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Abstract 

The relationship between finite discrete Zak transform and finite Gabor expansion are well discussed in this paper. 

In this paper, we present two DFT-based algorithms for computing Gabor coefficients. One is based upon the time-split 
Zak transform, the other is based upon the frequency-split Zak transform. These two methods are time and frequency 

dual pairs. With the help of Zak transform, the closed-form solutions for analysis basis can also be derived while the 
oversampling ratio is an integer. Moreover, we extend the relationship between finite discrete Zak transform and Gabor 
expansion to the 2-D case and compute 2-D Gabor expansion coefficients through 2-D discrete Zak transform and 4-D 

DFT. Four methods can be applied in the 2-D case. They are time-time-split, time-frequency-split, frequency-time-split 

and frequency-frequency-split. 

Zusammenfassung 

In diesem Beitrag werden die Beziehungen zwischen der endlichen diskreten Zaktransformation und der endlichen 

Gaborentwicklung griindlich diskutiert. Wir priisentieren zwei Algorithmen auf DFT-Basis zur Berechnung von Gabor- 

koeffizienten. Einer beruht auf der zeitlich, der andere auf der frequenzmaig zerlegten Zaktransformation. Diese Methoden 

sind dual beziiglich Zeit- und Frequenzbereich. Mit Hilfe der Zaktransformation kann man such eine geschlossene Losung 
fir die Analysebasis ableiten, wenn um einen ganzzahligen Faktor iiberabgetastet wird. Dariiberhinaus erweitem wir die 

Beziehung zwischen der endlichen diskreten Zaktransformation und der Gaborentwickhmg auf den 2D-Fall und berechnen 

2D-Gaborentwicklungs-Koeffizienten mittels einer 2D-Zaktransformation und einer 4D-DFT. Vier Methoden sind im 2D- 
Fall anwendbar. Sie beruhen auf Zeit-Zeit-, Zeit-Frequenz-, Frequenz-Zeit- und Frequenz-Frequenz-Zerlegungen. 

La relation existant entre la transformation de Zak discrete finie et l’expansion de Gabor finie est disc&e en profondeur 
dans cet article. Nous presentons deux algorithmes bases sur la DFT pour le calcul des coefficients de Gabor. L’un est 

base sur la transformation de Zak par partage de temps, l’autre sur la transformation de Zak par partage de frequence. 

Ces deux methodes constituent une paire duale temps-frequence. A l’aide de la transformation de Zak, les solutions 
analytiques pour la base d’analyse peuvent igalement etre d&iv&es si le rapport de sur-Cchantillonnage est un entier. De 
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plus, nous ttendons la relation entre la transformation de Zak discrete finie et l’expansion de Gabor au cas bi-dimensiomtel 
et calculons les coefficients de l’expansion de Gabor 2-D via la transformation de Zak discrete 2-D et la DFT 4-D. Quatre 
methodes peuvent &tre appliquees darts le cas 2-D. Ce sont les methodes partage temps-temps, partage temps-frequence, 
partage Mquence-temps et partage frequence-fiequence. 

Keywords: Zak transform; Gabor expansion 

1. Introduction 

Nonstationary signals exhibit time-varying properties and are often encountered in various areas such as au- 
dio signals, sonar, and synthetic aperture data. Several methods have been proposed to analyze the time-varying 
signals. Wigner distribution [5], short time Fourier transform [6] and Gabor transform [9] are widely used 
in time-varying signal analysis. In 1946, Gabor proposed a method to express signals. The Gabor expansion 
means that a signal can be expressed as a weighted summation of a basis after shift and modulation. 

f(t) = 5 Cm,, h(t - mT)ejnat, 
?&X=-CC 

(1) 

where T and Sz represent time and frequency sampling interval, respectively. The condition for Gabor expan- 
sion to be existed is TSZ d 27~. It is called critical sampling when TG! = 2~ or oversampling when TSZ < 27~. 

In 1980, Bastiaans [4] extended the Gabor expansion from a Gaussian window function to a more general 
expansion of a signal into a discrete set of window fnnctions shifted in time and in frequency domain. He 
presented an algorithm to compute the expansion coefficients from sampled values of the complex spectro- 
gram. Wexler and Raz have developed the discrete Gabor expansion for finite or periodic signals [17]. They 
derived the theories to compute the analysis basis and Gabor coefficients for discrete signals. The Gabor 
expansion can exhibit the timefrequency characterization of signal, but the computation load for Gabor co- 
efficients is very expensive. A time-frequency mapping, Zak transform, has been used to calculate Gabor 
coefficients efficiently in critical sampling [2, 12, 131. Recently, Zibulski and Zeevi have proposed a method 
which is based upon Zak transform and frame concept [7] to calculate the Gabor coefficients in the over- 
sampling case. The work of this paper is extending the theories proposed by Zibulski and Zeevi to discrete 
case and developing DFT-based algorithms for computing Gabor coefficients efficiently in the oversampling 
scheme. One is based upon the time-split Zak transform, the other is based upon the frequency-split Zak 
transform. The time-split algorithm is the same as that proposed in [21], but it is independently developed. 
The Gabor expansion is not only suitable to the 1-D signals but also 2-D signals. Porat and Zeevi have 
extended the Gabor expansion to the two-dimensional case. The two-dimensional Gabor expansion has been 
widely used in image analysis and compression [14,8]. But the problem of computation burden is a more 
serious case. In this paper, we present four DFT-based algorithms for computing 2-D Gabor coefficients to 
compute Gabor coefficients in oversampling case through Zak transform. With the help of Zak transform, the 
closed-form solutions for analysis basis can be derived while the oversampling ratio is an integer. 

The rest of this paper is organized as follows. In Section 2, we review the 1-D finite Zak transform and 
1-D finite Gabor expansion. In Section 3, the relationships between finite discrete Zak transform (FZT) and 
finite Gabor expansion are discussed for both critical and oversampling schemes. The closed forms of anal- 
ysis bases are obtained through the aids of Zak transform when the oversampling ratio is an integer. The 
time and frequency-split algorithm for computing Gabor coefficients are presented. In Section 4, we extended 
the theories of Gabor expansion and Zak transform to two-dimensional case and derive four DFT-based algori- 
thms for computing Gabor coefficients in oversampling scheme. Finally, the conclusions are drawn in 
Section 5. 
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2. Review of Gabor expansion and bite discrete Zak transfom 

2.1. Finite discrete 1-D Gabor expansion 

The Gabor expansion of continuous signal f(t) is defined as 

f(t) = F C?n,,kn,,(t) (2) 
i?l,ll=-CC 

= E C,,,,h(t - mT)ej”*‘, 
l&n=-m 

(3) 

where h, n(t) = h(t - mT)ej”“. T and 52 represent the time and frequency sampling intervals, respectively. 
The grid itm,fn) = (mT,nS2) in the time-frequency plane is called Gabor lattice. The existence of Eq. (2) has 
been found to be possible for arbitrary f(t) only for TQ 6 271. The case, TSZ = 2x, is called critical sampling 
and the case, T&J < 215 is oversampling. 

Bastiaans has introduced an auxiliary function y(t) [4] for computing the Gabor coefficients. The coefficients 
in Gabor expansion can be evaluated through using the biorthogonal function y(t): 

c m,n = I M fW:,,W dt, 
-m 

(4) 

where ymJt) = y(t - mT)ejna’. y(t) is the biorthogonal mnction of h(t). 
In [17], Wexler and Raz have developed the finite discrete Gabor expansion for finite or discrete signals. 

The periodic signal f(i) with period L is defined as 

f(i) = f(i + k . L), (5) 

where k can be any integer. The discrete version for the finite or periodic sequences is defined as 

f(i) = Mc’ Nel C,,, i,,,(i), (6) 
m=O n=O 

where 

L-l 

cm>, = C .fCW$i), 
i=O 

i;,,,(i) = A(i - mAM)Wnui, L 

F,,,(i) = F(i - rnAM)WFmi, 

where f(i), h(i) and y(i) indicate the periodic extensions of f(i), h(i) and y(i), respectively. L is the signal 
length of the original finite signal or the period of the periodic signal. M is the number of sampling points 
in the time domain. Ah4 is the time sampling interval. N is the number of sampling points in the frequency 
domain. AN is the frequency sampling interval. MAM = L, NAN = L. The condition AA4 x AN Q L must 
be satisfied for a stable reconstruction. The critical sampling occurs when AM. AN = M. N = L. In critical 
sampling case, the number of coefficients C ,,,,” is equal to the number of time samples in f(i). AM. AiV -CL 
(or MN > L) is oversampling case. Define a = MN/L = N/AM = M/AN = L/AM&V = q/p, where a is 
called the oversampling ratio. The two integers, p and q, are relatively prime numbers. The values, U/p 
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and AN/p, are both integers. Wexler and Raz have proved that the biorthogonality between synthesis basis 
g(i) and analysis basis F(i) in the finite discrete case is equivalent to 

L-l _ 

c h(i + mN)WLp”Mi;i*(i) = 6(m)6(n), 0 < m < AN, 0 d n < AM. 
i=O 

In [ 171, it have been proved that the analysis basis y(i) can be obtained by solving the following equation: 

HY = P, (8) 

where p = ( 1, 0, . . . , O)T, and the matrix H is a (AM . AN) x L matrix. It has been stated in [ 171 that matrix 
H can be constructed as 

H(m&Vl+nn,i)=&i+mN)W,-“Mi, O<m<M, Odn<N. (9) 

The matrix H is a block Hankel matrix, and it can be solved efficiently [l]. For the critical sampling case, 
AMAN = L, jT( ‘) . 1 IS unique if the matrix H is nonsingular. For the oversampling scheme, AA4AN CL, the 
linear system given by (8) is underdetermined and the solution is not unique. An optimal solution proposed 
in [16] is based upon the criterion. 

The goal of Eq. (10) is to try to find an analysis basis, y, which is similar to the synthesis basis as similar 
as possible. In general, the error r decreases as the oversampling ratio, a, increases. In the critical sampling 
case, the error r is quite large. 

The above-defined finite discrete Gabor expansion is called (A&N)-point Gabor expansion in our following 
discussion. 

2.2. 1-D Jinite discrete Zak transform 

The Zak transform of continuous signal is defined as [2] 

f^(T, Q) = fJ f[l,(z + k)]e-j2xkn. (11) 
k=-w 

The Zak transform is a signal transform that maps L*(R) onto L2([0, 1)). Generally, the variable z is treated 
as the time variable and the variable 52 is regarded as the frequency variable. The Zak transform has many 
desirable properties and can also be treated as a time-frequency distribution. The signal can be recovered 
from its transform domain by using the inverse transform formula. 

The discrete Zak transform for discrete signal is defined as [l] 

.f (:, g) = r=Em f (i + r) e-j2n(rb’B), 0 d b < B, 0 < a <A. 

(12) 

(13) 

For convenience of our further discussion, the index in definition of discrete Zak transform has been changed 

into integers in this paper. Then it is defined as 

f^(a,b) = E f(a + Ar)e-j2~(rb’E), 0 < b <B, 0 d a <A. (14) 
r=--00 
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If the signal is L = A x B periodic or finite with length L, its definition becomes 

E-l . 

f(A,B)(at b) = rIZo f@ + We- 
j2n(rb/B) , O<b<B, Oda<A (15) 

B-l 

=rsf(o+Ar)W,-rbA, O<b<B, O<a<A, (16) 

where WL = ej2x’L. We call this transform to be (A,B)-point finite discrete Zak transform (FZT) in this paper. 
The discrete signal f(i) performed by (A,B)-FZT is denoted by f;A,B) in the following discussions. Similar 
to the continuous case, discrete signal f(i) can be recovered from the inverse finite discrete Zak transform 
(IFZT). 

lB-1 n '2+-b/B) 
f(a + AT) = B b& f(A,E@, b)e’ , O<a<A, O<r<B. (17) 

Fig. 1 shows the data spread sheet for signal f(i) while processing (A,B)-point FZT in the time domain. The 
data in each column is processed by a discrete Fourier transform to get a time slice in Zak transform domain. 
Fig. 2 shows the data spread sheet for signal in f(i) in the Zak transform domain. The original signal can 
be recovered from an inverse DFT for the data in Zak transform domain using Eq. (17). 

Two shift properties that are useful for our further development will be introduced as follows: 

g(i)=f(i-l), Odi<L, 

h(i) = f(i)@, 0 < i CL, 

I 
B- 

point 

DFT 

I 
B- 

point 

DFT 

I 
B- 

point 

DFT 

I I 
B- B- 

point point 

DFT DFT 

(18) 

(19) 

Fig. 1. The data spread sheet of (A,B)-point FZT. 
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I I I 
B- B- B- B- B- 

point point point . . 9 point point 
IDFT IDFT IDFT IDFT IDFT 

Fig. 2. The data spread sheet in Zak transform domain. 

where W, = ejzxiL. Two periodic properties are also used for further development: 
. n 

f(A,i?)@ - ‘% b, = f(A,B)k% b)&- 
bA 

3 (20) 

(21) 

3. Relationship between 1-D discrete Gabor expansion and 1-D FZT 

3.1. Critical sampling scheme 

We will review the discrete Gabor expansion obtained through FZT [2]. In the critical sampling case, the 
discrete (M,N)-point Gabor expansion can be obtained through (N,M)-point 1-D FZT. In computing the finite 
Gabor coefficients by FZT, the numbers of time and frequency samples are interchanged for Gabor expansion 
and FZT. The FZT of analysis basis function is 

By taking the inverse Zak transform of Eq. (22), the closed form of analysis basis fMction is derived. 

(22) 

(23) 

wherek=pN+q, O<p<M, O<q<N, O<k<L, WM=e j2=lM. As mentioned above, the solution of 

analysis basis function in critical sampling is unique. This analysis basis function calculated from Eq. (23) is 
exactly the same as that derived from Eq. (8). It can be proved easily by replacing the solution in (23) into 
Eq. (8) or solve Eq. (8) directly. The Gabor coefficients can be evaluated through the following equation: 

(24) 
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where 0 d m < M, 0 < n < N. Eq. (24) indicates the Gabor coefficients can be evaluated through a 2-D 
discrete Fourier transform from distribution in the Zak transform domain of analysis basis and signal. 

3.2. Oversampling scheme 

Applying the frame operator [7,21], Zibulski and Zeevi have developed an algorithm for computing Gabor 
coefficients of continuous signal in oversampling case from continuous Zak transform domain. By introducing 
the frame operator S. The following equation has been shown in [7,21]: 

y = S-‘h. (25) 

Now two methods for computing discrete Gabor analysis basis function and coefficients will be introduced 
for the oversampling scheme. The discrete (M,N)-point Gabor expansion can be evaluated by two methods: 
(N, AN) and (AM,M)-point FZT. The time-split method is to utilize (N, AN)-point FZT which is correspond- 
ing to the continuous case J. = 271/G. 

The time-split method has been presented in [21]. Here we only review the results based upon the mathe- 
matical notation in this paper. The closed-form solution of the analysis basis function while the oversampling 
ratio is an integer. 

y(k) = 2. my E~o-lh(aN + v)W& 

N b=o Cyzi E~o-lIh(aN + t + lAA4)W&l2 
&$, (26) 

where k = UN + v, 0 < u < m, 0 < v < N, t is the remainder of k divided by AM. The Gabor expansion 
coefficients in general case are 

(27) 

= ET agO & dgof(Nm) ’ N-l(AN’p)-l [ ‘-’ * (a,b+dy)jTN,mj (a-vAA4,b+d~)]~~-n”“Y. 

(28) 

Analysis algorithm of the time-split method is listed as follows: 
Step 1: Compute the (N, AN)-point FZT of analysis basis y(i). 
Step 2: Compute the (N,AN)-point FZT of signal f(i). 
Step3: fors=Otoq-1 
Step 4: I’(a,b)=O, O<a<N, O<b<y 
Step 5: for t = 0 to p - 1 
Step 6: r(a,b) = r(a,b) + f;N,uj(a,b + ‘T)?&hnr,(a - swb + ty) 

Step 7: 
O<a<N, O<b<$f 

end 
Step 8: Compute an (N,AN/p)-point 2-D DFT of the results T(a, b) 
Step 9: end 
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The reconstruction of function from its Gabor coefficients is given by 

(29) 

Synthesis algorithm of the time-split method is listed as follows: 
Step 1: Compute the (N, AN)-point FZT of synthesis basis h(i). 

Step 2: for s = 0 to q - 1 

Step 3: Compute the 2-D DFT of Cmq+s,n, F(a, b) = fft2(C,,+,,)(,,,)->(,b) 

O<rn<y, O<n<N 

Step 4: T(a,b)=O, O<a<N, O<b<y 

Step 5: for t = 0 to p - 1 

Step 6: r(a,b+t~)=r(a,b+~)S~~~,AN)(a--SaM.bft~)~(a,b) 

O<a<N O<b<M 2 1 P 
Step 7: end 
Step 8: end 
Step 9: Compute (N, AN)-point IFZT of T(a, b) to obtain the reconstructed signal f(i). 

The frequency-split method is to utilize (B&M)-point FZT. It is corresponding to the continuous case 

3, = T. The Zak transform of analysis basis function for p = 1 in frequency-split method is 

(30) 

Fig. 3 illustrates an example for the summation terms in denominator of Eq. (30). This example is the same 

as that of Fig. 3, but (2,8)-point FZT and the algorithm of frequency-split method are applied. The terms 
with the same patterns will be added together for computing the denominator of the Zak transform of analysis 

basis function. The analysis basis function, y(k), can be obtained by IFZT of Eq. (30). Then its closed form is 

M-l CfLi’ h(a AM + u)W$ 

‘(k) = h b& CTzi CL;’ Ih(aAM + t + ZN)W$l* 
W.3 (31) 

where k = uAM + v, 0 < u <M, 0 < v < AM, 0 < k CL, t is the remainder of k divided by N. The Gabor 

expansion coefficients in general case are 

(32) 

where 0 < m < M, 0 < n < N, n = u . q + v, 0 < v < q and 0 < u < AM/p. The proof of Eq. (33) is listed 
in Appendix A. Eq. (33) indicates that the Gabor coefficients in frequency-split method can be calculated 
through q amount of operations, which are (AM/p,M)-point 2-D DFT. The vth 2-D DFT is to compute the 
(u - q + v)th frequency slice of Gabor coefficients (0 < u < AM/p, 0 < v < q). 
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0 1 2 3 

(a) Time-split 

0 1 

(b) Frequency-Split 

Fig. 3. The summation term denominator in Zak transform domain for time-split and frequency-split methods, L = 16, M = 8, N = 4. 

Analysis algorithm of the frequency-split method is listed as follows: 

Step 1: Compute the (A&&M)-point FZT of analysis basis y(i). 

Step 2: Compute the (AM,M)-point FZT of signal f(i). 
Step3: fors=Otoq-1 

Step 4: T(a,b)=O, O<a<$f, O<b<M 

Step 5: for t = 0 to p - 1 

Step 6: r(a, b) = r(a, b) + &a~,& + ty, W;M,M,(a + y, b + SAN) 

O<a<y, O<b<M 

Step 7: end 
Step 8: Compute an (N/p,M)-point 2-D DFT of the results T(a, b) 
Step 9: end 

The reconstruction of signal f(i) can be obtained from the Gabor coefficients. 

^ M-l N-l 

fc~,~)(a, b) = C C G$&w,M~(~ - mm, b - naNW’.., O<a<AM, 06b<M, (34) m=O n=O 

(35) 

The proof of Eq. (35) is also listed in Appendix A. 
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Synthesis algorithm of the frequency-split method is listed as follows: 
Step 1: Compute the (AM,M)-point FZT of synthesis basis h(i). 
Step 2: for s = 0 to q - 1 
Step 3: Compute the 2-D DFT of Cm,Uq+s, F(a, b) = fft2(C,,.,+,)(,,,)->(ab) 

Odm<M, O<u<y 

Step 4: T(a,b)=O, O<a<AM, O<b<M 
Step 5: for t = 0 to p - 1 

Step 6: T(a + ty, b) = T(a + 7, b) + fiCaM,~)(u + ty, b - sAN)F(u, b)W,asAw 

O<u<y, O<b<M 

Step 7: end 
Step 8: end 
Step 9: Compute (AM,M)-point IFZT of r(u, b) to obtain the reconstructed signal f(i). 

Example. L = 64, A4 = 16, N = 8, AA4 = 4, AN = 8. The oversampling ratio in this example is 2. The Gabor 
coefficients in time and frequency-split methods can be obtained through two 2-D DFT. In time-split method, 
(8,8)-point DFT and FZT are used. The first DFT compute Cs,o, Cs,i, CO,~, . . . , CO,~, C~,O, Cz,i, . . . , CM,~. 
The second DFT compute Ci,o, Ci, 1, CQ, . . . , Ci,7, Cs,o, Cs,i, . . . , Ci5,7. In frequency-split method (4,16)- 

point DFT and FZT are used. The first DFT compute CO,O, Ci,o, C~,O, . . . , Ci5,0, CO,Z, CQ, . . . , c15,6. The 
second DFT compute CO,I, Cl,l, G,1, . . . . C15,1, CO,~, C1,3, . . . . Cw. 

3.3. Discussion 

As mentioned in Section 2, the analysis basis is uniquely existed. So the synthesis basis and Gabor coeffi- 
cients obtained from solving Eq. (8) and the Zak transform method are identical. 

In the oversampling scheme, although the processes of the time and frequency-split methods are different, 
the results in these two methods are identical. The equivalent results can be proved by checking Eqs. (26) 

0.4 

0.3 

- : synthesis basis 

--: optimal analysis basis 

0.2 

0.1 

0 

-0.1 
0 10 20 30 40 50 60 70 

Fig. 4. An example of analysis bases obtained from time and frequency-split methods and the optimal solution, L = 64, M = 16, N = 8. 
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and (31). Both these two methods are based upon the least-squares norm criterion. The optimal solution 
obtained from Eq. (10) is to find an analysis basis which is similar to the synthesis basis as similar as 
possible. Fig. 4 shows the bases obtained from time and frequency-split methods and Eq. (10). It can be 
found that the analysis obtained from optimal solution and the Zak transform methods are different. 

The critical sampling is only a special case for oversampling. The oversampling ratio for the critical 
scheme is equal to one. In critical sampling scheme, the time sampling interval AM is equal to N and the 
frequency sampling interval is equal to M. The Gabor coefficients in critical sampling can be obtained through 
(N,M)-point FZT and it is exactly a special case for the oversampling scheme, which needs (N, AN/p) or 
(M/p,M)-point FZT. The computation of Gabor coefficients in critical scheme needs one DFT calculation 
and in oversampling schemes needs q DFT calculation. This fact can be used to verify that the critical 
sampling is a special case for oversampling scheme again. 

The algorithms presented in the previous subsection are time-split and frequency-split. So in 2-D case, 
four methods can be used to calculate Gabor coefficient by Zak transform in oversampling scheme. They are 
time-time-split, time-frequency-split, frequency-time-split and frequency-frequency-split. 

4. An extension to two-dimensional case for Zak transform and Gabor expansion 

The two methods that are proposed in the previous section for computing Gabor coefficients is suitable 
for finite signals. Image data is an example of two-dimensional finite signal. Now we will extend the above 
theories to the two-dimensional case and use 2-D Gabor expansion as a tool for image analysis. 

4.1. 2-D discrete Gabor expansion 

The definition of 2-D Gabor expansion for continuous signal is 

f(x, Y) = c Cm,n,mynyhm,n,m,ny(x, Y) (36) 
m,,n,,m,,n, 

= c Cm,n,m,n, h(x - mxTx, y - myTy)ej(xbZ,nX+y62~n~) , 
m,,nyrmy,ny 

(37) 

where h(x, y) is the 2-D synthesis basis function. T,sZ, < 2x and T,sl, d 27~ are the existence condition for 
Eq. (37). We can define 2-D discrete Gabor expansion for finite and periodical signals. The signal f&y) is 
assumed to be finite with length LX and L,, in the x and y directions or finite with periods LX and L, in the 
x and y directions. Thus, the 2-D finite discrete Gabor expansion is defined as 

(38) 

(39) 

where I(,, y) is periodic extension of f(x, y), h(x, y) is the synthesis basis. 0 < m, < A&, 0 < my < MY, 
0 < n, < N, and 0 < nY < N,,. A4, is the number of sampling points in time domain of x direction. My 
is the number of sampling points in time domain of y direction. N, is the number of sampling points in 
frequency domain of x direction. N, is the number of sampling points in frequency domain of y direction. 
AM, is the time sampling interval in x direction. aMY is the time sampling interval in y direction. hlv, is 
frequency sampling interval in x direction. mY is frequency sampling interval in y direction. M, . AM, = L,, 
MY . NY = L,, NX . Lw, = LX, N,, . AN,, = L,. The conditions, AM&VX < L, and AA@J?, < L,, must 
be satisfied for a stable reconstruction. The critical sampling case occurs when M’N, = LX and Mylv, = L,. 
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Define a, = M,N,/L, = qX/pX to be the oversampling 

the oversampling ratio in y direction. 

4.2. 2-D FZT 

Processing 52 (1996) 323-341 

ratio in x direction, and clY = MYN,,/LY = qY/pY to be 

2-D continuous Zak transform can be extended from the definition of 1-D continuous Zak transform directly. 

Its definition is defined as 

P (rX, rY, 4, Q,) = C C f[&(r, + p), l,(z, + q)]e-j2rr(pQ~+q62~) . 
P 4 

(40) 

Several properties about 2-D continuous Zak transform have been listed in [ 191. Furthermore, we can define 

2-D FZT. The 2-D FZT is defined as 

O<b,<B,, Odb,<B,, O<a,<A,, O<a,<Ay. 

For convenience of our discussion, we change the indices into integers. 

(41) 

f (ax, aY, b,, by) = 5 E f (ax + kAX,aY + ZA,)e-j2’(kbxiB~‘~byiBy), 
k=-m I=--03 

O<b,<B,, O<b,<B,, O<a,<A,, O<a,<Ay. (42) 

If the signal is finite or periodic with length LX = AxBx points in x direction and L, = A,B, points in y 

direction, then 

B,--l By--1 

f (a,, ay, b,, by) = C C f (ax + kAX,aY + IA,)e-j2a(kb,lB,+rb,/B~), 
k=O f=O 

n 

by f (&Ay,Bx,By)’ 

O<b,<B,, O<b,<B,, Oda,<A,, O<a,<A,. 

This 2-D FZT is called (A,,A,,B,,B,)-point 2-D FZT, and it is denoted 

4.3. Relationship between 2-D jnite Gabor expansion and 2-D FZT 

4.3.1. Critical sampling scheme 
In [ 193, it has been shown that 2-D Gabor coefficients can be obtained from 2-D Zak transform 

(43) 

(44) 

where f (zX, rY, Q,, 0,) is the 2-D Zak transform of signal f(x, y), and &rX, zY, s2,, s2,) is the 2-D Zak trans- 
form of synthesis basis h(x, y). The coefficients can be obtained by a 4-D continuous Fourier transform. In 
the discrete case, (N,,N,,M,,M,) point FZT can be used to calculate the 2-D Gabor coefficients. 

where WL, = ej2=lLx, WL, = ej2*JLy, fi(N,,Ny,&M,j is the 2-D FZT of synthesis basis. From Eq. (45), the 2-D 

Gabor coefficients can be derived through a 4-D DFT operation in critical sampling case. 
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4.3.2. Oversampling scheme 
In 1-D case, two methods based upon Zak transform for computing finite Gabor coefficients in oversam- 

pling scheme are presented. Thus, there exists four methods based on Zak transform for computing 2-D 
Gabor coefficients in oversampling scheme: (N,,N,, AN,, AN,), (N,, AM& W,,M,), (AM,, N,,M,, A&) and 
(AMX, AM&M,, MY)-point 2-D discrete Zak transform. They are named time-time-split, time-frequency-split, 
frequency-time-split and frequency-frequency-split, respectively. Their analysis bases and Gabor coefficients 
can be attained through the following equations: 
_ time-time-split method: (N,, NY, AN,, my)-point Zak transform 

If px = pv = 1, the analysis basis function can be obtained from Eq. (46). 

where 0 < a, -C N,, 0 < ay c NY, 0 < b, < m,, 0 6 b, -C Ah$, 0 < u -C LWJP,, 0 < s < eNy/py. 
The Gabor coefficients in general case is calculated through Eq. (47). 

c 
1 N,-1 NY-l (AN,/pr)-1 (A&/A,)-1 

ccc c 
mx3nx,mb,n, = Ah$my a,=o a,-O b,=O b,,=O 

Px-1 A’-’ 
1 

,C, ,C, f ~N~,N,,AN,,~,)(~x~ a~y bx + dx(WIPx)~ b~ + dy(AN~lP~ 1) 
x Y 

(46) 

(47) 

where L = L .L,, P = pxpy, m, = uq, + v, my = sqy + t, 0 G v < qx, 0 < t < q,,. These Gabor coefficients 
can be obtained through (qx.qy) operations, which are (N,, NY, ANJp,, A&/p,)-point 4-D DFT calculation. 

Analysis algorithm of the time-time-split method is listed as follows: 
Step 1: Compute the (N,, NY, W, A&)-point 2-D FZT of analysis basis y(x, v). 
Step 2: Compute the (N,, NY, W, my)-point 2-D FZT of signal f(x, v). 
Step3: fors,=Otoq,-1 
Step 4: for sY = 0 to qy - 1 

Step 5: r(a,, aY, Lb,) = 0, 
Step 6: for tx = 0 to px - 1 

0 < a, -C N,, 0 d ay < NY, 0 < b, < 2, 0 < b, < T 

Step 7: for ty = 0 to py - 1 

Step 8: r(%,a,,&b,) = U%a,,&,b,) + f~~z,hc,~x,~y$ax,ay, b, + txT, b, + ty2) 

G%~,W,~,( a,-s,h21,,ay-syaMyrb~+tx~,by+ty~), 

Oda,<N,, O<ay<Ny, O<b,< 9, O<b,<y 

Step 9: end 
Step 10: end 

Step 11: Compute an (N,,N,, &/p,, my/p,)-point 4-D DFT of the results T(a,, ay, b,, by) 
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Step 12: end 
Step 13: end 

Synthesis 
Step 1: 
Step 2: 
Step 3: 
Step 4: 

algorithm of the time-time-split method is iisted as follows: 
Compute the (N,,N,, AN.., AN’)-point 2-D FZT of synthesis basis h(x, y). 
for s, = 0 to qx - 1 
for sy = 0 to qv - 1 

Step 5: 

Step 6: 
Step 7: 

Step 8: 

Step 9: 
Step 10: 
Step 11: 
Step 12: 
Step 13: 

Cdmpute theiD DFT of Cm,q,+s,,m,qy+sy,~,.~y, 
F(“~,aY,b~,bY) = fft4(Cm,~~+S,,m,qy+sy,~~,~y)(m,,m,,n,,n,)->(a a b b ) x3 y, XI y 

O<m,<%, OGm,<T, O<n,<N,, 06n,<Ny 

~(u~>u,,bx,b~)=O, O<u,<N,, O<u,<Ny, O<h,<%, o<b,<T 
for tx = 0 to px - 1 
for tr = 0 to pv - 1 

end 
end 
end 
end 

Compute (Nx,N,, mx, m,)-point IFZT of r(u,, uy, b,, by) to obtain the reconstructed signal 
f (X>Y). 

- time-frequency-split method: (N,, AA+, a2v,,M,)-point Zak transform 
If px = py = 1, the analysis basis function can be obtained from Eq. (48): 

(48) 

where 0 < a, < N,, 0 < a,, < AM& 0 < b, < AR& 0 6 b, < MY. The Gabor coefficients in general case 
is calculated through Eq. (49): 

&h--l Iv-1 n 

x & &f (Nx,aM,,W>M,) ax3 ‘Y + dY Y 
x Y 

pY PX > 

x ~(N,,&&4N&,) ax - vaMxyuy + ‘y 4 -,bx +A 
PY 

x Wb”UN,L,-a,n,(iLN,lP,)Ly+bymy(~~lPL)Lx--aysM~Lx 

UP 
9 (49) 
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where L = L,.L,,p = pxpy, m, = uq,+v, ny = sq,+t, Odv<q,, O<t<q,, O<uCAh&/p,, 
0 < s < AMJp,. These Gabor coefficients can be obtained through (qx - q,,) operations, which are 
(N,, AMJp,,, ANJp,,M,)-point 4-D DFT calculations. 

The analysis and synthesis algorithms for time-frequency-split method can easily be derived based upon 
the algorithms listed in the previous discussions. 
frequency-time-split method (AM,, N,,M,, A$)-point Zak transform 

If px = py = 1, the analysis basis function can be obtained from Eq. (50): 

where 0 < a, < AiMx, 0 < uY -C NY, 0 < b, < A.!,, 0 < by < My. The Gabor coefficients in general case is 
calculated through Eq. (5 1): 

x q+iM~.Ny,M,,Aly, a, + dx 
nM, ANY w-vAN, 
-9 uy - tm,, bx + VAN., by + dy- 

PX PY > 1 LX 
(51) 

where L = Lx . L,, p = p,fi,n, = uq,+v, my = sq,+t, O<v<q,, Odt<qy,O~u~~xlpx, 
0 < s < My/p,,. These Gabor coefficients can be obtained through (qx . qy) operations, which can be 
(Ah4,/px,NY,Mx, Ah$/py)-point 4-D DFT calculations. 

The analysis and synthesis algorithms for frequency-time-split method are easily derived based upon the 
algorithms listed in the previous discussions. 
frequency-frequency-split method (AM,, Ai&, M,, MY )-point Zak transform 

If px = py = 1, the analysis basis function can be obtained from Eq. (52). 

where 0 < a, < AM,, 0 SS ay < Ah& 0 G b, c M,, 0 d l+ < My. The Gabor coefficients in general case 
is calculated through Eq. (53): 

a 
(AM,,hM,,M,,M,) my b a, + dxp,‘aY + -) b 

l?v 
1’ Y 
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’ P&‘nAM,,M,,M,, ax 
AMx aMy 

+ d,---- 
PX 

,ay + -, bx + VAN,, by + tmy 
PY 

where L=L,.L,, p=pxpy, n,=uq,+v, ny=sqy+t, 0 6 v < qx, 0 < t < qy, 0 6 u < Ah&./p,, 0 <s < 
AMJp,. These Gabor coefficients can be obtained through (qx.qy) operations, which are (AAl../p,, AA4Jpy, 
M,,M,)-point 4-D DFT calculations. 

The analysis and synthesis algorithms for frequency-frequency-split method are easily derived based upon 
the algorithms listed in the previous discussions. 

Similar to the 1-D case, the above four methods will result the same analysis basis function and Gabor 
coefficients. 

Gabor expansion can localize the time-frequency characteristics of signals. It is a very useful tool for 
signal processing. 2-D Gabor expansion has been widely used in image analysis and compression. Fig. 5 
shows an example for image energy presented in the various signal bands. It is obtained by 2-D FZT in 
Gabor oversampling scheme. The size of image in this example is 64 x 64 pixels. The number of time 
sampling point in x direction is 16. The number of time sampling point in y direction is 16. The number 
of frequency sampling point in x direction is 8. The number of frequency sampling point in y direction 
is 8. 

Fig. 5. The signal distribution for the various bands in the oversampling scheme. 
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5. Conclusion 

According to the above discussion, several conclusions can be made. First, the (M,N)-point finite Gabor 
expansion can be obtained by using (N,M)-point FZT in critical sampling case. In oversampling case, (M, N)- 

point finite Gabor expansion can be obtained by two methods. One is calculated by (N, AN)-point Zak 

transform, the other is obtained by (AM,M)-point Zak transform. These two methods will result the same 
analysis bases and Gabor coefficients. If the oversampling ratio increases, the analysis bases will be more 

similar to the synthesis bases. This phenomenon is the same as that of optimal basis in [16]. But their analysis 

bases are different to the bases generated in [16]. The Gabor coefficients in the proposed two methods can be 
achieved through q 2-D DFT operations. 

2-D Gabor expansion has been widely used in image analysis and compression. We can extend the theories 

from 1-D case to the 2-D case and compute 2-D Gabor coefficients efficiently. Four DFT-based algorithms 
for computing 2-D Gabor coefficients are attained to compute them efficiently. 

Appendix A 

At first, we will prove Eq. (33): 

O<m-cM, O<n<N.Letn=u.q+v, O<v<q, O<ucU/p. 

1 AM-lM-I ~ 

cmd = z ago bso f wfd a, b) f&M,M,(a, b - uqAN - VAN) Wp” WLVmwaMAN 

x WL-m~AMAN WL-auqAN WL-a~Ah’ 

caM,Mj(a, b) fTaM,M,(a, b - vAN)W,~“~ W;mvaMm WLaupM WFaVAN. 

Replace a by a = daM/p + a’, 0 < a’ < AM/p, 0 < d < p. 

u/p---lM--l p-1 _ 

Gn = c c Cf (AM,M) 
a’=0 b=O d=O 

dy +a’,b) fTu,Mj(d$+a’,b-vAN) W~(dwP+a’)vAN 

m(b-AN)~ --a’uM 

x wLIP 

Eq. (33) has been proved over. 
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Next, we will prove Eq. (35). 

. M-i N-l 

f (AM,,wJ(~, b) = c c Cm,, fi(~~,M)(a - mAA4, b - nAfV)Wy 
m=O n=O 

M-l N-l 

= C C C,,, ichM,~)(a, b - nniv) w;maM(b-n~)+an! 
m=O n=O 

Letn=u.q+u, O<v cq, O<u<AM/p. 

. M-l AM/p-l q-l 

f(aM,,v&b) = c C c G,uq+v fi,u,u,@,b - uqm - VAN) 
m=O u=o lJ=o 

x W-mWb-uqm-vW wauiw IVAN 
L L w, 

Replace a by a = dAM/p + u’, 0 6 U’ < M/p, 0 G d < p. 

q-l M-l AM/p-l 

“2 mgo go c~,~q+aWL;~-UANlnaMlp+nuM 1 ( ~~(A,u,,u) dy + u, b - ,Ah’) WpAN, 

O&z<*, Odb<M, 06d<p. 
P 

The proof of Eq. (35) is completed. 
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