograd DFT modules. So 
the DHT via the Winograd approach requires 
exactly the same minimum number of multiplica- 
tions, but a few more additions than the DFT. 
We give an example for computing the length-5 
DHT as below 

H(k) = DHT, [x(n)] = S5 cFT5 x(n), (304 

1 0 0 0 0 

1 1 1 1 - 1 

1 1 - 1 1 0 

1 1 - 1 - 1 0 

1 1 1 - 1 1 

- 

0- 

0 

1 

1 

0 

X 

1 0 0 0 0 0 

0 - 1.25 0 0 0 0 

0 0 0.56 0 0 0 

0 0 0 0.95 0 0 

0 0 0 0 1.54 0 

0 0 0 0 0 0.36 

1 

0 

0 

x 0 

0 

-0 

0 

1 

WW 

This length-5 Winograd DHT only requires 5 real 
multiplications and 17 real additions. The other 
short Winograd DHT modules of length 7,8,9 and 
16 can be easily obtained by modifying the DFT 
modules in [S]. 

During the middle stages of the decomposition, 
the general Winograd radix-p FFT butterfly can be 
expressed as 

F(k) = SCTWf(n), (31) 

wheref(n) is a p x 1 vector of previous stage output 
values, and W is a twiddle-factor diagonal matrix 
with the following form: 

-1 0 

W 
-n 

w= 
W-2n 

(32) 

0 w-(P- l)n 

The main difference between Eqs. (32) and (27) is 
that the input f(n) needs be premultiplied first by 
the twiddle factors, and then transformed by the 
p-point DFT module. Since in the middle stages of 
the transformation, f(n) and F(k) are generally 
complex valued, we get 

[F,(k) + PdW = SC& + jG1 T [WR + j WJ 

x CM4 + ih(41 (33) 

We separate the real-part and the imaginary 
part: 

F,(k) = SCR TWA(n) - SCR T Wrfi(n) 

- SC, T WRfi(n) - SC, T Wr.Mn) , (344 

J’,(k) = SG T WRM + SG T WI.!&) 

+ sGTw~fR(4 - SGTWLW. (34’4 
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The Hartley transform can be expressed as the 
real-part minus the imaginary-part: 

H(k) = F,(k) - F,(k) 

= SCR ~~Rkh’t(~) -h(n)] 

- scRTW,[.hdn) +_hb)l 

- %TWR[ht(n) +&,)I 

- SC, T Wd_hdn) -fib)]. Wa) 

If we add F,(k) and F,(k), we get H( - k) = 
FR( - k) - F,( - k) = F,(k) + F,(k), since the real 
part is symmetric, the imaginary part is anti-sym- 
metric with respect to k. We get 

H( - k) = F,(k) + F,(k) 

= scRTWR[_fi&) +fi(n)l 

+ ScRT W,&(n) -fib)] 

+ SC, T WR kh&) -h(n)] 

- &TW,[f,b) +_h(n)l. Wb) 

Substituting h(n) =fR(n) --J(n) and h( - n) = 
fR(n) +fi(n), we obtain 

H(k) = SCR T WR[h(n)] - SCR T W,[h( - n)] 

- SC, T WR [h( - n)] - SC, T W, [h(n)], 

(364 

H( - k) = SCRT WR[h( - n)] + SCRT W,[h(n)] 

+ SC, T WR [h(n)] - SC, T W, [h( - n)] . 

W-4 

Eqs. (36a) and (36b) can be combined into a 2p- 
point FHT butterfly to avoid overwriting and to 
save both data transfer load and multiplications. If 
the index n of the previous stage is zero, then h(0) 
and h( - 0) will be the same for each group; so 
there are only p points in the butterfly. In this case, 
the twiddle-factor matrix W of Eq. (32) for n = 0 is 
an identity matrix IR. Then 

wR = IR, w, = 0, 

H(k) = SCR T [h(O)] - SC, T [h( - 0)] 

= S(CR - C,) T [h(O)]. (37) 

Eq. (37) will form a p-point FHT butterfly to be 
used for transformation. Since the size of the pres- 

ent stage H(k) is N-point length, then H( - k) in 
Eq. (36b) is equivalent to H(N - K). However, if 
the size of h(n) is (N/P)-point length, then h( - n) is 
defined as h[(N/P) - n] in Eq. (36a) and (36b). 

Each radix has two major transformation proced- 
ures, one for p points, the other for 2p points. For 
example in our radix-5 Winograd DHT subroutine 
RSWDHT(M, x), the subprogram RSBTFl does 
the 5-point butterfly procedure, and the routine 
R5BTF2 performs the lo-point butterfly operation. 

6. Complexity analysis 

Assume a composite length-N DHT is to be 
computed, where N = M,M2M3, M, = p;‘, 
M2 = p;2, M3 = p;3 and the factors M,, M2, M3 
are co-prime with respect to each other. Then this 
mixed-radix FHT needs M2M3 length-M1 DHTs 
M1M3 length-M2 DHTs and M,Mz length-M, 
DHT computations, totally. We have 

#Multiplies 

= MzM&) + MrM&) + MrM&), (3ga) 

#Adds 

= M,M,(a,) + M,M&z) + M,M&,). (3gb) 

Here pi, Clip i = 1,2,3, are the numbers of multi- 
plications and additions required for each radix-pi 
length-M, DHT computation, respectively, in 
which pi and ai can be approximately estimated as 

Mi ri 
/Li~k:‘~logpiMi=k~- 

I Pi ’ 

CtiEkfslog,,Mi=kf-, 
Mi ri 

Pi Pi 

Here kf’ and kf’ are the numbers of multiplies and 
adds for a length-pi Winograd DHT butterfly or 
module. Table 1 lists the multiplications and addi- 
tions required for each short length WDHT 
module or butterfly. 

There are @ - 1) twiddle factors to be premulti- 
plied; the first twiddle factor is equal to 1, which can 
be eliminated. Each twiddle factor needs two multi- 
plications and one addition. So the total number of 
multiplies/adds in each p-point WDHT butterfly 



S.-C. Pei, S.-B. Jaw / Signal Processing 48 (1996) 123-134 131 

Table 1 
Number of real Multiplies and Adds for short length p-real 
WDHT module (Butterfly) 

P M (MBl) (MB2) A (ABl) (AB2) 

2 0 (2) (4) 2 (3) (6) 
3 2 (6) (12) 6 (8) (16) 
4 0 (6) (12) 8 (11) (22) 
5 5 (13) (26) 17 (21) (42) 
6 8 (20) (40) 36 (42) (84) 
7 2 (16) (32) 26 (33) (66) 
8 10 (26) (52) 44 (52) (104) 
9 10 (40) (80) 74 (89) (178) 

MB l/ABl are valid for a p-point butterfly, MB2/AB2 for a 
fp-point butterfly. 

will be the sum of the twiddle-factor premultiply 
operations plus the WDHT transform module. It is 
calculated as below and shown in Table 1. 

MB1 =M+2(p-l), MB2 = 2MB1, (40a) 

ABl = A + l(p - l), AB2 = 2ABl. WW 

For the 2p-point butterfly case, twice the number 
of the point butterfly operations are required (see 
MB 2 and AB 2 in Table 1). We give an example and 
calculate the complexity of a length-12 DHT: For 
N=i2=3x4,weobtain 

#A = 3(Q + 4(a,) = 3 x 8 + 4 x 6 = 36. 

For N = 12 = 3 x 22, we get 

M=3~(2x$x2)+4~2=32, 

Since a length-4 WDHT module is much more 
efficient than a radix-2 DHT, we prefer the first 
factorization with N = 3 x 4 instead of N = 3 x 22. 
According to our experience, the large prime length 
of p and small power of I will usually be the better 
choice. Table 2 and Fig. 2 list the number of opera- 
tion counts for several mixed radix DHT’s for refer- 
ence. Since the general odd radix-9 and radix-13 

No. of addition and multiplication 

gti peak d 
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Fig. 2. The number of operation counts for the mixed radix DHTs. 
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Table 2 
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Time in milliseconds and operation counts for two FHT implementations 

Length N Factors 
MRD- MRWD- M” + Mb+ 

HT” HTb M” A” A a Mb Ab Ab 

60 3.4.5 

63 I.9 

63 7.32 
64 26 

125 s 
147 3.72 

210 2.3.5.7 
240 3.5.16 

240 3.5.42 

243 35 
252 4.7.9 
252 4.7.32 

256 44 

343 13 
400 16.5’ 

400 42.52 

500 4.53 

576 9.8’ 
576 9.43 

700 4.7.52 

729 93 
784 16.7’ 
784 42.72 

1008 7,9.16 

1008 7.32.42 
1008 7.9.42 

1200 3.16.5’ 

1200 3.42.52 

1260 4.5.7.9 

1260 5.7.2’.3= 

1260 5.7.9.22 

1260 4.5.7.3= 

1280 5.16’ 
1280 5.44 

1296 16.9’ 

1296 4=.9= 
1296 42. 34 
1331 113 
1800 8.9.5= 

1800 9.23.52 

1800 2X.32.52 

2000 16. 53 

2000 42.5’ 
2197 133 
2304 9.16’ 

2304 9.44 
2352 3.16.7= 

2352 3.4=.72 
2880 5.9.82 
2880 5.32.43 
2880 5.9.43 
3240 5.8.92 
3240 5.23.92 
3375 153 

66 57 180 
65 44 441 
59 56 273 
59 59 384 

153 95 1275 
169 143 1407 
315 280 1260 

None 228 None 
264 290 1120 
250 217 2430 
308 241 1764 
275 288 1764 
245 210 1536 
467 294 4557 

None 360 None 
374 465 3280 
557 527 4000 

None 548 None 
557 593 4896 
881 838 5740 

1084 623 11907 
None 766 None 

794 950 7056 
None 975 None 
1125 1404 7434 
1256 1232 9450 

None 1428 None 

1428 1724 10640 
1960 1560 13230 

1834 2207 13 860 

2006 1941 13 860 
1799 1795 11025 

None 1271 None 
1286 1396 10240 

None 1232 None 

1410 1558 14 256 
1050 1718 14 248 
2154 None 19965 

None 2142 None 
2419 2845 19 800 
2180 3158 16200 

None 2106 None 

2133 2604 18000 
3862 None 39 546 

None 2319 None 
2259 2553 23 040 

None 2935 None 

3008 3514 23 520 
None 3516 None 
3211 4263 30 240 
3590 3743 30 240 

None 3956 None 
4617 5221 42 120 
6324 None 70785 

360 540 100 444 544 
441 882 142 544 686 
273 546 156 436 592 
576 960 384 576 960 

1275 2500 975 1575 2550 
1407 2814 938 2058 2996 
1260 2520 590 2424 3014 

None None 550 2406 2956 
1120 2240 1120 2616 3736 

2430 4860 2430 3240 5670 
1764 3528 568 3032 3600 
1764 3528 1296 3144 4440 
2816 4352 1536 2816 4352 
4557 9114 2940 6174 9114 

None None 2330 5210 7540 

3280 6560 3280 5560 8840 

4000 8000 3900 6100 10000 
None None 2944 7568 10512 
4896 9792 3232 7568 10800 
5740 11840 4440 10880 15 320 

11907 23814 6318 12636 18954 
None None 4970 13034 18004 
7056 14112 5656 13720 19376 

None None 2662 13 694 16356 
7434 14 868 7968 11832 19800 

9450 18900 5056 11384 16440 
None None 7790 18030 25 820 
10640 21200 10640 19080 29 720 
13230 26 460 4100 19444 23 544 

13 860 27 720 9252 21264 30516 

13 860 27 720 6620 20 704 27 324 

11025 22 050 7740 20004 27 744 
None None 7680 18 592 26 272 
10240 20480 8960 18 432 27 392 

None None 8295 20 970 29 265 
14 256 28 512 11376 22 104 33 480 
14 248 28 496 14 248 20 982 35 200 
19 965 39 930 None None None 
None None 11810 29 860 41670 

19800 39 600 16760 32 020 48 780 
16200 32 400 21960 32 820 54 780 
None None 16 850 34 450 51300 

18000 36000 21600 36 200 57 800 
39 546 19 092 None None None 
None None 14080 36 896 50 976 

23 040 46 080 16384 36 608 52 992 
None None 16478 40 806 57 284 

23 520 47 040 22 064 42 728 64 792 
None None 17600 47 632 65 232 

30 240 60480 27 360 48 912 76 272 
30 240 60 480 19040 47 632 66 672 
None None 11520 53 226 64 746 

42 120 84 240 31680 57 276 88 956 
70785 141750 None None None 
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MRDHT routines are less efficient than the others, 
notice that there are two sharp peaks c and d occur- 
ring at length 729(93) and 2197(133), respectively, in 
Fig. 2. For length 1260 with four different choices of 
factors in Table 2, these number of operation 
counts are averaged and plotted in Fig. 2. 

7. Brief program description and speed 
measurements 

Two in-place, in-order mixed radix FHT pro- 
grams have been implemented in Fortran on our 
Micro-VAX 3600 computer. The complete pro- 
grams, mixed radix FHT subroutine “MRDHT” 
using the general radix-p algorithm, and a mixed- 
radix Winograd FHT subroutine “MRWDHT” 
with small DHT modules are available on request 
from the authors. The programs take real input 
data in array X, and calculate a length-N DHT 
in-place and in-order (the output being written 
over the input X). The length N must be such that 
it can be written as a product of M factors, 
which are powers of relatively prime numbers 
stored in the integer array PO. The even loca- 
tions of array PO such as PO(O), PO(2) and 
PO(4), etc. store the prime numbers, and the 
odd locations such as PO(l), PO(3), PO(5), etc. 
are their corresponding powers. This gives 
N = [PO(O)* * PO(l)] * [PO(2) * * PO(3)] * ... * 
[PO(ZM) * * PO(2M + l)]. If PO(2n) = 0 for some 
n, this means the end of the parameter list. The 
maximum number of factors is M = 3. However, 
the routines can be extended easily to more than 
three factors by slightly modifying the main pro- 
gram. The maximum transform length of the DHTs 
is limited to N = 5000. Since the DHT is its own 
inverse, the two main subroutines MRDHT 
and MRWDHT can be used for both forward and 
inverse transformation. 

The MRDHT subroutine includes radix-2, 
radix-3, radix-4 and general odd radix-p FHT 
transform routines, in which p must be any odd 
number; even radix-8 and 16 FHTs, etc. are not 
allowed in our MRDHT routines. The Winograd 
subroutine MRWDHT provides several efficient 
radix-2, 3, 5, 7, 8, 9 and 16 Winograd transform 
subroutines. 

Times were measured on a Micro-VAX model 
3600 computer, each specific length transform has 
been run 50 times to measure the speed, and the 
results are averaged and shown in Table 2 and 
Fig. 3. For the MRDHT subroutine, since general 
odd radix-p FHT routines are not as efficient as the 
Winograd short-length transform routines, it turns 
out to be better to use short radix-3 and 4 fast 
routines instead of high-power radix-2 and long 
radix-9 FHTs. However, for the MRWDHT 
subroutine, it is better to use the long-length 
Winograd routines as frequently as possible. The 
results show that the speed is much faster, for single 
or low powers of prime length, than for many or 
high powers of prime factors. The rule of thumb 
for factoring the length N is to let the radix 
for power-of-prime factors be as large as possible, 
and the power of each radix be as small as possible. 
Also we can use 4, 8, 16 and 9-point short length 
Winograd DHT modules to replace the radix-2 
and radix-3 FHTs for reducing the number of 
multiplications. 

Our two mixed-radix FHT programs show com- 
parable performance in terms of speed measure- 
ments. For lengths less than 1260, the Winograd 
program MRWDHT is faster than MRDHT; but 
for length larger than 1260, the MRDHT becomes 
faster than the Winograd routine MRWDHT. 
Each program has its own advantages, such as 
simplicity of software code or minimum arithmetric 
complexity required. 

8. Conclusions 

New efficient radix-3 and odd radix-p FHT 
algorithms as well as short Winograd DHT 
modules have been developed, to be both 
incorporated into a general FHT algorithm. Two 
mixed radix FHT programs have been imple- 
mented as a very general and useful software tool. 
It allows a much wider selection of transform sizes, 
and calculates the DHT in-place and in-order. 
Extensive computer simulations have been run on 
a Micro-VAX computer to measure the transform 
speed. 
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Fig. 3. The execution time for the mixed radix DHTs. 
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