
North-Holland
Mieroprocessing and Microprogramming 27 (1989) 811-818 811

DUNIX: D I S T R I B U T E D O P E R A T I N G SYSTEMS E D U C A T I O N VIA
E X P E R I M E N T A T I O N

O. Frieder A. Litman M.E. Segal
Bellcore Bellcore EECS. Dept.
445 South St. 445 South St. University of Michigan
Morristown, NJ 07960 Morristown, NJ 07960 Ann Arbor, MI 48109
ophh-@ bellcore.com ami@bellcore.com ms@citi.umich.edu

Numerous distributed operating systems have been proposed in the literature, some of which have developed into
commercial systems. Unfortunately, the educational arena has not kept up-to-date with these developments.
Currently, little educational emphasis has focussed on experimental distributed operating systems. Furthermore,
only a few systems have been developed as a tool to teach distributed systems, and those that were, are basically
skeleton systems, and not complete. DUNIX is a fully operational, complete, distributed operating system. The
DUNIX kernel is intentionally small, modular, and simple, thus is easily understood and modified. A powerful
interactive kernel debugger available in DUNIX, enables students to easily observe and modify the system. Thus.
experimentation with an actual system is possible. A sample session that illustrates the salient features of
DUNIX, in terms of laboratory experimentation is presented.

1. I N T R O D U C T I O N

The stud.y of operating systems has been part of the core
computer science curriculum for many years. A typical un-
dergraduate operating systems course consists of classroom
lectures on operating systems principles as well as laboratory
assignments to reinforce the lecture material. An operating
systems course can also be taught by using a real operating
system to illustrate important concepts and to provide a basis
for laboratory assignments. Not only does the real operating
system allow the student to see how individual concepts are
combined to form a cohesive unit, but this approach also
gives the student a hands-on learning tool. Unfortunately,
most production-quality operating systems are far too large
and complex to be understood by a student in a one-term
course. To address this problem, two different approaches
were taken. In the first approach [13], a book describing a
complete operating system (UNIX TM Version 6) was writ-
ten. Thus, the students could better understand the operating
system source code. However, as no kernel experimentation
tools were developed, debugging the code developed by the
student was very difficult. The second approach lead to the
development of a number of smaller operating systems,
whose main purpose is to illustrate operating systems
principles to students [3, 5, 20]. The primary disadvantage
of these "toy" operating systems is that many issues that are
encountered in the design of real operating systems are often
ignored.

Teaching a contemporary operating systems course is
even more challenging as the field continues to evolve. In
particular, as the uniprocessor timesharing systems of yes-
terday are replaced with today's distributed operating sys-
tems, f'mding a sample distributed operating system to use in
conjunction with a course may present certain problems. As
with their non-distributed counterparts, a distributed operat-
ing system used in a course must avoid overwhelming the
student with details, but should have sufficient functionality
to illustrate important operating systems concepts and their
implementation.

In this paper, we describe how an existing distributed
operating system, DUNIX, can be used as a hands-on

TM UNIX is a trademark of AT&T Bell Laboratories

teaching tool for operating systems courses. DUNIX con-
tains most of the functionality found in typical distributed
operating systems, but is organized in a highly modular
fashion to hide implementation details and make the source
code more understandable. DUNIX also has many features
which can be exploited to aid in teaching an operating sys-
tems course with a significant laboratory component.

The remainder of this paper is organized as follows. In
Section 2, an overview of the DUNIX environment and the
DUNIX kernel structure is presented. The structure of a
DUNIX-based distributed operating system laboratory is
described in Section 3. Section 4 contains a sample DUNIX
session that illustrates how DUNIX might be used in a
classroom setting. Concluding remarks are presented in
Section 5.

2 . THE DUNIX O P E R A T I N G SYSTEM

The DUNIX operating system [11, 12], a UNIX deriva-
five, is a fully operational, complete distributed operating
system in production use at Bellcore. DUNIX provides
users with the illusion that only a single machine exists,
when in reality numerous machines comprise the system.
DUNIX provides the features of a "standard" non-dis-
tributed operating system while masking the computer
boundaries.

A typical DUNIX environment is shown in Figure 1. As
shown, multiple machines are interconnected via a packet
switched network. Each machine is fully configured and
consist of its own local peripherals. To provide high avail-
ability, disks can be shared 1 between the individual ma-
chines.

The DUNIX system is by no means unique. Many other
distributed operating systems have been developed, e.g.,
Amoeba [14, 15], the V System [4], DEMOS [2], Crystal
[7], Aegis [9, 10], the CHORUS system [1], the Cambridge
Distributed Computing System [16], Accent [17], Mach
[18], Clouds [6], and LOCUS [21]. All of these are/were
used daily in research environments; in some cases, they are

1Although the disks are dual-ported, a given disk is physically
connected to a single computer at a given time. If that computer breaks,
the disk may be switched to another machine by the system operator.

812 O. Frieder et aL / Distributed Operating Systems Education via Experimentation

I CPU & MEMORY ~ l I GPU E MEMORy [,

J;
optical almk
d=k

cPu & MEMORY ~Mm

I I I I I I I

c.N

U S E R L E V E L

U P P E ; R K S R ; N E L

LOWER KI:~II=L LOWER KERNEL LOWER KlqtNEL

CPU & MI~MORY CPU & MEMORY CPU & MI~MORY

p a c k e t s w i t c h i n g n e t w o r k

P A C K E T S W I T C H I N G N E T W O R K
Figure 2. The structure of the DUNIX system

Figure 1. The DUNIX Hardware Base

also available as commercial products. For an excellent sur-
vey of distributed operating systems, the reader is referred to
[19]. Although these systems are widely publicized, there
have been no published accounts of using these systems as
educational tools.

2.1 Global Structure of the DUNIX System

In DUNIX, each computer has its own copy of the ker-
nel. All local kernels cooperate to create the illusion of a sin-
gle UNIX machine. Each computer is fully autonomous and
every kernel is equivalent and operates in the same manner.
Note many distributed systems, like those employing the
client/server model, do not follow this principle. Further-
more, in DUNIX a set of cooperating kernels resemble a
single independent kernel in that no distinction is made re-
garding the locality of an operation. Supporting such a
structure simplifies the debugging of the system since de-
bugging a distributed systems requires only the debugging
an individual kernel on a single machine.

The DUNIX kernel is small, modular, and relatively low
in complexity as compared to other complete operating sys-
tems such as Berkeley 4.x UNIX. The kernel is divided into
modules that only interact with other modules through their
calling interface. This allows a programmer (or a student) to
concentrate on one aspect of the system without worrying
about side effects between modules or implementation details
of modules not being studied.

The structure of the kernel follows Dijkstra's concept of
software levels [8]. The system is composed of levels of
abstractions where any level can only depend on lower
levels. Figure 2 shows this structure. The kernel is com-
posed of three main components: the lower kernel, the upper
kernel, and the switch. Each of these components is active
only when a process is running within that component. The
same process may run in any component.

All objects (files, devices, etc.) reside at exactly a single
computer. There is no remote caching of objects' states, and
read ahead and write behind of files are confined within the
computer having the file. The system is procedure call ori-
ented. When a process wishes to perform an operation on an
object, it does not send a message to a server, but instead
expands to the computer where the object is located, and
performs the operation itself.

The lower kernel maintains local objects. It provides ab-
stract operations on these objects, and is responsible for the
integrity of the objects. The upper kernel maintains the con-
text of the processes, i.e., the user ID, the file creation
mask, the binding of open file-descriptors to lower level
names, etc.

The upper and lower kernels are not concerned with
networking and communications protocol issues; only the
switch is cognizant of the peculiarities of the network. The
switch transfers the activity of a process from the upper ker-
nel of one computer to the lower kernel of another computer
(which could be the same computer).

The upper and lower kernels do not distinguish a remote
operation from a local one, while the switch does not know
the semantics of the activity it is transferring, e.g., it does
not distinguish between killing a process and creating a file.
Most services are provided to the upper kernel via the
switch, except for CPU cycles and address-space manage-
ment. These services are directly provided by the the local
lower kernel.

2.2 Naming of System-wide Objects

A system-wide object is an object residing in one com-
puter and of potential interest to processes in other comput-
ers. In DUNIX, system-wide objects have universal names.
While a process is in the upper kernel, it may hold or store
only the universal names of the object(s) of interest. It may
access the objects only via these names. Universal names are
not reused. A universal name has the following attributes:

• Fixed size bit-string, the size depending on the type
of the object.

• Location independence (utilized in process migra-
tion).

• Context independence, namely, if two processes
each have a universal name and these names are bit-
wise equal, then both names refer to the same object.
This attribute is important when forking one process
to two.

The DUNIX universal device names are equivalent to
standard UNIX device numbers. These names are 16-bits
wide and encode, among other details, the ID of the com-
puter having the device. Naming of files is more elaborate,
since unlike devices, their lifespan is relatively brief. Uni-
versal file names refer only to active files, i.e., files whose
representations reside in the primary memory file table. The
64-bit name contains the following details:

• Unique identifier (the same unique identifier is
recorded in the file representation)

• ID of the computer having the file

• Index into the primary memory file table, and a
unique identifier.

O, Frieder et aL / Distributed Operating Systems Education via Experimentation 813

2.3 Software Statistics

The size of a DUNIX kernel depends on the assortment
of I/O devices the kernel drives. Consider a modest DUNIX
kernel with a minimal set of device drivers. Such a kernel
has device drivers for disks and RS232 lines, but does not
support TCP/IP. This kernel would contain approximately
17,4002 lines of source code. Include files which are in-
serted within several other source files by the compiler
(xxxx.h files) are counted only once. Comment and blank
lines compose roughly 30% of the total count. The 17,400
lines of the are partitioned as follows:

• An Ethernet-based switch (1,800 lines)

• The upper kernel (2,800 lines)

• The lower kernel (12,800 lines)

Because the lower kernel is responsible for accessing the
various devices, the disparity in size between the upper and
lower kernel becomes even larger in a richly-configured
system containing a large assortment of I/O devices.

3 . A D I S T R I B U T E D O P E R A T I N G S Y S T E M
E D U C A T I O N L A B O R A T O R Y

3 . 1 . W h y Use DUNIX?

Two earlier operating systems have been used as teach-
ing tools, namely, MINIX [20] and XINU [5]. Both
systems have an advantage over DUNIX in that they are
accompanied by a textbook and execute on a wide variety of
machines. Since there is currently no text accompanying,
DUNIX can only be used as a tool in an advanced dis-
tributed operating systems laboratory course.

For laboratory courses, DUNIX has numerous advan-
tages over these two systems. The first is that DUNIX is
truly a distributed system. Second, unlike XINU, it is a
production-quality operating system that contains copy-on-
write memory management, process migration, device
drivers, and most notably, a powerful debugger which en-
ables the user to view the behavior of the internals of the
kernel. A DUNIX system also has extensive user-level
software including software development tools, TCP/IP, a
mail system, a text formatter, print spooler, and the X Win-
dows System TM.

Third, DUNIX supports system partitioning, i.e., the
physical machines on the same network can be configured
into independent disjoint systems. Due to the single machine
illusion and the symmetry in the mode of operation, each
disjoint system, even if consisting of only a single machine,
resembles the global system. Thus, the debugging of the
system is simplified.

Fourth, in DUNIX a subset of the computers are used
for software development and other non-experimental pro-
gramming tasks. This subset of computers is designated as
the production system. The remaining computers are desig-
nated crash computers. A crash computer is used to test new
kernels or other utilities. Because no production work is
done on a crash computer, normal users are not affected
during testing.

2In comparison, an equivalent Berkeley 4.2 UNIX kernel consists of
approximately 45,000 lines.
TM X Windows is a trademark of MIT.

By connecting the RS232 console ports of each crash
computer to the production system, a crash computer may be
halted and restarted, new kernels may be downloaded into it,
etc., all without any physical access to either machine. Thus,
a crash computer may be manipulated from a user logged
into the production system in the same manner that it could if
a user was physically located at the computer's console. The
console line is also used by the debugger to communicate
with the user.

Finally, a DUNIX system can be configured such that
the critical segments of the f'flesystem are write protected via
hardware and/or software. As a minimal file system is rela-
tively large (-20 Mbytes), reloading it whenever a computer
crashes is a lengthy and bothersome process. Since any ex-
perimentation requires a controlled environment, it is vital
that for every newly configured kernel, the file system will
always start out in the same state. Since experimental ker-
nels crash very often and can easily corrupt the filesystem,
supporting read-only filesystems is essential.

3.2. Laboratory Organization

In an ideal systems laboratory, a DUNIX system would
be configured in the production system/crash computers re-
lationship described above. Students are provided with a set
of "bare" slave machines which are used as crash computers.
With these machines, students can experiment with all as-
pects of operating systems including CPU scheduling, exe-
cuting privileged instructions and writing device drivers that
directly access devices connected to them.

For example, by modifying the CPU and disk schedul-
ing routines, a student can alter the performance of the sys-
tem, possibly introducing new scheduling priorities. New
process migration policies can be studied. Varying the swap
space, cache strategies, and file system organization are all
experiments that can be performed. The appropriate subset
of experiments are left to the discretion of the instructor.

By giving every student in the class an account on the
production (master) DUNIX system and each team of (2-3)
students a time allotment on a subset of the crash computers,
a team can build kernels on the production system and test
them on a crash system. As shown in Figure 3, students sit-
uated at any terminal can develop their software on the pro-
duction system (which would normally be more a powerful
system than the crash computers) and then download the
software onto a crash computer. In the figure, the six physi-
cal computers axe partitioned into 4 logical systems (systems
0, 1, 2, 3): 2 computers used as a single production system
(sysid=0), 2 computers configured as a single crash system
(sysid=l), and two additional crash computers (sysid=2,
sysid=3). Reconfiguring the logical systems can be done by
a suitably privileged user at a terminal; no hardware recon-
figuration is necessary.

4 . E X P E R I M E N T A T I O N W I T H DUNIX

The DUNIX kernel debugger both traces specified event
as well as provides an interactive environment to analyze a
running system. In the interactive mode, the kernel is halted
and the state of kernel can be examined. In the trace mode,
the system continues to execute, however, events selected by
the user are traced. Thus, a user can witness the various
activities associated with a particular system call. Conse-
quently, the DUNIX kernel debugger can be used not only
as an aid to kernel debugging, but also as a visualization tool
to illustrate the behavior of a kernel. By observing the sys-
tem trace and the performance counters, a user can readily
appreciate how changes in algorithms or kernel parameters
affects system behavior.

814 O. Frieder eta/. / Distributed Operating Systems Education via Experimentation

• - - Console Lines

Figure 3. Laboratory Configuration

"VAX750" output, all remaining output presented is gener-
ated by the crash system, and user input is processed directly
by the crash computer.

mirage> make
cc -g -c caehe.c
ld --o dunlx -1" 80000000 assembly.o procass.o switchas.o cache.o
dev.o clock.o console.o devmem.o exec.o fde.o fsvolume.o fmark.o
fnarne.o prtarne.o prinff.o proe.o proeh.o psig.o hotel.o symdef.o
sysync.o syscall.o text.o tty.o detma.o hp.o mba.o dh.o uba.o
conf.o exos.o ptty.o null.o ts.o ci.o tu.o msa.o dd.o ld1200.o
nmi.o bi.o migrato.o Dadhoe.o Dbreak.o Debger.o Dmtr.o Dkemel.o
mirage.> dl 3 -S
Downloading donix; 171008(text)+32768(data)=203776 bytes

+25388b of symbols
con: type ̂ B <er> to exit.
VAX750
Symbol table: 534 functions, 23657 bytes
6291K bytes of memory (X600000)
kernel page-table at CDS00 = 80AFCA00
maxkmem = 12582912, endkmem=l1618816
boot-ar~ = FF

As the newly downloaded kernel comes to life, several
system parameters may be set. Usually the default parame-
ters are sufficient. In the example below, no modifications
to the default values are made with the exception of the sys-
tem id value (sysid 3). Initially the kernel probes the
hardware to determine which devices are available (auto-
configuration) and than resets to user level under single user
mode. The dunix # prompt is produced by the single user
shell.

As some bugs are time dependent, trace output may hide
some of these errors. However, without the tracing, detect-
ing and correcting the errors is difficult. To remedy this
problem, the DUNIX debugger can log the output in an in-
ternal circular buffer for display at a later time. Furthermore,
as writing to a user terminal dramatically increases the pro-
cessing time, infrequent errors are not easily reproduced
without suppressed printing.

To illustrate the potential of exploiting DUNIX as an ed-
ucational tool, a sample session using the DUNIX debugger
is provided. In general, all user commands are highlighted
in bold-face type. Control A (^A) transfers control from
the user level to the debugger. In the interactive mode, the
kernel activity is suspended, hence the its state is easily ex-
amined. Issuing a quit command (q), restarts the execution
of the kernel. The "dun ix#" and "! " are the user level and
debugger prompts, respectively.

A session begins by compiling a new kernel on the pro-
duction system (mirage) via the m a k e command. Once
compiled, the new kernel is sent over the console line to the
crash computer. As seen below, downloading the newly
compiled kernel from the production system to the crash
computer(s) is achieved via typing a user command (dl) and
does not require physical access to either system. As other
researchers [7] have observed, requiring physical access to
the crash computer to download a new kernel is a
considerable deterrent to the use of the system. In this ex-
ample, the kernel symbol table is also downloaded. This
enables the debugger to install breakpoints and to produce a
symbolic printout of the calling stack.

Once the kernel is loaded, the production system gener-
ates a virtual connection between the user terminal and the
console line of the crash computer. Starting from the

READY...! ?~ar
var - print the kernel-debugger variables
! v a r
here= 0 - This machine ID
rdev= 0102 - root device
rbase= 128 - base of root device
srdev= 0105 - super-root device
memdev= 0203 - swapping device
maindev= 0224 - device having the main-block (don't change minor#)
sysid= 0 - systems with different ID will not communicate
! sysid 3
l q
UBA0 at F30000
MBA0 at F28000
DH in UBA0 at 0760420 + DM at 0771100
PTI'Y: 26 ttys
DEUNA(DELUA) in UBA0 at 0774510
FUJI160M on dk00, via MBA0/0 read-only
FUJI160M on dk01, via MBA0/I
dk01b is swap-area; 204-43K bytes
dk30a mounted on /
dk30d mounted on ...
1082K(kemel)+5209K(nsr) = 6291K(total mere)
Machine #3
dunix#

As faulty kernels are likely to corrupt the file system,
DUNIX may be used with a write-protected file system.
This protection is provided either via software and/or hard-
ware. In the example below, an unsuccessful attempt is
made to write onto a read only disk partition. To provide a
writeable partition, a clean, temporary disk partition is cre-
ated (mktmp).

O. Frieder et aL / Distributed Operating Systems Education via Experimentation 815

dunix# ep /etelpasswd new-f i le
cp: cannot create new-file - Read-only file system
dunix# d f

/dev/dk30a on / (R.O.)
dunix# m k t m p
mkfs/dev/gdkle 7000
total - 7000 blocks
inodes - 280 blocks
free-list step = 3
mount -p/dev/gdkle/~np
endif
dunix# d f

/dev/dk30a on [(R.O.)
/dev/dk31e on/tmp
dunix# ed /tmp

FREE TOTAL %FREE
1702K 19456K 8%

FREE TOTAL %FREE
1702K 19456K 8%
6877K 7168K 95%

Providing an experimental environment requires suffi-
cient on-line help, otherwise experimentation becomes more
of a library search and not a "playful experience". DUNIX
provides such support via the ? command. Simply typing a
question mark in the debugger mode prints all the debugger
options. A question mark followed by an option name pro-
vides a detailed description of the option. Commands are
executed once. Variables are integer values and can read-
ily be examined and modified. A flag is activated by typing
its name, either with or without a + sign and is cancelled by
typing - flag name. Flags are usually used to invoke
traces at specific events. For example, the csw flag traces
context switches.

dunix# ^A !
!?
FLAGS: sc, fsse, fsc, ex, sig, exec, bexit, swp, csw, devinit, ST. FILTER,
badname, macheek, yellall, pflt, scall, inmsg, ioetal, cln, trw. ubaspace,
excom, hptr, hperr, tstr, tserr, tstream, turf, msatr, msamsg, msaer, lderr.
notout, loopb, nohkeeper, delua, mig, tl, t2, t3, t4, t5, t6. tT. t8,
VARIABLES: here, rdev, rbase, srdev, memdev, maindev, conspeed, sysid,
sclock, xpipe, wepu, invcomed, ldmaxt, interr, maxdil, vl, migte, migcyc,
COMMANDS:menu,?,help,q, flg,var,pt,et,playb,ssc,ls,a2f, b,mark,hmark,
s,mem,rs,tty.p,proc,mini, file,bi,nmi,hpst, mbast.msast,v ol,pbook,port.
text.seg,pgt,ckpt,prdeu,trc.netm,mtr,cmtr,cpu,msys,mscall,d 1 ,d2,d3,hey,
echo,necho,exst,tsst,tust
t,/

Understanding the execution of a kernel requires the ca-
pability of tracing individual events. In the example below,
all system calls are traced for the execution of the Is com-
mand. As shown, both the successful and failed system
calls are printed with the appropriate indication of status. All
system calls, except fork, result in two statement being
printed; once at the start and once at the return of the execu-
tion of the call. The fork system call results in three state-
ments, once at the start, once upon the return of the child
fork, and once upon the return of the parent fork system call.

! ?exec
exec - trace successfull exec's
[+ e x e c
dunix# echo X X X • NEW-f i le
dunix# Is

-csh[2339] exec: ls
! ?sc
sc - trace system-calls
[s c
!q

syscall exec(Xd2e0=-"/bin/ls",Xda70,Xde24) by 1s[2339] RETURNING 0
syscall fork() by -csh[355] RETURNING X923=2339
syscall wait() by -csh[355]

syscall time() by 1s[2339]
syscall time() by ls[2339] RETURNING X245bcSe5=609994981
syscall ioctl(1,X7408,X7fffcad6) by ls[2339]

syscall ioctl(1,X7408,XTfffcad6) by ls[2339] RETURNING 0
syscall brk(X6Dc) by 1s[2339]

syscall brk(X6tgc) by ls[2339] RETURNING 0
syscall stat(X4tf4=".",X7fffca90) by IS[2339]

syscall stat(X4 lf4=".",X7fffea90) by ls[2339] RETURNING 0
syscall open(X41f4=".",0) by ls[2339]

syscaU openCX41f4=".",0) by ls[2339] RETURNING 3
syseall read(3,X7400,X400) by lsl2339]
syscall read(3,X7400,X400) by ls[2339] RETURNING X80=128
syscall read(3,X7400,X400) by 1s[2339]

syseall read(3,X7400,X400) by 1s[2339] RETURNING 0
syscaU close(3) by 1s[2339]

sysca11 close(3) by 1s[2339] RETURNING 0
syscall write(1,X55c4,9) by ls[2339]

NEW-f syscall write(1,X55cA,9) by ls[2339] RETURNING 9
ile

syscan exit(0) by IS[2339]
syscall wait() by -csh[355] RETURNING X923=2339
syscaU write(1,X7fffc968,7) by -csb[355]

dunix# syscall write(1,X7fffc968,7) by -csh[355] RETURNING 7
syscall ioctl(3,X7412,X7fffcae4) by -csh[355]
syscall ioctl(3,X7412,X7fffcae4) by -csh[355] RETURNING 0
syscall ioctl(3,X7411,X7fffcaea) by -csh[355]

syscall ioctl(3,X7411,X7fffcaea) by -csh[355] RETURNING 0
s~'scall readf3,X7fffcalc,Xc7 / by -csh[355]

Disk I/O can be traced. Disk partition dk30a contains
the/ete/passwd file, hence only READs are required. The
READ and WRITE output related to disk partition dk31e
results from the kernel initially reading the current (dot) di-
rectory prior to writing the password file in that directory.
As shown, each disk request produces two output state-
ments. The first is for the queueing and the second is for the
processing of the request. Note that failed system calls are
also specifically traced in this example.

^A]-sc
! - c s w
[?fsc
fsc - trace failed system-calls
!fsc
!q
dunix# cp ~no-file
FAnF]3 syscall open(X7fffcb77="hao-file",0) by cp[675] [ENOENT]

cp: cannot open /no-file
dunix# ^A
[?hp t r
hptr - Trace HP I/O
! h p t r
!q
dunix# cp letclpasswd .
dk3Oa: queue read of block 643 (req@L6ac6c)
dk30a: READ, blk=643=1542=<4,8,6>,
dk30a: queue read of block 984 (req@L6acf4)
dk30a: READ, blk--984=2224=<6,9,16>,
dk30a: queue read of block 1314 (req@L6ad7c)
dk30a: READ, blk=1314=2884=<9,0,4>,
dk30a: queue read of block 1335 (req@L6ae04)
dk30a: READ, blk=1335=2926=<9,1,14>,
dk31e: queue read of block 282 (req@LraeSc)
dk31e: READ, blk=282=160564=<501,7,20>,
dk30a: queue read of block 4227 (re~@L6af14)
dk30a: READ. blk--4227=8710=<27,2,6>.
FAILED syscall s ta t (X ta98=" . / /passwd ' ,X7 f f f ca9c) by cp[739]
[ENOENT]
dk31e: queue read of block 8 (req@L6afgc)
dk31e: READ, blk=8=160016=<500,0.16>,
dk31e: queue write of block 282 (req@L6ae8c)
dk31e: WRITE, blk=282=160564=<501,7,20>,
dk30a: queue read of block 4802 (req@L6b024)
dk30a: READ. blk=4802=9860=<30,8,4>,
dk30a: queue read of block 4805 (req@L6b134)
dk30a: READ, blk--4805=9866=<30,8,10>.
^ A ! - hp t r

816 O. Frieder et aL / Distributed Operating Systems Education via Experimentation

Breakpoin ts can be set at ent ry and exit o f any procedure
o f the kerne l . For e x a m p l e , the p a t h 2 f n m p r o c e d u r e
t r ans la tes a logica l n a m e to a b ina ry name . A s shown , a
b r eakpo in t is set at the en t ry and exi t o f the p a t h 2 f n m
funct ion . T h e ca l l ing s tack d i sp lay c o m m a n d (s) d i sp l ays
the ca l l i ng s e q u e n c e that r e su l t ed in an i n v o c a t i o n o f
p a t h 2 f n m . T h e +s 1 op t ion l is ts the v a l u e s o f all local
var iables on the top o f the call ing stack.

dunix#
dunix# ^A ! ?fsse
fsse - trace file-system system-calls
! fssc
! ?b
b lfunetinn lex]] - Install (entry & exit) break-polnt at 'function'
! b path2fnm
lq
dunix# Is /e tclpasswd

syseall exec(Xd2e0="/bin/ls",Xe364,Xe4d4) by -csh[803]
B.P. path2fnm(53984=Xd2e0, 0, 2147472324=X7fffd3c4)

[in file fsymbol.]
[q
B.P. path2fnm(53984=Xd2e0, 0, 2147472324=X7fffd3c4), returning 1

[in file fsymbol.]
! ? s
s [count] - Display the 'count' upper stack-frames
!s
B.P. path2fnm(53984=Xd2e0, 0, 2147472324=X7fffd3e4), returning 1

[in file fsymbol.]
exece?(53984=Xd2eO, 58772=Xe594, 58580=-XeAd4) [in file exee.]
syseallO [in file syseall.l
l + s 1
B.P. path2frma(53984=Xd2eO, 0, 2147472324=X7fffd3c4), returning 1

[in file fsymbol.l
fnp=214747232A=X7fffd3c4 path(p)=53984=Xd2e0 mode(p)=0
fnp(p)=2147472324=X7fffd3eA rv=-I dnp=2147472212=X7fffd354
enk=1852400175=X6e69622f copy=L17760 he=7 rnc=-i ene=7
myerr=0 ~xbl--4 trb12=2147472324=X7fffd3c4 hookno=L3194

f=L2d0f4 t=L4e55c sr=-2
[q

syscall exee(Xd2e0=-"/bin/ls",Xe364,Xe,4d4) by ls[803] RETURNING 0
syseall stat(X7fffeb77="/etelpasswd",X7fffeaaO) by ls[803]

B.P. path2fnm(2147470199=X7fffeb77, 0, 2147472444=X7fffd43c)
[in file fsymbol.]

[q

B.P. patb2fnm(2147470199=X7fffeb77, 0, 2147472444=X7fffd43c),
returning 1

[in file fsymbol.]
!q

syseall s ta t (X7f f f eb77="/e te /passwd" ,X7f f f caaO) by 1s[803]
RETURNING 0
]ete]passwd
dunix# ^A[-b *
! -[ssc

The hand l i ng o f scarce r e sources is o f p r imary concern
in opera t ing sys t ems . A c o m m o n error is not rec la iming un-
u sed r e sou rces or to keep t h e m locked unnecessa r i ly . T he
debugge r provides a m e c h a n i s m for check ing the state o f the
s y s t e m resources . A s s h o w n below, pr ior to execu t ing the
e c h o x x x x x > m y f i l e c o m m a n d , on l y 6 ac t ive f i les are
used in the sys t em. Whi l e execu t ing the echo c o m m a n d , 7
active f i les are found.

dunix# ^A! ?sse
sse [/+/-]sse [syseall] - traco/traee&stop/untraee the given syseall
! +ssc creat
[q
dunix# echo x x x x x • myfi le

syscall ereat(XdgfS="myfile",Xlb6) by -esh[1027]

! r$
RESOURCES:
USER-MEMORY: 9801[free] + 138[cache] + 193[used] = 10132[tutal] * 512
bytes
SECODARY-MEM: 644[free] + 0[used] = 644[total] * 31744 bytes
PROC:

288[freel+l [run]+9 [pause]+2[waltl+O[fetus]+0[bizarre]=300[total]
=12[loaded]+01out]+288[free];

FILES: 294[free]+6[used]+O[loeked]+O[bizarre]=300[total]
FMARKS: 298[free]+2[used]+O[wait] = 300[total]
BUF: 297 lfree]+0[I/O]+0[lock]+3[used]=300[total]
TEXTS: 1381free]+2[used]+10[cached]+0[bizarre] = 150[tutal]
TCP: Ports: 0[usedl+50[free]=50[total];
!q

syseall ereat(Xd9fS="myfile",Xlb6) by -esh[1027] RETURNING 5
I r $
RESOURCES:
USER-MEMORY: 9801[free] + 138[cache I + 193[used] = 10132[total] * 512
bytes
SECODARY-MEM: 644[free] + 0[used] = 644[total] * 31744 bytes
PROC:

288[free]+0[run] +9[pause]+3 [walt]+0[fetus]+0[bizarrel=300[total]
=121loaded]+O[out]+288[free];

FILES: 293[free]+7[used]+O[locked]+O[bizarre]=300[total]
FMARKS: 297[free]+3[used]+0[walt] = 300[total]
BUF: 2971free]+0[l/O]+0[loek]+3[usedl=300[tutal]
TEXTS: 138[free]+2[used]+10[eaehed]+O[bizarre] = 150[totall
TCP: Ports: 0[used]+50[free]=50ltotal];
!q
dunix# rm myfi le
dunix#

I f the use r is in teres ted in addi t ional detai ls conce rn ing
on ly file usage , that is a lso possible . For example , by step-
p ing th rough a file write whi le e x a m i n i n g the s y s t e m file
table, the creat ion o f a new file ent ry (Sit#61) is observed.

! +S$C t reat
~q
dunix# echo x x x x x • myfile

syscall ereat(Xe5b8="myfile",Xlb6) by -csh[867]
! ? f i l e
Erie [a] - Print the file-table
! f i l e
File-table:
SIt#0: /; dev=014102, mode=040755(FTDIR), count=3, leount=l,
flg=FACTIVE
Sit#l: ...; dev=014105, mode=040777(FTDIR), count=l, lcount=l, fig=
Slt#5: null; dev--O14102, mode=020666(FTCHR), count=l, lcount=l, fig=
Sit#6: console3; dev=014102, mode=020000(FTCHR), count=l, lcount=l,
fig=
S1t#37: trap; dev=014102, mode=040755(FTDIR), count=l, lcount=l, fig=
Slt#55: tmp; dev=014206, mode=040777(FTDIR), count=3, lcount=l,
fig=FACITVE
!q

syscall ereat(Xe5b8="myfile",Xlb6) by -csh1867] RETURNING 5
! f i l e
File-table:
SIt#0: /; dev=014102, mode=040755(FTDIR), count=3, lcount=l,
flg=FACTIVE
Slt#1: ...; dev=014105, mode=040777(FTDIR), count=l, lcount=l, fig=
Sit#5: null; dev=014102, mode=020666(FTCHR), count=l, lcount=l, fig=
Sit#6: console3; dev=014102, mode=020000(FTCHR), count=l, lcount=l,
fig=
Slt#37: tmp; dev=014102, mode=040755(FTDIR), count=l, lcount=l, fig=
Slt#55: tmp; dev=014206, mode--040777(FTDIR), count=3, lcount=l,

flg=FTMOD+FACI'IVE
$1t#61: myfile; dev--014206, mode--0100644(FTREG), count=l, leount=l,

fl g=b'TMOD+FRMOD+FACI'IV E
~q

Similar ly , e x a m i n i n g the p rocess table dur ing an e x e c
s y s t e m call execu t ion i l lustrates the t r ans fo rmat ion o f the
c s h [8 9 9] execu t ion to that o f the p s [899] execut ion . T h e
trailing n u m b e r is the process id.

O. Frleder et aL / Distributed Operating Systems Education via Experimentation 817

dunix# AAI +ssc exec
~q
p s

syscall exec(Xd2e0="/binlps",Xe67c,Xe4d4) by -csh[899]
! ?proc
proc [index]pointer [count]] - display process
! p r o p
Processes:
hkeeper[0], ppid=0, tty0, slt#O[L4b878], SWAIT <DEMON>
mkeeper[1], ppid=0, try0, slt#1[L4b9a4], waiting for work <DEMON>
taxi[2], ppid--O, tty0, slt#2[L4bad0], waiting for WORK <DEMON>
taxi[3], ppid=0, try0, slt#3[L4bbfc], waiting for WORK <DEMON>
taxi[4], ppid=0, try0, slt#4[l.A.bd28], waiting for WORK <DEMON>
taxi[5], ppid=O, tty0, slt#5[L4be54], waiting for WORK <DEMON>
hitman2[6], ppid=0, try0, slt#6[L4bf80], waiting for work <DEMON>
hitmanl[7] , ppid=0, tty0, slt#7[l..4c0ac], waiting for work <DEMON>
herald[8], ppid--0, tty0, slt#8[L4cldS], waiting for work <DEMON>
init[323], ppid=0, try0214300, s]t#9[L4c304], SWAIT, doing wait,
-csh[355], ppid=323, try0214300, slt#10[L4c430], URDY, doing fork.
-csh[899], ppid=355, ttyO214300, slt#11[L4c55c], RUN, doing exec,
~q

syscall exec(Xd2e0=-"Foin/ps",Xe67c,Xe4d4) by ps[899] RETURNING 0
! p r o c
Processes:
hkeeper[0], ppid=0, tty0, slt#0[L4b878], SWAIT <DEMON>
mkeeper[1], ppid=0, tty0, slt#1[l.Ab9a4], waiting for work <DEMON>
taxi[2], ppid---O, tty0, slt#2[L4bad0], waiting for WORK <DEMON>
taxi[3], ppid=0, tty0, slt#3[IAbbfc], waiting for WORK <DEMON>
taxi[4], ppid=0, tty0, slt#4[L4bd28], waiting for WORK <DEMON>
taxi[5], ppid---0, try0, slt#5[LAbe54], waiting for WORK <DEMON>
hitman2[6], ppid=0, tty0, slt#6[L4bfS0], waiting for work <DEMON>
hitmanl[7] , ppid--0, tty0, slt#7[L4c0ac], waiting for work <DEMON>
herald[8], ppid=0, tty0, slt#8[LAcld8], waiting for work <DEMON>
init[323], ppid=0, tty0214300, slt#9[L4c304], SWAIT, doing walt,
-csh[355], ppid=323, tty0214300, slt#10[L4c430], SWAIT, doing walt,
ps[899], ppid=355, tty0214300, slt#11[kAc55c], RUN, doing exec,
[q
PID TT STAT TIME COMMAND
323 c3 I 0.14 init 3 ff
899 c3 R 0.14 ps

dunix#

Modifying performance related algorithms, e.g. CPU
and disk scheduling, necessitates the capability of viewing
the performance of the system. As shown below, such ca-
pability exists in DUNIX. The dbg command invokes the
debugger from the user level. Thus the dbg cmtr; cp
/etc/hosts .; dbg mtr command results in the clearing of
the system meters and the displaying of the performance in-
volved in copying/etc/hosts to the dot directory.

dunix# ! ?cmtr
cmtr - Clear all meters
! ?mtr
mtr Display meters
] q
dunix# dbg cmtr; cp /etc/hosts .; dbg mtr
8.5 see.
CPU: 42%idle(3.6s) + 0%usr(0.0s) + 57%sys(4.8s) = 100%total(8.5s)
63%syslo(3.0s) + l l%syshi(0.5s) + 26%sysint(1.2s) = 100%sys(4.8s)
830 syscalls (97/s), 524 con-sw (62/s), 0 swapin (l/8s)
user i/o: 411Kby read (48K/s), 411Kby write (48K/s), 10240by exec
(IK/s)
cache: 1889 calls = 950 rd + 532 rdwr + 407 wr; maxdir ty=77,
minfree=218
-cache: 755 i/o = 412 rd + 3 r.f.w. + 340 wr; 75 dirty; 398 rd-ahead(398
used)
MBA: 758 interrupts (95/sec)
HP0: 410 trns(48/s), 22 pos(3/s), 419K bytes(49K/s), 0 retries
88%busy(7s) + 12%idle = 57%flow+4%pos+28%walt+12%idle = 100%
HPI: 345 trns(40/s), 9 pos(1/s), 353K bytes(41K/s), 0 retries
69%busy(5s) + 31%idle = 40%flow+2%pos+27%walt+31%idle = 100%
dunix#

None of the above examples have dealt with the dis-
tributed aspects of DUNIX. In the accompanying screen
display, a user examines the implementation of the change
file mode (chmod) system call. The top right hand window
displays the source code. The source code consists of two
routines: chmod and chmodl. The chmod system call ini-
tiate with first routine which executes on the local computer.
The second routine, invoked by the chmod routine, exe-
cutes on the machine containing the desired file. In the ex-
ample presented, two files are modified. The larger window
on the left-hand-side illustrates that all activity is local for the
local file. Also shown in the larger window is the local ac-
tivity needed for the remote file. The remote activity is per-
formed on the remote machine (machine 2), shown in the
lower, smaller window on the right-hand-side. Note that the
actual code is identical regardless of where the file is situ-
ated: local or remote. The three "CPU load" windows are
monitoring the production system. The two crash computers
(machines 2 and 3) are totally independent from the remain-
ing three machines, thus are not represented in the perfor-
mance meters.

The sample session ends by sending a thank you mes-
sage to a colleague in Syracuse University, Syracuse New
York while tracing only the exee system calls. As seen the
smtp command is executed, the message is sent and the
connection is terminated.

dunix# ! ?exec
exec - trace successfull exec's
! e x e c
~q
dunix# mail Frieder@top.c is .syr .edu

-csh[1251] exec: mail Frieder@top.cis.syr.edu
Subject: Welcome to Euromicro
G i d e o n ,

You are now part o f the mail example in Euromicro.
Ami, Ophir, and Mark.
^DEOT
dunix# send[1347] exec: sh -c/usr/ l ib/smtp/smtpqer 'to

sh[1379] exec: csh -f/usr/ l ib/smtp/smtpqer to
csh[1411] exec: value.of SMTP QUEUE
csh[1443] exec: mktemp Tmp1379
csh[1475] exec: cat
csh[1507] exec: In Tmp1379a 1002
csh[1539] exec: rm Tmp1379a
csh[1571] exec: cp /dev/null 1002.err
csh[1667] exec: smtp top.cis.syr.edu root Fried
csh[1731] exec: cat 1002.log
csh[1763] exec: rm 1002.log
csh[1795] exec: rm -f 1002.err 1002.c
csh[18271 exec: rm -f 1002

5. SUMMARY

The study of operating systems is a fundamental compo-
nent of current undergraduate computer science syllabi.
Traditionally, operating systems education consists of read-
ing textbooks and research papers, coding relatively small,
model operating system, possibly only some of individual
components of the system, and participating in various
classroom discussions. We believe that in addition to the
traditional teach approach, experimentation with an actual
system is necessary. Specifically, traditional teaching ap-
proaches introduce the student to the fundamentals of oper-
ating systems, but to obtain deep insight to the intricacies of
systems, experimentation is required.

This paper focussed on the exploitation of DUNIX, a
complete, modular, distributed operating system, as a
teaching tool for experimental operating systems laboratory.

8 1 8 O. Frieder et aL / Distributed Operating Systems Education via Experimentation

m l r a g e l mi rage4 ml rage5

o xxxx > remote-File
o xxxx > / t t~/local-?ile

This machine 13

c h ~
ch~odl

z5 0
~8 /m ch~od sBstem ca~l - upper kernel */
17 chmod(patname, mode)
13 char *patname~{
19 tname~t fnm~
20 i f (path2fnm(patname, O, &tam))

~hP.~dl(fme¢(fnm), fnm, mode)~
)

23
24 /*chad- lower kerr~l ~X/
25 clnmodl(t~, mode)
26 £name_t tnm:{
27 tile_~ *tp~

IF(I (tp = Fnm2tp(tnm)))return~
I¢(owr~r(tp)){

tl~>?_llod~ ^= (?p->t_mode ^ mode) & 077771
t~>?_ctlm~ = tiae:
?p-~C_Flm9 I=F/~DD:

34 r~att(fp):
35 }
38 £reef(fp):

.c" line 15 of 585 --2~--

I q "~ clunix# !

~ l x ~ ~ ,odrr~ / t~ / loea t - t i l~ ~ I! here$¢oll ~.~call cfmod(X7Fffcb56='/t~p/local-file',X1tt) by chmod[~431 ~mre= [2] - This machine ID
3.P. dy~od?(214747016G=XTfffcb56, 511=XlFF) [in f i l e f=.] . %¢al l

f i le fs .] s c a l l - Trace remote Scalls 3.P. d ~ d l ? (1 ~ c g c 4 7 2 , 19~74=X3310a, 511=Xlff) [in I
B.P. chmodl?(1019655~=X~cgc472, 196874=X3010a, 511=31ff), returnln9 L3bld4

[In t i l e t*.] ssachmod
3.P. ch~d?(21474701B~XTfffcbSB, 511=Xlft), r e t a i n 3 L3bld4 [in f i l e f=.] b ~

sb~,41ll chmod(X7fffd~o~='/t~p/local-flle',Xl?f) b~ chmod[3643] b d'm.xll
RETURNING 0 q

Junlxl chmod777re~to-t l le
sUscall chc~d(XTttFcb5a="re~ote-tile',×ltf) by chmod[4323]

B.P* chmod?(214747017~tttebSn, 511=X1FF) [in f l l a fs .]
;hmod[4323] In i t ia tes "climb" to ~¢ #2
:hmod[4~3] in i t ia tes "chmodl" to ~ #2
B.P. ch~5?(2147470170~(TfffebSm, 511=Xltf), r~o.cntr~L305e8 [

s~scall chmod(X7fffcl~'m~ote-flle",Xlf£) by chmod[4323]
I ~ I N G 0

q
'rocr4323] doin9 "climb' from pmc J3
~ac[4323l doin 9 " ~ 1 " ?roe m¢ ~3
B.P. chmodl?(10~Z~2=~ccaSF72, l~74=X3010a, 511=~tt) [in £11e fs.]
B.P. dnNodl?(l~762--X3cea6F72, 196874=X3010m, 51/=XlFf), returnln9 k3bld4

[in File f~.]

DUNIX is chosen from among the numerous available dis-
tributed systems due to the numerous features that aid in ed-
ucation that DUNIX incorporates. Some of these features
include, a powerful debugger, supporting a write-protected
filesystem, kernel downloading capabilities that do not re-
quire physical access to the hardware, etc.. The advantages
provided by these features were discussed. A sample ses-
sion using DUNIX was presented.

If a deep insight into the inter-workings of a distributed
system is desired, experimentation with an actual system is
beneficial. This paper presented a possible system to use as
a teaching tool that can provide the desired insight.

R E F E R E N C E S

[1] Armand, F., et. al., "Towards a Distributed UNIX System: the
CHORUS Approach," EUUG, Manchester, UK, September,
1986.

[2] Baskett, F., et. al., "Task Communication in DEMOS," Proc.
of the Sixth Symposium on Operating System Principles,
November, 1977.

[3] Biersack, E. W., Personal communication concerning the use of
the TURBO Operating System at the Munich University of
Technology for education, 1989

[4] Cheriton, D. R., and Zwaenepoel, W., "The Distributed V Ker-
nel and its Performance for Diskless Workstations," Proc. 9th
Symposium on Operating System Principles, 1983.

[5] Comer, D., Operating System Design: The XINU Approach,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

[6] Dasgupta, P., et. al., "The Clouds Distributed Operating Sys-
tem: Functional Description, Implementation Details and Re-
lated Work," IEEE Eighth Int'l Conf. on Distributed Comput-
ing Systems, San Jose, California, June, 1988.

[7] De Witt, D. J., et. al., "The Crystal Multicomputer: Design
and Implementation Experience," IEEE Transactions on Soft-
ware Engineering, SE-13(8), August, 1987.

[8] Dijkstra, E. W., "The structures of THE multiprogramming
system," CACM, Vol. 11, No. 3, pp. 341-346, March 1968.

[9] Leach, P. J., at. al., "UIDs as Internal Names in a Distributed
File System," Proc. Symposium on Principles of Distributed
Computing, Ottawa, Canada, August, 1982.

[10] Leach, P. J., et. al., "The Architecture of an Integrated Local
Network," IEEE Journal on Selected Areas in Communications,
SAC-l(5), November, 1983.

[11] Litman, A., "DUNIX: A Distributed UNIX system", Proceeding
of the EUUG Conference, September, 1986.

[12] Litman, A., "The DUNIX Distributed Operating System", Op-
erating Systems Review, January 1988.

[13] Lions, J., A Commentary on the Unix Operating System,
University of New South Wales, Australia, 1977.

[14] Mullender, S. J. and Tanenbaum, A. S., "Protection and Re-
source Control in Distributed Operating Systems," Computer
Networks, vol.8, no. 5,6, 1984.

[15] Mullender, S. J., "Principles of Distributed Operating System
Design", Ph.D. Thesis, Amsterdam, The Netherlands, 1985.

[16] Needham, R. M., and Herbert, A. J., The Cambridge Dis-
tributed Computing System, Addison-Wesley, Reading, Mass.,
1982.

[17] Rashid, R., and Robertson, G., "Accent: A Communication
Oriented Network Operating System Kernel," Proc. of the
Eighth Symposium on Operating System Principles, SIGOPS
15(5), 1981.

[18] Rashid, R., et. al., "Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiproeessor Archi-
tectures," Proc. of the Second Int'l Conf. on ASPLOS,
SIGOPS 21(4), 1987.

[19] Tanenbaum, A. S., and Van Renesse, R., "Distributed Operat-
ing Systems," ACM Computing Surveys, 17(4), December,
1985.

[20] Tanenbaum, A. S., Operating Systems: Design and Im-
plementation, Prentice-Hall, 1987.

[21] Walker, B., et. al., "The LOCUS Distributed Operating Sys-
tem," Proc. 9th Symposium on Operating System Principles,
1983.

