Some Performance Figures for

the G-Machine and its Optimisations

Rafael D.Lins and Patricia G.Soares®

*Departamento de Informatica, Universidade Federal de Pernambuco,

Cidade Universitaria, 50.739, Recife, PE, Brazil

Computing Laboratory, The University of Kent at Canterbury,

Canterbury, CT2 TNF, Kent, England

Johnsson’s G-Machine is a major achievement in the efficient implementation of lazy functional
languages. In this paper we provide figures of time and space performance of the original G-Machine
and each optimisation step. The figures presented not only help to understand the G-Machine, but can
also serve as a basis for choosing which optimisations to use in a different machine for the

implementation of lazy functional languages.

1. Introduction

The G-Machine [1] was developed by Johnsson
and Augustsson, in the Chalmers Institute of
Technology, Goteborg, Sweden, with the aim of
providing efficient implementation of lazy func-
tional languages in von-Neumann machines. The
code generated by the G-Machine when executed
produces time and space performance compara-
ble with conventional implementations of imper-
ative languages, such as C. This improvement has
been attributed to many different aspects of the
machine in isolation. But not much is said about
how each of these aspects affects the behaviour of
the machine as a whole. The only data available
is the execution time of 3 benchmark programs in
LML (page C-20 of reference [1]).

In our opinion, some quantification is ex-
tremely important to develop a “feel” for the
gains obtained in each of the optimisation steps
of the G-Machine presented by Johnsson [1] and
Peyton-Jones [6]. In this work we present time
and space performance figures for the G-machine
and each optimisation. These optimisations are
not applicable only to the G-Machine. They can
be adapted to other lazy functional machines.
The figures presented here can also serve as a ba-

sis for choosing which optimisations to use in a
different machine. This knowledge was used with
success in optimising GM-C [5], CM-CM [7] and
T'CMC [3], abstract machines for the implemen-
tation of lazy functional languages based on Cat-
egorical Multi-Combinators [2, 4].

2. The G-Machine

The original G-Machine is very simple. We can
say that this machine works as an interpreter in
which the original graph is replaced by code. This
code when executed generates a graph to be in-
terpreted.

Suppose, for example, that we want to evaluate
the following expression, which returns the list of
the squares of each Natural number.

list 0, where
list n = square n : list (suc n)

In the definition above square and suc are pre-
defined functions as follows,

squarexr = x X T
sucx = x-+1

The expression, list 0, will be represented in
the G-Machine as in figure (a) below. Using the

(@ : : output: 0 @ 0 : 0 :
FANVANAN A AN
@ @ 0 @ st @ @ 1 @
A A A A A
square() [ist @ 0 lst @ squareQ [is¢ @ 1 lhist @
\/) \/} M/ Y
suc suc suc \() su su

(a) (b) ()

(d)

~
[
Ny
—~
—
=

Figure 1: Example of the Evaluation Mechanism

definition of the function list as a rewriting law,
this expression is reduced to figure (b). The inte-
ger 0 is the shared argument to square and suc.
The resulting list expression is in canonical form,
but neither its head nor its tail are. After reduc-
ing a graph to its canonical form, the next step is
printing the result. Printing a list means to print
its head and then to print its tail. As only ground
type expressions can be printed, the machine will
first reduce the head of the list, print it and then
reduce its tail and print it. Using the definition
of square as a rewriting law, the head of the list is
then rewritten to the square of the integer 0, that
is 0. This rewriting step can be seen in figure (c).

Now, as the head of list is in canonical form,
it can be printed and removed from the graph
(figure (d)). The evaluation of the tail contin-
ues in a similar fashion(figure (e)). Computation
does not terminate. Now, the argument to square
and suc is the expression suc 0. Again, the ma-
chine will try to print it. The definition of square
reduces the expression to the square of the in-
teger denoted by the expression suc 0. First we
reduce the graph representing suc 0 to its canon-
ical form, the integer 1. As suc 0 is shared, all
expressions that reference it will benefit from the
reduction accomplished. Then, square is applied
on the resulting expression, yielding the integer
1. The graph after these rewritings is as in figure
(f). Again, as the head is now in canonical form,
it can be printed and removed from the graph.
Reduction continues in the same manner.

The graph transformations above illustrate the
behaviour of original G-Machine, in which expres-
sions are mostly interpreted. Optimisations re-
place interpretation by compilation.

2.1. Compilation Schemes

Our first implementation of the G-Machine uses
the following compilation schemes (pg C-8 of [1]):

Flfwe1-- xm = €] produces code to reduce the
graph of function f applied to arguments
to x,,.

E[e] generates code that evaluates e. Tt is used
if we know statically that e is needed.

C[e] produces code that constructs the graph of
e, if scheme £ is not applicable.

B[e] compiles arithmetic or logical expressions.

Using these schemes the code for square is:
square — PUSH(0); EVAL; GET;
PUSH(0); EVAL; GET; MUL; MKINT

2.2. The Abstract Machine

The G-code generated is executed in the abstract
G-Machine [1]. A state in this machine is de-
scribed as a 7-tuple (O, C, S, V, G, E, D), where

O: s the output ever produced, i.e. a sequence
of basic values (integers and booleans).

C: is the the G-code sequence being executed

S: s the stack of pointers to the graph stored
in the heap

V' is the stack of values for operands of arith-
metic and logical operations

G is the the graph formed by fully-boxed cells
stored in an area of memory called heap.

E:. s the stores the name, arity and code for
each function defined in the script.

D: is a dump used to save the current state dur-
ing recursive calls to EVAL.

3. Performance

In order to increase the efficiency of the origi-
nal G-Machine, Johnsson optimises the compiled
code to avoid generating graphs as much as pos-
sible. This reduces the interpretative part of the
execution of programs. Most of these optimiza-
tions are suggested and described by Johnsson [1]
and Peyton-Jones [6].

The benchmark programs are:

Fibonacci: the Fibonaccl number of 20.

Sieve: generates a list of prime numbers smaller
than 300 by using Erathostenes’ sieve.

InsOrd: sorting by insertion of a list of 100 ran-
dom numbers.

Simlog: takes a list of 100 random numbers and
produces 100 boolean values.

TwSuc: maps (twice twice twice successor) onto
a list of 600 numbers.

The original implementation of the G-Machine by
Johnsson [6] is made in Vax 780 Assembly Lan-
guage. For the sake of simplicity and portability
our implementations of the G-Machine use C as a
macro assembler. The data presented was from a
VAX 750 with arithmetic co-processor. A copying
algorithm for garbage collection was used, each
heap of size 43,750 cells. The table below sum-
marizes the results for the benchmark programs.

KRC corresponds to Turner’s KRC imple-
mented by Simon Croft as an interpreter
written in C.

00 Presents the performance of the G-Machine
without optimisations.

01 Introduces non-volatile cells, which are not
reachable by the garbage collector.

02 Optimises pre-defined functions (i.e. arith-
metic and logical operations) with the opti-
misations described in lines 08, 10 and 11
for user-defined functions.

03 Saves function calls by storing return ad-
dresses on the V stack and defines UNWIND

as a Imacro.

04 Uses schemes R, RS & &S as described in
chapter 20 of reference [6].

05 Optimizes scheme RS as described on pages
367-377 of [6]. This compilation scheme
avoids the generation of vertebrae which will
become garbage soon after its generation.

06 Optimization of scheme £S as presented on

pages 377 and 378 of [6].

07 Performs symbolic evaluation of expressions.
In most cases, this optimization transforms
call-by-need into call-by-value without losing
laziness, because this is done locally within
a function.

08 Presents the result of the peephole optimisa-
tion for instructions UPDATE, SLIDE, and
POP.

09 The numbers and characters found in user de-
fined functions are stored in the non-volatile
area, avoiding to copy them every time they
are needed, as in the case of recursive func-
tions.

10 Tests memory availability per function in-
stead of per cell needed.

11 Uses simulation stacks to avoid redundant

PUSHes and POPs (pages D-22/33 of [1]).

12 The printing procedure is made particular to
the type of the output (monomorphic).

13 Nested applications are flatened whenever
all arguments to a function are present at
compile-time.

14 The stack and heap pointers were represented
as pointers instead of integers indexing an
array.

ML is the Edinburgh implementation of Stan-
dard ML by FAM version 3.3.

C corresponds to programs implemented in C in
a functional style.

Program Fibonacci Sieve InsOrd SimLog TwSuc

Implemt. time cells time cells time cells || time cells time cells
KRC 65.84 | ——— 3040 | ——— 30.21 | ——— 411 | ——— 18.07 | ——
00 21.97 | 417,720 14.79 96,275 4.71 57,797 1.39 11,962 14.40 | 133,301

01 20.53 | 329,411 14.13 70,149 4.51 41,725 1.30 9,148 14.30 | 121,447

02 19.45 | 285,473 13.57 68,851 4.27 40,721 1.26 8,548 14.29 | 121,447

03 16.58 | 285,473 10.82 68,851 3.70 40,271 1.14 8,548 14.20 | 121,447

04 14.73 | 285,473 9.17 68,851 3.44 40,271 1.06 8,548 10.14 | 119,857

05 13.91 | 285,473 9.05 64,290 3.41 39,864 1.04 7,645 8.91 84.654

06 10.22 | 285,473 8.21 57,902 3.00 39,864 0.87 7,189 8.28 84,654

07 5.45 | 197,627 2.34 33,548 2.02 25,673 0.84 6,781 7.71 78,064

08 4.81 | 153,663 1.85 21,859 1.86 17,678 0.80 5,981 7.43 55,434

09 3.92 | 109,775 1.78 21,259 1.83 16,866 0.75 4,869 7.31 54,144

10 3.89 | 109,775 1.82 21,259 1.84 16,866 0.77 4,869 7.20 54,144

11 3.01 | 109,775 1.48 21,259 1.54 16,866 0.71 4,869 6.70 54,144

12 2.88 | 109,775 1.44 21,259 1.55 16,866 0.71 4,869 6.58 54,144

13 2.88 | 109,775 1.18 17,025 1.42 11,614 0.73 4,067 6.70 54,144

14 1.74 | 109,775 1.03 17,025 1.16 11,614 0.65 4,067 5.73 54,144
ML 8.58 | ———- 6.68 - - - 16.99 | ——

C 0.83 | —— 1.28 - - - -

4. Conclusions References

In this paper, we show how the G-Machine
provides fast implementations of functional lan-
guages, comparable in performance to imperative
ones. The simplicity and modularity of the orig-
inal G-Machine are the key for allowing simple
optimisations, which in some cases, increased the
performance of an order of magnitude.

The figures for the optimisations steps pre-
sented in this paper serve to give a better under-
standing of the G-Machine, quantify gains in each
of them and allow implementors of lazy functional
languages to make a choice of which optimisations
to use in their own implementation. This knowl-
edge was used with success in optimising I'-CMC
[3], a machine that produced performance figures
ranging from as good to several times faster than
Johnsson’s implementation of the LML compiler
based on the G-Machine.

Acknowledgements

We express gratitude for several discussions with
Danilo Florissi and Martin Musicante.

Research reported herein has been spon-
sored jointly by The British Council, CNPq
(Brazil) grants 40.9110/88-4 and 80.4520/88-7,
and CAPES (Brazil) grant 2487/91-08.

(1]

[2]

T.Johnsson. Compiling Lazy Functional
Languages. Ph.D.Thesis, Chalmers Tekniska
Hogskola, Goteberg, Sweden, January 1987.

R.D.Lins. Categorical Multi-Combinators.
Functional Prog. Lang. and Comp. Architec-
ture, Portland, USA, September 1987, LNCS
274, pp. 60-79, Springer Verlag.

R.D.Lins & B.O.Lira. TCMC: Fast Lazy
Functional Languages. to appear: Micropro-
cessing and Microprogramming.

R.D.Lins & S.J. Thompson.
plementing SASL using Categorical Multi-
Combinators, Software — Practice & FExpe-
rience, 20(8):1137-1165, November 1990.

Im-

M.A Musicante & R.D.Lins. GMC: A graph
Multi-Combinator Machine. Microprocess-
ing & Microprogramming, vol 31(1-5):81-84,
North-Holland, 1991.

S.Peyton-Jones. The Implementation of
Functional Languages. Prentice Hall, 1987.

S.J. Thompson & R.D.Lins. The Categori-
cal Multi-Combinator machine:CM-CM. The
Computer Journal, vol 35(2):170-176, BCS,
Cambridge University Press, April 1992.

