
.- --
-�-

- -

~

Alexandre Malheiros Meslim
Ageu Cavalcanti Pacheco Jr.

Júlio Salek Aude
NCE/UFRJ

NCE -08/92
Julho

Núcleo de Computação Eletrônica
Universidade Federal do Rio de Janeiro

Tel.: 598-3212- Fax.: (021} 270-8554
Caixa Postal 2324- CEP 20001-970

Rio de Janeiro -RJ

~~~

A COMPARATIVE ANALYSIS OF CACHE

MEMORY ARCHITECTURES FOR THE

MULTIPLUS MULTIPROCESSOR



--

t

u ma Análise Comparativa de Arquiteturas de

Memórias Cache para o Multiprocessador

MULTIPLUS

Este trabalho analisa algumas alternativas de projeto para a arquitetura do sub-sistema

de memória cache para o multiprocessador MUL TIPLUS .O MUL TIPLUS é um

multiprocessador de alto desempenho em desenvolvimento no Núcleo de Computação Eletrônica

da Universidade Federal do Rio de Janeiro (NCE/UFRJ). A análise foi realizada utilizando-se um

simulador que suporta diferentes configurações de memórias cache. A simulação foi realizada

utilizando-se três diferentes sistemas: sem memória cache, com cache utilizando políticas de

controle do tipo write through e \1-"ite back. Os resultados gráficos mostram o desempenho do

sistema em relação a taxa média de ocupação dos barramentos e o tempo médio de duração do

ciclo do processador .

This paper analyses some design altematives for the MUL TIPLUS cache memory

subsystem architecture. MUL TIPLUS is a high performance multiprocessor system under de-

velopment at NCE/UFRJ. The analysis is carried out using a simu1ator which supports different

cache configurations. The simulator experiments have been done under three different situations: a

non-cache system and the use of write back and write through control policies. The graphical

resu1ts show the system behaviour in relation to the average ratio of bus occupation and the

average processor cycle length.

�



A Comparative Analysis of Cache Memory

Architectures for the MUL TIPLUS Multiprocessor

Alexandre Malheiros Meslin, Ageu Cavalcanti Pacheco Jr ., Júlio Salek Aude

Núcleo de Computação Eletrônica -Universidade Federal do Rio de I aneiro

PO Box 2324

2000 1 -Rio de I aneiro -RI -Brazil

This paper analyses some design alternatives for the MUL TlPLUS cache memory

subsystem architecture. MUL TlPLUS is a high performance multiprocessor system

under development at NCE/UFRJ. The analysis is carried out using a simu1ator which

supports different cache configurations. The simu1ator experiments have been done

under three different situations: a non-cache system and the use of write back and

write through control policies. The graphical resu1ts show the system behaviour in

relation to the average ratio of bus occupation and the average processor cycle length.

1- Introduction

<'

MUL nPLUS is a high performance !vllMD

multiprocessor system bearing modular

architecture under development at

NCE/UFRJ. It is described in section 2.

Section 3 discusses the simu1ator operation

and the cache control schemes which are

supported by the simulator. In section 4. the

input variables for the simu1ator are pre-

sented and commented. In section 5. the

simu1ation results are given in graphical form

and its main aspects are commented.

It is widely known that a Careful

specification of the cache subsystem plays a

fundamental role in achieving the final

performance targets in the design of a

mu1tiprocessor system. This paper analyses,

through functional simu1ations, some

altematives for the MUL TlPLUS cache

memory subsystem. These simu1ations are

specia11y indicated in this case due to some

combinations of certain architecture features

introduced in the present development.



2 -The MUL TIPLUS Multiprocessor Ar-

chitecture

Each PN local memory is in fact just a

fraction (a segment) of the whole global

system memory , and can be accessed by any

other PN as its own memory .The software

recognizes the system memory as one single

block with up to 32 Gbytes.

The MUL TlPLUS 1/0 subsystem is based on

a distributed architecture. Two 1/0

processors (IOP) are associated with each

cluster: one of them is block oriented.

controlling disk and tape 1/0 operations and

the other is byte oriented. controlling printer

and display 1/0 operations.

A MUL 11PLUS configuration with 4

clusters and 4 PNs within a cluster is

presented in fig. 1.

The MUL TIPLUS System [AUDE91] is a

high performance multiprocessor with

modu1ar architecture which is able to support

up to 2048 processing nodes (PN) .Each PN

is designed around a Cypress chip-set

SP ARC architecture. This set comprises a

32-bit processor [SUN87], a floating point

processor, separated data and instruction

direct mapped cache memories ( 64

Kbytes/each), up to 32 Mbytes of I!local"

memory and extemal bus interface. Up to 8

PNs can be connected by a 64-bit double-bus

system making up a cluster. One of the

busses is specific for data transfers while the

other is for instruction transfers. Up to 256

clusters can be connected by a N-Cube

mu1tistage network.

r-;;'--;;-PjIj"õPfllB��
I

,

P -Processor
c -Coche
M -Monoger
S -Snoop
B -Backing mem.
I -Interface
NI -Netw. Interface
CIOP -Char 1/0 Proc.
BIOP -Block 1/0 Proc.

, -l J � -
r -, � ::J::t:= �

-I NI IL- -

�

~

NI

�

��PJI1'P]}lB�Pffiõi
�I

NET-
WORK

S�TCH

NET-
�RK

SWTCH

r-
�NII

L -�-
NI

r--

��PJ'Il8�1P1Ifãl1P1Ifãl
I I ILT-l�

r-
�NI

L-
NI r-

NET-
�I(

S�TCH

NET-
�RK

S'MTCH
!

Fig. 1 -MUL TIPLUS System block diagram



sarne time, to rninimize the use of externa!

busses.2.1- MULTIPLUS Cache
Coherence

�

In order to achieve these goals, we have de-

cided to split the burden of maintaining

cache memory coherence beVween software

and hardware within the MUL nPLUS

architecture. A software scheme works on

data accessed via the multistage

interconnection network (inter cluster

transactions) and the hardware treats ac-

cesses within a cluster .�

The MULTIPLUS architecture allows PNi

to access its own local memory without

using the extemal busses. At the same time,

another PNj can access PNi memory storing

the data into its cache memory .A coherence

problem in the data base may be caused

when PNi writes to its local memory at a

address stored in PNjs cache. This problem

may occur when write back or write through

schemes are used. The hardware cache coherence is based on

the data bus snoop. This coherence scheme

can only be used when the bus operation

involved is performed within a cluster. where

a1l PNs are strongly coupled. The cache

controller is able to continuously snoop the

data bus in order to maintain the stored data

status always updated.

Another coherence problem that may occur

is when backing memory is not always

updated during processor write cycles due to

the use of write back coherence scheme.

That is when one processor reads one

position of local memory data that happens

to be stored and written (modified) at

another processor cache. the data read by the

first processor is not the most recent one.
2.2 -Remate Memary and Data Cache

Caherence

�

('

Some multiprocessor systems solve this co-

herence problem by not a1lowing remote data

to be accessed by other processors, as in the

New York Ultracomputer (NYU)

[GO'11'83]. Others, like the IBM Research

Para1lel Processor Prototype (RP3)

[PFIS86], do not a1low remote data to be

stored in cache memory .

Data transfers between a processor and its

local memory are not norma1ly snooped by

other PN cache controllers. since externa1

data busses are not used. On the other hand.

for write back schemes it is important to

snoop a1l data transfers because any type of

operation can change the related cache data

status. Fortunately. there is one algorithm

that can distinguish between data accesses

that Wn...L NOT change other PN cache data

status from others that may or may not

change the status. With this a1gorithm. it is

possible for some data access to be done

Within the MUL TIPLUS architecture, we

would like to share local memory among ali

processors in ali clusters, to maximize

storing data in cache memory , and, at the



only store read/write data sitting in a

memory block within the same cluster .

inside a PN, without causing any incoherence

problem and without requiring software

intervention.
The operating system is responsible for

maintaining a1l memory management tables

in control of the pages that can or cannot be

stored in cache memory .It is a1so

responsible for maintaining mutual exclusion

of migratory variables.

Coherence is naturally maintained during

instruction accesses by not allowing memory

code to be modified.

The algorithm is based on the use of a flag

near each local memory which indicates if a

data block in local memory can be shared by

others PNs. There is one flag bit for each

cache block mapped onto the local memory .

This flag shows if its associated memory

block was already accessed by other PNs

inside the same cluster. Non cacheable data

accesses do not change this flag status.

3 -The Simulator Operation
During the power on sequence, this flag is

RESET. Coherent reads and writes from a

remote cache controller, performed within a

given cluster, change the accessed block flag

status to SET meaning that this line may

now be shared. The status flag is RESET

when the local cache controller accesses this

memory block.

All local memory accesses can be done

without the use of externa! busses, except for

data accesses with the block shared flag set.
�

'!!

A sirnulator has been developed to analyse

different MUL TIPLUS architecture

irnplementations, specially for the

MUL TIPLUS cache memory subsystem.

This sirnulator is able to verify the

performance of different architecture

altematives which include the number of ex-

temal busses in use (1 or 2), the adopted

cache control schemes ( without cache, write

through and write back) and the use of write

buffer. The sirnulator has been written in

PASCAL. Its source code has around 6000

lines and, at the moment, it is running on

IBM-PC compatible microcomputers.

In order to fully understand the simulator

operation, some concepts used in the

following sections need to be clearly defmed.

.RESOURCE: it is anything necessary for

the processor to access the desired memory

data. Resources that are always allocated

Most of network coupled systems [6BN85]

[PFIS86] do not a1low shared data to be

stored in cache. This obviously simplifies

data coherence maintenance, as backing

memory is always updated and there are not

data copies in other caches. Within

MUL TIPLUS, the adopted approach is to

extend cache store possibility to the greatest

amount of variables at a sma1l expense. The

decision was to restrict any cache memory to



together are called by the same name, ie, the

cache controller snoop and the intemal bus

physically connected to the cache controller

are called SNOOP .

the steady state at the beginning of the simu-

lation. Accesses assignment is made only

randomly according to the input from the

simulator user .

3.2 -Resource Allocation.PROCESSOR: it is the MULTIPLUS

Integer Unit (lU) which sits on every

processing element.

�

The available processor resources are:

.Inside a PN: code cache, data cache, data

snoop, loca1 memory,

.Inside a cluster: code bus, data bus, other

PNs loca1 memories, other PNs data snoops,

.Outside a cluster: code bus, data bus, loca1

memories and data snoops.

For systems with only one bus, the data bus

is also the code bus and, therefore, this single

bus is called BUS.

.STATUS: it is assigned to each one of the

processors and resources. Three status are

used: FREE, W (Wait -related only to a

processor and having various sub-status

indicating that the processor is waiting for

free resources) and X (eXecuting -which

has a1so various sub-status. It is related to

the pre1iminary W status). W and X sub-

status are strong related to the type of access

the corresponding processor is assigned to

execute.

3.1 -Processor Allocation

Each resource has two attributes. The f1fst

one shows its current status that can be

FREE, X or W. The second one, which is

va1id only when the f1fst one is X, is the time

needed for the processor (or resource) to

fmish the current access.

3.3 .Simulator Flow

� The simulator operation consists of three

major parts: initialization, running and

counting. The running part is the simulator

kernel and comprises four routines:

.Job Allocation Routine: it a1locates for

each f1UEE processor one job (one �e of

memory access) with random distribution

throughout a random number generator from

0%, inclusive, up to 100%, exclusive. This

number is compared with the number set by

Simulation begins with all the processors in

the FREE state, which is the condition

established by the power on sequence. One

type of memory access, basically data or

instruction access, is allocated for- each

processor. Although, at power on, in a real

system, the cache memories would be empty

and the first memory access would be a code

fetch, in the present simulation, the machine

begins at steady state with a populated cache

memory and a stabilized cache hit rate to

avoid transient problems and minimize the

simulation time needed for the generation of

reasonable results. Similarly, the shared flag

and the type of processor access are also in



~

...�
,

-

the user at the beginning of the simulation.

This roughly works as the sequence of

decisions shown below:

described routines that are updated here for

partia! totalization and displays.

The majn totalization routine is called at the

end of the simulation. It eva!uates all partia!

results and optionally saves them in an

ASCII file for subsequent plotting.

IF random < code fetch rate THEN

type of code fetch selection routine

ELSE IF random < data read rate mEN

type of data read selection routine

3.4 .Simulator Cache SchemesELSE
� type of data write selection routine

A When the simulator leaves this routine, alI

processors have status W (closely allocated)

or X (already doing memory access).

There have been implemented three different

cache schemes: without cache, write through

and write back. The without cache option

was simulated only to show the strong

influence the high hierarchical memory has

on the MUL TIPLUS performance..Resource AlIocation Routine: once ali the

processors have what to do, every processor

in W state will need some resources to .Write Through: it has been implemented

without write allocate as Cypress does in its

cache controller CY7C605 [CYPR90].

execute its assigned memory access

according to its status. Processor status only

change from W to X when a11 needed

resources are a1ready a11ocated. Once the

resources are allocated, the resource status

changes from FREE to the corresponding X

status of its master processor. Its time

counter is loaded with the access cor-

responding amount of time.

Some restrictions are required in order to

maintain data coherence. Data which is only

accessible through the network (extra cluster

data) is not cacheable. Code is always

cacheable and the code fetch is done in

coherent mode because the coherence is

maintened by software (by the operating

system)..Time Routine: this routine emulates the

sirnulator elapsed time. It decrements the

tirne counter for each processor and resource

in W state running an access. For every

counter that hits ZERO, this routine changes

the respective processor or resource status

to FREE.

Local memory access can be done without

the use of extemal busses, except coherent

data write with the block shared flag set. In

this case, the memory access is done using

the extemal data bus to update (block invali-

date) other PN cache status inside the same

cluster..Partial Totalization Routine: there are

auxiliary counters in each one of the above



the initia1 status is MODIFIED, the cache

controller i aborts the current memory cycle

and performs a backing memory update

(copy back), a11owing processor j reads or

writes to the most recent value (in backing

memory ) .

.Copy Back: implemented as in the Cypress

CY7C605 [CYPR90] cache controller with

write aJlocate. All restrictions applied to the

write tJlfough scheme are expanded to all

data accessed by any processor outside the

cluster. even if the data is at the local

memof". A processor only needs to use the external

data bus during an access to its local memory

if a coherent data access is to be performed

and the memory block shared flag is on.

4- User Input Parameters

When a processor i requires data which is

not present in its own cache memory , such

data must be read from the backing memory .

If there is another copy of this same data in

another cache memory j U 1 i), the data must

be stored as SHARED, otheIWise, it is

stored as PRIV ATE.
The simulator input parameters will be pre-

sented in this section with their respective

default values and some explanations.

The input parameters are divided intO two

groups: hardware parameters, concerned

only with hardware implementation aspects,

and sysrem parameters, concerned with

cache schemes, memory hierarchy and,

mainly, the workload.

Future ;:nemory references to data i will pro-

duce a hit in the cache and the access will be

perforrned without the need of any external

busses. Cache hit data accesses do not need

extema1 busses, except for data write to a

data cache with the SHARED status on. In

this case, it is necessary to use the external

bus to inform other cache controllers that

this cache block status has changed (from

SHARED to MODIFIED).
4.1 -Hardware Parameters

There threeare

tirning,
Writing to a PRIV A TE block changes its

status to MODIFIED. Writing to a

SHARED block needs an externa! bus

invalidation access to invalidate alI other

cache block copies.

parameters:

architectural.

The architectural parameters a1low the

simulation to configure a system with 1 or 2

busses connecting from 1 to 16 PNs per

cluster. The system can have from 1 to 256

clusters and work with a backing memory

write buffer .

When a processor j performs a remote data

write which produces a hit at a snoop cache

i, its block cache status is changed to

INV ALID. If it is a read memory access, the

status changes to SHARED. Otherwise, jf



4.2 -System Parameters

The system parameters are extremely

workload dependent. They are very difficult

to be estimated. These parameters are the

fo11owing ones:

The timing parameters are concemed with

the access time in all leve1s of the memory

hierarchy. The timing for local memory

access is divided into two parts for the

sirnulation of burst memory accesses.

Ali tirnings in the simulator are quantified in

clock cycles with a clock frequency of

25:Mhz, giving a period of 40ns

.Network Access: the delay for each

network stage is about 2 clock cycles

[BRON90]

.Cache Hit Rate: since most MUL TIPLUS

expected workload is scientific, where big

data blocks are used in various iterations,

favoring cache hit rate, we set, initially for

the experiments, the data cache hit rate at

around 85%, and the code cache hit rate at
n�"'

.Snoop Hit Rate: the snoop hit rate

represents the rate of memory accesses that

will invalidate a cache block. This rate was

set to 10% of the amount of coherent

memory accesses with invalidate command.

Although Weber [WEBE89] has assumed

this rate as 1 %, we decided to use 10% due

to the high shared variable rate (see below).

c

.Bus Access: the bus access is divided in

three parts [CYPR90]: bus arbitration phase,

address phase and data phase. The bus

arbitration phase has a non deterrninistic

delay and is simulated by the system arbiter

routine included in the simulator. The

address phase has a f1Xed time ( 1 clock cycle

or 40ns). The time needed for the cache

controller to decode and initiate a memory

access inside its own PN (three clock cycles)

is added to this time, making up four clock

cycles. The data phase timing is given by the

slave (backing memory) and the transfer

length.�

.Shared Rate: it is the amount of processor

memory accesses which refer to shared data.

Weber [WEBE89] found a rate of 2% while

[FEIT90] and [RUDO85] found 5%. Both of

the analysed systems in those works had

shared memory connected only by a network

and not by busses. In order to simu1ate the

existence of a distributed operating system

with a lot of shared variables and a non

favorable workload, we have decided to use

a high value such as 20% for code and data

share.

.Local Memory Access: this time depends

on how fast is the memory used for the

backing memory .Assuming the use of an

8Ons memory , both the access time and the

burst time can be set to 2 clock cycles.

.Cache Access: the data read and code

fetch accesses take 1 clock cycle. Data write

accesses take 2 clock cycles



.Local Access Rate: it is the rate of proces-

sor local accesses (inside the PN). Its value

was set to 80% [AZEV91].

.External Bus Busy Rate: we can notice

from figs. 2 and 3 that the bus busy rate in-

creases with the number of PNs/clusters and

it is quite independent on the number of

clusters. This is one of the advantages

obtained from the present network design

[BRON90].

.Cluster Access Rate: it is similar to the

local access rate. It gives the rate of memory

accesses inside a cluster for each PN. Its

value has been estimated to be 80% of the

non-local memory accesses.

.
.Code Fetch, Data Read and Data Write

Rates: they are responsible for the most

important differences between simu1ations of

RISC and CISC processors. While CISC

rates are around 50%, 15% and 35%,

respectively [S:rvIIT82], the RISC rates are

80%, 13% and 7% [NAMJ88] [TAMI81],

and those are the va1ues used here.

.Written Rate: it is the rate of modification

on data stored in the cache. 1ts value has

been estimated as 10% [MESL91].

The null bus busy rate for 1 PN/cluster and 1

cluster observed in figs. 2 and 3 is due to the

non existence of an extemal bus (since the

IOPs were not included in the present

simu1ation). The code bus busy rate is the

same for write back based systems or write

through based systems since there is no write

bus operations at the code bus and,

therefore, no copy back is required. With a

high number of processor elements per

cluster (high share degree), the data bus busy

rate is quite similar for both the write back

and the write through schemes.

5 -Results

The simulation results are shown below,



WRITE BACK -2 x 64 BIT BUS

CODE BUS BUSY RATE DATA BUS BUSY RATE

100% 100%
---

90% 90% 1 CLUSTER

w 80% w 80% -+-
.J .J
� 70% � 70% 4 CLUSTERS

u 60% � u 60% -

!r !r
o 50% O 50% 1 1 6 CLUSTERS
I/) I/)
� 40% � 40% -e-

� 30% � 30%
164 CLUSTERS

!r !r �
Q. 20% Q. 20% 256 CLUSTERS

10% 10';

0'; 0%
4 8 16 2 4 8 16

#PN/a.USTER #PN/a.USTER

Fig. 2: write back code (a) and Data (b) bus busy rate.

independence between the average processor
The curves in figs. 2.b and 3.b seem to cycle and the number of system clusters. But

confirm an early observation [SMIT82] the system performance goes down as the

which suggests that a well implemented number of PNs/cluster increases. This

buffered write through po1icy gives similar situation is due to the low network traffic

performance as the write back scheme. and, perhaps, to the inaccuracy of the

A p C I network simulation, which neglects the
.verage rocessor yc e: we can see
fr fi 4 d 4 b th t th .network contention. Stil1 from figs. 4.a and

om g. .a an .a ere lS some

WRITE THROUGH -2 x 64 BIT BUS

CODE BUS BUSY RATE DATA BUS BUSY RATE

100% 100%
---

90% 90% 1 CLUSTER

w 80% w 80% -+-
.J .J
� 70% � 70% 4 CLUSTERS
u 60% () 60% -*-
!r !r
o 50% o 50% 1 6 CLUSTERS
I/) I/)
� 40?; � 40?; -e-

� 30% � 30% 64 CLUSTERS
!r !r -�
Q. 20% Q. 20% 256 CLUSTERS

10?; 10% .,

0% 0%
2 4 8 16 2 4 8 16

#PN/a.USTER #PN/a.USTER

Fig. 3: write through with write buffer code (a) and data (b) bus busy rate.



AVERAGE PROCESSOR CYCLE

WRITE THROUGH -2 x 64 BITS BUS WRITE BACK -2 x 64 BITS BUS

5.5 6.5
+ ---

5 6 1 CLUSTER

w w 5.5 -+--
.J ..5 .J
� � 5 4 CLUSTERS
u 4 .u ..5 --*:-
� 3.5 ,/ � .1 6 CLUSTERS

� � 3.5 -e--
9 3 9 3 64 CLUSTERS

� 2.5 � 2.5 -*-
t;c 2 2 256 CLUSTERS

1.5 1.5
� 2 4 8 16 2. 4 8 16

#PN/a.USTER #PN/a.USTER

Fig. 4- write through average processor cycle: (a) double bus (b) single bus

4.b we can see that a system configuration experiments can only store one memory

with 16 PNs/cluster is quite saturated. access at a time, while the write back scheme

Therefore, its use is not recommended. needs four memory accesses to perform a

block write.
A1so, the write back system is around 20%

better than the write through when a sma11 Fig.5 shows a MULTIPLUS system with 16

number of PNs and clusters is used. But its clusters and 4 PNs/cluster. We can see that

superiority goes down as the number of PNs for sma11 values of data sharing, the write

increases. back scheme is much better than the write

through. As the sharing rate increases, the
The system configuration using write write through with write buffer scheme

y through with write buffer has its shows a better performance than the write

performance improved from 20% up to 25% back approach. It can also be noticed that

� as shown in fig. 5. Also, it seems that there is with the write through scheme the system

no advantage in having a write back system performance is somewhat independent on the

with write buffer. Perhaps, this is due to the sharing rate.

fact that the write buffer option in our



Fig. 6 shows some configurations of the In addition, it could a1so be noticed that a

MULTIPLUS system: write through system with local memory

a) write through with write buffer, double write buffer presents a performance which is

64-bit bus very close to the one delivered by the write

b) same as above, with I/O burst (2nd Y) back system.

c) write through double 32-bit bus
d) write through with write buffer double 32- The next steps in the development of the

bit bus simulator will be the inclusion of a more

e) write through single 64-bit bus realistic model of the N-cube multistage

f) write through double 64-bit bus network which will be able to take into con-

sideration the contention effect, delivering

more accurate results.
6- Conclusions and Future Work

We expect to have a prototype system by the
The simulation analysis has shown that the d f th h . ul .

en o e year to compare t e S1In atl.on re-
write back scheme outperforms, though lt .

th h od d b h alsu s W1 t e ones pr uce y t e re sYs-
marginally, the write through scheme.

tem.
However it has a1so been verified that when

the sharing rate increases, its performance is
impacted by the large amount of invalidation 7 -Acknowledgements

accesses and cache block copY back We would like to thank CNPq and FINEP

operations. .
that sponsored thlS work.

AVERAGE PROCESSOR CYCLE

4 PNS X 16 CLUSTERS SYSTEM 16 CLUSTERS
,
r ..o, 8.0 20

/ 18 ---

! u3.8 w7.0 16 WT 2X64 WBUF

.J .J -+-
�3.6 �6.0 1. 10 BURST
u u 12(! (! -*:-

03.4 05.0 10 WT 2X32
VI VI
VI UI 8 -a-
w w
9 3.2 9 4.0 6 WT 2X32 WRBUF
(! Itn. Q. .' -*-

3.0 3.0 WT 1 X64 WBUF
2 2.8 2.0 O

WT 2X642 4 8 16 32 6. 2 4 8 16

SHARE RATE #PN/CLUSTER

Fig. 5 -average processor cycle X sharing. Fig. 6 -general system performance.



[GOOT83] A. GO�IEB et aI, "The

NYU Ultracomputer -Designing an 1Im\IID

Shared Memory Parailel Computer", IEEE

Transactions in Computers, vol. C-32(2),

pp 175-189, Feb/1983

References

[AUDE90] J. S. AUDE et al,

"MULTIPLUS: A Modular High-

Performance Multiprocessor", Proceedings

of Euromicro 91, Viena, pp 45-52, Sep/91 [MESL91] A. M. MESLIN, "Estudos de

Arquiteturas de Memorias Cache para o

Multiprocessador MULTIPLUS", MSc

Tesis, COPPE -UFRJ, Aug/91

,.,

[AZEV91] G. P. AZEVEDO et al,

"MULPLIX: Um Sistema Operacional Tipo

Unix para o Multiprocessador

MULTIPLUS", Technical Report RT 91-1

-Núcleo de Computacao Eletronica -

Universidade Federal do Rio de Janeiro,

Jan/91

[NAMJ88] M. NAMJOO et ali, I'CMOS

Custam Implementatian af the SP ARC

Architecture", 33th IEEE Computer

Society International Conference, pp 18-

20, Califarnia, Feb 29 -Mar 04/88
[BBN85] "Butterlly Parallel Processor

Overview", BBN Laboratories Incorpo-

rated, version 1,17 pp, Jun/13/85

[PFIS86] G. P. PFISTER et al, "An

Introduction to the IBM Research Para1lel

Processor Prototype (RP3)", IBM T. J.

Watson Research Laboratory , Research Re-

port, 32 pp, Yorktown Heights, NY ,

13/Jun/86

[BRON90] G. BRONSTEIN et al,
" Analise do Desempenho de Redes de

Interconexao para Maquinas Paralelas", m

Simposio Brasileiro de Arquitetura de

Computadores/Processamento Paralelo,

pp 345-360, Rio de Janeiro -RJ, Nov/7-9j9O

[CYPR90] "SPARC RISC USER'S

GUIDE", Cypress Semiconductor
Corporation, 2nd edition, Feb/1990 .

[RUDO85] L. RUDOLPH et al,

"Dynamic Decentralized Schemes for MIMD

Parallel Processorsll, Proceedings of the

12th International Symposium on

Computer Architecture -ACM

SIGARCH Newsletter, vol. 3(3), pp 340-

347,1985

[SWT82] A. J. SWTH, "Cache

Memories", ACM Computer Surveys, vol.

14(3), pp 473-530, Sep/1982

[FEIT90] R. Q. FEITOSA, "O

Problema de Coerencia de Memorias Cache

Privadas em Grandes Multiprocessadores

para Aplicacoes Numericas: Uma Nova
Solucao", X SBC Congress -Vitoria- ES -

Brazil, pp 138-156, Ju1j22-27/90 [SUN87] SUN MICROSYSTEMS

INC, "The SPARC Architecture Manual",

Mountain View -CA, 199 pp, 1987



[TAMI81] Y. TAMIR, "Simulation and

Performance Evaluation of the RISC

Architecture", University of California,

College of Engineering and Computer

Sciences, Computer Science Division,

Mar/81

[WEBE89] W-D WEBER, et aI,
II AnaIysis of Cache Invalidation Patterns in

Multiprocessors", ACM SIGARCH

Computer Architecture News, New York,

NY , voll (2), pp 243-256, Apr/89I --.

~~~


