
ELSEVIER

Microprocessing
and
Microprogramming

Microprocessing and Microprogramming 41 (1995) 501-519

A new scheduling algorithm for synthesizing the control blocks
of control-dominated circuits

Shih-Hsu Huang a, Yu-Chin Hsu b, Yen-Jen Oyang a,*
’ Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

’ Department of Computer Science, University of California, Riuerside, CA 92521, LISA

Received 12 September 1994; revised 24 November 1994, 16 March 1995; accepted 12 May 1995

Abstract

This paper describes a new scheduling algorithm for automatic synthesis of the control blocks of control-dominated
circuits. The proposed scheduling algorithm is distinctive in its approach to partition a control/data flow graph (CDFG) into
an equivalent state transition graph. It works on the CDFG to exploit operation relocation, chaining, duplication, and
unification. The optimization goal is to schedule each execution path as fast as possible. Benchmark data shows that this
approach achieved better results over the previous ones in terms of the speedup of the circuit and the number of states and
transitions.

Keywords: Scheduling; High-level synthesis; Control-dominated circuit synthesis; Operation chaining; Finite state machines

1. Introduction

Research on behavior synthesis has been very
active and has made a lot of progress during the past
few years [l-4]. The issue of behavior synthesis is to
design a circuit from a hardware behavior descrip-
tion. Since the designs for different application do-
mains differ substantially in their characteristics, it is
believed that a successful synthesis system should be

l Corresponding author. Email: yjoyang@csie.ntu.edu.tw

domain specific and architecture specific. For exam-
ple, traditional Mealy or Moore type finite state
machines are good for control-dominated applica-
tions [$I, while superscalar or VLIW architectures
are good for computation intensive applications.

A control-dominated application typically consists
of very few arithmetic operations. Most operations in
a control-dominated application are short-delay oper-
ations such as data transfer, logic, decision making,
and I/O operations. Since the execution delay for
such operations is usually short, it is very common to
chain several operations which have control or data

0165~6074/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDI 0165-6074(95)00016-X

so2 S-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) 501-519

dependencies into a single control step as long as
their total propagation delay is less than the clock
cycle time. In other words, chaining consecutive
control-dependent and/or data-dependent operations
into one state is an important attribute which a good
scheduling algorithm for control-dominated circuit
synthesis must have.

1.1. Previous work

Most previous scheduling algorithms [6-S] use
control/data flow graph (CDFG) to represent the
dependencies of operations. Based on CDFG repre-
sentation, they try to exploit the potential concur-
rency of operations and take advantage of the free-
dom left to move operations across control steps.
List scheduling [6] is a widely used heuristic. Global
transformation techniques such as trace scheduling
[7] and percolation scheduling [8] rely on code mo-
tion across basic blocks. The problem of trace
scheduling is that the patching codes generated dur-
ing the bookkeeping phase can be exponential to the
size of the input program. Many approaches [9-l 11
have been proposed to solve this problem.

The feature of chaining consecutive data-depen-
dent operations into a single control step has been
implemented in some behavior synthesis systems. In
the Slicer state synthesizer [12], if the cumulative
delay through a computation path is short enough to
allow the operations to perform sequentially, the
operations are chained into a single state. In force-di-
rected scheduling [131, the range of possible control
steps for each operation is used to form a so-called
distribution graph. Operations are then selected and
placed so as to balance the distribution as much as
possible. The feature of chaining consecutive data-
dependent operations is implemented by extending
the time frames of fast combinatorial operations into
the previous and/or next control steps (when the
total propagation delay in those control steps is less
than the clock cycle time). Both approaches [12,131
are restricted to a basic block.

Path-based scheduling algorithm [141 was the first
attempt to tackle scheduling for control-dominated
circuits. Its basic principle is to minimize the total
execution time of the design, measured in number of
control steps, by taking into account all the possible
execution paths due to the presence of loops and
branches. In order to chain consecutive control-de-
pendent operations into a single state, path-based
approach expands all the possible execution paths
before carrying out scheduling. One major limitation
of path-based approach is that a predefined order of
the operations must be chosen before scheduling.

1.2. Our approach

In this paper, we present a new scheduling algo-
rithm for automatic synthesis of the control blocks of
control-dominated circuits. It works on the CDFG to
exploit operation relocation, chaining, duplication,
and unification. The main distinctions of the pro-
posed scheduling algorithm are elaborated in the
following:
l It partitions a CDFG into an equivalent state

transition graph. Different from path-based ap-
proach, the proposed scheduling algorithm works
on the CDFG to exploit chaining of consecutive
control-dependent and/or data-dependent opera-
tions. The basic idea behind the proposed algo-
rithm is to schedule as many operations as possi-
ble, which may have control or data dependen-
cies, into a single state. Control-dependent opera-
tions (in consecutive basic blocks) are chained
into the same state as long as their total propaga-
tion delay is less than the clock cycle time. As a
result, we can schedule several basic blocks
linked by control constructs into a single state.
After the scheduling process is finished, the
CDFG is partitioned into an equivalent state tran-
sition graph.

l It schedules every execution path as fast as pos-
sible. Due to the presence of loops and branches,
the execution path may be different as the input

S.-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) 501-519 503

Signal Assignment Statement
Variable Assignment Statement

While Statement
Wait Statement
Next Statement
Exit Statement
If Statement
Case Stntemcnt
Procedure Call St;utemeut (recursiou is not allowed)
Function Call Statemrut (recursion is not allowed)

Return Statement

Null Shtement

Fig. I. The subset of VHDL statements (within a process) accept-
able by our scheduler.

changes. In order to optimize every execution
path, sometimes an operation has to be treated
differently in different paths. This is the idea
used in path-based approach. However, because
path-based scheduling must choose an execution
order of operations before scheduling, it does not
use the additional freedom obtained by reorder-
ing operations which leads to more improve-
ments. This limitation is alleviated in our ap-
proach by keeping all execution paths on a CDFG
representation. The proposed scheduling algo-
rithm not only preserves the advantage of path-
based approach (i.e. the capability of scheduling
an operation into multiple states), but also pre-
serves the flexibility of operation reordering.

The rest of the paper is organized as follows. The
next section discusses the optimization of execution

while (cl) do

I

paths through control constructs such as loops and
branches. Section 3 presents an effective scheduling
algorithm to partition a CDFG into an equivalent
state transition graph. In Section 4, we report the
experimental results and the comparison to other
approaches. Finally, concluding remarks are made in
Section 5.

2. Optimization of execution paths

The input is a behavior-level description written
in the VHDL hardware description language. A
VHDL hardware description may contain several
processes. In our control-dominated circuit synthesis
system [15], each process is synthesized indepen-
dently; i.e. each process results in a data path and
controller with exactly one single-phase clock. For
each process, the designer can specify the resource
constraints such as the number and/or type of hard-
ware modules to be used in the data path. The
designer is responsible for the inter-process commu-
nication. Fig. 1 shows the subset of VHDL state-
ments (within a process) acceptable by our sched-
uler. Note that all wait statements (which wait on
clock) in a single process must use the same edge
triggering of the same clock. Either a rising-edge
clock or a falling-edge clock can be the active edge.

The behavior-level hardware description (within a
process) is first compiled into a CDFG representa-

I 1
01 Lb cl’

(a) (b)
Fig. 2. (a) A program consisting of a while-loop. (b) The CDFG using the pre-test construction. (c) The CDFG using the new loop
construction.

504 S-H. Huang et al. / Microprocessing and Microprogramming 41 (I 995) 501-519

tion which consists of a set of basic blocks linked by
flow-of-controls. A flow-of-control can be forward
or backward. A forward edge represents an execution
order from a basic block to a successor block, while
a backward edge represents a loop-construction. The
basic block without a predecessor is called the entry
block. Each VHDL process has only one entry block.

Due to the presence of loops and branches, there
are several execution paths on a CDFG representa-
tion. This section discusses the optimization of exe-
cution paths through control constructs such as loops
and branches. Section 2.1 describes a loop construc-
tion to overcome the limitation of pre-test construc-
tion on operation chaining. Section 2.2 presents a
preprocessing algorithm to remove the ineffective
operations in each execution path.

2.1 A loop construction for operation chaining

The loop structure supported in VHDL is the
while-loop. Fig. 2(a) describes a program which
consists of a while-loop. Fig. 2(b) shows the corre-
sponding CDFG using the pre-test construction, To
preserve the semantics of a program, operations 01
and cl cannot be scheduled in the same state if
operation 01 is not a loop invariant. This property
limits the possible chaining of operations 01 + cl
+ 03 into a single state.

We use a different loop construction to overcome
the limitation of pre-test construction. Fig. 2(c) shows
the corresponding CDFG using the new loop con-
struction. By duplicating loop comparison operation
cl, the while-loop is translated into an if construc-
tion (i.e. ‘loop-test’ operation) whose true part is the
original loop. Since operation cl is duplicated, let’s
distinguish the two copies of cl as cl’ (if- cl) and
cl” (while-cl). If the control flows through the true
part of ‘loop-test’ operation cl’, the loop is executed
at least once. Otherwise, the loop will not be exe-
cuted. The advantages of the new loop construction
on operation chaining are discussed as follows:
0 For the path in which the loop-test condition is

false. In Fig. 2(c), the path is 01 + cl’ --) 03. If
these three operations can be chained together,
we can schedule them in the same state. Thus,
this is the best we can do for this path.

0 For the path in which the loop-test condition is
false. In Fig. 2(c), the path is 01 + cl’ --f cl” +
02-, . . . + cl” + 03. If operations cl” and 02
can be chained together, we can schedule them in
the same state. The advantage of the pre-test
construction is preserved.
The idea of the new loop construction is to bypass

the loop in case the entry condition is not satisfied.
In control-dominated applications, there are usually
many wait statements. The waif statements are used
to wait on clock and/or conditions. In our control-
dominated circuit synthesis system, a wait statement
which only waits on conditions is translated into an
equivalent while-loop. The improvement of the new
loop construction may be significant if the waiting
conditions seldom occur.

The new loop construction, however, may unnec-
essarily duplicate some operations. For example, in
Fig. 2(c), if operation 01 is a loop invariant and
operations 01, cl” and 02 can be chained together,
then we can schedule them into the same state. It is
not necessary to do comparison operation cl twice
(i.e. cl’ and cl”) in the same state. Thus, in this case,
we can remove operation cl’ and then reduce the
while-loop to a pre-test construction.

In our control-dominated circuit synthesis system,
a behavior description is first compiled into a CDFG
using the new loop construction to represent each
loop. In Section 3.4, we will present an algorithm to
determine the right loop construction of each loop
during the scheduling process.

2.2 Preprocessing

An if construct spreads a true part and a false
part. For an if block Bi,, there are two immediate
successors: (1) the true block B,,,,, which will be
immediately executed after B, if the comparison is

true; (2) the false block Bfarse, which will be imme-
diately executed after B, if the comparison is false.
A case construct can be translated into nested ifs
and treated accordingly.

Because the delay time of an operation in a
control-dominated application is usually short, it is
possible to chain several conditional branches into a
single state. The mutually exclusive operations with
the same functionality can share the same resource.
For example, an addition operation in B,,,, and
another addition operation in Bfalse can share the
same adder, even though they are scheduled in the
same state. In order to improve resource sharing, it is
desired to move an operation from if block to
branch parts. Let d(q) be the variable defined by
operation oi and in[B] be the set of variables which
are live at the entry of block B. The following
Lemmas state the conditions of propagating an oper-
ation from an if block to its adjacent blocks B,,,,

B3

S.-H. Huang et al. / Microprocessing ana’ Microprogramming 41 (1995) 501-519 505

Lemma 1. 1’ an operation oi has no dependency
successor in Bir, if can be duplicated and moved to
both blocks B,,:, and Bfnlse.

Lemma 2. An operation oi in B, can be moved
downward to B,,,,(Bfa& if
(1) if has no dependency successor in B,; and

(2) d(oi) @ in[Bfnlse] (d(oi) E in[B,,,,]).

Lemma 2 can be applied to relocate the operations
that are ineffective in some of the containing paths
of a conditional branch. For example, in Fig. 3(a),
operation fl := in1 - in2 is ineffective for the path
B, ;=) B6 * B, because t 1 6C in[B6]. Therefore, ac-
cording to Lemma 2, we can move this operation
from block B, to block B,. Note that even if an
operation is not ineffective for both the paths through
B rrue and Bfalse (i.e. d(Oi) E in[B,,,,,l and d(oi) E
in[Bf,,,,]), it may still be ineffective for some of the
subpaths. In order to discover all indirect-ineffective

t1:=in1-in2;
t2:=ilQ+iJl3; -l t3:=in1-in3;
t4:=in3+in4;

if (in5/=0)

B1-
t%=tl+l; t4:=in3+in4; 1 t3:=inl-id% 1

B6 t3:=i&in4;

I

(b)
Fig. 3. Example 1. (a) Original CDFG. (b) The CDFG after preprocessing is carried out.

506 S.-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) Sol-51 9

Procedure Prcproccssing()

Begin
For each basic block B do (in tlw scqorncr of topologicnl ordering)

if block B is an ZJ block then
For each operation o, in B from last to first do

Begin
if o, cm be prop,zgnted tbcrr /*apply Lcmn~n I’/

Begin
For each su~~rssor block Di of B do

if (d(o,) t in[B~]) /*apply Lrm~nn 2*/
then copy o, to tbr Ihmd ol BI;

Remove operation 0, Irom B;
End;

End;

End;

Fig. 4. The preprocessing algorithm.

operations, we apply Lemma 1 to propagate each
operation as downward as possible.

Fig. 4 shows the preprocessing algorithm which
removes the ineffective operations in each execution

path on a CDFG representation. The basic blocks are

processed in the sequence of their topological order-

ing (ignore backward edges). The operations in a
block are processed from the last to the first (ignore

the comparison operation). When an operation is
propagated, we place it at the head of the target
block. By repetitively applying operation move-

ment/duplication, the algorithm optimizes each exe-
cution path induced by conditional branches on a

CDFG representation.

Example. Let us use the CDFG in Fig. 3(a) as an

example to illustrate the preprocessing algorithm.
The blocks are processed according to the following

sequence B,, B,, B,, B4, B,, B6 and B,. By
applying the preprocessing algorithm, we can re-
move the ineffective operations in each execution

path.
The algorithm starts from block B,. Because block

B, is an if block, we try to propagate the operations

to its successor blocks. First, operation t4 := in3 +
in4 is moved to block B,. Operations t3 := in1 - in2
and t2 := in2 + in3 are moved to block B6. Then,
operation tl := in1 - in2 is moved to block B,.

Next, block B, is processed. At this point, block

B, contains operations tl := in1 - in2, t4 := in3 +
in4, and t5 := t 1 + 1. Operation t5 := t 1 + 1 is du-

plicated and moved to blocks B, and B4. Then,
operation t4 := in3 + in4 is moved to block B4.
Operation tl I= in1 - in2 cannot be propagated be-

cause variable t 1 is used by the comparison opera-

tion if(tl CO>.
Similarly, we examine blocks B,, B4, B,, B6 and

B,, and find none of them is an if block. The final
result is shown in Fig. 3(b).

The CDFG after preprocessing is carried out has

the following properties:
Each block B, contains only the dependency

predecessors of branch operation oif. Any opera-

tion which does not produce a value for the
decision of oi, is propagated to the successor

blocks. Besides, the ineffective operations in each
execution path are removed.

The successor blocks induced by a conditional
branch can share the same resources because
those blocks are mutually exclusive. Therefore,

through preprocessing, we can improve resource

sharing.
Assume an operation oi is originally in if block

B,. After preprocessing is carried out, operation
oi may be duplicated and moved to the successor
blocks of B,. During the scheduling phase, we

say an operation is ready if its control and data
dependencies have been satisfied. Note that all

the copies of operation oi will be ready before we

schedule the conditional branch oif in block B,.
Thus, those copies may be moved upward and

unified during the scheduling of block B,.

3. The scheduling algorithm

In our control-dominated circuit synthesis system,
a behavior description is first compiled into a CDFG

S.-H. Huang el al. / Microprocessing and Microprogramming 41 (199.5) 501-519 so7

using the new loop construction to represent each
loop. Then, preprocessing is performed to relocate
ineffective operations in each execution path and
improve resource sharing. With the output of prepro-
cessing, we propose an effective scheduling algo-
rithm to partition a CDFG into an equivalent state
transition graph.

The proposed scheduling algorithm has the fol-
lowing features:

It is capable of moving operations across basic
blocks;
It unifies the identical copies of an operation into
a single state;
It carries out operation chaining for the condi-
tional branches;
It allows resource sharing among mutually exclu-
sive operations;
It duplicates an operation into different states so
that each execution path can be scheduled as fast
as possible; and
It determines the right loop construction for each
loop.

3.1. Basic ideas

A pseudo-code of the proposed scheduling algo-
rithm is presented in Fig. 5. The algorithm starts
from the entry block Bentry and processes basic
blocks in the sequence of their topological ordering
(ignore backward edges). Procedure Schedule _ a _

Procedure Scheduling_Algorithm()
Begin

For each basic block L? do (in the sequencr of topologirnl ordering)
Begin

call procedure Schedulea_Block(B) (in Fig. G);
For each forward successor block BI of B do

Begin
S(&) = .S(&) u S(B);
r(&) = r(h) n r(B):

End;

End;
End.

Fig. 5. The scheduling algorithm.

Block is invoked iteratively to schedule each basic
block. Whenever the scheduling of a block is done,
chaining information is passed to its successor blocks
through forward control flows. Consequently, we
can chain several basic blocks linked by control
constructs into a single state. Because a state may
consists of several control constructs, we also use the
CDFG structure to represent each state.

The idea behind the proposed scheduling algo-
rithm is to schedule as many operations as possible,
which may have control or data dependencies, into
one state. Two or more dependent operations in an
execution path can be chained into a single state as
long as their total propagation delay is less than the
clock cycle time. (Note that the total propagation
delay may be less than the lumped execution time of
chained operations. For example, some adder output
bits are available early with bit-level timing. Hence,
in this case, we can consider bit-level timing when
determining the possibility of chaining operations in
the same clock cycle [16].) As a result, all execution
paths can be scheduled as fast as possible. To achieve
the goal, the algorithm stresses the following two
concerns:

(1) It chains consecutive control-dependent oper-
ations. Operations in consecutive basic blocks
can be scheduled into the same state as long as
their total propagation delay is less than the
clock cycle time. Consequently, we can schedule
several basic blocks linked by control constructs
into a single state. For each basic block B, let
S(B) represents the set of states into which the
ready operations in block B must be scheduled.
Initially, S(B,,,,,) = (SO), where SO is the start-
ing state of the finite state machine, and S(B) =
0 for other blocks. The set S(B) for a block B
will be updated during scheduling. After a block
B is processed, the current S(B) must be passed
to its forward successor blocks for possible
chaining. As a result, the operations in consecu-
tive blocks can be chained together. In order to

508 S.-H. Huang et al. / Microprocessing and Microprogramming 41 (I 995) 501-519

schedule each path as fast as possible, sometimes
an operation has to be duplicated and placed into
different states. For example, the chaining infor-
mation of a joint block Bjoin, comes from its
two predecessors; i.e. blocks B,,,, and Bfalse.
After blocks B,,,, and Bfnlsp are processed, set
S(BjOi,,> is updated to the union of the two
predecessors S(B,,.,,) and S(Bfn,J.

(2) It allows resource sharing among conditional
branches. Note that the operations in a state
only execute under certain combinations of con-
ditional values. The mutually exclusive opera-
tions with the same functionality can share the
same resource. For example, if two addition
operations lie in separate branches of an if or
case statement, they are not on the same path
and can share the same adder. Let R denote the
set of given resources and r(B) denote the

currently available resources for each block B
during scheduling. Before carrying out schedul-
ing, r(B) is initialized to R for every block B.
The set of available resources r(B) for a block
B will be updated during scheduling. After a
block B is processed, r(B) is passed to con-
straint its forward successor blocks. As a result,
the operations in an execution path will not use
the same resource more than one times within a
state. Furthermore, resource sharing among mu-
tually exclusive operations is allowed because
there is no control flow between any two of
them. Note that the available resources of a joint
block Bjoin, are constrainted by its two prede-
cessors; i.e. blocks B,,,, and Bfalse. After blocks
B ,rue and BfOlsp are processed, set r(Bjoin,) is
updated to the intersection of the two predeces-
sors r(B,,,,) and r(Bfolse).

Procrdure Schednlcn_Block(B)
Begi

if block B is R loop header of the new loop ronstruction then
Begin

crentc a new state s’;
let S(B) = {a’} and r(O) = R;

End;
Repeat

Find a bigbest priority ready operation o* that can be scheduled into ench state s E S(B);
if found then

Begin
if o. is a “loop-test” operation then

call Procedure Loop_Transformation(B,o.) (in Fig. 10);
else

Brgin
schedule o, into each state ,Y E S(D);
put ready operations into the ready qurue;
update the nwilable resourux r(B);

End;
if o. is A control oprrxtion then return;

End;
else /* not found */

Begin
create a new state s’;
let S(B) = {s’} and r(O) = R;

End;
Until all “must” operntions of block B are scheduled;

End.

Fig. 6. The procedure Schedule_a_ Block.

S.-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) 501-519 509

3.2. Scheduling a block

When the scheduler moves to a block B, the
procedure Schedule _ a _ Block(B) is invoked to
schedule the block. The procedure Schedule-a _
Block is described in Fig. 6. The details of the
procedure are discussed below.

0 Operation Relocation. In the output of prepro-
cessing, every operation is called a ‘must’ operation
for the block it belongs to because we cannot sched-
ule the operation in a later block. Therefore, during
the scheduling of a block, the execution probability
of a ‘must’ operation in the block is 1. For example,
in Fig. 3(b), operation if(in5/ = 0) is a ‘must’ oper-
ation for block B,. The operation that can be moved
upward to a block is called a ‘may’ operation for the
block. During the scheduling of a block, the execu-
tion probability of a ‘may’ operation (in a path
starting from the block) can be computed by using
branch probabilities. Let us use the CDFG in Fig.
3(b) as an example. During the scheduling of block
B,, the execution probabilities of operations ixinS/
= O), tl := in1 - in2 and t4 := in3 + in4 are 1, 0.5
and 0.25, respectively. Note that the ‘must’ opera-
tions in a block are the operations that must be
accommodated in the block. Meanwhile, we try to
schedule as many ‘may’ operations into the block as
long as the number of states does not increase 1171.
The scheduling of a block is finished when all its
‘must’ operations are scheduled.

0 Operation Unification. After preprocessing is
carried out, an operation may be duplicated and
moved to different blocks. The duplicated copies
must be unified when they are moved upward and
scheduled into the same block. For a unified opera-
tion, its execution probability is the lumped sum of
the probabilities of all the unified copies. Thus, as
more duplicated copies are unified, the operation will
have a higher execution probability. For example, in
Fig. 3(b), operation t5 := t 1 + 1 is duplicated to
blocks B, and B4. After operation t 1 := in1 - in2 in
block B, is scheduled, the two copies of operation

r5 := tl + 1 are ready at the same time. Then, during
the scheduling of block B,, the two copies can be
moved upward and unified and its execution proba-
bility is 1.

0 Operation Chaining. Two or more dependent
operations in an execution path can be chained into
one state, if the total propagation delay based on
their dependencies is less than the clock cycle time.
(Note that the total propagation delay may be less
than the lumped execution time of chained opera-
tions. For example, some adder output bits are avail-
able early with bit-level timing. Hence, in this case,
we can consider bit-level timing when carrying out
the chaining operations.) In order to execute each
path as fast as possible, we have to schedule as many
operations, which may have control or data depen-
dencies, into one state. To achieve the goal, some-
times an operation has to be duplicated and placed
into multiple states. As mentioned earlier, during the
scheduling of a block B, the set S(B) includes the
current states into which the ready operations must
be scheduled. In our algorithm, we will try to find a
ready operation oi that can be scheduled in each
state in set S(B). Then, operation oi is duplicated
and placed into each state in set S(B) to speedup all
execution paths in which operation oi is effective. If
no such operation exists, a new state s’ is created
and set S(B) becomes (~‘1.

l Priority Function. When an operation is ready,
it is put in the ready queue. During the scheduling of
a block B, the ready operations come not only from
block B (i.e. ‘must’ operations) but also from the
successor blocks (i.e. ‘may’ operations). They will
compete for the resources. In event resource conflict
occurs, the following rules are applied to resolve the
problem:

(1st) An operation which has a higher execution
probability has a higher priority.

(2nd) If a computation operation and a branch
operation have the same execution probabilities, the
computation operation has a higher priority than the
branch operation. The reason is explained as follows.

510 S.-H. Huang et al./Microprocessing ana’ Microprogramming 41(1995) 501-519

If we schedule the branch operation first, we must
propagate the computation operation to all the suc-
cessor blocks. This propagation does not improve
resource sharing. Furthermore, if these propagated
copies are not scheduled in the same state, we need
to pay extra control costs to supervise the execution
of those copies scheduled in different states. Thus,
we prefer to unify all the copies of the computation
operation. Note that such unification also reduces the
time complexity of the scheduling algorithm.

(3rd) If two computation operations have the same
execution probabilities, the one on the critical path
has a higher priority.

0 Loop Transformation. The new loop con-
struction presented in Section 2.1 translates a loop
into an if construction which starts with a ‘loop-test’
operation. While we are scheduling a ‘loop-test’
operation air procedure Loop _ Transformation
(B, oi> is invoked to determine the right loop con-
struction of this loop. Note that the loop header of
the new loop construction must start a new state. The
detail of loop transformation is discussed in Section
3.4.

3.3. A scheduling example

Let us use the CDFG in Fig. 3(a) as an example
to illustrate our scheduling algorithm. The output of
preprocessing on this example is shown in Fig. 3(b).

We denote the set of available resources as a
2-element vector. In the 2-element vector, the first
element denotes the number of adders, and the sec-
ond element the number of subtracters. Assume we
are given 2 adders and 1 subtracter. Then, for each
block B, the set of resources r(B) is initialized to
(2, 1). Initially, S(B,) is {SO), where SO is the
starting state of the finite state machine, and S(B) =
4 for the blocks except B,. With the output of

preprocessing, procedure Schedule _ a _ Block is in-
voked iteratively to process the basic blocks accord-
ing to the following sequence B,, B,, B,, B4, B,,
B6 and B,.

The scheduling algorithm starts from block B,.
Let us examine how procedure Schedule-a _ Block
processes block B,. Operation if(in5/ = 0) is sched-
uled and then the scheduling of block B, is finished.
The information S(B,) and r(B,) are passed to
blocks B2 and B6. As a result, sets S(B,) and S(B,)
become {SO}, and sets r(B2) and r(B6) become
(2, 1). The result (except r(B)) is shown in Fig.
7(a).

Now, Schedule-a _ Block moves to block B,.
Operation tl := in1 - in2 is scheduled. Hence, r(B,)
is updated to (2, 0). Next, the two copies of opera-
tion t5 := r 1 + 1 are unified and scheduled in this
state. Set r(B,) is updated to (1, 0). At this point,
operation t2 := tl + in2 in block B, is ready. It is
moved upward and placed in block B,. As a result,
r(B,) becomes (0, 0). Note that operation if(t 1 < 0)
cannot be scheduled in state SO, since the input
variable (i.e. variable tl> for the finite state machine
must be ready at the beginning of a state. Now,
because no resource is available, a new state Sl is
created. S(B,) becomes {Sl) and r(B,) becomes
(2, 1). The result (except r(B)) is shown in Fig.
7(b). Next, operation if(tl < 0) is scheduled into
state Sl. At this point, Schedule_a_Block has fin-
ished processing block B,. The information S(B,)
and r(B,) are passed to blocks B, and B4. Conse-
quently, sets S(B,) and S(B,) become {Sl), and sets
r(B3) and r(B4) become (2, 1). The result (except
r(B)) is shown in Fig. 7(c).

Similarly, our algorithm goes through blocks B,,
B, and B,. Operations in these blocks are scheduled
into state Sl. After the scheduling of block B, is
finished, the information S(B,) and r(B,) are passed

Fig. 7. Snapshots of our scheduling algorithm on Example 1.

S.-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) 501-519

State SO

State SO
pqiim-if0

Bz {so)

(SO) B6

B3 B4 t2:=id+in3;
ts:=t1+1; t4:=in3+in4; t3:=inl-in3;

t3:=iti2-in4;
tl :=L5+in4:

if @.5/=0)

r-7 tlzinl-in;?;
t5:=tt+1;

1 ,2:,;,,: 1

il

State SO
if(iiS/-)

5 tl :=inl-in2;
t5:=t1+1;

tZ:=tl+in2;

t
Sl

State Sl
[if(t1<0)

so B6
t2:=in2+in3; P t3:=inl-in3;

511

State SO if (in5/=0)

tl:=inl-id c t5:=tl+l;

t2:=tl+in2;

Sl
State S 1

if@l<) e t3:=in2-in4; t4:=in3+ir&
t 1 :=t5+in4; t3:=&in4;

{SOI B6
t2:&2+in3;
t3:=inl-in3;

cd?

is11 7
ou<=C?+tJ;

Cd)

512 S.-H. Huang et al. /Microprocessing and Microprogramming 41(1995) 501-519

to block B,. Thus, S(B,) becomes (Sl) and r(B,)
becomes (1, 0). The result (except r(B)) is shown
in Fig. 7(d).

Next, procedure Schedule_ a_ Block processes
block B6. Note that S(B6) is {SO}. Hence, operations
in this block are scheduled into state SO. After
procedure Schedule_ a_ Block completes block Bs,
r(B,) becomes (1, 0). The information S(B,) and
r(B,) are passed to block B,. As a result, S(B,)
becomes {SO, Sl} and r(B,) becomes (1, 0). The
result (except r(B)) is shown in Fig. 8(a).

Finally, block B, is processed. Since S(B,) is
(SO, Sl}, operation auf < = t2 + t3 is duplicated and
scheduled into states SO and Sl. The result (except
r(B)) is shown in Fig. 8(b).

The state transition graph obtained by our

State SO

@ovsl} B7

(out<=t2+t3;

(a)

scheduling algorithm is shown in Fig. 9. Note that
our optimization goal is to schedule every execution
path as fast as possible. For instance, in this exam-
ple, there are two states used to schedule the path
B, *B, *B, * B, - B,. Under the constraint with
2 adders and 1 subtracters, the result of this example
is optimum.

3.4. Loop transformation

While we are scheduling a ‘loop-test’ operation
0 ,ps, in a block B, the following possible conditions
may occur:
0 Condition 1. Suppose an operation oi in a state

s E S(B) is not a loop invariant. The new loop
construction is chosen for the loop. Note that the

state so if (inS/=O)

tl:=inl-in2; t2:=in2+in3; L7i!iiz t!i:=tl+l; t3:=in1-in3;
t2:=u+in2;

out<=t2+t3;

Sl

State Sl
if (tk0) a t3:=in2-ti, t4:=in3+in4;

tl:=t5+in4; t3:=t%n4;

I I

&I out<=t2+t3;

(b)
Fig. 8. Snapshots of our scheduling algorithm on Example 1. continued.

S.-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) 501-519 513

State SO

Fig. 9. The state transition graph of Example 1 obtained by our
scheduling algorithm.

0

pre-test construction is not suitable for the loop
because it will limit possible chaining for the path
in which the ‘loop-test’ condition is false. Thus
the ‘loop-test’ operation o,,,, is scheduled into
each state s E S(B) so that each execution path
will be scheduled as fast as possible. By duplicat-
ing the loop comparison operation, we can sched-
ule each execution path as fast as possible.
Condition 2. In other cases, the pre-test construc-
tion is chosen for the loop. The ‘loop-test’ opera-
tion ores, will be ignored, and hence the loop will
be reduced to a pre-test construction. The pre-test

Procedure Loop_Transformatinn(~,~,,.,)
Begin

ignore o,?., 2nd reduce this loop into the pretest construction;
else

sclwdolc o,r., into each stab s E S(B);
End.

Fig. 10. The procedure. Loop_ Transformation.

01: n= inl+l:
02: suml= in2+in3;
03: sum2= in4+1:
cl: while (n<=O) do

I
04: III= inS+in6;
05: suml= suml+n:
c2: while (m-so) do

I
06: sum2=sum2+m;
07: m=m+l:

I
08: In= ll+l;
09: out<=sum1+sum2;

Fig. 1 I. Example 2 (An example used to illustrate the idea of loop
transformation).

construction can be scheduled so that each path is
executed as fast as possible without duplicating
the loop comparison operation.
The above discussion concludes that we need to

transform a loop into the pre-test construction when
Condition 2 occurs. The transformation is performed
by ignoring the ‘loop-test’ operation. The idea of
loop transformation has been implemented in the
procedure Loop_ Transformation which is described
in Fig. 10.

Example. Let us use the program in Fig. 11 as an
example to illustrate the idea of loop transformation.
There is a two-level nested loops in the program.
Suppose we are given two ALUs as the resource
constraint. By applying the proposed approach, we
can determine the right loop construction of each
loop during the scheduling process. Fig. 12 shows
the snapshots that our scheduling algorithm goes
through.

At the beginning, the program is transformed into
a CDFG using the new loop construction. The CDFG
is displayed on Fig. 12(a). Then, the preprocessing
procedure is performed. No operation is relocated
during preprocessing. Next, our scheduling algorithm
iteratively invokes procedure Schedule_ a _ Block to
schedule the basic blocks according to the following
sequence B,, B,, B,, B.,, B,, B6 and B,.

Let us see how Schedule_a_ Block schedules
block B,. Initially, set S(B,) is (SO}. Operations 01

514 S.-H. Huang e? al. / Microprocessing and Microprogramming 41 (I 995) 501-519

states0 ol

P 02

Sl

states1 o3

cl’

JL s2 09

state so

sbF

I 03: sum2= in4+1;

09: out<= sum 1 +sum2; (if (I-DO)) I

state s2 cl”

6%

04 09
05

s3

state s3 c2”

cf+

06 08
07

s2

s3

state s2 (if (n<=O))
I

04: m= inS+in6; (if (n<=O))
- 05: suml= suml+n; (if (n<=O))

09: out<= suml+sum2; (if (DO))

06: SUnQ= sunQ+m; (if (m<=O))
(if (m<=O))

07: m= m+l; (if(m<=O))

08: n=n+l; (if(m>O))

I
(if (m>O))

(a) (b)
Fig. 12. Snapshots of our scheduling algorithm on Example 2.

and 02 are scheduled into state SO. Then, since no
resource is available, a new state Sl is created and
set S(B, > is updated to {Sl). The result (except
r(B)) is shown in Fig. 12(b). Operation 03 is sched-
uled into state Sl. Next, procedure Loop_Trunsfor-
mation(B,, cl’) is invoked to process ‘loop-test’ op-
eration cl’. Note that there is an operation 03 sched-
uled in state Sl already. Because operation 03 is not
a loop invariant, the new loop construction is used to
represent the loop. Thus, operation cl’ is scheduled
into state Sl. The result (except r(B)) is displayed

on Fig. 12(c).
After block B, is processed, we pass the informa-

tion S(B,) to successor blocks B, and B,. As a
result, sets S(B,) and S(B,) become {Sl}.

Then, we process block B,. Since block B, is a
loop header with the new loop construction, the
block must start a new state. A new state S2 is
created and set S(B,) is updated to (S2). Operation
cl” is scheduled into state S2.

After block B, is processed, the information
S(B,) is passed to successor blocks B, and B,.

Fig. 13. Snapshots of our scheduling algorithm on Example 2, continued.

(a>

StateSO ol

P
02

Sl

States1 o3

JL
cl’

s2 87

s3

State SO ol

P
02

SI

(b)

StateSO ol

P
02

Sl

States1 o3

R
Cl'

s2 b

State S2 c,.s

F

04 B7
05

s3

State SO ol

P
02

Sl

B2 87

(6

State SO ol

P
02

s2 B7

State S2 cl,,

s

04 B7
05

t
s3

States3 c2

CF?

06 08
07

t s2
s3

PWB,
lm

1s1.s21B7

EEI

Cd) W (0

516 S.-H. Huang et al. /Microprocessing and Microprogramming 41 (19951501-519

Next, we process block B,. Operations 04 and
05 are scheduled into state S2. Since no resource is
available, a new state S3 is created and set S(B,) is
updated to {S3]. The result (except r(B)) is shown

in Fig. 12(d). Then, procedure Loop_Transforma-
tion(B,, ~2’) is invoked to process ‘loop-test’ opera-
tion ~2’. Because there is no operation in state S3,
we ignore operation c2’ and then reduce the loop

into the pre-test construction. The result (except
r(B)) is shown in Fig. 12(e).

Similarly, our algorithm goes through blocks B4,
B, and B,. Operations c2”, 06, 07 and 08 are

scheduled into state S3. The result (except r(B)) is
shown in Fig. 12(f).

Finally, block B, is processed. Note that set
S(B,) is {Sl, S2). Thus, operation 09 is duplicated

to states Sl and S2. The result (except r(B)) is
given in Fig. 13(a).

The state transition graph obtained by our
scheduling algorithm is described in Fig. 13(b). The

outer loop is transformed into the new loop construc-
tion, and the inner loop is transformed into the

pre-test construction. Each execution path is sched-

uled as fast as possible without unnecessary duplica-
tion. Furthermore, we only use four states to sched-

ule the program. Because the hardware parallelism is
2, the size of the finite state machine is minimal.

3.5. Time complexity

Let n be the number of operations in the CDFG
after preprocessing is carried out. Since the length of

a ready queue is limited by O(n), the search for a
candidate operation to be scheduled is O(n). More-
over, for a ‘loop-test’ operation, the decision of loop

transformation has the time complexity of O(n).
Therefore, the time complexity for scheduling an

operation is O(sn’), where s the total number of
states. It is easy to see that s I n. Therefore, the time
complexity of scheduling an operation is O(n3>.
Hence, the time complexity of our scheduling algo-
rithm is 0(n4).

4. Experiments

We have implemented the proposed scheduling
algorithm in a C program running on the SUN-Spare
workstation and have integrated it into a control-

dominated circuit synthesis system [15]. The bench-

marks from the open literature are used to test the
effectiveness of the proposed scheduling algorithm.
We make the following assumptions for synthesis:

0 Since the inputs to the finite state machine are

clocked, the input variables of the finite state
machine must be ready at the beginning of a

state.
0 I/O operations cannot be moved across the asso-

ciated ‘wait’ operation. Such dependency is in-

spected by the programmer and specified as a
control dependency.

0 A procedure call requires at least two states. The

first state contains a jump (state transition) to the
called procedure. The second state is the return
state where the called procedure transfers control

to the caller.
0 The selected clock cycle time must be greater

than the execution time for the maximum number

of chained operations.
The first experiment uses a VHDL description of

a telephone answering machine [18]. The second
experiment is the benchmarks from the 1989 Work-
shop on High-Level Synthesis. All experimental re-

sults are verified by simulation.

4.1. Telephone answering machine

The characteristics of the answering machine ex-
ample include real-time constraints, synchronization,
hierarchy and nested-loops. The initial VHDL de-

scription contains 110 operations and 25 loops.

Table 1 tabulates the results, where DLS denotes
the scheduler used in AMICAL system [18]. Given
the constraints on the number of adders (Adds) and
the maximum number of data-path operations that
can be chained in one control step (cn>, Table 1

S.-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) 501-519 517

Table I
Results on telephone answering machine

Approach Constraints Results CPU time

Adds cn States Trims (seconds)

1 I 20 55 0.300
ours 2 2 19 54 0.310

19 54 0.300

DLS - - 22 67 -

shows (i> the total number of states in the finite state
machine (states) and (ii) the total number of transi-
tions in the finite state machine (7’runs). The CPU
time (seconds) is the time the synthesis tool takes to
complete the job on this benchmark.

Without any resource constraint, the DLS sched-
uler translates this example into 22 states and 67
transitions, while our approach translates it into 19
states and 54 transitions. With further analysis, we
found that our approach has reached the lower bound
of the number of control states. Since there are 18
control states because of the existence of the loop

headers and 1 control state because of the control
dependencies (the input variables of a finite state
machine must be ready at the beginning of a state),
the lower bound of the number of control states is
19.

Because there is no ‘goto’ statement in VHDL
language, the designers have to use the structure
‘loop . . . exit’ to represent the unconditional branch
in a VHDL program. The ‘loop. . . exit’ is treated as
an unconditional branch.
‘loop.. . exit’ structures in
need 19 states to schedule
gram contains 25 loops.

Since there are some
this example, we only
it even though the pro-

4.2. High-level synthesis workshop benchmarks

We applied the proposed scheduling algorithm to
the benchmarks from 1989 Workshop on High-Level
Synthesis, including COUNTER, GCD, PREFETCH,
KALMAN, HUNT and TX8251. A brief introduc-
tion to these benchmarks, including the functionality,
the number of operations and paths, is given in [14].

Table 2
Results on the benchmarks from 1989 high-level synthesis workshop

Design Approach Results CPU time

States Tram Shott Long cn (seconds)

ours 1 1 I 1 1 0.040
COUNTER PBS 1 1 1 1 _

DLS 2 5

ours 2 4 1 2 I 0.020
GCD PBS 2 4 1 2

DLS 2 4 _

CALLAS 3 5

ours 2 4 I 2 1 0.020
PREPBTCH PBS 4 9 1 3

DLS 3 4 _

KALMAN ours 17 38 1 10 4 0.450
PBS 23 115 1 17 _

HUNT ours 6 14 1 5 2 0.080
PBS 6 25 1 6

TX825 1 ours 16 51 1 12 1 0.330
PBS 22 112 2 18

518 S.-H. Huang et al. /Microprocessing and Microprogramming 41(1995) Sol-519

Most operations in these benchmarks are logic, deci-
sion making, I/O and data transfer operations. There
are very few data dependencies between the opera-
tions in these benchmarks.

Without any resource constraint, Table 2 tabulates
the synthesized results. Note that we also do not
enforce the constraint on the maximum number of
chained operations. Hence, the CDFG is partitioned
into states due to control dependency (e.g. the input
variable of the finite state machine must be ready at
the beginning of a state) or program structure (e.g.
loop, procedure call, and so on). For each bench-
mark, Table 2 shows the results produced by our
approach and the published results. We compare our
synthesized results with the path-based scheduling
(PBS), the scheduler used in AMICAL system (DLS),
and the scheduler used in CALLAS system (CAL-
LAS). The first five columns present the synthesized
results, including the total number of states (States),
the number of transitions (Truns), the number of
states in the shortest path (Short), the number of
states in the longest path (Long), and the maximum
number of chained data-path operations after the
scheduling is finished (cn). The last column shows
the time the synthesis tool takes to complete the
scheduling on each benchmark.

The synthesized results show that our approach
requires fewest states in the finite state machine and
optimizes each path with fewest control states. With
further analysis, we find that our scheduler achieves
better results because it uses both operation reorder-
ing and the approach to schedule an operation into
multiple states. It is important to note that some of
the results given in PBS are for the descriptions
written in V not VHDL. This might imply some
discrepancies.

5. Conclusions

In this paper we described a new scheduling
algorithm for automatic synthesis of the control

blocks of control-dominated circuits. The main dis-
tinction of the proposed algorithm is that it partitions
a CDFG into an equivalent state transition graph. It
works on the CDFG to exploit operation relocation,
chaining, and loop transformation to schedule each
execution path as fast as possible. Benchmark data
shows that this approach achieved better results over
previous ones in terms of the speedup of the circuit
and the number of states and transitions. Some of the
results are proved to be optimum.

References

[11 D.D. Gajski (ed.), Silicon Compilation (Addison-Wesley,

Dl

[31

t41

151

Kl

[71

181

191

[lOI

1111

New York, 1988).
M.C. McFarland, AC. Parker and R. Camposano, Tutorial
on high-level synthesis, in Proc. 25th Design Automation
Conf. (June 1988) 330-336.
G. Goossens, J. Rabaey, J. Vandewahe and H.D. Man, An
efficient microcode compiler for application specific DSP
processors, IEEE Trans. Computer-Aided Design (Sep. 1990)
925-937.
M. Koster, M. Geiger and P. Duzy, ASIC design using the
high-level synthesis system CALLAS: a case study, in Proc.
Inr. Conf on Computer Design (Sep. 1990) 141-146.
G. Saucier and J. Trilhe feds.), Synthesis for Control-
Dominated Circuits: Selected Papers from the IFIP WG10.2
/ WG10.5 Workshops, Grenoble, France (April/Sep. 1992)
(North-Holland, 1993).
S. Davidson, D. Landskov, B.D. Shriver and P.W. Mallett,
Some experiments in local microcode compaction for hori-
zontal machines, IEEE Trans. Comput (July 1981) 460-477.
J.A. Fisher, Trace scheduling: A technique for global mi-
crocode compaction, IEEE Trans. Compuf. (June 1981)
478-490.
A. Nicolau, Uniform parallelism exploitation in ordinary
programs, Proc. Int. Conf on Parallel Processing (Aug.
1985) 614-618.
J. Lab and D.E. Atkins, Tree compaction of microprograms,
Proc. 16th Annual Microprogramming Workshop (Oct. 1983)
23-33.
J.L. Linn, SRDAG compaction - a generalization of trace
scheduling to increase the use of global context information,
in Proc. 16th Annual Microprogramming Workshop (Oct.
1983) 1 l-22.
T. Makatani and K. Ebcioglu, Using a lookahead window in

S.-H. Huang et al. / Microprocessing and Microprogramming 41 (1995) Sol-51 9 519

[I21

[I31

[I41

[I51

[I61

[I71

[I81

a compaction-based parallelizing compiler, in Proc. Int.
Symp. on 23rd Microarchitecture, (Nov. 1990) 57-68.
B.M. Pangrle and D.D. Gajski, Design tools for intelligent
silicon compilation, IEEE Trans. Computer-Aided Design
(Nov. 1987) 1098-l 112.
P.G. Paulin and J.P. Knight, Force-directed scheduling for
the behavioral synthesis of ASIC’s, IEEE Trans. Computer-
Aided Design (June 1989) 661-679.
R. Camposano, Path-based scheduling for synthesis, /EEE
Trans. Computer-Aided Design, (Jan. 1991) 85-93.
Y.C. Hsu, MEBS user guide: A multiple-entry behavior
synthesis system for digital system rapid prototyping, Tech-
nical Report, Department of Computer Science, University of
California, Riverside, June 1994.
Synopsys behavioral compiler user guide, Version 3.2a, Syn-
opsys Inc., Oct. 1994.
S.H. Huang, C.T. Hwang, Y.C. Hsu and Y.J. Oyang, A new
approach to schedule operations across nested-ifs and
nested-loops, in Proc. 25th Int. Symp. on Microarchitecture,
(Dec. 1992) 268-27 1.
K. Obrien, M. Rahmouni and A. Jerraya, A VHDL-based
scheduling algorithm for control-flow dominated circuits, in
Proc. High-Leoel Synthesis Workshop (Nov. 1992) 135-145.

Shih-Hsu Huang received the B.S. de-
gree in computer science and informa-
tion engineering from National Chiao
Tung University, Hsinchu, Taiwan, in
1989, and the MS. degree in computer
science from National Tsine Hua Uni-
versity, Hsinchu, Taiwan, in?991. He is
currently a Ph.D. candidate in the De-
partment of Computer Science and In-
formation Engineering at National Tai-
wan University, Taipei, Taiwan. His re-
search interests include instruction
scheduling and VLSI synthesis. He can

huang@solar.csie.ntu.edu.tw

Yu-Chin Hsu received the B.S. degree
in computer science from National Tai-
wan University, Taipei, Taiwan, in 198 I,
and the M.S. and Ph.D. degrees in com-
miter science from the Universitv of Illi-
nois at Urbana-Champaign in I986 and
1987, respectively. He is currently serv-
ing as Associate -Professor of Computer
Science at University of California,
Riverside. Previously, Dr. Hsu served
on the faculty of Tsing Hua University,
Hsinchu, Taiwan. His research interests
include automated synthesis of digital

systems from VHDL description. He co-received an Outstanding
Young Author Award from IEEE Circuits and Systems Society in
1990. He can be reached by e-mail at hsu@cs.ucr.edu

Yen-Jen Oyang received the B.S. de-
gree in information engineering from
National Taiwan University in 1982, the
MS. degree in computer science from
California Institute of Technology in
1984, and the Ph.D. degree in electrical
engineering from Stanford University in
1988. He is currently an Associate Pro-
fessor in the Department of Computer
Science and Information Engineering,
National Taiwan University. His re-
search interests include computer archi-
tecture, distributed systems, and VLSI

system design. He can oe reaches by e-malt at yJoyang
@csie.ntu.edu.tw

