
Some Performance Figures for

the G�Machine and its Optimisations

Rafael D�Lins and Patricia G�Soaresa

aDepartamento de Inform�atica� Universidade Federal de Pernambuco�
Cidade Universit�aria� �����	� Recife� PE� Brazil

Computing Laboratory� The University of Kent at Canterbury�
Canterbury� CT
 �NF� Kent� England

Johnsson�s G�Machine is a major achievement in the e
cient implementation of lazy functional
languages� In this paper we provide �gures of time and space performance of the original G�Machine
and each optimisation step� The �gures presented not only help to understand the G�Machine� but can
also serve as a basis for choosing which optimisations to use in a di�erent machine for the
implementation of lazy functional languages�

�� Introduction

The G�Machine ��� was developed by Johnsson
and Augustsson� in the Chalmers Institute of

Technology� G�oteborg� Sweden� with the aim of
providing e
cient implementation of lazy func�
tional languages in von�Neumann machines� The
code generated by the G�Machine when executed
produces time and space performance compara�
ble with conventional implementations of imper�
ative languages� such as C� This improvement has
been attributed to many di�erent aspects of the
machine in isolation� But not much is said about
how each of these aspects a�ects the behaviour of
the machine as a whole� The only data available
is the execution time of � benchmark programs in
LML �page C�
� of reference �����

In our opinion� some quanti�cation is ex�
tremely important to develop a �feel� for the
gains obtained in each of the optimisation steps
of the G�Machine presented by Johnsson ��� and
Peyton�Jones ���� In this work we present time
and space performance �gures for the G�machine
and each optimisation� These optimisations are
not applicable only to the G�Machine� They can
be adapted to other lazy functional machines�
The �gures presented here can also serve as a ba�

sis for choosing which optimisations to use in a
di�erent machine� This knowledge was used with
success in optimising GM�C ���� CM�CM ��� and
�CMC ���� abstract machines for the implemen�
tation of lazy functional languages based on Cat�
egorical Multi�Combinators �
� ���

�� The G�Machine

The original G�Machine is very simple� We can
say that this machine works as an interpreter in
which the original graph is replaced by code� This
code when executed generates a graph to be in�
terpreted�

Suppose� for example� that we want to evaluate
the following expression� which returns the list of
the squares of each Natural number�

list �� where
list n � square n � list �suc n�

In the de�nition above square and suc are pre�
de�ned functions as follows�

square x � x� x

suc x � x� �

The expression� list �� will be represented in
the G�Machine as in �gure �a� below� Using the

�



list
���

�
AAU
�

�a�

square
���

�
AAU
� list

���

�
AAU
�

���

�

JJ�

suc
���I

�b�

�

� list
���

�
AAU
�

���

�

JJ�

suc
���I

�c�

output� �

� list
���

�
AAU
�

suc
���I

�d�

�

square
���

�
AAU

suc
���

�
AAU
�

list
���

�
AAU
�

���

�

JJ�

suc
����

�e�

�

�

� list
���

�
AAU
�

���

�

JJ�

suc
����

�f�

Figure �� Example of the Evaluation Mechanism

de�nition of the function list as a rewriting law�
this expression is reduced to �gure �b�� The inte�
ger � is the shared argument to square and suc�
The resulting list expression is in canonical form�
but neither its head nor its tail are� After reduc�
ing a graph to its canonical form� the next step is
printing the result� Printing a list means to print
its head and then to print its tail� As only ground
type expressions can be printed� the machine will
�rst reduce the head of the list� print it and then
reduce its tail and print it� Using the de�nition
of square as a rewriting law� the head of the list is
then rewritten to the square of the integer �� that
is �� This rewriting step can be seen in �gure �c��

Now� as the head of list is in canonical form�
it can be printed and removed from the graph
��gure �d��� The evaluation of the tail contin�
ues in a similar fashion��gure �e��� Computation
does not terminate� Now� the argument to square

and suc is the expression suc �� Again� the ma�
chine will try to print it� The de�nition of square
reduces the expression to the square of the in�
teger denoted by the expression suc �� First we
reduce the graph representing suc � to its canon�
ical form� the integer �� As suc � is shared� all
expressions that reference it will bene�t from the
reduction accomplished� Then� square is applied
on the resulting expression� yielding the integer
�� The graph after these rewritings is as in �gure
�f�� Again� as the head is now in canonical form�
it can be printed and removed from the graph�
Reduction continues in the same manner�

The graph transformations above illustrate the
behaviour of original G�Machine� in which expres�
sions are mostly interpreted� Optimisations re�
place interpretation by compilation�

���� Compilation Schemes

Our �rst implementation of the G�Machine uses
the following compilation schemes �pg C�� of �����

F ��fx� � � �xm � e�� produces code to reduce the
graph of function f applied to arguments x�
to xm�

E ��e�� generates code that evaluates e� It is used
if we know statically that e is needed�

C��e�� produces code that constructs the graph of
e� if scheme E is not applicable�

B��e�� compiles arithmetic or logical expressions�

Using these schemes the code for square is�
square� PUSH��� EVAL GET 

PUSH��� EVAL GET MUL MKINT

���� The Abstract Machine

The G�code generated is executed in the abstract
G�Machine ���� A state in this machine is de�
scribed as a ��tuple hO�C� S� V�G�E�Di� where

O� is the output ever produced� i�e� a sequence
of basic values �integers and booleans��

C� is the the G�code sequence being executed

S� is the stack of pointers to the graph stored
in the heap

V � is the stack of values for operands of arith�
metic and logical operations

G� is the the graph formed by fully�boxed cells
stored in an area of memory called heap�



E� is the stores the name� arity and code for
each function de�ned in the script�

D� is a dump used to save the current state dur�
ing recursive calls to EVAL�

�� Performance

In order to increase the e
ciency of the origi�
nal G�Machine� Johnsson optimises the compiled
code to avoid generating graphs as much as pos�
sible� This reduces the interpretative part of the
execution of programs� Most of these optimiza�
tions are suggested and described by Johnsson ���
and Peyton�Jones ����
The benchmark programs are�

Fibonacci� the Fibonacci number of 
��

Sieve� generates a list of prime numbers smaller
than ��� by using Erathostenes� sieve�

InsOrd� sorting by insertion of a list of ��� ran�
dom numbers�

Simlog� takes a list of ��� random numbers and
produces ��� boolean values�

TwSuc� maps �twice twice twice successor� onto
a list of ��� numbers�

The original implementation of the G�Machine by
Johnsson ��� is made in Vax ��� Assembly Lan�
guage� For the sake of simplicity and portability
our implementations of the G�Machine use C as a
macro assembler� The data presented was from a
VAX ��� with arithmetic co�processor� A copying
algorithm for garbage collection was used� each
heap of size ������ cells� The table below sum�
marizes the results for the benchmark programs�

KRC corresponds to Turner�s KRC imple�
mented by Simon Croft as an interpreter
written in C�

�� Presents the performance of the G�Machine
without optimisations�

�� Introduces non�volatile cells� which are not
reachable by the garbage collector�

�� Optimises pre�de�ned functions �i�e� arith�
metic and logical operations� with the opti�
misations described in lines ��� �� and ��

for user�de�ned functions�

�� Saves function calls by storing return ad�
dresses on the V stack and de�nes UNWIND
as a macro�

�� Uses schemes R� RS ! ES as described in
chapter 
� of reference ����

�	 Optimizes scheme RS as described on pages
������� of ���� This compilation scheme
avoids the generation of vertebrae which will
become garbage soon after its generation�

�
 Optimization of scheme ES as presented on
pages ��� and ��� of ����

�� Performs symbolic evaluation of expressions�
In most cases� this optimization transforms
call�by�need into call�by�value without losing
laziness� because this is done locally within
a function�

�� Presents the result of the peephole optimisa�
tion for instructions UPDATE� SLIDE� and
POP�

�� The numbers and characters found in user de�
�ned functions are stored in the non�volatile
area� avoiding to copy them every time they
are needed� as in the case of recursive func�
tions�

�� Tests memory availability per function in�
stead of per cell needed�

�� Uses simulation stacks to avoid redundant
PUSHes and POPs �pages D�

"�� of �����

�� The printing procedure is made particular to
the type of the output �monomorphic��

�� Nested applications are #atened whenever
all arguments to a function are present at
compile�time�

�� The stack and heap pointers were represented
as pointers instead of integers indexing an
array�

ML is the Edinburgh implementation of Stan�
dard ML by FAM version ����

C corresponds to programs implemented in C in
a functional style�



Program Fibonacci Sieve InsOrd SimLog TwSuc

Implemt� time cells time cells time cells time cells time cells

KRC ����� ���� 	
��
 ���� 	
��� ���� ���� ���� ���

 ����



 ����
 ��
�
�
 ���
� ����
� ��
� �
�
�
 ��	� ������ ����
 �		�	
�


� �
��	 	������ ����	 

���� ���� ���
�� ��	
 ����� ���	
 ������



� ����� �����
	 �	��
 ������ ���
 �
�
�� ���� ����� ����� ������



	 ����� �����
	 �
��� ������ 	�

 �
��
� ���� ����� ����
 ������



� ���
	 �����
	 ���
 ������ 	��� �
��
� ��
� ����� �
��� ������



� �	��� �����
	 ��
� �����
 	��� 	����� ��
� 
���� ���� ������


� �
��� �����
	 ���� �
��
� 	�

 	����� 
��
 
���� ���� ������



 ���� ��
���
 ��	� 		���� ��
� ����
	 
��� ��
�� 
�
� 
��
��


� ���� ��	���	 ���� ������ ���� �
��
� 
��
 ����� 
��	 ����	�


� 	��� �
��

� ��
� ������ ���	 ������ 
�
� ����� 
�	� ������

�
 	��� �
��

� ���� ������ ���� ������ 
�

 ����� 
��
 ������

�� 	�
� �
��

� ���� ������ ���� ������ 
�
� ����� ��

 ������

�� ���� �
��

� ���� ������ ���� ������ 
�
� ����� ���� ������

�	 ���� �
��

� ���� �
�
�� ���� ������ 
�
	 ��
�
 ��

 ������

�� ��
� �
��

� ��
	 �
�
�� ���� ������ 
��� ��
�
 ��
	 ������

ML ���� ���� ���� ���� �� ���� �� ���� ����� ����

C 
��	 ���� ���� ���� �� ���� �� ���� �� ����

�� Conclusions

In this paper� we show how the G�Machine
provides fast implementations of functional lan�
guages� comparable in performance to imperative
ones� The simplicity and modularity of the orig�
inal G�Machine are the key for allowing simple
optimisations� which in some cases� increased the
performance of an order of magnitude�

The �gures for the optimisations steps pre�
sented in this paper serve to give a better under�
standing of the G�Machine� quantify gains in each
of them and allow implementors of lazy functional
languages to make a choice of which optimisations
to use in their own implementation� This knowl�
edge was used with success in optimising ��CMC
���� a machine that produced performance �gures
ranging from as good to several times faster than
Johnsson�s implementation of the LML compiler
based on the G�Machine�

Acknowledgements

We express gratitude for several discussions with
Danilo Florissi and Martin Musicante�

Research reported herein has been spon�
sored jointly by The British Council� CNPq
�Brazil� grants ���	���"���� and �����
�"�����
and CAPES �Brazil� grant 
���"	�����

References

��� T�Johnsson� Compiling Lazy Functional

Languages� Ph�D�Thesis� Chalmers Tekniska
H�ogskola� G�oteberg� Sweden� January �	���

�
� R�D�Lins� Categorical Multi�Combinators�
Functional Prog� Lang� and Comp� Architec�

ture� Portland� USA� September �	��� LNCS

��� pp� ����	� Springer Verlag�

��� R�D�Lins ! B�O�Lira� �CMC� Fast Lazy
Functional Languages� to appear� Micropro�

cessing and Microprogramming�

��� R�D�Lins ! S�J�Thompson� Im�
plementing SASL using Categorical Multi�
Combinators� Software � Practice � Expe�

rience� 
��������������� November �		��

��� M�A�Musicante ! R�D�Lins� GMC� A graph
Multi�Combinator Machine� Microprocess�

ing � Microprogramming� vol ��������������
North�Holland� �		��

��� S�Peyton�Jones� The Implementation of

Functional Languages� Prentice Hall� �	���

��� S�J�Thompson ! R�D�Lins� The Categori�
cal Multi�Combinator machine�CM�CM�The
Computer Journal� vol ���
���������� BCS�
Cambridge University Press� April �		
�


