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Abstract

The paper presents a generalization of the theorem which states
that any (everywhere defined) function from a finite field GF(p")
into itself may be represented at a polynomial over GF(pn). The
generalization is to partial functions over GF(pn) and exhibits
representations of a partial function f by the sum of a polynomial
and a sum of ferms of the form a/(x-b)i, where b is one of the
points at which f is undefined. Three such representation the-
orems are given. The second is the analog of the Mittag-Leffler
Theorem of the theory of functions of a single complex variable.
The main result of the paper is that the sum of the degree of

the polynomial part of the representation and the degrees of the
principal parts of the representation need be no more than
max{|Al, |Bl) where A is the set upon which the function is

defined and B is the set upon which the function is undefined.

Key Words: Partial function, representation, finite field,
principal part.

CR Categories: 6.1, 8.9
MR Categories: 12099, 02C05



7 Theoretical Computer Science is, in part, concerned with finite
spaces of words, that is, with n-tuples each element of which is from
a space E(p) = {0, 1, ..., p-1}. Traditional]y p = 2 and E(p) = 10, 1},
but recent advances in jntegrated circuit technology méke it practical
to consider p = 3, p = 4, and even higher values [1, 2, 3]." Herein we
shall be concerned with n position p-ary words, that is with the space
En(p) for some prime p and some natural number n. Since there is a
natural isomorphism between £"(p) and E(pn), we may consider our words
to be elements of the latter.

Over such a space E(pn) we are concerned with partial functions,
that is, with a subset, say f, of the Cartesian product £(p") x E(pn)
such that if (a, b) ¢ f and (a, ¢) ¢ f, thenb = c. If for each a in
E(pn) there exists an element b in E(p™) Such.that (a, b) ¢ f, then f
is called a function or a_total function in the usual way. Intuitively,
a partial function is a mapping which is somewhere defined and some-
where undefined. The usual method used for representation of a partial
function is to replace the partial function by some polynomial which

coincides with the partial function on 1its domain of definition. In

many cases this is not a very satisfactory approdach. It 1s preferable

to have a representation which is defined where the partial function is

defined and undefined where the partial function is undefined.



In this paper we develop a sequence of representations for

partial functions of the form f = P + Q, where P is a polynomial

over GF(pn) and Q is a sum of terms of the form a/{x-b)".

1. Preliminaries

Definition 1: If p is a prime and n is a natural number Tet k = pn

and K = k-1,
Definition 2: If A <E{k), then |A| denotes the cardinality of the

set A.

K .
Definition 3: IfP(x) =& aix1, a polynomial over GF(k), then

i=0 '
[Pl = max {i: a; # 0}, that is |P| is the degree of the polynomial
P. The degree of a nonzero constant is zero. As is usual, the
degree of the constant zero is defined: [0 = -1.
Definition 4: If (Cl’ Cos vnes Cr) is a sequence of r elements of
E(k) then (c], Cos vens Cr) = 0 if and only if for all i, (1 <1 < r),
c; = 0.
Definition 5: If b ¢ E(p") and (Cl’ Cos wens cK) # 0 is a sequence
of elements of E(k), then hy, called a principal part of b, is defined

K i
by: hb(x) = I ci/(x—b) .
i=0

Definition 6: If b ¢ E(k) and h, is a principal part of b, then
Ihbt = max{i: ¢; # 0}, the degree of the principal part hb'



It is always clear from the context which of the uses of the
vertical bars is intended.
Throughout this paper we use the following lemma which is

proved in [4].

Lemma 1: If f is a partial function defined on A <E(k), then there
exists a polynomial P of degree [P| < [|A]l - 1, such that if X e A,
then f(x)} = P(x). '

The proof of the lemma is a straightforward construction using
Newton's Divided Difference Method. We say in this case that P

represents T on A.

There are two representation theorems which may be proven very

simply.

Theorem 1: If f is a partial function defined on A and undefined on

E-A=B=1{b, bps ~ees br} then there is a polynomial P-of degree

. . ,
P(x) + oz {x - bi) .

[P] = IA] - 1, such that f{x)
i=1

proof: let g{x) = (x - bi)']. Now g{x) is defined on A and unde-

I3 e B 1

i=1
fined on B. Hence f - g is defined on A and undefined on B,vand by
Lemma 1 there is a polynomial P of degree [P| < IA| - 1, which re-

presents £ - g on A. For each x in E(k), f(x) = P(x) + g{(x), while

for each x in B, P + g is undefined.

LY



The second theorem is the finite field counterpart of a classical
theorem from the theory of functions of a single comp1ek variable,

where it is called the Mittag-Leffler Theorem [5].

Theorem 2: If f is a partial function defined on A < E(k) and unde-
fined on E - A = B = {b], b2, cens br}’ and if {hbi: 1<i<r}isa

set of principal parts of the elements bi’ then there is a polynomial

P of degree [P} < |A| - 1, such that for all x e E(k)

f(x) = P(x) + ; hy (x).
i=1 i

—

proof: Let g(x) =
i

™=
—

hb.(x). Exactly as in Theorem 1, represent f - ¢
i

on A by a polynomial P of degree [P| < [A] - 1. Now for all x, f(x) =
P(x) + g(x), for if x is in B, g{x) is undefined, while if x is in A,
P(x) = f(x) - g(x).

Note that in the case of Theorem 1, the degree |P| + |g| < |A|
-1+ Bl =k-1. For Theorem 2, for each bi the degree

[ = 1. Hence Igl = r = |B| and [P| < |A] - 1.

Thus there is no precise way to predict the degree |P] + |g] of the
representation. One somehow feels that making the degree of g high
ought to enable one to choose P with a low degree. The next section
gives a precise formulation to this intuitive feeling about the degree

of the representation.



2. The Main Theorem.

In proving the main theorem of this paper we use the following

lemma.

Lemma 2: Ifr < k and A is an r by r matrix over GF(k), det{(A) # 0,
= _ T e T

and x = (x1, vers xr) and b = (b], cees br) , then the system

AX

b has a solution x = ¢ = (c], cevs cr)T, such that c; # 0,
(1 <1is<r). This is called a strictly nonzero solution of the

system.
proof: Ifx=4d = (d1, . dr)T is a solution to the homogeneous

system AX = 0, and X = € = (e1, cees er) is a solution to the in-
homogeneaus system AX = b, then for each o ¢ E{k), od + e is a
solution of Ax = b. Partition these k solutions into r+l < k classes,
Sgs» Sy» -+-» S, as follows: a solution ad + e is in class S, if

ad; + e; = 0 and for all j < i, adj = ey # 0; if ad + & contains

no nonzero component it is placed in class SO. If there is a solution
is class SO that solution is strictly nonzero and the lemma is proved,

so suppose that S, is empty. Then the k (>r) solutions are partitiohed
0

into the r class Si, caes Sr; and by the pigeon hole principle
some class S, contain two solutions, say ad + e and 8d + e, and each

of these has its ith component equal to zero: adi te; = Bdi te, = 0.

But since e; and di cancel, we have a = B8, which is a contradiction.



Hence S0 is nof empty and there exists at least one strictly non-

zero solution to Ax = b.

Theorem 3: If f is a partial function defined on A cE(k) and un-
defined on € - A =B = {b], cees br} and if o is a non-negative
integer and Cys --+» Cp are natural numbers such that

r
£ c¢i = max (1Al, |B), then there exist a polynomial P and

i=0
h, and |P] < <y and for

1 P4

[T B |

principal parts hb such that f = P +
i i

all i, (1 < i <r), lhbil < c5.
proof: There are six cases.

Case 1: A = ¢
Let P = 0 and let hy (x) = 1/(x-bi) for each b; in B = E(k).
j

k k
Then f(x) = P(x) + £ h ~(x} =% h (x), which is everywhere undefined.
i=1 i i=1 i
For all i, ’hb.l =1< Cys since the ¢y are natural numbers, and
'I .
IP| = -1 < Cqe since o is non-negative.

Case 2: B = ¢.

Since f is everywhere defined, T is represented by a polynomial of
degree at most K, by Lemma 1.

Case 3: |A|l = {Bf. Let A = {a], cees ar}.

This can occur, of course, only if p = 2. Consider the system of

equations Dx = (f(a]), f(a2)= cos f(ar))T (*)



Where X = (x1, Xos «evs xr) and D = (dij ;

): d-j = 't/(a'l - bj).

The matrix D is an example of an alternant [6, pp. 321-363], and

r .
det(D) = i .H. (ai = aj) -H. (b,i - bj)/ . ]-1.‘_ (a.i = bj).
<] <] 1,3=1

Since A and B are disjoint sets, each of the factors (ai - bj) is

nonzero, hence det(D) exists. Since i < j implies that a, - a;

1

# 0 and by - bj # 0, det(D) # 0, and the system {*) has a solution.

By Lemma 3 the system has a strictly nonzero solution, say X

(dys -
1 1

For each aj e A we have

igl hbi (x) = 151 dif(aj - bi) = f(aj), and for each bj ¢ B, hbj
is undefined. Finally |P| = -1 < o and for each i, ]hbi] =1=<¢
Case 4: JA| < ]Bl.‘ Let A = { s -ees as}.

Consider the s equations:

s r _

151 x;/(ay - by) = f(a;) - i=§+] /{ay - by (Tsg<s). (™)

d =

This system of s equations in s unknowns has a strictly nonzero

solution by the same argument as in Case 3, say (X], cees X))

S
(d], cees ds)' Let P =0

ce dr)‘ Let P = 0 and for each i let hy (x) = di/(x - bi)'

1



9

and let hb (x) =
i

{:di/(x - bi)’ if1l1zicxs;

1/(x - bi)’ ifs41 < i< r.

h
1 bi i

i

I g~

Again f(x) = (x), |P] = -1 cgs and Thy | =1<c,, for
, i

1 <is<r.
Case 5: |B| < ]Al, o = 0. let A = {a], ..y as}.

Let the matrix D be defined as follows: for each i, (1 1 < r),

D contains the C; columns,

(1/(ag = b;)s 1/(2y - b}y ..oy 1/(ag - b)),

2 pd 2\ T
(1/(&1 - bi) E) ]/(az - bi) 3 w3 ]/(aS - bi) [}
C. C. C.
(1/(ag = by) 5 1/(a, = b)) T, L, 1/(ag - bs) DT
r
Since =z c; = max([A|l , |IBf) = s, this is an s by s matrix.
i=1

Let x = (x], cees xs) and consider the system

D% = (f(a;), f(ay)s .., fla))'. (%)
1 2 S
The matrix D is again an alternant, and by [6, p. 3601,
S,r c
det(D) =+ I (ai -a,) @ (bi - b.}/ T (a_i - b.) "j.
i<j I I 4,5 !

This determinant D exists and is nonzero and the rest of the argument

is in Case 3.
Case 6: |B| < |A}, g > 0. lLet A = Ays -ees A -
Let the matrix D be formed in the following way:

there are <o columns,
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(1, 1, ..., DY,
T

(a], a2: v v vy aS) H]

2 2 25T
(al, 855 ues as)

c c c

0o ‘o 0\T.
(a1 s 8By s .ees Ag )

followed, for each Ci» (1 <isvr), by ¢; columns,
T
(1/(51 - b'i)’ 1/(32 - b.i)a LR ]/(aS - b.i)) 3

(1/(aq - b)%, 1/(a, - b2, ..., 1/(ag - b)D)T

€5 “ CiyT
(]/(a] - bi) L) ]/(az - bi) 3 sees 1/(35 = bi) ) .
This matrix D is again an alternant, and by [6, pp. 322, 360].
(d) (a5 -a) 1 (bs-b.)/ T (a; - bo)
det{d) = 1 (a, -a.) nm (b, -b.)/ 1 a. - b.).
iy ' gt 3 =

Thus det(D) exists and is nonzero and so the system of equations

D% = (f(ay)s flay)s ..., fla.)) (#xix)
has a strictly nonzero solution, say, (x], ceus xs) = (d], cens ds).
CO-.I

Let P(x) = dl tdx ..+ d X , and
o _
_ 2 1
hbl(X) = dc0+1/(x -by) # dC0+2/(x -b) L dc0+c1/(x - by)

c
/x-b )+ ...+d o tc /(x - br) r
r

h, (x) =d
b.. Cotro T gt r g



i1

Since the di are the components of the solution of (****), for each

ajeA,

r
Pla,) + =
(a5) +

Z hbi(aj) = f(aj), and for each bj e B, hb.(bj) is

J

undefined. |P] = Co - 1 < <y and #hb.l =c This concludes the

i 1

proof of the theorem.

Note that in Cases 5 and 6 it is not necessary that X only
honzero components, but only that sufficiently many components be
nonzero that each hbi exist. In other words, it is sufficient that
for each i, (1 =i < r) there exist a gi such that dji # 0, where
i-1 i
tEU ° < i F tEO ‘

For some fixed set of constants Ci» (0 <1 <vr), one could define

that representation to be optimal which had the fewest nonzerc terms

inP + 32 hb » but there does not appear to be an easy way to construct
3 :

such an optimal representation.
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