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Abstract 

This paper describes a new scheduling algorithm for automatic synthesis of the control blocks of control-dominated 
circuits. The proposed scheduling algorithm is distinctive in its approach to partition a control/data flow graph (CDFG) into 
an equivalent state transition graph. It works on the CDFG to exploit operation relocation, chaining, duplication, and 
unification. The optimization goal is to schedule each execution path as fast as possible. Benchmark data shows that this 
approach achieved better results over the previous ones in terms of the speedup of the circuit and the number of states and 
transitions. 
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1. Introduction 

Research on behavior synthesis has been very 
active and has made a lot of progress during the past 
few years [l-4]. The issue of behavior synthesis is to 
design a circuit from a hardware behavior descrip- 
tion. Since the designs for different application do- 
mains differ substantially in their characteristics, it is 
believed that a successful synthesis system should be 

l Corresponding author. Email: yjoyang@csie.ntu.edu.tw 

domain specific and architecture specific. For exam- 
ple, traditional Mealy or Moore type finite state 
machines are good for control-dominated applica- 
tions [$I, while superscalar or VLIW architectures 
are good for computation intensive applications. 

A control-dominated application typically consists 
of very few arithmetic operations. Most operations in 
a control-dominated application are short-delay oper- 
ations such as data transfer, logic, decision making, 
and I/O operations. Since the execution delay for 
such operations is usually short, it is very common to 
chain several operations which have control or data 
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dependencies into a single control step as long as 
their total propagation delay is less than the clock 
cycle time. In other words, chaining consecutive 
control-dependent and/or data-dependent operations 
into one state is an important attribute which a good 
scheduling algorithm for control-dominated circuit 
synthesis must have. 

1.1. Previous work 

Most previous scheduling algorithms [6-S] use 
control/data flow graph (CDFG) to represent the 
dependencies of operations. Based on CDFG repre- 
sentation, they try to exploit the potential concur- 
rency of operations and take advantage of the free- 
dom left to move operations across control steps. 
List scheduling [6] is a widely used heuristic. Global 
transformation techniques such as trace scheduling 
[7] and percolation scheduling [8] rely on code mo- 
tion across basic blocks. The problem of trace 
scheduling is that the patching codes generated dur- 
ing the bookkeeping phase can be exponential to the 
size of the input program. Many approaches [9-l 11 
have been proposed to solve this problem. 

The feature of chaining consecutive data-depen- 
dent operations into a single control step has been 
implemented in some behavior synthesis systems. In 
the Slicer state synthesizer [12], if the cumulative 
delay through a computation path is short enough to 
allow the operations to perform sequentially, the 
operations are chained into a single state. In force-di- 
rected scheduling [ 131, the range of possible control 
steps for each operation is used to form a so-called 
distribution graph. Operations are then selected and 
placed so as to balance the distribution as much as 
possible. The feature of chaining consecutive data- 
dependent operations is implemented by extending 
the time frames of fast combinatorial operations into 
the previous and/or next control steps (when the 
total propagation delay in those control steps is less 
than the clock cycle time). Both approaches [ 12,131 
are restricted to a basic block. 

Path-based scheduling algorithm [ 141 was the first 
attempt to tackle scheduling for control-dominated 
circuits. Its basic principle is to minimize the total 
execution time of the design, measured in number of 
control steps, by taking into account all the possible 
execution paths due to the presence of loops and 
branches. In order to chain consecutive control-de- 
pendent operations into a single state, path-based 
approach expands all the possible execution paths 
before carrying out scheduling. One major limitation 
of path-based approach is that a predefined order of 
the operations must be chosen before scheduling. 

1.2. Our approach 

In this paper, we present a new scheduling algo- 
rithm for automatic synthesis of the control blocks of 
control-dominated circuits. It works on the CDFG to 
exploit operation relocation, chaining, duplication, 
and unification. The main distinctions of the pro- 
posed scheduling algorithm are elaborated in the 
following: 
l It partitions a CDFG into an equivalent state 

transition graph. Different from path-based ap- 
proach, the proposed scheduling algorithm works 
on the CDFG to exploit chaining of consecutive 
control-dependent and/or data-dependent opera- 
tions. The basic idea behind the proposed algo- 
rithm is to schedule as many operations as possi- 
ble, which may have control or data dependen- 
cies, into a single state. Control-dependent opera- 
tions (in consecutive basic blocks) are chained 
into the same state as long as their total propaga- 
tion delay is less than the clock cycle time. As a 
result, we can schedule several basic blocks 
linked by control constructs into a single state. 
After the scheduling process is finished, the 
CDFG is partitioned into an equivalent state tran- 
sition graph. 

l It schedules every execution path as fast as pos- 
sible. Due to the presence of loops and branches, 
the execution path may be different as the input 
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Signal Assignment Statement 
Variable Assignment Statement 

While Statement 
Wait Statement 
Next Statement 
Exit Statement 
If Statement 
Case Stntemcnt 
Procedure Call St;utemeut (recursiou is not allowed) 
Function Call Statemrut (recursion is not allowed) 

Return Statement 

Null Shtement 

Fig. I. The subset of VHDL statements (within a process) accept- 
able by our scheduler. 

changes. In order to optimize every execution 
path, sometimes an operation has to be treated 
differently in different paths. This is the idea 
used in path-based approach. However, because 
path-based scheduling must choose an execution 
order of operations before scheduling, it does not 
use the additional freedom obtained by reorder- 
ing operations which leads to more improve- 
ments. This limitation is alleviated in our ap- 
proach by keeping all execution paths on a CDFG 
representation. The proposed scheduling algo- 
rithm not only preserves the advantage of path- 
based approach (i.e. the capability of scheduling 
an operation into multiple states), but also pre- 
serves the flexibility of operation reordering. 

The rest of the paper is organized as follows. The 
next section discusses the optimization of execution 

while (cl) do 

I 

paths through control constructs such as loops and 
branches. Section 3 presents an effective scheduling 
algorithm to partition a CDFG into an equivalent 
state transition graph. In Section 4, we report the 
experimental results and the comparison to other 
approaches. Finally, concluding remarks are made in 
Section 5. 

2. Optimization of execution paths 

The input is a behavior-level description written 
in the VHDL hardware description language. A 
VHDL hardware description may contain several 
processes. In our control-dominated circuit synthesis 
system [15], each process is synthesized indepen- 
dently; i.e. each process results in a data path and 
controller with exactly one single-phase clock. For 
each process, the designer can specify the resource 
constraints such as the number and/or type of hard- 
ware modules to be used in the data path. The 
designer is responsible for the inter-process commu- 
nication. Fig. 1 shows the subset of VHDL state- 
ments (within a process) acceptable by our sched- 
uler. Note that all wait statements (which wait on 
clock) in a single process must use the same edge 
triggering of the same clock. Either a rising-edge 
clock or a falling-edge clock can be the active edge. 

The behavior-level hardware description (within a 
process) is first compiled into a CDFG representa- 

I 1 
01 Lb cl’ 

(a) (b) 
Fig. 2. (a) A program consisting of a while-loop. (b) The CDFG using the pre-test construction. (c) The CDFG using the new loop 
construction. 
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tion which consists of a set of basic blocks linked by 
flow-of-controls. A flow-of-control can be forward 
or backward. A forward edge represents an execution 
order from a basic block to a successor block, while 
a backward edge represents a loop-construction. The 
basic block without a predecessor is called the entry 
block. Each VHDL process has only one entry block. 

Due to the presence of loops and branches, there 
are several execution paths on a CDFG representa- 
tion. This section discusses the optimization of exe- 
cution paths through control constructs such as loops 
and branches. Section 2.1 describes a loop construc- 
tion to overcome the limitation of pre-test construc- 
tion on operation chaining. Section 2.2 presents a 
preprocessing algorithm to remove the ineffective 
operations in each execution path. 

2.1 A loop construction for operation chaining 

The loop structure supported in VHDL is the 
while-loop. Fig. 2(a) describes a program which 
consists of a while-loop. Fig. 2(b) shows the corre- 
sponding CDFG using the pre-test construction, To 
preserve the semantics of a program, operations 01 
and cl cannot be scheduled in the same state if 
operation 01 is not a loop invariant. This property 
limits the possible chaining of operations 01 + cl 
+ 03 into a single state. 

We use a different loop construction to overcome 
the limitation of pre-test construction. Fig. 2(c) shows 
the corresponding CDFG using the new loop con- 
struction. By duplicating loop comparison operation 
cl, the while-loop is translated into an if construc- 
tion (i.e. ‘loop-test’ operation) whose true part is the 
original loop. Since operation cl is duplicated, let’s 
distinguish the two copies of cl as cl’ (if- cl) and 
cl” (while-cl). If the control flows through the true 
part of ‘loop-test’ operation cl’, the loop is executed 
at least once. Otherwise, the loop will not be exe- 
cuted. The advantages of the new loop construction 
on operation chaining are discussed as follows: 
0 For the path in which the loop-test condition is 

false. In Fig. 2(c), the path is 01 + cl’ --) 03. If 
these three operations can be chained together, 
we can schedule them in the same state. Thus, 
this is the best we can do for this path. 

0 For the path in which the loop-test condition is 
false. In Fig. 2(c), the path is 01 + cl’ --f cl” + 
02-, . . . + cl” + 03. If operations cl” and 02 
can be chained together, we can schedule them in 
the same state. The advantage of the pre-test 
construction is preserved. 
The idea of the new loop construction is to bypass 

the loop in case the entry condition is not satisfied. 
In control-dominated applications, there are usually 
many wait statements. The waif statements are used 
to wait on clock and/or conditions. In our control- 
dominated circuit synthesis system, a wait statement 
which only waits on conditions is translated into an 
equivalent while-loop. The improvement of the new 
loop construction may be significant if the waiting 
conditions seldom occur. 

The new loop construction, however, may unnec- 
essarily duplicate some operations. For example, in 
Fig. 2(c), if operation 01 is a loop invariant and 
operations 01, cl” and 02 can be chained together, 
then we can schedule them into the same state. It is 
not necessary to do comparison operation cl twice 
(i.e. cl’ and cl”) in the same state. Thus, in this case, 
we can remove operation cl’ and then reduce the 
while-loop to a pre-test construction. 

In our control-dominated circuit synthesis system, 
a behavior description is first compiled into a CDFG 
using the new loop construction to represent each 
loop. In Section 3.4, we will present an algorithm to 
determine the right loop construction of each loop 
during the scheduling process. 

2.2 Preprocessing 

An if construct spreads a true part and a false 
part. For an if block Bi,, there are two immediate 
successors: (1) the true block B,,,,, which will be 
immediately executed after B, if the comparison is 



true; (2) the false block Bfarse, which will be imme- 
diately executed after B, if the comparison is false. 
A case construct can be translated into nested ifs 
and treated accordingly. 

Because the delay time of an operation in a 
control-dominated application is usually short, it is 
possible to chain several conditional branches into a 
single state. The mutually exclusive operations with 
the same functionality can share the same resource. 
For example, an addition operation in B,,,, and 
another addition operation in Bfalse can share the 
same adder, even though they are scheduled in the 
same state. In order to improve resource sharing, it is 
desired to move an operation from if block to 
branch parts. Let d(q) be the variable defined by 
operation oi and in[B] be the set of variables which 
are live at the entry of block B. The following 
Lemmas state the conditions of propagating an oper- 
ation from an if block to its adjacent blocks B,,,, 

B3 
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Lemma 1. 1’ an operation oi has no dependency 
successor in Bir, if can be duplicated and moved to 
both blocks B,,:, and Bfnlse. 

Lemma 2. An operation oi in B, can be moved 
downward to B,,,,( Bfa& if 
(1) if has no dependency successor in B,; and 

(2) d(oi) @ in[ Bfnlse] (d(oi) E in[ B,,,,]). 

Lemma 2 can be applied to relocate the operations 
that are ineffective in some of the containing paths 
of a conditional branch. For example, in Fig. 3(a), 
operation fl := in1 - in2 is ineffective for the path 
B, ;=) B6 * B, because t 1 6C in[ B6]. Therefore, ac- 
cording to Lemma 2, we can move this operation 
from block B, to block B,. Note that even if an 
operation is not ineffective for both the paths through 
B rrue and Bfalse (i.e. d(Oi) E in[B,,,,,l and d(oi) E 
in[ Bf,,,,]), it may still be ineffective for some of the 
subpaths. In order to discover all indirect-ineffective 

t1:=in1-in2; 
t2:=ilQ+iJl3; -l t3:=in1-in3; 
t4:=in3+in4; 

if (in5/=0) 

B1- 
t%=tl+l; t4:=in3+in4; 1 t3:=inl-id% 1 

B6 t3:=i&in4; 

I 

(b) 
Fig. 3. Example 1. (a) Original CDFG. (b) The CDFG after preprocessing is carried out. 
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Procedure Prcproccssing() 

Begin 
For each basic block B do (in tlw scqorncr of topologicnl ordering) 

if block B is an ZJ block then 
For each operation o, in B from last to first do 

Begin 
if o, cm be prop,zgnted tbcrr /*apply Lcmn~n I’/ 

Begin 
For each su~~rssor block Di of B do 

if (d(o,) t in[B~]) /*apply Lrm~nn 2*/ 
then copy o, to tbr Ihmd ol BI; 

Remove operation 0, Irom B; 
End; 

End; 

End; 

Fig. 4. The preprocessing algorithm. 

operations, we apply Lemma 1 to propagate each 
operation as downward as possible. 

Fig. 4 shows the preprocessing algorithm which 
removes the ineffective operations in each execution 

path on a CDFG representation. The basic blocks are 

processed in the sequence of their topological order- 

ing (ignore backward edges). The operations in a 
block are processed from the last to the first (ignore 

the comparison operation). When an operation is 
propagated, we place it at the head of the target 
block. By repetitively applying operation move- 

ment/duplication, the algorithm optimizes each exe- 
cution path induced by conditional branches on a 

CDFG representation. 

Example. Let us use the CDFG in Fig. 3(a) as an 

example to illustrate the preprocessing algorithm. 
The blocks are processed according to the following 

sequence B,, B,, B,, B4, B,, B6 and B,. By 
applying the preprocessing algorithm, we can re- 
move the ineffective operations in each execution 

path. 
The algorithm starts from block B,. Because block 

B, is an if block, we try to propagate the operations 

to its successor blocks. First, operation t4 := in3 + 
in4 is moved to block B,. Operations t3 := in1 - in2 
and t2 := in2 + in3 are moved to block B6. Then, 
operation tl := in1 - in2 is moved to block B,. 

Next, block B, is processed. At this point, block 

B, contains operations tl := in1 - in2, t4 := in3 + 
in4, and t5 := t 1 + 1. Operation t5 := t 1 + 1 is du- 

plicated and moved to blocks B, and B4. Then, 
operation t4 := in3 + in4 is moved to block B4. 
Operation tl I= in1 - in2 cannot be propagated be- 

cause variable t 1 is used by the comparison opera- 

tion if(tl CO>. 
Similarly, we examine blocks B,, B4, B,, B6 and 

B,, and find none of them is an if block. The final 
result is shown in Fig. 3(b). 

The CDFG after preprocessing is carried out has 

the following properties: 
Each block B, contains only the dependency 

predecessors of branch operation oif. Any opera- 

tion which does not produce a value for the 
decision of oi, is propagated to the successor 

blocks. Besides, the ineffective operations in each 
execution path are removed. 

The successor blocks induced by a conditional 
branch can share the same resources because 
those blocks are mutually exclusive. Therefore, 

through preprocessing, we can improve resource 

sharing. 
Assume an operation oi is originally in if block 

B,. After preprocessing is carried out, operation 
oi may be duplicated and moved to the successor 
blocks of B,. During the scheduling phase, we 

say an operation is ready if its control and data 
dependencies have been satisfied. Note that all 

the copies of operation oi will be ready before we 

schedule the conditional branch oif in block B,. 
Thus, those copies may be moved upward and 

unified during the scheduling of block B,. 

3. The scheduling algorithm 

In our control-dominated circuit synthesis system, 
a behavior description is first compiled into a CDFG 
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using the new loop construction to represent each 
loop. Then, preprocessing is performed to relocate 
ineffective operations in each execution path and 
improve resource sharing. With the output of prepro- 
cessing, we propose an effective scheduling algo- 
rithm to partition a CDFG into an equivalent state 
transition graph. 

The proposed scheduling algorithm has the fol- 
lowing features: 

It is capable of moving operations across basic 
blocks; 
It unifies the identical copies of an operation into 
a single state; 
It carries out operation chaining for the condi- 
tional branches; 
It allows resource sharing among mutually exclu- 
sive operations; 
It duplicates an operation into different states so 
that each execution path can be scheduled as fast 
as possible; and 
It determines the right loop construction for each 
loop. 

3.1. Basic ideas 

A pseudo-code of the proposed scheduling algo- 
rithm is presented in Fig. 5. The algorithm starts 
from the entry block Bentry and processes basic 
blocks in the sequence of their topological ordering 
(ignore backward edges). Procedure Schedule _ a _ 

Procedure Scheduling_Algorithm() 
Begin 

For each basic block L? do (in the sequencr of topologirnl ordering) 
Begin 

call procedure Schedulea_Block(B) (in Fig. G); 
For each forward successor block BI of B do 

Begin 
S(&) = .S(&) u S(B); 
r(&) = r(h) n r(B): 

End; 

End; 
End. 

Fig. 5. The scheduling algorithm. 

Block is invoked iteratively to schedule each basic 
block. Whenever the scheduling of a block is done, 
chaining information is passed to its successor blocks 
through forward control flows. Consequently, we 
can chain several basic blocks linked by control 
constructs into a single state. Because a state may 
consists of several control constructs, we also use the 
CDFG structure to represent each state. 

The idea behind the proposed scheduling algo- 
rithm is to schedule as many operations as possible, 
which may have control or data dependencies, into 
one state. Two or more dependent operations in an 
execution path can be chained into a single state as 
long as their total propagation delay is less than the 
clock cycle time. (Note that the total propagation 
delay may be less than the lumped execution time of 
chained operations. For example, some adder output 
bits are available early with bit-level timing. Hence, 
in this case, we can consider bit-level timing when 
determining the possibility of chaining operations in 
the same clock cycle [16].) As a result, all execution 
paths can be scheduled as fast as possible. To achieve 
the goal, the algorithm stresses the following two 
concerns: 

(1) It chains consecutive control-dependent oper- 
ations. Operations in consecutive basic blocks 
can be scheduled into the same state as long as 
their total propagation delay is less than the 
clock cycle time. Consequently, we can schedule 
several basic blocks linked by control constructs 
into a single state. For each basic block B, let 
S(B) represents the set of states into which the 
ready operations in block B must be scheduled. 
Initially, S(B,,,,,) = (SO), where SO is the start- 
ing state of the finite state machine, and S(B) = 
0 for other blocks. The set S(B) for a block B 
will be updated during scheduling. After a block 
B is processed, the current S(B) must be passed 
to its forward successor blocks for possible 
chaining. As a result, the operations in consecu- 
tive blocks can be chained together. In order to 
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schedule each path as fast as possible, sometimes 
an operation has to be duplicated and placed into 
different states. For example, the chaining infor- 
mation of a joint block Bjoin, comes from its 
two predecessors; i.e. blocks B,,,, and Bfalse. 
After blocks B,,,, and Bfnlsp are processed, set 
S(BjOi,,> is updated to the union of the two 
predecessors S( B,,.,,) and S( Bfn,J. 

(2) It allows resource sharing among conditional 
branches. Note that the operations in a state 
only execute under certain combinations of con- 
ditional values. The mutually exclusive opera- 
tions with the same functionality can share the 
same resource. For example, if two addition 
operations lie in separate branches of an if or 
case statement, they are not on the same path 
and can share the same adder. Let R denote the 
set of given resources and r(B) denote the 

currently available resources for each block B 
during scheduling. Before carrying out schedul- 
ing, r(B) is initialized to R for every block B. 
The set of available resources r(B) for a block 
B will be updated during scheduling. After a 
block B is processed, r(B) is passed to con- 
straint its forward successor blocks. As a result, 
the operations in an execution path will not use 
the same resource more than one times within a 
state. Furthermore, resource sharing among mu- 
tually exclusive operations is allowed because 
there is no control flow between any two of 
them. Note that the available resources of a joint 
block Bjoin, are constrainted by its two prede- 
cessors; i.e. blocks B,,,, and Bfalse. After blocks 
B ,rue and BfOlsp are processed, set r(Bjoin,) is 
updated to the intersection of the two predeces- 
sors r( B,,,,) and r( Bfolse). 

Procrdure Schednlcn_Block(B) 
Begi 

if block B is R loop header of the new loop ronstruction then 
Begin 

crentc a new state s’; 
let S(B) = {a’} and r(O) = R; 

End; 
Repeat 

Find a bigbest priority ready operation o* that can be scheduled into ench state s E S(B); 
if found then 

Begin 
if o. is a “loop-test” operation then 

call Procedure Loop_Transformation(B,o.) (in Fig. 10); 
else 

Brgin 
schedule o, into each state ,Y E S(D); 
put ready operations into the ready qurue; 
update the nwilable resourux r(B); 

End; 
if o. is A control oprrxtion then return; 

End; 
else /* not found */ 

Begin 
create a new state s’; 
let S(B) = {s’} and r(O) = R; 

End; 
Until all “must” operntions of block B are scheduled; 

End. 

Fig. 6. The procedure Schedule_a_ Block. 
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3.2. Scheduling a block 

When the scheduler moves to a block B, the 
procedure Schedule _ a _ Block( B) is invoked to 
schedule the block. The procedure Schedule-a _ 
Block is described in Fig. 6. The details of the 
procedure are discussed below. 

0 Operation Relocation. In the output of prepro- 
cessing, every operation is called a ‘must’ operation 
for the block it belongs to because we cannot sched- 
ule the operation in a later block. Therefore, during 
the scheduling of a block, the execution probability 
of a ‘must’ operation in the block is 1. For example, 
in Fig. 3(b), operation if(in5/ = 0) is a ‘must’ oper- 
ation for block B,. The operation that can be moved 
upward to a block is called a ‘may’ operation for the 
block. During the scheduling of a block, the execu- 
tion probability of a ‘may’ operation (in a path 
starting from the block) can be computed by using 
branch probabilities. Let us use the CDFG in Fig. 
3(b) as an example. During the scheduling of block 
B,, the execution probabilities of operations ixinS/ 
= O), tl := in1 - in2 and t4 := in3 + in4 are 1, 0.5 
and 0.25, respectively. Note that the ‘must’ opera- 
tions in a block are the operations that must be 
accommodated in the block. Meanwhile, we try to 
schedule as many ‘may’ operations into the block as 
long as the number of states does not increase 1171. 
The scheduling of a block is finished when all its 
‘must’ operations are scheduled. 

0 Operation Unification. After preprocessing is 
carried out, an operation may be duplicated and 
moved to different blocks. The duplicated copies 
must be unified when they are moved upward and 
scheduled into the same block. For a unified opera- 
tion, its execution probability is the lumped sum of 
the probabilities of all the unified copies. Thus, as 
more duplicated copies are unified, the operation will 
have a higher execution probability. For example, in 
Fig. 3(b), operation t5 := t 1 + 1 is duplicated to 
blocks B, and B4. After operation t 1 := in1 - in2 in 
block B, is scheduled, the two copies of operation 

r5 := tl + 1 are ready at the same time. Then, during 
the scheduling of block B,, the two copies can be 
moved upward and unified and its execution proba- 
bility is 1. 

0 Operation Chaining. Two or more dependent 
operations in an execution path can be chained into 
one state, if the total propagation delay based on 
their dependencies is less than the clock cycle time. 
(Note that the total propagation delay may be less 
than the lumped execution time of chained opera- 
tions. For example, some adder output bits are avail- 
able early with bit-level timing. Hence, in this case, 
we can consider bit-level timing when carrying out 
the chaining operations.) In order to execute each 
path as fast as possible, we have to schedule as many 
operations, which may have control or data depen- 
dencies, into one state. To achieve the goal, some- 
times an operation has to be duplicated and placed 
into multiple states. As mentioned earlier, during the 
scheduling of a block B, the set S(B) includes the 
current states into which the ready operations must 
be scheduled. In our algorithm, we will try to find a 
ready operation oi that can be scheduled in each 
state in set S(B). Then, operation oi is duplicated 
and placed into each state in set S(B) to speedup all 
execution paths in which operation oi is effective. If 
no such operation exists, a new state s’ is created 
and set S(B) becomes (~‘1. 

l Priority Function. When an operation is ready, 
it is put in the ready queue. During the scheduling of 
a block B, the ready operations come not only from 
block B (i.e. ‘must’ operations) but also from the 
successor blocks (i.e. ‘may’ operations). They will 
compete for the resources. In event resource conflict 
occurs, the following rules are applied to resolve the 
problem: 

(1st) An operation which has a higher execution 
probability has a higher priority. 

(2nd) If a computation operation and a branch 
operation have the same execution probabilities, the 
computation operation has a higher priority than the 
branch operation. The reason is explained as follows. 
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If we schedule the branch operation first, we must 
propagate the computation operation to all the suc- 
cessor blocks. This propagation does not improve 
resource sharing. Furthermore, if these propagated 
copies are not scheduled in the same state, we need 
to pay extra control costs to supervise the execution 
of those copies scheduled in different states. Thus, 
we prefer to unify all the copies of the computation 
operation. Note that such unification also reduces the 
time complexity of the scheduling algorithm. 

(3rd) If two computation operations have the same 
execution probabilities, the one on the critical path 
has a higher priority. 

0 Loop Transformation. The new loop con- 
struction presented in Section 2.1 translates a loop 
into an if construction which starts with a ‘loop-test’ 
operation. While we are scheduling a ‘loop-test’ 
operation air procedure Loop _ Transformation 
(B, oi> is invoked to determine the right loop con- 
struction of this loop. Note that the loop header of 
the new loop construction must start a new state. The 
detail of loop transformation is discussed in Section 
3.4. 

3.3. A scheduling example 

Let us use the CDFG in Fig. 3(a) as an example 
to illustrate our scheduling algorithm. The output of 
preprocessing on this example is shown in Fig. 3(b). 

We denote the set of available resources as a 
2-element vector. In the 2-element vector, the first 
element denotes the number of adders, and the sec- 
ond element the number of subtracters. Assume we 
are given 2 adders and 1 subtracter. Then, for each 
block B, the set of resources r(B) is initialized to 
(2, 1). Initially, S(B,) is {SO), where SO is the 
starting state of the finite state machine, and S(B) = 
4 for the blocks except B,. With the output of 

preprocessing, procedure Schedule _ a _ Block is in- 
voked iteratively to process the basic blocks accord- 
ing to the following sequence B,, B,, B,, B4, B,, 
B6 and B,. 

The scheduling algorithm starts from block B,. 
Let us examine how procedure Schedule-a _ Block 
processes block B,. Operation if(in5/ = 0) is sched- 
uled and then the scheduling of block B, is finished. 
The information S(B,) and r(B,) are passed to 
blocks B2 and B6. As a result, sets S(B,) and S(B,) 
become {SO}, and sets r( B2) and r( B6) become 
(2, 1). The result (except r(B)) is shown in Fig. 
7(a). 

Now, Schedule-a _ Block moves to block B,. 
Operation tl := in1 - in2 is scheduled. Hence, r(B,) 
is updated to (2, 0). Next, the two copies of opera- 
tion t5 := r 1 + 1 are unified and scheduled in this 
state. Set r( B,) is updated to (1, 0). At this point, 
operation t2 := tl + in2 in block B, is ready. It is 
moved upward and placed in block B,. As a result, 
r( B,) becomes (0, 0). Note that operation if(t 1 < 0) 
cannot be scheduled in state SO, since the input 
variable (i.e. variable tl> for the finite state machine 
must be ready at the beginning of a state. Now, 
because no resource is available, a new state Sl is 
created. S( B,) becomes {Sl) and r(B,) becomes 
(2, 1). The result (except r(B)) is shown in Fig. 
7(b). Next, operation if(tl < 0) is scheduled into 
state Sl. At this point, Schedule_a_Block has fin- 
ished processing block B,. The information S(B,) 
and r( B,) are passed to blocks B, and B4. Conse- 
quently, sets S(B,) and S(B,) become {Sl), and sets 
r( B3) and r( B4) become (2, 1). The result (except 
r(B)) is shown in Fig. 7(c). 

Similarly, our algorithm goes through blocks B,, 
B, and B,. Operations in these blocks are scheduled 
into state Sl. After the scheduling of block B, is 
finished, the information S(B,) and r(B,) are passed 

Fig. 7. Snapshots of our scheduling algorithm on Example 1. 
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B3 B4 t2:=id+in3; 
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5 tl :=inl-in2; 
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{SOI B6 
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t3:=inl-in3; 

cd? 

is11 7 
ou<=C?+tJ; 
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to block B,. Thus, S(B,) becomes (Sl) and r(B,) 
becomes (1, 0). The result (except r(B)) is shown 
in Fig. 7(d). 

Next, procedure Schedule_ a_ Block processes 
block B6. Note that S( B6) is {SO}. Hence, operations 
in this block are scheduled into state SO. After 
procedure Schedule_ a_ Block completes block Bs, 
r(B,) becomes (1, 0). The information S(B,) and 
r( B,) are passed to block B,. As a result, S( B,) 
becomes {SO, Sl} and r( B,) becomes ( 1, 0). The 
result (except r(B)) is shown in Fig. 8(a). 

Finally, block B, is processed. Since S(B,) is 
(SO, Sl}, operation auf < = t2 + t3 is duplicated and 
scheduled into states SO and Sl. The result (except 
r(B)) is shown in Fig. 8(b). 

The state transition graph obtained by our 

State SO 

@ovsl} B7 

(out<=t2+t3; 

(a) 

scheduling algorithm is shown in Fig. 9. Note that 
our optimization goal is to schedule every execution 
path as fast as possible. For instance, in this exam- 
ple, there are two states used to schedule the path 
B, *B, *B, * B, - B,. Under the constraint with 
2 adders and 1 subtracters, the result of this example 
is optimum. 

3.4. Loop transformation 

While we are scheduling a ‘loop-test’ operation 
0 ,ps, in a block B, the following possible conditions 
may occur: 
0 Condition 1. Suppose an operation oi in a state 

s E S(B) is not a loop invariant. The new loop 
construction is chosen for the loop. Note that the 

state so if (inS/=O) 

tl:=inl-in2; t2:=in2+in3; L7i!iiz t!i:=tl+l; t3:=in1-in3; 
t2:=u+in2; 

out<=t2+t3; 

Sl 

State Sl 
if (tk0) a t3:=in2-ti, t4:=in3+in4; 

tl:=t5+in4; t3:=t%n4; 

I I 

&I out<=t2+t3; 

(b) 
Fig. 8. Snapshots of our scheduling algorithm on Example 1. continued. 
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State SO 

Fig. 9. The state transition graph of Example 1 obtained by our 
scheduling algorithm. 

0 

pre-test construction is not suitable for the loop 
because it will limit possible chaining for the path 
in which the ‘loop-test’ condition is false. Thus 
the ‘loop-test’ operation o,,,, is scheduled into 
each state s E S(B) so that each execution path 
will be scheduled as fast as possible. By duplicat- 
ing the loop comparison operation, we can sched- 
ule each execution path as fast as possible. 
Condition 2. In other cases, the pre-test construc- 
tion is chosen for the loop. The ‘loop-test’ opera- 
tion ores, will be ignored, and hence the loop will 
be reduced to a pre-test construction. The pre-test 

Procedure Loop_Transformatinn(~,~,,.,) 
Begin 

ignore o,?., 2nd reduce this loop into the pretest construction; 
else 

sclwdolc o,r., into each stab s E S(B); 
End. 

Fig. 10. The procedure. Loop_ Transformation. 

01: n= inl+l: 
02: suml= in2+in3; 
03: sum2= in4+1: 
cl: while (n<=O) do 

I 
04: III= inS+in6; 
05: suml= suml+n: 
c2: while (m-so) do 

I 
06: sum2=sum2+m; 
07: m=m+l: 

I 
08: In= ll+l; 
09: out<=sum1+sum2; 

Fig. 1 I. Example 2 (An example used to illustrate the idea of loop 
transformation). 

construction can be scheduled so that each path is 
executed as fast as possible without duplicating 
the loop comparison operation. 
The above discussion concludes that we need to 

transform a loop into the pre-test construction when 
Condition 2 occurs. The transformation is performed 
by ignoring the ‘loop-test’ operation. The idea of 
loop transformation has been implemented in the 
procedure Loop_ Transformation which is described 
in Fig. 10. 

Example. Let us use the program in Fig. 11 as an 
example to illustrate the idea of loop transformation. 
There is a two-level nested loops in the program. 
Suppose we are given two ALUs as the resource 
constraint. By applying the proposed approach, we 
can determine the right loop construction of each 
loop during the scheduling process. Fig. 12 shows 
the snapshots that our scheduling algorithm goes 
through. 

At the beginning, the program is transformed into 
a CDFG using the new loop construction. The CDFG 
is displayed on Fig. 12(a). Then, the preprocessing 
procedure is performed. No operation is relocated 
during preprocessing. Next, our scheduling algorithm 
iteratively invokes procedure Schedule_ a _ Block to 
schedule the basic blocks according to the following 
sequence B,, B,, B,, B.,, B,, B6 and B,. 

Let us see how Schedule_a_ Block schedules 
block B,. Initially, set S(B,) is (SO}. Operations 01 
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states0 ol 

P 02 

Sl 

states1 o3 

cl’ 

JL s2 09 

state so 

sbF 

I 03: sum2= in4+1; 

09: out<= sum 1 +sum2; (if (I-DO)) I 

state s2 cl” 

6% 

04 09 
05 

s3 

state s3 c2” 

cf+ 

06 08 
07 

s2 

s3 

state s2 (if (n<=O)) 
I 

04: m= inS+in6; (if (n<=O)) 
- 05: suml= suml+n; (if (n<=O)) 

09: out<= suml+sum2; (if (DO)) 

06: SUnQ= sunQ+m; (if (m<=O)) 
(if (m<=O)) 

07: m= m+l; (if(m<=O)) 

08: n=n+l; (if(m>O)) 

I 
(if (m>O)) 

(a) (b) 
Fig. 12. Snapshots of our scheduling algorithm on Example 2. 

and 02 are scheduled into state SO. Then, since no 
resource is available, a new state Sl is created and 
set S(B, > is updated to {Sl). The result (except 
r(B)) is shown in Fig. 12(b). Operation 03 is sched- 
uled into state Sl. Next, procedure Loop_Trunsfor- 
mation(B,, cl’) is invoked to process ‘loop-test’ op- 
eration cl’. Note that there is an operation 03 sched- 
uled in state Sl already. Because operation 03 is not 
a loop invariant, the new loop construction is used to 
represent the loop. Thus, operation cl’ is scheduled 
into state Sl. The result (except r(B)) is displayed 

on Fig. 12(c). 
After block B, is processed, we pass the informa- 

tion S( B,) to successor blocks B, and B,. As a 
result, sets S(B,) and S(B,) become {Sl}. 

Then, we process block B,. Since block B, is a 
loop header with the new loop construction, the 
block must start a new state. A new state S2 is 
created and set S(B,) is updated to (S2). Operation 
cl” is scheduled into state S2. 

After block B, is processed, the information 
S( B,) is passed to successor blocks B, and B,. 

Fig. 13. Snapshots of our scheduling algorithm on Example 2, continued. 
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Next, we process block B,. Operations 04 and 
05 are scheduled into state S2. Since no resource is 
available, a new state S3 is created and set S(B,) is 
updated to {S3]. The result (except r(B)) is shown 

in Fig. 12(d). Then, procedure Loop_Transforma- 
tion( B,, ~2’) is invoked to process ‘loop-test’ opera- 
tion ~2’. Because there is no operation in state S3, 
we ignore operation c2’ and then reduce the loop 

into the pre-test construction. The result (except 
r(B)) is shown in Fig. 12(e). 

Similarly, our algorithm goes through blocks B4, 
B, and B,. Operations c2”, 06, 07 and 08 are 

scheduled into state S3. The result (except r(B)) is 
shown in Fig. 12(f). 

Finally, block B, is processed. Note that set 
S(B,) is {Sl, S2). Thus, operation 09 is duplicated 

to states Sl and S2. The result (except r(B)) is 
given in Fig. 13(a). 

The state transition graph obtained by our 
scheduling algorithm is described in Fig. 13(b). The 

outer loop is transformed into the new loop construc- 
tion, and the inner loop is transformed into the 

pre-test construction. Each execution path is sched- 

uled as fast as possible without unnecessary duplica- 
tion. Furthermore, we only use four states to sched- 

ule the program. Because the hardware parallelism is 
2, the size of the finite state machine is minimal. 

3.5. Time complexity 

Let n be the number of operations in the CDFG 
after preprocessing is carried out. Since the length of 

a ready queue is limited by O(n), the search for a 
candidate operation to be scheduled is O(n). More- 
over, for a ‘loop-test’ operation, the decision of loop 

transformation has the time complexity of O(n). 
Therefore, the time complexity for scheduling an 

operation is O(sn’), where s the total number of 
states. It is easy to see that s I n. Therefore, the time 
complexity of scheduling an operation is O(n3>. 
Hence, the time complexity of our scheduling algo- 
rithm is 0(n4). 

4. Experiments 

We have implemented the proposed scheduling 
algorithm in a C program running on the SUN-Spare 
workstation and have integrated it into a control- 

dominated circuit synthesis system [15]. The bench- 

marks from the open literature are used to test the 
effectiveness of the proposed scheduling algorithm. 
We make the following assumptions for synthesis: 

0 Since the inputs to the finite state machine are 

clocked, the input variables of the finite state 
machine must be ready at the beginning of a 

state. 
0 I/O operations cannot be moved across the asso- 

ciated ‘wait’ operation. Such dependency is in- 

spected by the programmer and specified as a 
control dependency. 

0 A procedure call requires at least two states. The 

first state contains a jump (state transition) to the 
called procedure. The second state is the return 
state where the called procedure transfers control 

to the caller. 
0 The selected clock cycle time must be greater 

than the execution time for the maximum number 

of chained operations. 
The first experiment uses a VHDL description of 

a telephone answering machine [18]. The second 
experiment is the benchmarks from the 1989 Work- 
shop on High-Level Synthesis. All experimental re- 

sults are verified by simulation. 

4.1. Telephone answering machine 

The characteristics of the answering machine ex- 
ample include real-time constraints, synchronization, 
hierarchy and nested-loops. The initial VHDL de- 

scription contains 110 operations and 25 loops. 

Table 1 tabulates the results, where DLS denotes 
the scheduler used in AMICAL system [18]. Given 
the constraints on the number of adders (Adds) and 
the maximum number of data-path operations that 
can be chained in one control step (cn>, Table 1 
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Table I 
Results on telephone answering machine 

Approach Constraints Results CPU time 

Adds cn States Trims (seconds) 

1 I 20 55 0.300 
ours 2 2 19 54 0.310 

19 54 0.300 

DLS - - 22 67 - 

shows (i> the total number of states in the finite state 
machine (states) and (ii) the total number of transi- 
tions in the finite state machine (7’runs). The CPU 
time (seconds) is the time the synthesis tool takes to 
complete the job on this benchmark. 

Without any resource constraint, the DLS sched- 
uler translates this example into 22 states and 67 
transitions, while our approach translates it into 19 
states and 54 transitions. With further analysis, we 
found that our approach has reached the lower bound 
of the number of control states. Since there are 18 
control states because of the existence of the loop 

headers and 1 control state because of the control 
dependencies (the input variables of a finite state 
machine must be ready at the beginning of a state), 
the lower bound of the number of control states is 
19. 

Because there is no ‘goto’ statement in VHDL 
language, the designers have to use the structure 
‘loop . . . exit’ to represent the unconditional branch 
in a VHDL program. The ‘loop. . . exit’ is treated as 
an unconditional branch. 
‘loop.. . exit’ structures in 
need 19 states to schedule 
gram contains 25 loops. 

Since there are some 
this example, we only 
it even though the pro- 

4.2. High-level synthesis workshop benchmarks 

We applied the proposed scheduling algorithm to 
the benchmarks from 1989 Workshop on High-Level 
Synthesis, including COUNTER, GCD, PREFETCH, 
KALMAN, HUNT and TX8251. A brief introduc- 
tion to these benchmarks, including the functionality, 
the number of operations and paths, is given in [14]. 

Table 2 
Results on the benchmarks from 1989 high-level synthesis workshop 

Design Approach Results CPU time 

States Tram Shott Long cn (seconds) 

ours 1 1 I 1 1 0.040 
COUNTER PBS 1 1 1 1 _ 

DLS 2 5 

ours 2 4 1 2 I 0.020 
GCD PBS 2 4 1 2 

DLS 2 4 _ 

CALLAS 3 5 

ours 2 4 I 2 1 0.020 
PREPBTCH PBS 4 9 1 3 

DLS 3 4 _ 

KALMAN ours 17 38 1 10 4 0.450 
PBS 23 115 1 17 _ 

HUNT ours 6 14 1 5 2 0.080 
PBS 6 25 1 6 

TX825 1 ours 16 51 1 12 1 0.330 
PBS 22 112 2 18 
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Most operations in these benchmarks are logic, deci- 
sion making, I/O and data transfer operations. There 
are very few data dependencies between the opera- 
tions in these benchmarks. 

Without any resource constraint, Table 2 tabulates 
the synthesized results. Note that we also do not 
enforce the constraint on the maximum number of 
chained operations. Hence, the CDFG is partitioned 
into states due to control dependency (e.g. the input 
variable of the finite state machine must be ready at 
the beginning of a state) or program structure (e.g. 
loop, procedure call, and so on). For each bench- 
mark, Table 2 shows the results produced by our 
approach and the published results. We compare our 
synthesized results with the path-based scheduling 
(PBS), the scheduler used in AMICAL system (DLS), 
and the scheduler used in CALLAS system (CAL- 
LAS). The first five columns present the synthesized 
results, including the total number of states (States), 
the number of transitions (Truns), the number of 
states in the shortest path (Short), the number of 
states in the longest path (Long), and the maximum 
number of chained data-path operations after the 
scheduling is finished (cn). The last column shows 
the time the synthesis tool takes to complete the 
scheduling on each benchmark. 

The synthesized results show that our approach 
requires fewest states in the finite state machine and 
optimizes each path with fewest control states. With 
further analysis, we find that our scheduler achieves 
better results because it uses both operation reorder- 
ing and the approach to schedule an operation into 
multiple states. It is important to note that some of 
the results given in PBS are for the descriptions 
written in V not VHDL. This might imply some 
discrepancies. 

5. Conclusions 

In this paper we described a new scheduling 
algorithm for automatic synthesis of the control 

blocks of control-dominated circuits. The main dis- 
tinction of the proposed algorithm is that it partitions 
a CDFG into an equivalent state transition graph. It 
works on the CDFG to exploit operation relocation, 
chaining, and loop transformation to schedule each 
execution path as fast as possible. Benchmark data 
shows that this approach achieved better results over 
previous ones in terms of the speedup of the circuit 
and the number of states and transitions. Some of the 
results are proved to be optimum. 
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