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Abstract

The identification of multichannel moving average (MA) parameter matrices { H(k)} using fourth-order output cumulants
is considered. By analyzing the eigenstructures of the cumulant matrices, it is shown that the MA parameters matrices can
be identified uniquely up to a post-multiplication of monomial matrices if H(0) does not have columns that are pairwise
colinear and H = [H"(0),..., H"(L)]" has full column rank. The constructive proof of this condition suggests a possible
closed-form identification algorithm.

Zusammenfassung

Es wird die Identifikation der Parametermatrizen {H(k)} von mehrkanaligen MA Modellen mit hilfe von Aunsgangsku-
mulanten vierter Ordnung untersucht. Mit einer Analyse der Eigenstruktur der Kumulantenmatrizen wird gezeigt, da8 die
MA Parametermatrizen bis auf eine Nachmultiplikation mit monomischen Matrizen eindeutig identifiziert werden konnen,
falls {H(0)} keine Spalten besitzt, die paarweise kollinear sind, und H = [H(0),..., H"(L)]" vollen Spaltenrang besitzt.
Der konstruktive Beweis dieser Bedingung legt einen moglichen Identifkationsalgorithmus in geschlossener Form nahe.

Résume

Ce papier s’intéresse a I’identification de matrices H(k) 4 paramétres 2 moyenne mobile (MA) multicanal par des
cumulants de sortic d’ordre 4. En analysant les structures propres des matrices des cumulants, on montre que les matrices
a parametres MA peuvent étre identifiées de maniére unique 4 une post-multiplication de matrices monomiales prés, si
H(0) n’a pas de colonnes qui sont colinéaires deux a deux et si H est de plein rang. La preuve par construction de cette
condition suggére un algorithme possible d’identification en boucle fermée.

1. Introduction

Much attention has been given to the problem of identifying systems using only the system output signals.
Often referred to as blind system identification problems, their solutions have a wide range of applications
in signal processing and communications. One such example is the blind identification of communication
channels when channel probing signals are not available.
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Considered in this paper is the problem of identifying parameters of the multiple-input multiple-output
(MIMO) moving average (MA) process

L
x(t) = Y H(k)s(t — k) + n(1), (1)
k=0

using the fourth-order cumulants of x(-). By identification we mean finding H(k) from the fourth-order

statistics of x(¢) up to a post-multiplication of monomial matrix. >

The choice of using fourth-order cumulants is natural. First, the second-order statistics of x(¢) are insufficient
for the identification of {H(k)} because, for arbitrary orthogonal matrices Q, systems {H(k)Q} and {H(k)}
have the same second-order statistics. One exception is the case when the system has single-input and multiple-
outputs (SIMO) [18, 17,9]. Second, many practical signals have symmetrical distributions whose third-order
cumulants vanish. Third, the estimation of cumulants of an order higher than four becomes difficult in practice.

The basic question of MA parameter identification using fourth-order cumulants can be stated as follows:
given the complete fourth-order cumulants of the vector process x(-), to what extent can {H(k)} be deter-
mined? Perhaps the best answer in current literature is given in [6, 7] where Giannakis, Inouye and Mendel
made two important contributions to the multichannel MA parameter identification problem:

(1) Identifiability: Under the condition that both H(0) and H(L) have full column ranks, it was shown that
{H(k)} is uniquely determined by the third/fourth-order cumulant matrices up to a post-multiplication
of a constant monomial matrix. In other words, if both {H(k)} and {H'(k)} satisfy the same set of
identification equations that relate the output cumulants to the MA parameters, then H(k) = H'(k)P for
all k, where P is a monomial matrix.

(2) Identification: Under the condition that both H(0) and H(L) have full column ranks, the identification
of {H(0)} depends on the identification of H(0), and there is a closed-form relation between H(k) and
H(0) through third/fourth-order cumulants.

To identify H(0), an eigenstructure-based estimation scheme that ensures global convergence in finite steps
was proposed in [13]. Later, a closed-form solution to the same set of identification equations was developed
in [15,16]. When L = 0, stronger results have been obtained [14]. As far as the identifiability is concerned,
the solution seems to be quite satisfactory when H(0) and H(L) both have full column ranks.

The weakness of existing approaches come from the key assumption that both H(0) and H(L) have full
column ranks. This assumption, shown unnecessary in this paper, is restrictive and sometimes unrealistic in
practice. For example, if there are more sources than receivers, neither H(0) nor H(L) will have full rank.
Requiring H(L) to have full column rank also implies that all the single-input multiple-output sub-systems
between each source and the output vector processes must have the same order. The limitation of existing
approaches is evident when they are applied to the following simple case:

x(t)=“ ; ; ”s(t)—i—{(l) i (1) 3]s(t-1)+[i ; g 8Js(t—2)+n(t). 2)

Clearly the two rank conditions are not satisfied.

A more general identifiability condition is presented in this paper. It is shown that if [H T(0),...,HT(L)]T
has full column rank and the columns of H(0) are not pairwise colinear, then MA parameters are uniquely
determined by the output fourth-order cumulants. A simple verification shows that the MA process in (2) can
be identified by the fourth-order cumulants. The constructive proof of this new sufficient condition suggests
a possible closed-form identification approach, which is demonstrated in Section 5 using the MA process (2)
as an example.

2 A monomial matrix [5] is a product of a permutation matrix and a nonsingular diagonal matrix.
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2. Model formulation
2.1. Notations

A few notations are necessary.

E{} expectation operator;

()T transpose;

Ot Moore-Penrose generalized inverse;

a| b colinear vectors: two vectors @ and b are colinear if there exists an « # 0 such that @ = ab;
all b aand b are not colinear;

A®B Given an n x m matrix 4 = [a;;] and a p x m matrix B = [b;],

faubn  apbn - aGimbim 7
aniby  ambiz 0 Gumbim
anba  apby - aimbam
A : : :
AOB= ;
amba  amby - Gumbam |’
anbp  apbp o aimbpm
-anlbpl aanpZ s anmbpm J
. . _ _ T 4 o )
diag(x) Given x = [x1,...,Xn] OF X = [x1,...,Xn] , diag(x) = diag(xi,...,Xn);

n;(A®B) Given an n x m matrix 4 = [a;;] and p x m matrix B = [b;], 7;(4© B) = [anbj, ..., aimbjm]-
2.2. Model and assumptions
We consider here the m-input n-output discrete-time finite-impulse response system
x(t) = kZL:OH(k)s(t — k) + n(t), (3)
where x(t) is the n-dimensional real output vector; s(¢) is the m-dimensional real input vector; H(k) is the

impulse response of the system and n(t) is the n-dimensional additive noise vector.
The model Eq. (3) can be rewritten as

»e) = Hz(t) + w(t), 4)
where
H() H(1) --- H(L)
HO0) --- HL-1) HL
e (©) ) ( ) H(L) ) ’ )
H(0) H(l) --- H()
x(t) n(t) s(t)
Nty = : , w(t) = : , (1) = : . (6)

x(t—L) n(t - L) s(t —2L)
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The block Toeplitz structure of # is exploited in our approach. It is noted here that if # has a full column
rank, a closed-form identification of H using cumulant matrices of arbitrary order has been obtained. See [14].
We assume in this paper the following:
Al: The independent sources {s;(¢)} are ii.d. with unknown nonzero fourth-order cumulants. Without loss
of generality, it is assumed that

Ji £ B} ) - 3EGA(1)) = +1, Vi (7)

A2: The noise process n(-), independent of s(-), is Gaussian.
A3: Both m and L are assumed to be known.

A4: Matrix H=[H"(0),...,H"(L)]" has full column rank.
AS5: Column vectors of H(0) are not pairwise colinear.

AS’: Matrix H(0) does not have zero columns.

Remark. Assumptions Al and A2 are fairly standard in the identification of MA processes when higher-order
statistics are used. Setting all source cumulants to £1 only simplifies the notation. It should be noted that
the identification of MA parameter matrices can only be made up to a monomial matrix. Assumption A4 is
a weaker condition than that required by existing techniques [6, 14] where both H(0) and H(L) are assumed
to have full column rank. Assumption AS is restrictive whereas Assumption A5’ is made without loss of
generality. For example, if the first column of H(0) is zero, but the first column of H(1) is nonzero, defining
s1(t) = s1(¢ — 1), an equivalent system satisfying AS’ is obtained.

3. Identification equations

Cumulant-based identification equations of arbitrary order were obtained by Swami et al. in [11, 12] using
Kronecker products. Although compact and complete, the Kronecker-product form of identification equations
involves matrices of high dimensions. This presents a formidable task of solving these equations. In addition, it
is difficult to exploit certain symmetrical properties of cumulants. Following the approach given in [6, 8], a set
of cumulant matrices with the same dimension as the covariance matrix of x(¢) is considered. The advantage
of using these cumulant matrices is that their symmetrical properties can be exploited more conveniently, as
demonstrated in our approach.

3.1. Cumulant matrices

Consider n random variables yi,..., y,. A kth-order cumulant, when it exists, is denoted by
g times gn times
—— ——
Cum()’la---ayl,'--,J’m---,)’n), (8)

where g, +- - - +¢, = k. For most commonly used third-order and fourth-order cumulants of zero-mean random
variables yi,..., v, relations between cumulants and moments are given by

cum(yi, yj, Vi) = E(¥iy;iye),

cum(yi, Yjs Yis Y1) = E(yiy;yey1) — E(yiyi )E(yiy1) — E(yiy )E(y;y1) — E(yiy)E(yyr). )]
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2

Similarly, the fourth-order cumulants of vector y can be organized to form a set of n° cumulant matrices.

They are related to the moments by

Cy(») =E(y" yiy;) — EG¥DEGy;) — EQy)EQ y) — EQy EW i), ij=12,....n. (10)

In the sequel, the argument y is dropped since only the output cumulants are involved.
3.2. Identification equations

First presented is the identification equation that relates the output cumulants {C;;} with the MA parameters

{H(k)}.

Theorem 1 (Identification equations). Consider the MA model equation (1) and the equivalent linear struc-
ture (4) under assumptions Al and A2. The complete set of fourth-order cumulant matrices of vector y(t)
contains all the fourth-order cumulants of the process x(-). The cumulant matrices {C;;} of y(t) are related
to H by

C,j = H# diag(m;(# © #))diag(J,...,. N # T, 1<ij<nL, (11)

—————
(2L+1) blocks

where J = diag(J,...,Jn).
Proof. Since the source s(¢) is i.i.d. and x(-) is an MA process with finite order L, all the cumulants involving
x(t) and its delays are contained in the cumulant matrices of vector p(z). For the linear structure in (4), the

relation between (K +2)th-order cumulant matrices of y(¢) and J# is given in [14]. Presented here is a special
case for k =2. U

4. Identifiability: The main result
4.1. Key lemmas
Recognizing the special strucutre of identification equations in (11), we consider first a simpler problem:
Given two N x N matrices Fy, F, satisfying
F; = Adiag(d)A", =12, (12)

where A is an n x m matrix with full column rank and d; are 1 x m dimensional vectors, identify A from F;.
Clearly A cannot be uniquely determined by {F;}. Again, it is sufficient if 4 can be determined up to a post-
multiplication of a monomial matrix. This problem is related to the problem of simultaneous diagonalization
of matrices by congruence, a problem investigated extensively by mathematicians [1—4]. The following lemma
provides a closed-form solution to this problem. This result was given in a slightly different form in [2] and
plays a key role in the derivation of the well-known ESPRIT algorithm [10] in array signal processing.

Lemma 1. Consider
F = Adiag(d)A", i=1,2, (13)

where A is an n x m matrix with full column rank and d; are 1 x m dimensional vectors. Let

d, dn - din
[dz] [dZI dzm] (4)
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If (i) D does not have zero columns, (ii) columns of D are not pairwise colinear, then there exists a
monomial matrix P such that

A= Vu,.. u, "P, (15)
where the m columns of V are the first m left singular vectors of

G =[F,F)], (16)
and u; is the ith generalized eigenvector of {VTFl V,V'F, Vi

Proof. See Appendix A. [

Remarks. The above lemma gives a closed-form identification of 4 from F;. Since both V and #; in (15) are
functions of only F;, the above lemma implies that for any {4’,d/} satisfying (13), there exists a monomial
matrix P such that

A = AP. (17)

The next two lemmas are important when Lemma 1 is applied to obtain the main result of this paper.

Lemma 2. If A = [ay,...,a,] is an N x m matrix that does not have (i) all zero columns, (ii) colinear
columns, then there exists a 2 x N matrix C such that B = CA is a 2 x m matrix that does not have (i)
zero elements, (i) colinear columns.

Proof. See Appendix A. [

Lemma 3. Let A = [a;;] be an N x m matrix without colinear columns and zero columns. Let B = [b;] be
a p xm matrix without all zero columns. Then A B does not have (i) colinear columns; (ii) zero columns.

Proof. See Appendix A. [J
4.2. The main theorem

The main result of this paper is given in the following identifiability theorem whose proof leads to an
identification algorithm.

Theorem 2 (identifiability). Under A1-AS, if two sets of MA and cumulant parameters {H(k),J} and
{H'(k),J'} satisfy the same indentification equation given in (11), then there exists a monomial matrix
P such that

H(k) = H'(k)P, Vk. (18)

Proof. To better illustrate this idea, consider the case when L = 2 where, from (5),

H(0) H(l) H(2)
H(0) H(1) HQ)
H = H(0) H(1) HQ)| (19)
——

H

The generalization to arbitrary L is straightforward. Two cases of H(2) are treated separately:
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Case I. Matrix H(2) does not have zero columns.
Consider C;; for 1<i<n, 2n+ 1<, <3n. From (11), we have

H(2)
G= H(l)} diag(m;(H © H)J(H"Q2)H (1) H'(0)), (20)
H(0) -
———— H
H
= Hdiag(n;(HO H)JH', 1<i<n,2n+1<j<3n @2n

Note that J is a diagonal matrix with diagonal entrices +1. If for some 1<ik<n and 2n + 1</,/<3n,
matrix

[ HE H)
| m(HO H)

satisfies the condition of Lemma 1, i.e., (i) II does not have colinear columns, (ii) IT does not have zero
columns, the theorem is proved, and a closed-form identification algorithm is obtained by applying Lemma 1
to Fi = C; and F, = Cy. Unfortunately, A1-A5 do not ensure that such i, j, & / exist.

Note that when 1<i<n, 2n+ 1<j<3n, n;(H® H) are selected from H(0) © H(2). With AS and the
fact that H(2) does not have zero columns in this case, matrix H(2) @ H(0) does not have colinear columns
and zero columns by Lemma 3. Next by Lemma 2, there is a 2 x n* matrix

G = {gll gan:I’ (22)
g21 - o2
such that
b o bim b
B=G(H(2)® H(0)) = {b; b; } - [b;] (23)

does not have colinear columns and b;; # 0 for all i and j. Define

Fo= > grg-mea-mGy, k=12 (24)

I<ign
2n-1)</<3n

From (21)-(24),

F, = Hdiag())JHT, i=12. (25)
Note again that J is a diagonal matrix with entries +1. Applying Lemma 1 to (25), H can be obtained (up
to a post multiplication of a monomial) by (15).

Case II. H(2) = [H\(2):0).

Without loss of generality, consider the case when the first m; columns of H(2) are nonzero columns and
the last m, = m — m; columns of H(2) are all zero. Matrix H(2) is partitioned by H(2) = [H;(2):0], and
correspondingly, H,J and # by

H2):0
H=H:H)=|g): H)|> J=daglLl) (26)
H\(0) : H/(0)
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H(0):H(0)  H(D)IH(1) Hi2)i0
v H(0):H0) H(DIH(1) Hi2)}0 a7
H(0): H,(0) H(DIH(1) Hi(2):0
—— S
I H H |

As in Case I, if the same set of cumulant matrices C;; for 1<i<n, 2n+ 1<j<(2+ 1)n is used, from (11),
Cy = H, diag(n;(H, © H)))J,H]'. 28)

Following the same argument in Case I, H; can be identified by H, from C,, using the generalized eigende-
composition up to a post-multiplication of a monomial matrix, Specifically,

H, = H,PA (29)

for some unknown permutation matrix P and nonsingular diagonal matrix A.
While P, A and J; are unknown, it can be shown, by substituting (29) into (28), that

A - AT 4 . - ~
E 2 PA'SP = 0 () ) dieg™ (ny(Hl © H)) (30)
is known. In other words, since H; is computed from Cj;, E; can also be computed from C;.

To identify H,, it is necessary to use other cumulant matrices. Consider next the set of cumulant matrices
C, for n+1<i<2n, 2n+1<j<3n, and denote

H(2) 0
H(l) H,(1) H\(2) }
K=|pmgo) H© H)|=H H H] @31
N—— N—— N——
H, H, H,

From (11), we have
C,j = K diag(n;;(K © K)) diag(J;,J,,J)) K" (32)
= H, diag(n;(H, © H,))J,(H,)" + H, diag(n;(H; © H)))J\(H) "
+H, diag(n,;(H, © H)))J,A]". (33)

Note that H; has already been identified by H,. Substituting (29) into the above equation, it is easy to verify
that

H, diag(n,;(H, ® H))J(H;)" = H,PA diag(n;;,(H,PA HPA)APTH,

= B PA* 1P diag(n;(H, © B, (34)
—_———
E,

- - - - T 2 . 2 A 2T
H/ dlag(n,-j(HI O] H[))J[HI = H1E1 dlag(n,-jHl O] H{))H, ’ (35)
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where l'fII = [OTA, ﬁT(Z),ﬁ T(1)]T is also known. Therefore, the last two terms of (33) involving H; can be
obtained from H; which has already been obtained. Let

~ R N A AT 2 . 2 2 2T
Cl.; 2 C; — H,E,diag(n;;(H, ©® H)))H, — H,E, diag(n;;(H; © H;))H, (36)
= H, diag(n;;(H, © H,))J,H. (37)

We now have a new set of identification equations involving H, of the same form as in (11). Two observations
can be made about (37):
(1) By A4, H, has full column rank.
(2) By AS, H,(0) does not have colinear columns.

Consequently, we have the same identification problem as above, and again, two cases of H,(1) are con-
sidered.
Case II (a). H,(1) does not have zero columns.

In this case, the same argument as in Case I is used and both H,(1) and H,(0) are identified from C,'j
The complete solution is obtained.
Case II (b). H.(1) = [H,(1): 0].

Again without loss of generality, we assume that the last m, columns of H,(1) are zero. We partition
H,(1) by H.(1) = [H,(1):0), J, by J, = diag(J,;,J,,), and accordingly,

0 o0 |
0 .
H = [H,(l)] _ | Hi(1): 0 = [H, H,]. (38)
H,(0) H,(0) : H,(0)
N N
H, H,

Using the same argument presented in Case I, H,; can be identified from the generalized eigenvalue decom-
position of C,; Therefore, the only parameter that has not been identified is H,,(0).

It is necessary to use the remaining cumulant matrices for the identification of H,.(0) consisting of the
last m,, columns of H(0). Note that H,.(0) is the only remaining unidentified parameter matrix; all other
parameters have been identified up to a monomial matrix. To use the last sets of cumulant matrices that have
not been used previously, let

H(0) Hy(0): Ho(0)  Hi(1)' Hy(1):0 H\(2)
X= Hi(0) ' H,(0) H,(0) Hy(1) | - (39)
H(0)

Obtained from (11) with 1<, j<n,
C,; = X diag(n;;(X ® X)) diag(J, J,J))X"

_ (H'B(O)) diag(m;(HE(0) © Hyp(0))d,(H,»(0) 0) + identified parameters. (40)

Since H,,(0) has full column rank, H,,(0) can now be identified using (40). Thus the proof is now complete.
O
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5. A numerical example
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To illustrate the identification algorithm outlined in the proof of Theorem 2, we consider the example given
in (2). We assume here that the fourth-order cumulant matrices of the observation process x(#) are known.

This example is the Case II in the proof, and

11 1 1
1 2 3 4
H =

11 0 0]
1 2 0 0
o101 1 0
11 0 0
11 11
1 2 3 4]

H, =

1

2

S N o O

3

1

(=2 S N e N =]

1]

1

20 0]

(41)

(42)

It is clear that A4 is satisfied since H has full column rank. Assume in this example that (unknown) J =

diag(1,1,-1,—1).

To identify {H(k)}, or equivalently, H from the cumulant matrices of y(¢), we follow the Case II in the
proof of the main theorem.
Step 1. Compute Cis and Ci.

From (11),
(1 1]
1 2
0 1

Cs= 11
1 1
L1 2]
1 1}
1 2
0 1

Cis= .
1 1
L1 2]

W RN — LN

h 2 W N i W

W W W N W

PO = — o N —

O b B0 i

W NN — W N

BN RN

W N = W N

W W W N W W

(W IRUSERVIEE SRRV, IR VA

N W W N n W

O W L BNO

(43)

(44)
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Step II. Apply Lemma 1 to find H,.
Here F; = Cs and F, = C¢. Computing the two left eigenvectors of [Fi, F2] to form matrix

0.3243
0.5606
0.2363
0.3243
0.3243
[ 0.5606

Compute next the generalized eigenvectors {u;,u;} of {VTFl V,V'F, V}, and form H by

H = Vimu]™"

~0.4093 ]
0.2221
0.6314

—0.4093

~0.4093
0.2221 |

[0.6742
13484
0.6742
0.6742
0.6742
| 1.3484

—1.0445 ]
—1.0445
—-0.0000
—1.0445
—1.0445
—1.0445 |

It is easy to verify that H, differs from H; by a monomial matrix.
Step 111, Compute C;s and Ci.

Again from (11),

Cis =

M — — — B
BN BN

L

1 1

2 2
-7 3
3 5
-3 3
-16 4

Step 1V. Compute Cys and Cig. .
To compute Cy5 and Cyg from (36), we need to compute E; from (30) using H; and Cis (or Cie):

E = Al C,(H) diag™\(m(H; © Hy)) = diag(4.84, 0.8403).

Substituting E; and H, into (36), we have

7
Cis=

oo Oo o
S OO OO

0 0

0 0
-9 0
-5 0
-19 0

0
0
~19
~11
—41

Step V. Compute H, from Cjs and Cj.

bl

Cy =

!
Cio =

AN RN

SO OCOO O

(o A A e

CoOoOCcCOoOOo O

-31

—16
—67

-35

—19
=73

N3 e

DO OO OO

2
4
—16

-8
-36

—19

~11
—41

205
(45)
(46)
4]
8
67
; @47
36
145 |
(48)
.
0
~73
ol @
41
~155 |
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Applying Lemma 1 to Cy5 and Cy,, we have

[0 0 ]
0 0
. ~2.7080 —1.8708
_ 50
H, 0 0 ) (50)
—~1.3540 —1.8708
| —5.4160 —5.6125 |

Finally, we have the identified parameter matrices

A(0) = [0.6742 —1.0445 —13540 —1.8708
)= | 1.3484 10445 54160 561257
A [0.6742  —0.0000 —2.7080 —1.8708
HD=\06742 —10445 00000 —0.0000 ] 1)
i) = [0.6742 —1.0445 0.0000 —0.0000
11,3484  —1.0445  0.0000 —0.0000 |
Comparing with the ‘true’ parameter matrices {H(k)}, we have
H(k) = H(k)P, (52)
where P is a generalized permutation matrix:
0 1.4832 0 0
—-09574 0 0 0
P=1 0 0 0 ~0.7385 (53)
0 0 —0.5345 0

6. Conclusion

Two contributions have been made in this paper. The first one is the establishment of a sufficient condition
of identifying multichannel MA parameters that improves the existing result. The generalization obtained in
this paper enables the application of HOS techniques to a much wider range of applications. The second
contribution of this paper is the constructive proof of the sufficient condition. This proof suggests a possible
closed-form identification algorithm although a number of tests must be designed to distinguish various pos-
sibilities. Such a test can be obtained, in theory, from the generalized eigenvalues of matrices F; in (25). For
example, we have Case II if and only if F; has a rank less than m for all possible linear combinations of Cj;’s.
Other sub-cases can be determined similarly. Such a test may not be practical when the cumulant matrices
are estimated. This and other implementation and performance issues of algorithm are under investigation.
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Appendix A. Proofs of lemmas

Proof of Lemma 1. From (13), (16), we have
[F\, F,] = A[diag(d,)A", diag(d,)A"). (A1)

If V consists of the first m left singular vectors of [Fj, F,], then the columns of V span the range space of
A, and there is a nonsingular matrix T such that

A=VT (A2)
Therefore
VIF,V = Tdiag(d))T". (A3)

Let u and 4 be the generalized eigenvector and eigenvalue of {VTF W, V'F, V}, respectively, then
T(diag(d, — 1d>))T u = 0. (A4)

Under the assumption that columns of D are not (pairwise) colinear, the generalized eigenvalues are all
distinct. Since T is full rank, there is one and only one i such that by; = Ab,;. Consequently, for some J; # 0,

T u = de;,

where ¢; is a vector with nonzero elements at the ith entry and zero elsewhere. This is true for every
generalized eigenvalue—eigenvector pair.

T'u,,...,uy) = P, (A.5)

where P is a monomial matrix. We have (15) by solving T from (A.5) and substituting it into (A.2). O

Proof of Lemma 2. It is first shown that if 4 = [ay,...,a,] is an » X m matrix without colinear columns,
then there exists an (n — 1) x n matrix C such that B = CA is an (n — 1) x m matrix that does not have (i)
zero columns, (ii) colinear columns. Let

[

where X = [x1,...,X,] is an (n — 1) x m matrix with colinear columns and y = [y1,..., ¥m] is @ 1 X m vector.
If x; || x;, then
0 0T
x;+¢ X;+¢€ , Ve#£0.
el Hx; 5 #
On the other hand, if x;4x;, then there exists a §;; > 0 such that
[0 ] 0 ] <
X+ ¢ X;i+¢€ , V|| <6y
| Vi K / LY | I ‘ Y

Therefore, for any & € (0, min{d;;})

1
C =
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C.a,)C.a; for all i and j. Next, let
P = U {8 € (07mln{5lj}): CSai = 0}

Since @ is set of discrete points, the set (0, min{5;;}) ~ @ is non-empty. Hence for any & € (0,min{d;;})— @,
and all i and j, C.a; # 0 and C,a:/C.a;. Consequently, there exists a 2 x n matrix C such that

bii - bim
B= =CA
{bm "'b2m:|

does not have (i) colinear columns, (ii) all zero columns.
To complete the proof, define

r= U {(e, B): aby; + Bby = 0}.

Then for any d, fd, € R* — I', matrix

f_ | d
B —[dJB

does not have (i) zero elements, (ii) colinear columns. [J

Proof of Lemma 3. By the definition of 4 © B, if both A and B do not have zero columns, then 4 © B does
not have zero columns. It is sufficient to show that 4 © B does not have colinear columns. By contradiction,
if the first and the second columns of 4 & B are colinear, then b; b, = 0, for all i. Since B does not have
all zero columns, without loss of generality, let b;; # 0 and by, # 0. Hence b1, = 0 and by, = 0. In such a
case, the first and the second columns of 4 & B cannot be colinear. []
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