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Numerous distributed operating systems have been proposed in the literature, some of which have developed into 
commercial systems. Unfortunately, the educational arena has not kept up-to-date with these developments. 
Currently, little educational emphasis has focussed on experimental distributed operating systems. Furthermore, 
only a few systems have been developed as a tool to teach distributed systems, and those that were, are basically 
skeleton systems, and not complete. DUNIX is a fully operational, complete, distributed operating system. The 
DUNIX kernel is intentionally small, modular, and simple, thus is easily understood and modified. A powerful 
interactive kernel debugger available in DUNIX, enables students to easily observe and modify the system. Thus. 
experimentation with an actual system is possible. A sample session that illustrates the salient features of 
DUNIX, in terms of laboratory experimentation is presented. 

1.  I N T R O D U C T I O N  

The stud.y of operating systems has been part of the core 
computer science curriculum for many years. A typical un- 
dergraduate operating systems course consists of classroom 
lectures on operating systems principles as well as laboratory 
assignments to reinforce the lecture material. An operating 
systems course can also be taught by using a real operating 
system to illustrate important concepts and to provide a basis 
for laboratory assignments. Not only does the real operating 
system allow the student to see how individual concepts are 
combined to form a cohesive unit, but this approach also 
gives the student a hands-on learning tool. Unfortunately, 
most production-quality operating systems are far too large 
and complex to be understood by a student in a one-term 
course. To address this problem, two different approaches 
were taken. In the first approach [13], a book describing a 
complete operating system (UNIX TM Version 6) was writ- 
ten. Thus, the students could better understand the operating 
system source code. However, as no kernel experimentation 
tools were developed, debugging the code developed by the 
student was very difficult. The second approach lead to the 
development of a number of smaller operating systems, 
whose main purpose is to illustrate operating systems 
principles to students [3, 5, 20]. The primary disadvantage 
of these "toy" operating systems is that many issues that are 
encountered in the design of real operating systems are often 
ignored. 

Teaching a contemporary operating systems course is 
even more challenging as the field continues to evolve. In 
particular, as the uniprocessor timesharing systems of yes- 
terday are replaced with today's distributed operating sys- 
tems, f'mding a sample distributed operating system to use in 
conjunction with a course may present certain problems. As 
with their non-distributed counterparts, a distributed operat- 
ing system used in a course must avoid overwhelming the 
student with details, but should have sufficient functionality 
to illustrate important operating systems concepts and their 
implementation. 

In this paper, we describe how an existing distributed 
operating system, DUNIX, can be used as a hands-on 

TM UNIX is a trademark of AT&T Bell Laboratories 

teaching tool for operating systems courses. DUNIX con- 
tains most of the functionality found in typical distributed 
operating systems, but is organized in a highly modular 
fashion to hide implementation details and make the source 
code more understandable. DUNIX also has many features 
which can be exploited to aid in teaching an operating sys- 
tems course with a significant laboratory component. 

The remainder of this paper is organized as follows. In 
Section 2, an overview of the DUNIX environment and the 
DUNIX kernel structure is presented. The structure of a 
DUNIX-based distributed operating system laboratory is 
described in Section 3. Section 4 contains a sample DUNIX 
session that illustrates how DUNIX might be used in a 
classroom setting. Concluding remarks are presented in 
Section 5. 

2 .  THE DUNIX O P E R A T I N G  SYSTEM 

The DUNIX operating system [11, 12], a UNIX deriva- 
five, is a fully operational, complete distributed operating 
system in production use at Bellcore. DUNIX provides 
users with the illusion that only a single machine exists, 
when in reality numerous machines comprise the system. 
DUNIX provides the features of a "standard" non-dis- 
tributed operating system while masking the computer 
boundaries. 

A typical DUNIX environment is shown in Figure 1. As 
shown, multiple machines are interconnected via a packet 
switched network. Each machine is fully configured and 
consist of its own local peripherals. To provide high avail- 
ability, disks can be shared 1 between the individual ma- 
chines. 

The DUNIX system is by no means unique. Many other 
distributed operating systems have been developed, e.g., 
Amoeba [14, 15], the V System [4], DEMOS [2], Crystal 
[7], Aegis [9, 10], the CHORUS system [1], the Cambridge 
Distributed Computing System [16], Accent [17], Mach 
[18], Clouds [6], and LOCUS [21]. All of these are/were 
used daily in research environments; in some cases, they are 

1Although the disks are dual-ported, a given disk is physically 
connected to a single computer at a given time. If that computer breaks, 
the disk may be switched to another machine by the system operator. 
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Figure 2. The structure of the DUNIX system 

Figure 1. The DUNIX Hardware Base 

also available as commercial products. For an excellent sur- 
vey of distributed operating systems, the reader is referred to 
[19]. Although these systems are widely publicized, there 
have been no published accounts of using these systems as 
educational tools. 

2.1 Global Structure of the DUNIX System 

In DUNIX, each computer has its own copy of the ker- 
nel. All local kernels cooperate to create the illusion of a sin- 
gle UNIX machine. Each computer is fully autonomous and 
every kernel is equivalent and operates in the same manner. 
Note many distributed systems, like those employing the 
client/server model, do not follow this principle. Further- 
more, in DUNIX a set of  cooperating kernels resemble a 
single independent kernel in that no distinction is made re- 
garding the locality of  an operation. Supporting such a 
structure simplifies the debugging of the system since de- 
bugging a distributed systems requires only the debugging 
an individual kernel on a single machine. 

The DUNIX kernel is small, modular, and relatively low 
in complexity as compared to other complete operating sys- 
tems such as Berkeley 4.x UNIX. The kernel is divided into 
modules that only interact with other modules through their 
calling interface. This allows a programmer (or a student) to 
concentrate on one aspect of the system without worrying 
about side effects between modules or implementation details 
of modules not being studied. 

The structure of the kernel follows Dijkstra's concept of 
software levels [8]. The system is composed of  levels of  
abstractions where any level can only depend on lower 
levels. Figure 2 shows this structure. The kernel is com- 
posed of three main components: the lower kernel, the upper 
kernel, and the switch. Each of  these components is active 
only when a process is running within that component. The 
same process may run in any component. 

All objects (files, devices, etc.) reside at exactly a single 
computer. There is no remote caching of objects' states, and 
read ahead and write behind of  files are confined within the 
computer having the file. The system is procedure call ori- 
ented. When a process wishes to perform an operation on an 
object, it does not send a message to a server, but instead 
expands to the computer where the object is located, and 
performs the operation itself. 

The lower kernel maintains local objects. It provides ab- 
stract operations on these objects, and is responsible for the 
integrity of  the objects. The upper kernel maintains the con- 
text of  the processes, i.e., the user ID, the file creation 
mask, the binding of  open file-descriptors to lower level 
names, etc. 

The upper and lower kernels are not concerned with 
networking and communications protocol issues; only the 
switch is cognizant of the peculiarities of  the network. The 
switch transfers the activity of  a process from the upper ker- 
nel of one computer to the lower kernel of another computer 
(which could be the same computer). 

The upper and lower kernels do not distinguish a remote 
operation from a local one, while the switch does not know 
the semantics of  the activity it is transferring, e.g., it does 
not distinguish between killing a process and creating a file. 
Most services are provided to the upper kernel via the 
switch, except for CPU cycles and address-space manage- 
ment. These services are directly provided by the the local 
lower kernel. 

2.2 Naming of System-wide Objects 

A system-wide object is an object residing in one com- 
puter and of potential interest to processes in other comput- 
ers. In DUNIX, system-wide objects have universal names. 
While a process is in the upper kernel, it may hold or store 
only the universal names of the object(s) of interest. It may 
access the objects only via these names. Universal names are 
not reused. A universal name has the following attributes: 

• Fixed size bit-string, the size depending on the type 
of the object. 

• Location independence (utilized in process migra- 
tion). 

• Context independence, namely, if  two processes 
each have a universal name and these names are bit- 
wise equal, then both names refer to the same object. 
This attribute is important when forking one process 
to two. 

The DUNIX universal device names are equivalent to 
standard UNIX device numbers. These names are 16-bits 
wide and encode, among other details, the ID of the com- 
puter having the device. Naming of files is more elaborate, 
since unlike devices, their lifespan is relatively brief. Uni- 
versal file names refer only to active files, i.e., files whose 
representations reside in the primary memory file table. The 
64-bit name contains the following details: 

• Unique identifier (the same unique identifier is 
recorded in the file representation) 

• ID of the computer having the file 

• Index into the primary memory file table, and a 
unique identifier. 
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2.3 Software Statistics 

The size of a DUNIX kernel depends on the assortment 
of I/O devices the kernel drives. Consider a modest DUNIX 
kernel with a minimal set of  device drivers. Such a kernel 
has device drivers for disks and RS232 lines, but does not 
support TCP/IP. This kernel would contain approximately 
17,4002 lines of  source code. Include files which are in- 
serted within several other source files by the compiler 
(xxxx.h files) are counted only once. Comment and blank 
lines compose roughly 30% of the total count. The 17,400 
lines of the are partitioned as follows: 

• An Ethernet-based switch (1,800 lines) 

• The upper kernel (2,800 lines) 

• The lower kernel (12,800 lines) 

Because the lower kernel is responsible for accessing the 
various devices, the disparity in size between the upper and 
lower kernel becomes even larger in a richly-configured 
system containing a large assortment of I/O devices. 

3 .  A D I S T R I B U T E D  O P E R A T I N G  S Y S T E M  
E D U C A T I O N  L A B O R A T O R Y  

3 . 1 .  W h y  Use DUNIX?  

Two earlier operating systems have been used as teach- 
ing tools, namely, MINIX [20] and XINU [5]. Both 
systems have an advantage over DUNIX in that they are 
accompanied by a textbook and execute on a wide variety of 
machines. Since there is currently no text accompanying, 
DUNIX can only be used as a tool in an advanced dis- 
tributed operating systems laboratory course. 

For laboratory courses, DUNIX has numerous advan- 
tages over these two systems. The first is that DUNIX is 
truly a distributed system. Second, unlike XINU, it is a 
production-quality operating system that contains copy-on- 
write memory management,  process migration, device 
drivers, and most notably, a powerful debugger which en- 
ables the user to view the behavior of  the internals of  the 
kernel. A DUNIX system also has extensive user-level 
software including software development tools, TCP/IP, a 
mail system, a text formatter, print spooler, and the X Win- 
dows System TM. 

Third, DUNIX supports system partitioning, i.e., the 
physical machines on the same network can be configured 
into independent disjoint systems. Due to the single machine 
illusion and the symmetry in the mode of operation, each 
disjoint system, even if consisting of only a single machine, 
resembles the global system. Thus, the debugging of  the 
system is simplified. 

Fourth, in DUNIX a subset of the computers are used 
for software development and other non-experimental pro- 
gramming tasks. This subset of computers is designated as 
the production system. The remaining computers are desig- 
nated crash computers. A crash computer is used to test new 
kernels or other utilities. Because no production work is 
done on a crash computer, normal users are not affected 
during testing. 

2In comparison, an equivalent Berkeley 4.2 UNIX kernel consists of 
approximately 45,000 lines. 
TM X Windows is a trademark of MIT. 

By connecting the RS232 console ports of each crash 
computer to the production system, a crash computer may be 
halted and restarted, new kernels may be downloaded into it, 
etc., all without any physical access to either machine. Thus, 
a crash computer may be manipulated from a user logged 
into the production system in the same manner that it could if 
a user was physically located at the computer's console. The 
console line is also used by the debugger to communicate 
with the user. 

Finally, a DUNIX system can be configured such that 
the critical segments of  the f'flesystem are write protected via 
hardware and/or software. As a minimal file system is rela- 
tively large (-20 Mbytes), reloading it whenever a computer 
crashes is a lengthy and bothersome process. Since any ex- 
perimentation requires a controlled environment, it is vital 
that for every newly configured kernel, the file system will 
always start out in the same state. Since experimental ker- 
nels crash very often and can easily corrupt the filesystem, 
supporting read-only filesystems is essential. 

3.2.  Laboratory Organization 

In an ideal systems laboratory, a DUNIX system would 
be configured in the production system/crash computers re- 
lationship described above. Students are provided with a set 
of "bare" slave machines which are used as crash computers. 
With these machines, students can experiment with all as- 
pects of operating systems including CPU scheduling, exe- 
cuting privileged instructions and writing device drivers that 
directly access devices connected to them. 

For example, by modifying the CPU and disk schedul- 
ing routines, a student can alter the performance of the sys- 
tem, possibly introducing new scheduling priorities. New 
process migration policies can be studied. Varying the swap 
space, cache strategies, and file system organization are all 
experiments that can be performed. The appropriate subset 
of experiments are left to the discretion of the instructor. 

By giving every student in the class an account on the 
production (master) DUNIX system and each team of (2-3) 
students a time allotment on a subset of the crash computers, 
a team can build kernels on the production system and test 
them on a crash system. As shown in Figure 3, students sit- 
uated at any terminal can develop their software on the pro- 
duction system (which would normally be more a powerful 
system than the crash computers) and then download the 
software onto a crash computer. In the figure, the six physi- 
cal computers axe partitioned into 4 logical systems (systems 
0, 1, 2, 3): 2 computers used as a single production system 
(sysid=0), 2 computers configured as a single crash system 
(sysid=l),  and two additional crash computers (sysid=2, 
sysid=3). Reconfiguring the logical systems can be done by 
a suitably privileged user at a terminal; no hardware recon- 
figuration is necessary. 

4 .  E X P E R I M E N T A T I O N  W I T H  DUNIX 

The DUNIX kernel debugger both traces specified event 
as well as provides an interactive environment to analyze a 
running system. In the interactive mode, the kernel is halted 
and the state of kernel can be examined. In the trace mode, 
the system continues to execute, however, events selected by 
the user are traced. Thus, a user can witness the various 
activities associated with a particular system call. Conse- 
quently, the DUNIX kernel debugger can be used not only 
as an aid to kernel debugging, but also as a visualization tool 
to illustrate the behavior of a kernel. By observing the sys- 
tem trace and the performance counters, a user can readily 
appreciate how changes in algorithms or kernel parameters 
affects system behavior. 
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• - -  Console Lines 

Figure 3. Laboratory Configuration 

"VAX750" output, all remaining output presented is gener- 
ated by the crash system, and user input is processed directly 
by the crash computer. 

mirage> make 
cc -g -c caehe.c 
ld --o dunlx -1" 80000000 assembly.o procass.o switchas.o cache.o 
dev.o clock.o console.o devmem.o exec.o fde.o fsvolume.o fmark.o 
fnarne.o prtarne.o prinff.o proe.o proeh.o psig.o hotel.o symdef.o 
sysync.o syscall.o text.o tty.o detma.o hp.o mba.o dh.o uba.o 
conf.o exos.o ptty.o null.o ts.o ci.o tu.o msa.o dd.o ld1200.o 
nmi.o bi.o migrato.o Dadhoe.o Dbreak.o Debger.o Dmtr.o Dkemel.o 
mirage.> dl 3 -S 
Downloading donix; 171008(text)+32768(data)=203776 bytes 

+25388b of symbols 
con: type ̂ B <er> to exit. 
VAX750 
Symbol table: 534 functions, 23657 bytes 
6291K bytes of memory (X600000) 
kernel page-table at CDS00 = 80AFCA00 
maxkmem = 12582912, endkmem=l1618816 
boot-ar~ = FF 

As the newly downloaded kernel comes to life, several 
system parameters may be set. Usually the default parame- 
ters are sufficient. In the example below, no modifications 
to the default values are made with the exception of  the sys- 
tem id value (sysid 3). Initially the kernel probes the 
hardware to determine which devices are available (auto- 
configuration) and than resets to user level under single user 
mode. The dunix # prompt is produced by the single user 
shell. 

As some bugs are time dependent, trace output may hide 
some of  these errors. However, without the tracing, detect- 
ing and correcting the errors is difficult. To remedy this 
problem, the DUNIX debugger can log the output in an in- 
ternal circular buffer for display at a later time. Furthermore, 
as writing to a user terminal dramatically increases the pro- 
cessing time, infrequent errors are not easily reproduced 
without suppressed printing. 

To illustrate the potential of exploiting DUNIX as an ed- 
ucational tool, a sample session using the DUNIX debugger 
is provided. In general, all user commands are highlighted 
in bold-face type. Control A (^A) transfers control from 
the user level to the debugger. In the interactive mode, the 
kernel activity is suspended, hence the its state is easily ex- 
amined. Issuing a quit command (q), restarts the execution 
of the kernel. The "dun ix#"  and "! " are the user level and 
debugger prompts, respectively. 

A session begins by compiling a new kernel on the pro- 
duction system (mirage)  via the m a k e  command. Once 
compiled, the new kernel is sent over the console line to the 
crash computer. As seen below, downloading the newly 
compiled kernel from the production system to the crash 
computer(s) is achieved via typing a user command (dl) and 
does not require physical access to either system. As other 
researchers [7] have observed, requiring physical access to 
the crash computer  to download a new kernel is a 
considerable deterrent to the use of  the system. In this ex- 
ample, the kernel symbol table is also downloaded. This 
enables the debugger to install breakpoints and to produce a 
symbolic printout of the calling stack. 

Once the kernel is loaded, the production system gener- 
ates a virtual connection between the user terminal and the 
console line of  the crash computer. Starting from the 

READY...! ?~ar 
var - print the kernel-debugger variables 
! v a r  
here= 0 - This machine ID 
rdev= 0102 - root device 
rbase= 128 - base of root device 
srdev= 0105 - super-root device 
memdev= 0203 - swapping device 
maindev= 0224 - device having the main-block (don't change minor#) 
sysid= 0 - systems with different ID will not communicate 
! sysid 3 
l q  
UBA0 at F30000 
MBA0 at F28000 
DH in UBA0 at 0760420 + DM at 0771100 
PTI'Y: 26 ttys 
DEUNA(DELUA) in UBA0 at 0774510 
FUJI160M on dk00, via MBA0/0 read-only 
FUJI160M on dk01, via MBA0/I 
dk01b is swap-area; 204-43K bytes 
dk30a mounted on / 
dk30d mounted on ... 
1082K(kemel)+5209K(nsr) = 6291K(total mere) 
Machine #3 
dunix# 

As faulty kernels are likely to corrupt the file system, 
DUNIX may be used with a write-protected file system. 
This protection is provided either via software and/or hard- 
ware. In the example below, an unsuccessful attempt is 
made to write onto a read only disk partition. To provide a 
writeable partition, a clean, temporary disk partition is cre- 
ated (mktmp).  
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dunix# ep /etelpasswd new-f i le  
cp: cannot create new-file - Read-only file system 
dunix# d f  

/dev/dk30a on / (R.O.) 
dunix# m k t m p  
mkfs/dev/gdkle 7000 
total - 7000 blocks 
inodes - 280 blocks 
free-list step = 3 
mount -p/dev/gdkle/~np 
endif 
dunix# d f  

/dev/dk30a on [ (R.O.) 
/dev/dk31e on/tmp 
dunix# ed /tmp 

FREE TOTAL %FREE 
1702K 19456K 8% 

FREE TOTAL %FREE 
1702K 19456K 8% 
6877K 7168K 95% 

Providing an experimental environment requires suffi- 
cient on-line help, otherwise experimentation becomes more 
of a library search and not a "playful experience". DUNIX 
provides such support via the ? command. Simply typing a 
question mark in the debugger mode prints all the debugger 
options. A question mark followed by an option name pro- 
vides a detailed description of the option. Commands  are 
executed once. Variables are integer values and can read- 
ily be examined and modified. A flag is activated by typing 
its name, either with or without a + sign and is cancelled by 
typing - flag name.  Flags are usually used to invoke 
traces at specific events. For example, the csw flag traces 
context switches. 

dunix# ^A ! 
!?  
FLAGS: sc, fsse, fsc, ex, sig, exec, bexit, swp, csw, devinit, ST. FILTER, 
badname, macheek, yellall, pflt, scall, inmsg, ioetal, cln, trw. ubaspace, 
excom, hptr, hperr, tstr, tserr, tstream, turf, msatr, msamsg, msaer, lderr. 
notout, loopb, nohkeeper, delua, mig, tl, t2, t3, t4, t5, t6. tT. t8, 
VARIABLES: here, rdev, rbase, srdev, memdev, maindev, conspeed, sysid, 
sclock, xpipe, wepu, invcomed, ldmaxt, interr, maxdil, vl,  migte, migcyc, 
COMMANDS:menu,?,help,q, flg,var,pt,et,playb,ssc,ls,a2f, b,mark,hmark, 
s,mem,rs,tty.p,proc,mini, file,bi,nmi,hpst, mbast.msast,v ol,pbook,port. 
text.seg,pgt,ckpt,prdeu,trc.netm,mtr,cmtr,cpu,msys,mscall,d 1 ,d2,d3,hey, 
echo,necho,exst,tsst,tust 
t,/ 

Understanding the execution of a kernel requires the ca- 
pability of tracing individual events. In the example below, 
all system calls are traced for the execution of the Is com- 
mand. As shown, both the successful and failed system 
calls are printed with the appropriate indication of status. All 
system calls, except fork,  result in two statement being 
printed; once at the start and once at the return of the execu- 
tion of the call. The fork system call results in three state- 
ments, once at the start, once upon the return of the child 
fork, and once upon the return of the parent fork system call. 

! ?exec  
exec - trace successfull exec's 
[ + e x e c  
dunix# echo X X X  • NEW-f i le  
dunix# Is 

-csh[2339] exec: ls 
! ?sc 
sc - trace system-calls 
[ s c  
!q  

syscall exec(Xd2e0=-"/bin/ls",Xda70,Xde24) by 1s[2339] RETURNING 0 
syscall fork() by -csh[355] RETURNING X923=2339 
syscall wait() by -csh[355] 

syscall time() by 1s[2339] 
syscall time() by ls[2339] RETURNING X245bcSe5=609994981 
syscall ioctl(1,X7408,X7fffcad6) by ls[2339] 

syscall ioctl(1,X7408,XTfffcad6) by ls[2339] RETURNING 0 
syscall brk(X6Dc) by 1s[2339] 

syscall brk(X6tgc) by ls[2339] RETURNING 0 
syscall stat(X4tf4=".",X7fffca90) by IS[2339] 

syscall stat(X4 lf4=".",X7fffea90) by ls[2339] RETURNING 0 
syscall open(X41f4=".",0) by ls[2339] 

syscaU openCX41f4=".",0) by ls[2339] RETURNING 3 
syseall read(3,X7400,X400) by lsl2339] 
syscall read(3,X7400,X400) by ls[2339] RETURNING X80=128 
syscall read(3,X7400,X400) by 1s[2339] 

syseall read(3,X7400,X400) by 1s[2339] RETURNING 0 
syscaU close(3) by 1s[2339] 

sysca11 close(3) by 1s[2339] RETURNING 0 
syscall write(1,X55c4,9) by ls[2339] 

NEW-f syscall write(1,X55cA,9) by ls[2339] RETURNING 9 
ile 

syscan exit(0) by IS[2339] 
syscall wait() by -csh[355] RETURNING X923=2339 
syscaU write(1,X7fffc968,7) by -csb[355] 

dunix# syscall write(1,X7fffc968,7) by -csh[355] RETURNING 7 
syscall ioctl(3,X7412,X7fffcae4) by -csh[355] 
syscall ioctl(3,X7412,X7fffcae4) by -csh[355] RETURNING 0 
syscall ioctl(3,X7411,X7fffcaea) by -csh[355] 

syscall ioctl(3,X7411,X7fffcaea) by -csh[355] RETURNING 0 
s~'scall readf3,X7fffcalc,Xc7 / by -csh[355] 

Disk I/O can be traced. Disk partition dk30a contains 
the/ete/passwd file, hence only READs are required. The 
READ and WRITE output related to disk partition dk31e 
results from the kernel initially reading the current (dot) di- 
rectory prior to writing the password file in that directory. 
As shown, each disk request produces two output state- 
ments. The first is for the queueing and the second is for the 
processing of the request. Note that failed system calls are 
also specifically traced in this example. 

^A  ]-sc  
! - c s w  
[ ?fsc  
fsc - trace failed system-calls 
!fsc 
!q  
dunix# cp ~no-file 
FAnF]3 syscall open(X7fffcb77="hao-file",0) by cp[675] [ENOENT] 

cp: cannot open /no-file 
dunix# ^A 
[ ?hp t r  
hptr - Trace HP I/O 
! h p t r  
!q  
dunix# cp letclpasswd . 
dk3Oa: queue read of block 643 (req@L6ac6c) 
dk30a: READ, blk=643=1542=<4,8,6>, 
dk30a: queue read of block 984 (req@L6acf4) 
dk30a: READ, blk--984=2224=<6,9,16>, 
dk30a: queue read of block 1314 (req@L6ad7c) 
dk30a: READ, blk=1314=2884=<9,0,4>, 
dk30a: queue read of block 1335 (req@L6ae04) 
dk30a: READ, blk=1335=2926=<9,1,14>, 
dk31e: queue read of block 282 (req@LraeSc) 
dk31e: READ, blk=282=160564=<501,7,20>, 
dk30a: queue read of block 4227 (re~@L6af14) 
dk30a: READ. blk--4227=8710=<27,2,6>. 
FAILED syscall s ta t (X ta98=" . / /passwd ' ,X7 f f f ca9c)  by cp[739] 
[ENOENT] 
dk31e: queue read of block 8 (req@L6afgc) 
dk31e: READ, blk=8=160016=<500,0.16>, 
dk31e: queue write of block 282 (req@L6ae8c) 
dk31e: WRITE, blk=282=160564=<501,7,20>, 
dk30a: queue read of block 4802 (req@L6b024) 
dk30a: READ. blk=4802=9860=<30,8,4>, 
dk30a: queue read of block 4805 (req@L6b134) 
dk30a: READ, blk--4805=9866=<30,8,10>. 
^ A ! - hp t r  
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Breakpoin ts  can  be set at ent ry  and  exit  o f  any  procedure  
o f  the  kerne l .  For  e x a m p l e ,  the  p a t h 2 f n m  p r o c e d u r e  
t r ans la tes  a logica l  n a m e  to a b ina ry  name .  A s  shown ,  a 
b r eakpo in t  is  set  at the  en t ry  and  exi t  o f  the  p a t h 2 f n m  
funct ion .  T h e  ca l l ing  s tack  d i sp lay  c o m m a n d  (s) d i sp l ays  
the  ca l l i ng  s e q u e n c e  that  r e su l t ed  in an  i n v o c a t i o n  o f  
p a t h 2 f n m .  T h e  +s  1 op t ion  l is ts  the  v a l u e s  o f  all local  
var iables  on the top o f  the call ing stack. 

dunix# 
dunix# ^A ! ?fsse 
fsse - trace file-system system-calls 
! fssc 
! ?b 
b lfunetinn lex]] - Install (entry & exit) break-polnt at 'function' 
! b path2fnm 
lq 
dunix# Is /e tclpasswd 

syseall exec(Xd2e0="/bin/ls",Xe364,Xe4d4) by -csh[803] 
B.P. path2fnm(53984=Xd2e0, 0, 2147472324=X7fffd3c4) 

[in file fsymbol.] 
[q 
B.P. path2fnm(53984=Xd2e0, 0, 2147472324=X7fffd3c4), returning 1 

[in file fsymbol.] 
! ? s  
s [count] - Display the 'count' upper stack-frames 
!s  
B.P. path2fnm(53984=Xd2e0, 0, 2147472324=X7fffd3e4), returning 1 

[in file fsymbol.] 
exece?(53984=Xd2eO, 58772=Xe594, 58580=-XeAd4) [in file exee.] 
syseallO [in file syseall.l 
l + s  1 
B.P. path2frma(53984=Xd2eO, 0, 2147472324=X7fffd3c4), returning 1 

[in file fsymbol.l 
fnp=214747232A=X7fffd3c4 path(p)=53984=Xd2e0 mode(p)=0 
fnp(p)=2147472324=X7fffd3eA rv=-I dnp=2147472212=X7fffd354 
enk=1852400175=X6e69622f copy=L17760 he=7 rnc=-i ene=7 
myerr=0 ~xbl--4 trb12=2147472324=X7fffd3c4 hookno=L3194 

f=L2d0f4 t=L4e55c sr=-2 
[q 

syscall exee(Xd2e0=-"/bin/ls",Xe364,Xe,4d4) by ls[803] RETURNING 0 
syseall stat(X7fffeb77="/etelpasswd",X7fffeaaO) by ls[803] 

B.P. path2fnm(2147470199=X7fffeb77, 0, 2147472444=X7fffd43c) 
[in file fsymbol.] 

[q 

B.P. patb2fnm(2147470199=X7fffeb77, 0, 2147472444=X7fffd43c), 
returning 1 

[in file fsymbol.] 
!q 

syseall s ta t (X7f f f eb77="/e te /passwd" ,X7f f f caaO)  by 1s[803] 
RETURNING 0 
]ete]passwd 
dunix# ^A[ -b * 
! -[ssc 

The  hand l i ng  o f  scarce  r e sources  is o f  p r imary  concern  
in opera t ing  sys t ems .  A c o m m o n  error is not  rec la iming  un-  
u sed  r e sou rces  or  to keep  t h e m  locked  unnecessa r i ly .  T he  
debugge r  provides  a m e c h a n i s m  for check ing  the state o f  the 
s y s t e m  resources .  A s  s h o w n  below,  pr ior  to execu t ing  the  
e c h o  x x x x x  > m y f i l e  c o m m a n d ,  on l y  6 ac t ive  f i les  are  
used  in the  sys t em.  Whi l e  execu t ing  the  echo  c o m m a n d ,  7 
active f i les are found.  

dunix# ^A!  ?sse 
sse [/+/-]sse [syseall] - traco/traee&stop/untraee the given syseall 
! +ssc creat  
[ q  
dunix# echo x x x x x  • myfi le 

syscall ereat(XdgfS="myfile",Xlb6) by -esh[1027] 

! r$ 
RESOURCES: 
USER-MEMORY: 9801[free] + 138[cache] + 193[used] = 10132[tutal] * 512 
bytes 
SECODARY-MEM: 644[free] + 0[used] = 644[total] * 31744 bytes 
PROC: 

288[freel+l [run]+9 [pause]+2[waltl+O[ fetus]+0[bizarre]=300[total] 
=12[loaded]+01out]+288[free]; 

FILES: 294[free]+6[used]+O[loeked]+O[bizarre]=300[total] 
FMARKS: 298[free]+2[used]+O[wait] = 300[total] 
BUF: 297 lfree]+0[I/O]+0[lock]+3[used]=300[total] 
TEXTS: 1381free]+2[used]+10[cached]+0[bizarre] = 150[tutal] 
TCP: Ports: 0[usedl+50[free]=50[total]; 
!q 

syseall ereat(Xd9fS="myfile",Xlb6) by -esh[1027] RETURNING 5 
I r $  
RESOURCES: 
USER-MEMORY: 9801[free] + 138[cache I + 193[used] = 10132[total] * 512 
bytes 
SECODARY-MEM: 644[free] + 0[used] = 644[total] * 31744 bytes 
PROC: 

288[free]+0[run] +9[pause]+3 [walt]+0[ fetus]+0[bizarrel=300[total] 
=121loaded]+O[out]+288[free]; 

FILES: 293[ free]+7[used]+O[locked]+O[bizarre]=300[total] 
FMARKS: 297[free]+3[used]+0[walt] = 300[total] 
BUF:  2971free]+0[l/O]+0[loek]+3[usedl=300[tutal] 
TEXTS: 138[free]+2[used]+10[eaehed]+O[bizarre] = 150[totall 
TCP: Ports: 0[used]+50[ free]=50ltotal]; 
!q 
dunix# rm myfi le 
dunix# 

I f  the  use r  is in teres ted  in addi t ional  detai ls  conce rn ing  
on ly  file usage ,  that is a lso possible .  For  example ,  by step- 
p ing  th rough  a file write whi le  e x a m i n i n g  the  s y s t e m  file 
table, the  creat ion o f  a new  file ent ry  (Sit#61) is observed.  

! +S$C t reat  
~q 
dunix# echo x x x x x  • myfile 

syscall ereat(Xe5b8="myfile",Xlb6) by -csh[867] 
! ? f i l e  
Erie [a] - Print the file-table 
! f i l e  
File-table: 
SIt#0: /; dev=014102, mode=040755(FTDIR), count=3, leount=l, 
flg=FACTIVE 
Sit#l: ...; dev=014105, mode=040777(FTDIR), count=l, lcount=l, fig= 
Slt#5: null; dev--O14102, mode=020666(FTCHR), count=l, lcount=l, fig= 
Sit#6: console3; dev=014102, mode=020000(FTCHR), count=l, lcount=l, 
fig= 
S1t#37: trap; dev=014102, mode=040755(FTDIR), count=l, lcount=l, fig= 
Slt#55: tmp; dev=014206, mode=040777(FTDIR), count=3, lcount=l, 
fig=FACITVE 
!q 

syscall ereat(Xe5b8="myfile",Xlb6) by -csh1867] RETURNING 5 
! f i l e  
File-table: 
SIt#0: /; dev=014102, mode=040755(FTDIR), count=3, lcount=l, 
flg=FACTIVE 
Slt#1: ...; dev=014105, mode=040777(FTDIR), count=l, lcount=l, fig= 
Sit#5: null; dev=014102, mode=020666(FTCHR), count=l, lcount=l, fig= 
Sit#6: console3; dev=014102, mode=020000(FTCHR), count=l, lcount=l, 
fig= 
Slt#37: tmp; dev=014102, mode=040755(FTDIR), count=l, lcount=l, fig= 
Slt#55: tmp; dev=014206, mode--040777(FTDIR), count=3, lcount=l, 

flg=FTMOD+FACI'IVE 
$1t#61: myfile; dev--014206, mode--0100644(FTREG), count=l, leount=l, 

fl g=b'TMOD+FRMOD+FACI'IV E 
~q 

Similar ly ,  e x a m i n i n g  the p rocess  table dur ing  an e x e c  
s y s t e m  call execu t ion  i l lustrates  the t r ans fo rmat ion  o f  the 
c s h [ 8 9 9 ]  execu t ion  to that o f  the  p s [899]  execut ion .  T h e  
trailing n u m b e r  is the process  id. 
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dunix# AAI +ssc exec 
~q 
p s  

syscall exec(Xd2e0="/binlps",Xe67c,Xe4d4) by -csh[899] 
! ?proc  
proc [index]pointer [count]] - display process 
! p r o p  
Processes: 
hkeeper[0], ppid=0, tty0, slt#O[L4b878], SWAIT <DEMON> 
mkeeper[1], ppid=0, try0, slt#1[L4b9a4], waiting for work <DEMON> 
taxi[2], ppid--O, tty0, slt#2[L4bad0], waiting for WORK <DEMON> 
taxi[3], ppid=0, try0, slt#3[L4bbfc], waiting for WORK <DEMON> 
taxi[4], ppid=0, try0, slt#4[l.A.bd28], waiting for WORK <DEMON> 
taxi[5], ppid=O, tty0, slt#5[L4be54], waiting for WORK <DEMON> 
hitman2[6], ppid=0, try0, slt#6[L4bf80], waiting for work <DEMON> 
hitmanl[7] ,  ppid=0, tty0, slt#7[l..4c0ac], waiting for work <DEMON> 
herald[8], ppid--0, tty0, slt#8[L4cldS], waiting for work <DEMON> 
init[323], ppid=0, try0214300, s]t#9[L4c304], SWAIT, doing wait, 
-csh[355], ppid=323, try0214300, slt#10[L4c430], URDY, doing fork. 
-csh[899], ppid=355, ttyO214300, slt#11[L4c55c], RUN, doing exec, 
~q 

syscall exec(Xd2e0=-"Foin/ps",Xe67c,Xe4d4) by ps[899] RETURNING 0 
! p r o c  
Processes: 
hkeeper[0], ppid=0, tty0, slt#0[L4b878], SWAIT <DEMON> 
mkeeper[1], ppid=0, tty0, slt#1[l.Ab9a4], waiting for work <DEMON> 
taxi[2], ppid---O, tty0, slt#2[L4bad0], waiting for WORK <DEMON> 
taxi[3], ppid=0, tty0, slt#3[IAbbfc], waiting for WORK <DEMON> 
taxi[4], ppid=0, tty0, slt#4[L4bd28], waiting for WORK <DEMON> 
taxi[5], ppid---0, try0, slt#5[LAbe54], waiting for WORK <DEMON> 
hitman2[6], ppid=0, tty0, slt#6[L4bfS0], waiting for work <DEMON> 
hitmanl[7] ,  ppid--0, tty0, slt#7[L4c0ac], waiting for work <DEMON> 
herald[8], ppid=0, tty0, slt#8[LAcld8], waiting for work <DEMON> 
init[323], ppid=0, tty0214300, slt#9[L4c304], SWAIT, doing walt, 
-csh[355], ppid=323, tty0214300, slt#10[L4c430], SWAIT, doing walt, 
ps[899], ppid=355, tty0214300, slt#11[kAc55c], RUN, doing exec, 
[ q  
PID TT STAT TIME COMMAND 
323 c3 I 0.14 init 3 ff  
899 c3 R 0.14 ps 

dunix# 

Modifying performance related algorithms, e.g. CPU 
and disk scheduling, necessitates the capability of viewing 
the performance of the system. As shown below, such ca- 
pability exists in DUNIX. The dbg command invokes the 
debugger from the user level. Thus the dbg cmtr; cp 
/etc/hosts .; dbg mtr  command results in the clearing of 
the system meters and the displaying of the performance in- 
volved in copying/etc/hosts to the dot directory. 

dunix# ! ?cmtr 
cmtr - Clear all meters 
! ?mtr  
mtr Display meters 
] q  
dunix# dbg cmtr; cp /etc/hosts .; dbg mtr  
# 8.5 see. 
# CPU: 42%idle(3.6s) + 0%usr(0.0s) + 57%sys(4.8s) = 100%total(8.5s) 
# 63%syslo(3.0s) + l l%syshi(0.5s)  + 26%sysint(1.2s) = 100%sys(4.8s) 
# 830 syscalls (97/s), 524 con-sw (62/s), 0 swapin (l/8s) 
# user i/o: 411Kby read (48K/s), 411Kby write (48K/s), 10240by exec 
(IK/s) 
# cache: 1889 calls = 950 rd + 532 rdwr + 407 wr; maxdir ty=77,  
minfree=218 
# -cache: 755 i/o = 412 rd + 3 r.f.w. + 340 wr; 75 dirty; 398 rd-ahead(398 
used) 
# MBA: 758 interrupts (95/sec) 
# HP0: 410 trns(48/s), 22 pos(3/s), 419K bytes(49K/s), 0 retries 
# 88%busy(7s) + 12%idle = 57%flow+4%pos+28%walt+12%idle = 100% 
# HPI: 345 trns(40/s), 9 pos(1/s), 353K bytes(41K/s), 0 retries 
# 69%busy(5s) + 31%idle = 40%flow+2%pos+27%walt+31%idle = 100% 
dunix# 

None of the above examples have dealt with the dis- 
tributed aspects of DUNIX. In the accompanying screen 
display, a user examines the implementation of the change 
file mode (chmod) system call. The top right hand window 
displays the source code. The source code consists of two 
routines: chmod and chmodl. The chmod system call ini- 
tiate with first routine which executes on the local computer. 
The second routine, invoked by the chmod routine, exe- 
cutes on the machine containing the desired file. In the ex- 
ample presented, two files are modified. The larger window 
on the left-hand-side illustrates that all activity is local for the 
local file. Also shown in the larger window is the local ac- 
tivity needed for the remote file. The remote activity is per- 
formed on the remote machine (machine 2), shown in the 
lower, smaller window on the right-hand-side. Note that the 
actual code is identical regardless of where the file is situ- 
ated: local or remote. The three "CPU load" windows are 
monitoring the production system. The two crash computers 
(machines 2 and 3) are totally independent from the remain- 
ing three machines, thus are not represented in the perfor- 
mance meters. 

The sample session ends by sending a thank you mes- 
sage to a colleague in Syracuse University, Syracuse New 
York while tracing only the exee system calls. As seen the 
smtp command is executed, the message is sent and the 
connection is terminated. 

dunix# ! ?exec 
exec - trace successfull exec's 
! e x e c  
~q 
dunix# mail  Frieder@top.c is .syr .edu 

-csh[1251] exec: mail Frieder@top.cis.syr.edu 
Subject: Welcome to Euromicro  
G i d e o n ,  

You are now part o f  the mail example in Euromicro. 
Ami,  Ophir, and  Mark.  
^DEOT 
dunix# send[1347] exec: sh -c/usr/ l ib/smtp/smtpqer 'to 

sh[1379] exec: csh -f/usr/ l ib/smtp/smtpqer to 
csh[1411] exec: value.of SMTP QUEUE 
csh[1443] exec: mktemp Tmp1379 
csh[1475] exec: cat 
csh[1507] exec: In Tmp1379a 1002 
csh[1539] exec: rm Tmp1379a 
csh[1571] exec: cp /dev/null 1002.err 
csh[1667] exec: smtp top.cis.syr.edu root Fried 
csh[1731] exec: cat 1002.log 
csh[1763] exec: rm 1002.log 
csh[1795] exec: rm -f  1002.err 1002.c 
csh[18271 exec: rm -f  1002 

5.  SUMMARY 

The study of operating systems is a fundamental compo- 
nent of current undergraduate computer science syllabi. 
Traditionally, operating systems education consists of read- 
ing textbooks and research papers, coding relatively small, 
model operating system, possibly only some of individual 
components of the system, and participating in various 
classroom discussions. We believe that in addition to the 
traditional teach approach, experimentation with an actual 
system is necessary. Specifically, traditional teaching ap- 
proaches introduce the student to the fundamentals of oper- 
ating systems, but to obtain deep insight to the intricacies of 
systems, experimentation is required. 

This paper focussed on the exploitation of DUNIX, a 
complete, modular, distributed operating system, as a 
teaching tool for experimental operating systems laboratory. 
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m l r a g e l  mi rage4 ml rage5  

o xxxx > remote-File 
o xxxx > / t t~/local-?ile 

This machine 13 

c h ~  
ch~odl 

z5 0 
~8 /m ch~od sBstem ca~l - upper kernel */ 
17 chmod(patname, mode) 
13 char *patname~{ 
19 tname~t fnm~ 
20 i f (  path2fnm(patname, O, &tam) ) 

~hP.~dl(fme¢(fnm), fnm, mode)~ 
) 

23 
24 /*chad- lower kerr~l ~X/ 
25 clnmodl(t~, mode) 
26 £name_t tnm:{ 
27 tile_~ *tp~ 

IF( I (tp = Fnm2tp(tnm)) )return~ 
I¢(owr~r(tp)){ 

tl~>?_llod~ ^= (?p->t_mode ^ mode) & 077771 
t~>?_ctlm~ = tiae: 
?p-~C_Flm9 I=F/~DD: 

34 r~att(fp): 
35 } 
38 £reef(fp): 

.c" line 15 of 585 --2~-- 

I q "~ clunix# ! 

~ l x ~  ~ ,odrr~ / t~ / loea t - t i l~  ~ I! here$¢oll ~.~call cfmod(X7Fffcb56='/t~p/local-file',X1tt) by chmod[~431 ~mre= [2] - This machine ID 
3.P. dy~od?(214747016G=XTfffcb56, 511=XlFF) [ in  f i l e  f=. ]  . %¢al l  

f i le  fs . ]  s c a l l -  Trace remote Scalls 3.P. d ~ d l ? ( 1 ~ c g c 4 7 2 ,  19~74=X3310a, 511=Xlff) [ in  I 
B.P. chmodl?(1019655~=X~cgc472, 196874=X3010a, 511=31ff), returnln9 L3bld4 

[ In t i l e  t*.] ssachmod 
3.P. ch~d?(21474701B~XTfffcbSB, 511=Xlft), r e t a i n 3  L3bld4 [ in  f i l e  f=. ]  b ~  

sb~,41ll chmod(X7fffd~o~='/t~p/local-flle',Xl?f) b~ chmod[3643] b d'm.xll 
RETURNING 0 q 

Junlxl chmod777re~to-t l le 
sUscall chc~d(XTttFcb5a="re~ote-tile',×ltf) by chmod[4323] 

B.P* chmod?(214747017~tttebSn, 511=X1FF) [ in  f l l a  fs . ]  
;hmod[4323] In i t ia tes "climb" to ~¢  #2 
:hmod[4~3] in i t ia tes "chmodl" to ~ #2 
B.P. ch~5?(2147470170~(TfffebSm, 511=Xltf), r~o.cntr~L305e8 [ 

s~scall chmod(X7fffcl~'m~ote-flle",Xlf£) by chmod[4323] 
I ~ I N G  0 

q 
'rocr4323] doin9 "climb' from pmc J3 
~ac[4323l doin 9 " ~ 1 "  ?roe m¢ ~3 
B.P. chmodl?(10~Z~2=~ccaSF72, l~74=X3010a, 511=~tt) [in £11e fs.]  
B.P. dnNodl?(l~762--X3cea6F72, 196874=X3010m, 51/=XlFf), returnln9 k3bld4 

[in File f~.] 

DUNIX is chosen from among the numerous available dis- 
tributed systems due to the numerous features that aid in ed- 
ucation that DUNIX incorporates. Some of these features 
include, a powerful debugger, supporting a write-protected 
filesystem, kernel downloading capabilities that do not re- 
quire physical access to the hardware, etc.. The advantages 
provided by these features were discussed. A sample ses- 
sion using DUNIX was presented. 

If a deep insight into the inter-workings of a distributed 
system is desired, experimentation with an actual system is 
beneficial. This paper presented a possible system to use as 
a teaching tool that can provide the desired insight. 
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