DIVISION OF COMPUTER SCIENCE

Implementing Associations between Objects

Audrey Mayes
Bob Dickerson
Carol Britton

Technical Report No.205

August 1994




Implementing Associations between Objects

Audrey Mayes, Bob Dickerson and Carol Britton

School of Information Sciences, University of Hertfordshire, College Lane,Hatfield, Herts AL10 9AB, UK

Tel 0707 284763 Fax 0707 284303

email comrjam@herts.ac.uk or comqcb@herts.ac.uk

1. Introduction

This paper presents an alternative design
method for the implementation of conceptual as-
soctations identified during the analysis of a prob-
lem.

Object-oriented development methods such as
OMT [1], identify associations between objects.
Some of these associations represent aggregations
of objects such as a wheel is part of a car. Other
associations represent conceptual links between
objects such as a person has an account. These
types of association are shown in figure 1.

O
lm

i) an aggregation association

ii) a conceptual association

Figure 1. Associations between objects

These two types of association clearly repres-
ent different concepts. However, both are usu-
ally implemented in object-oriented programming
languages by using the client-server relationship.
The class representing an aggregation declares an
instance of the classes which represent its parts.

A class involved in a conceptual association de-
clares an instance of the classes with which it is
associated. The addition of an association usu-
ally requires the declaration of new subclasses
of the classes involved. The result of using the
client-server relationship to add conceptual asso-
ciations is that the implemented objects become
less like the objects identified during analysis and
are bound together in the same way as aggrega-
tions. The effects are:

o the classes used to define the objects are ap-
plication specific and therefore less reusable

(2].

e the structure of the system is difficult to
understand.

It is agreed by Kilian [2] and Rumbaugh [3]
that the provision of associations as separate
constructs in object oriented systems would in-
crease reusability and improve the clarity of sys-
tem design.

The design method presented here allows con-
ceptual associations from the analysis model to be
implemented directly by using Sociable Classes.
These Sociable Classes have the ability to parti-
cipate in associations without the addition of at-
tributes.Conceptual associations are provided as
instances of generic classes. New associations can
be added as required by introducing a new in-
stantiation of the required type of association to
the system. It is not necessary to define new sub-
classes of the participating objects. The concep-
tual associations retain the object-oriented struc-
ture by storing the associations with the objects.
Relational tables of associations are not added to
the system.The design technique overcomes some
of the problems mentioned above.




2. Basis of the design

In order to differentiate between conceptual as-
sociations and aggregations, a mechanism must
be provided to allow different degrees of binding
between objects. The different degrees of binding
would result in:

e groups of objects which are tightly bound
because they represent aggregations, such
as a car.

e objects which are loosely coupled to other
objects because they take part in concep-
tual associations, such as a person has an
account.

In this suggested design, the client-server rela-
tionship is used to implement aggregations. The
loose coupling between objects is produced by
adding conceptual associations between objects.
For example, an association is added between a
person and an account to implement the associ-
ation ‘a person has a bank account’. It is not
necessary for all objects of a class to be involved
in all types of association.

In order for a design to provide loosely coupled
objects, the following facilities should be avail-
able:

e a means of explicitly implementing associ-
ations between objects.

e the ability for objects to take part in many
different associations. These associations
must be added to objects without chan-
ging the definition or implementation of the
classes of which they are instances. There-
fore, the classes should have no knowledge
of the specific associations in which any or
all of its objects are involved.

e the ability to add new logical relationships
without producing subclasses of the classes
involved.

The next section describes the classes used in
the Sociable Class design technique which at-
tempts to meet the above criteria.

3. Sociable Classes and related constructs.

Sociable Classes define objects which have the
ability to take part in a potentially unlimited
number of different associations. The design tech-
nique using Sociable Classes requires the declara-
tion of two abstract base classes, Social and As-
soc. Sociable Classes are subclasses of Social.
The associations between objects are formed by
instances of subclasses of class Assoc.

When an association is made, instances of asso-
ciations become linked to the part of the object
which was inherited from Social. Associations
therefore become part of the objects involved in
the association not separate entities stored in a
data structure. They remain part of the object
until the association is broken. When an asso-
ciation is broken, the object ceases to have any
knowledge of that type of association.

One instance of each type of association re-
quired in the system is declared and used to cre-
ate, access and delete all other instances of that
type of association.

3.1. Class Social

This class provides the ability to add, retrieve
and delete associations from an object. In order
to provide this ability, the class Social declares
a collection of associations as a private attrib-
ute and provides features to access this attrib-
ute. The collection may be implemented by any
appropriate data store.

The features to access the private attribute are
not made publicly available. The only classes
which can access the attribute are Assoc and
its derivatives. The access is limited in this way
to encapsulate knowledge of the implementation
of associations. All Sociable Classes are derived
from Social and do not need to access any of its
features.

3.2. Class Assoc

~ This base class is declared to allow all associ-
ations to be assigned to the same data structure in
instances of the class Social. The associate and
disassociate features are defined by class Assoc.
These two features represent the minimal func-
tionality that must be provided by all subclasses.
The variable number of objects involved in asso-




ciations means that different numbers of features
are required to access the objects participating in
different forms of association. One access feature
will be required for each object involved. These
features cannot therefore be defined in the base
class.

3.3. Sociable Classes

Sociable classes are implemented by declaring
the required classes as subclasses of Social. The
features defined by the analysis model are then
added. The following extract of code gives two
examples of the definition of Sociable Classes us-
ing Eiffel notation [4].

class PERSON
export first_name, ...

inherit SOCIAL

feature
first_name : STRING;

end —--person
class ACCOUNT

export
accountNumber, .
inherit SOCIAL

feature
accountNumber: INTEGER

end --account

3.4. Associations

The many different types of associations re-
quired in systems are provided by subclasses of
Assoc. Each subclass defines a general type of
agsociation, such as a one-to-one bidirectional as-
sociation. Figure 2 shows part of the association
hierarchy. The subclasses of Assoc, in the lower
level of figure 2, are generic classes which supply

lOne-to-oneZl I One-to-Manyl |Many-to-many l lon(‘f,;};’vgr",‘)"

Figure 2. Association class hierarchy

the implementation of features provided by asso-
ciations of that type.

For example, class One_to_one2 implements
one-to-one bidirectional associations. That is,
it implements associations between two objects
and allows the association to be traversed via
either object. This generic class requires two
formal generic parameters, one for each of the
objects involved in the association. It provides
implementations for the associate and disassoci-
ate features inherited from class Assoc. It also
defines the features required to access the objects
involved in a specific association. The classes
used to replace the formal generic parameters
must be Sociable Classes. Using Eiffel nota-
tion, the interface of this class is One_to_one2
[A—SOCIAL, B—»SOCIAL]. An association
between a person and an account is declared as

has-account : One_to_one2(Person,Account).

4. Using Sociable classes

This section gives an example of the use of the
Sociable class design technique. The association
being implemented is shown in Figure 3. The
classes Person and Account are declared as in-
dicated in Section 3.3. The root or main class is
declared as follows:

class BANK
feature

a,b : PERSON;
X,y : ACCOUNT;

has-account : ONE_TO_ONE2[PERSON,ACCOUNT];




Create is

do

-—-create and assign values to

--person and account variables
a.Create;

x.Create;

—--create the association variable
has-account.Create(hasaccount);

——(the parameter is required for
—-- reasons beyond the scope
-~ of this paper)

-—- associate the required objects
has-account.associate(a,x);

-— find the account belonging
~= to person a
y := has-account.find_object2(a);

--the account can the be
-—accessed via object y

-— find the person owning
-— account x
b := has-account.find_objecti(x);

--the owner of account x
-—can then be accessed via object b

end;-—Create
end -—-BANK

5. Conclusion

A system designed and implemented by using
the above technique would consist of classes which
are recognisable as definitions of the objects iden-
tified in the analysis model. The client-server re-
lationship is used to implement the structure and
attributes of each class. The classes would not
be modified by the addition of extra attributes to
provide associations with other classes of objects.
New subclasses of objects would be introduced

Person Account
name Has balance
address credit limit

type

Figure 3. Simple banking application object
model

only when extra attributes or structure need to
be added to existing classes. The implemented
system would be simpler and therefore easier to
understand, maintain and enhance. The classes
would be readily available for use in other sys-
tems because application specific features would
not have been added.

Further research is being carried out into the
use of other languages for implementation and
into the possibility .of including the constructs
defined in this paper in a language definition.
This work forms part of a PhD thesis to be sub-
mitted Sept 94.

REFERENCES

1. J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-oriented
Modelling and Design. Prentice-Hall Interna-
tional Editions, Englewood Cliffs, New Jer-
sey, 1991.

2. Michael Kilian. A Note on Type Composition
and Reusability. OOPS Messenger, 2(3), 7
1991.

3. J. Rumbaugh. Relations and semantic
constructs in an object-oriented language.
OOPSLA’87, 1987.

4. B. Meyer. Object-oriented Software Con-
struction. Prentice Hall, Hemel Hempstead,
1988.




