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ABSTRACT

In deterministic sequencing and scheduling problems, jobs are to be processed
on machines of limited capacity. We consider an extension of this class of
problems, in which the jobs require the use of additional scarce resources
during their{execution. A classification scheme for resource constraints is
proposed and the computational complexity of the extended problem class is
investigated-in terms of this classification. Models involving parallel ma-
chines, unit-time jobs and the maximum completion time criterion are studied

in detail; other models are briefly discussed.
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1. INTRODUCTION

In the traditional class of deterministic sequencing and scheduling problems

[Conway et al. 1967; Graham et al. 19791, jobs Jl,...,Jn consisting of one or
more operations are to be processed on machines Ml""'Mm‘ Each machine can
handle at most one job at a time and each job can be executed by at most one
machine at a time. Thus, at any time, the execution of a job is restricted
by the presence of a single scarce resource. We shall consider an extension
of this class by allowing for the presence of more than one scarce resource.
Each operation of a job requires the use of a given fraction of each of the
resources, and the problem is to find an optimal schedule subject to these
additional resource constraints. Such models occur. for example in the con-
text of computer operating systems and project scheduling.

Various assumptions can be made about the number of resources, about
the amounts in which they are available, and about the amounts_which are re-
quired by the operations. Section 2 introduces a simple classification
scheme for resource constraints that captures many variations of the model.
It expands the classification scheme for scheduling problems given in
[Graham efval. 1979], the relevant part of which is included as én Appendix.

In general, the addition of resource constraints to a scheduling problem
may affect its computational complexity. In particular, certain well-solved
problems, for which polynomial—time algorithms exist, may be transformed into
NP-hard ones, for which the existence of such algorithms is very unlikely
[Karp 1975; Garey & Johnson 1979]. The obvious research program would be to
determine the borderline between easy and hard resource constrained schedul-
ing problems, much in the same vein as has been done for the traditional
class, and possibly through the use of an extension of the computer aided
complexity classification developed for that purpose [Lageweg et al. 19801].
Rather than attempting such a complete and probably somewhat ted%ous analy-
sis, we will concentrate on single operation models with unit processing
times and the maximum completion time criterion. Section 3 presents our
results for these models. Section 4 deals briefiy with some other models,
viz. extensions to other optimality criteria, preemptive scheduling, and

multi-operation models. Section 5 contains some concluding remarks.




2. CLASSIFICATION OF RESOURCE CONSTRAINTS

The classification scheme for resource constrained scheduling problems in-

troduced in [Graham et al. 1979] will be used in this paper as well. Briefly,
a problem type corresponds to a three-field notation alBly, where o speci-
fies the machine environment, B indicates certain job characteristics, and
Y denoﬁes the optimality criterion. Readers not familiar with this notation
are referred to the Appendix, where all the relevant definitions can be
fouﬁd. ‘

We shall expand this classification scheme by allowing the jobs to re-
quire the use of additional scarce resources. Suppose that there are § re-

sources Rl”"'R . For each resource»Rh, there is a positive integer size

2

sy which is the total amount of thavailable at any given time. In single-
operation models, there is for each resource Rh and. job Jj a nonnegative

integer requirement r. . which is the amount of Rh tequired by Jj at all

hj
times during its execution. A schedule is feasible with respect to the re-

source constraints if at any time t the index set S, of jobs being executed

t

at t satisfies z. s, (h=11,...,2). In multi-operation models,

<
. jese "hi ~ °n
there is for each resource Rh and operation Oij a nonnegative integer re-
quirement rhij' with a similar condition for the feasibility of a schedule.
The presence of scarce resources will be indicated in the second field

of our classification scheme by "
resiop

where A, ¢ and p are characterized ‘as follows.

- If A is a positive integer, thén the number of resources % is constant
and equal to A; if A = -, then!% is part of the input.
If 0 is a positive integexr, then all resource sizes s, are constant and

equal to o; if 0 = ¢, then all's,_ are part of the input.

If p is a positive integer, thenhall resource requirements rhj (rhij)
have a constant upper bound equal to p; if p = ¢, then no such bounds
are specified.

Many types of resource constraints<§re not represented by this classification,

but in a sense more than enough detail is included already. In fact, we shall




assume that A, ¢ and p are either equal to 1l or to *; this restriction still
generates most of the relevant and previously studied problem types.
Remembering that o = 1 excludes p = *, we obtain six types of resource
constraints, some of which are obvious generalizations of others. Figure 1
illustrates these six types and the simple transformations between them; an

arc from type (a) to type (b) indicates that (a) is a special case of (b).

}l_(%--.

neslll

Figure 1. Reductions between six types of resource constraints.

We can draw an additional arc from res---: to resle+ under the restric-

tion that the machines and resources are all saturated in each feasible

i.e. = = =1,... time t until
schedule, i.e., IStl m anq Xjest T3 S (h = 1, ,2) at any tim
a given deadline. In this case the % requirements rlj""’er can be encoded

into a single mixed radix number rij [Garey & Johnson 1975].

3. SINGLE-OPERATION MODELS WITH UNIT PROCESSING TIMES AND THE Cmax CRITERION

We will now investigate the computational complexity of models involving
parallel identical or uniform machines, unit-time jobs, (possibly empty)
precedence constraints and the maximum completion time criterion. Theorems
1 to 7 determine the complexity of all such problems; the complete picture
is given in Figure 2.

Our starting point is the observation that a polynomial algorithm exists

for the case of two identical machines, even under the most general type of

resource constraints.




AN CRENY SESY A A

fmim‘maﬂy NP-hard

(see Theorems 2, 3, 4, 7)

J

maximally solvable in polynomial time

(see Theorems 1, 5, 6)

<::> solvable in polynomial time (:::)

Figure 2. Covplexity of ulrcslup,ﬁ},pjfllcmax prob;éms.




THEOREM | [Garey & Johnson 1975]. P2[res"~,p =1 nax is solvable in

O(2n2+n22) time.

Proof. Given any instance of P2|res'~°, p.=1 Cmax’ construct a graph G with
vertices 1,...,n and edges {j,k} whenever rhj+rhk < sy (h = 1,...,2). Thus,
the vertices correspond to the jobs and the edges to pairs of jobs that can
be executed simultaneously. Next, obtain a matching S (i.e., a set of vertex-
disjoint edges) in G of maximum cardinality. Obviously, the minimum value of
Cmax is equal to n-|S|. Construction of G requires O(an) time, and the al-
gorithm from [Even & Kariv 1975] finds S in O(n %) time. This proves the

polynomial time bound. [

The correspondence between resource feasible sets of jobs and certain subsets
of vertices in a graph can be turned around to obtain»NP—hardness results

for problems with three identical or two uniform machines. Given any graph

G with vertex set V and edge set E, jobs and resource constraints of type
res+11 can be defined in the following Way:

- for each vertex j € V, introduce a:job Jj;

- for each vertex pair {i,k} ¢ E, introduce a resource R{j,k} of size

s{j,k}'=,1 with requirements r =0

. . = . =1 . .
{]rk}r:] r{:]lk}lk ! r{]rk}ll
otherwise.

Thus, two jobs can be executed simultaneously if and only if the correspond-

ing vertices are adjacent.

THEOREM 2. P3 res-ll,pj=1lcmax is NP-hard in the strong sense.

Proof. We present a straightforward transformation from the following NP-
complete problem [Garey & Johnson 19791]:
PARTITION INTO TRIANGLES: Given a graph G = (V,E) with |v] = 3t, can V
be partitioned into t disjoint subsets, each containing three pairwise
adjacent-vertices?
Given any instance of this problem, we construct an instance of P3lres~11,
p5=1lcmax in the way indicated above. Clearly, PARTITION INTO TRIANGLES has
a solution if and only if there exists a feasible schedule with value

< -
Cmax <t O




THEOREM 3. Q2|res-11,pj=1|Cmax is NP-hard in the Strong‘sense.,

Proof. In this case, we start from the following NP-complete problem [Garey
& Johnson 1979]: . v
PARTITION INTO PATHS OF LENGTH 2: Givenva graph G = (V,E) with |V] = 3¢,
can V be partitioned into t disjoint subsets, each containing three
vertices, at most two of which are nenadjacent?
Given any instance of this problem, we construct an instance of Q2|res?il,
3—1 nax in the way indicated above, with machine‘speeds aQ = 2, q, = 1.

- It is easily seen that PARTITION INTO PATHS OF LENGTH 2 has a solutlon if

and only if there exists a feasible schedule with 'value Cmax <t. 0

Theorems 1, 2 and 3 indicate that, ‘when there are no precedence constraints,
we can restrict our attention to the case of a single resource. First, we

recall a classical NP-hardness result.

THEOREM 4 [Garey & Johnson 1975]. P3|resl--,p —1|C Ak is NP-hard in the

strong sense.

Proof. When the machines and resources are all saturated, P?Iresl~',p =1jc max

is equlvalent to the follow1ng problem
3-PARTITION. Given a set S = {1,...,3t} and positive integers

al,...,a +b with Z ' j =.tby, can S be partltloned into t dlSJOlnt

3t

3-element subsets S such that Z ay = b ({1=1,...,t)?
54 ' 4 :
This celebrated problem was the flrst number problem proved to be NP-complete

in the strong sense. [J

It turns out that polynomlal algorithms exist for all special cases of

eres'--,p -llcmax whose complexity ‘status has not been settled so far. The

solution methods are presented in Theorems 5 and 6.

THEOREM 5. Q2|resl°~,pj=1]Cmax is solvable in O(n log n) time.

Proof. Given any instance of Q2|re51'-,p _1lcma2’ an optimal schedule'can be

obtained in the following way. Suppose that qQ = q,- First, schedule all




jobs on M1 in order of nonincreasing resource requirement. Next, successive-
ly remove the last job from M1 and schedule it as early as possible on Mz,

as long as this reduces the value of Cmax'

This O(n log n) algorithm clearly generates the best schedule among
those satisfying the following properties:

(a) the jobs Jj on M, are executed in order of nonincreasing r, . without

1 13

machine idle time;

(b) the jobs J
' >
(c) r1j 2 Ty, for all Jj on M1 and all Jk on M2.

The correctness of the algorithm will now be proved by showing that any

x °on M2 are executed in order of nondecreasing ki

feasible schedule can be transformed into a schedule that is at least as
good and satisfies properties (a), (b) and (c)._

To avoid the introduction of some cumbersome notation, the transforma-
tion is presented in an informal way. Starting from a feasible initial sched-
ule, one proceeds as follows (cf. Figure 3).
while M, is idle to M,.

2 1 1
Interchange parts of the schedule simultaneously on both machines such that

Step 1. Move the jobs that are executed on M

the jobs or fractions of jobs that are executed on M

1

while M2 is idle are

in the first positions on Ml‘

Step 2. Interchange parts of the schedule simultaneously on both ma-
chines such that all jobs Jk on M2 are in order of nondecreasing rlk'.

Step 3. Rearrange the (fractional) jobs Jj that are executed on M1

while M2 is busy in such a way that they are in order of nonincreasing r1j
and the preemptions created by Step 2 are eliminated. (This does not lead to

resource infeasibility.)

Step 4. Insert the (fractioﬂal) jobs that are executed on M1 while M2

is idle in positions on M1 chosen in such a way that all jobs Jj on M1 are

in order of nonincreasing r1j and’the preemptions created by Step 1 are

eliminated; it may be necessary to introduce periods of idle time on M2.
Left-justify the resulting schedule.

Step 5. Let Jj be the last job on M, and J, the last job on M,. If
rlj 2 Ty’ the transformation terminates. Otherwise, schedule Jj in the
position of Jk on M2, schedule Jk
the schedule, and return to Step 1.

as early as possible on Ml' left-justify

None of these steps increases:the value of Cmax’ After each application




of Steps 1 to 4, properties (a) and (b) are satisfied, and after a finite
number of applications of Step 5, property (c) holds as well. This validates
the algorithm given above. [J

Instance of Q2|neA1--,pj=1|CmaX:

n= 65 qp = 1/2, qp = 1/3; 87 = 6, 1y = j (5 = 1,...,6).
Notation: Initial schedule

/l_lj']
%

nlhI k Jk on M, during l/q2 3 time units

Jj on M1 during l/q1 = 2 time units 2 b 3
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Iteration 1
Step 1
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Iteration 2
Optimal schedule
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Figure 3. Illustration of transformation of a Q2|resl°-,pj=1lcmax schedule.

THEOREM 6. eresl-l,pj=llcmax'is solvable in O(n3) time.

Proof. Given any instance of eresl-l,pj=1lcmax, construct a transportation
network with n sources j (j = 1,...,n) and mn sinks (i,k) (i = 1,...,m; k =

1,...,n). Each arc (j,(i,k)) has a cost c; to be defined below. The arc

3k’




- flow xijk is to have the following interpretation:

{ 1 if Jj is executed on Mi in the k-th position,

X,., = : . :
i3k 0 otherwise.

The number of resource requiring jobs executed simultaneously must never be
allowed to exceed the resource size. This can beveffectuated by requiring

that these jobs are assigned only to thekfasfest's 'machines, Thus, assume

1

that q > q; for all h = 1,...,s, and all i = s1+1,...,m, and define

® if i 2 sl+1 and r1j =1,

c
ijk {
} k/q;

otherwise.

Then the problem is to minimize

max

i,j,k{cijkxijk}

subject to

m n .
Lisg Doy %y =1 G = Leeoim)y

n . o '
zj=1 xijk b= 1v (L~ 1,-..,m; k ‘vl,...,n),

Xijk 20 ) (i.é 1,...,m; j ‘ 1,.f.,n; k = 1,...,n).

This bottleneck transportation préblem can be formulated andbsolved in O(n3)
time. [ »

Note. Similar transportation network models provide efficient solution meth-
ods for Q]resl-l,pj=1 Y, where y ¢ {maxj{fj(cj)},zj fj(cj)} for arbitrary
nondecreasing cost functions fj (33=1,...,n).

When the presence of precedence constraints between the jobs is allowed,
NP-hardness in the strong sense has been established for P2|resl'-,tree,
»pj=1|cmax [Garey & Johnson 1975] and P2 reslll,prec,pj=llcmax‘[Ullman 19761].

These results are both dominated by Theorem 7.

THEOREM 7. P2 reslll,chain,pj;lléaéx is NP-hard in the strong sense.




Proof. We prove this result by means of a transformation from 3-PARTITION
(see Theorem 4), where we assume without loss of generality that b < aj < ib
for all j € S. Given any instance of this problem, we construct an instance
of P2|reslll,chain,pj=1 Cmax in the following way:

- there is a single chain L of 2tb jobs:

L = Ji +Jé +...+J5 +J1 +J2 b -+

1 [} 1 .
I RSN MEREIED g T9p42 2b

s e

.-+J' -> >J

[} ]
T -1 T (-1 b2 7 (e-)b+1 T T (e-1)pr2 T o
for each j € S, there are two chains Kj and Ka, each of aj jobs:

tb’

Kj=Jj1+Jj2+... +Jjaj,

| J— ' 1 1 .
Ky = 05) >33, > oee > oy
moreover, it is required that Kj precedes Ké, i.e., Jjaj > le;

- the primed jobs do require the resource, the unprimed jobs do not.

We claim that 3-PARTITION has a solution if and only if there exists a feasi-

ble schedule with value Cmax < 2tb.
Suppose that 3-PARTITION has a solution {Sl""'st}"A feasible schedule
with value Cmax = 2tb is then obtained as follows (cf. Figure 4). First, the

chain L is scheduled on machine M1 in the interval [0,2tb]; note that this

leaves the resource available only in the intervals [2(i-1)b,(2i-1)b] (i =
1,...,t). For each i ¢ {1,...,t}, it is now possible to schedule the three

chains Kj (7 € Si) on machine M. in the interval [2(i-1)b, (2i-1)b] and the

2

chains K'! (j € Si) on M_ in [(2i-1)b,2ib]. The resulting schedule is feasible

2
with respect to resource and precedence constraints and has total length 2tb.

Part - of feasible instance for 3-PARTITION:
b = 15, a; = 4, Ay = 5, az = 6; SL = {1,2,3}.

Part of feasible schedule for P2|nes111,chain,p =1|Cp,,:

1  fetetetetetetetotetotetoteterololOrOrOrOTrOrOTrOFOTrOrOTO [
2T [ R (m [ eete 4

2(i-1)b (2i-1)b 2.b

®: J;, 01 Jp ((4-1)b+1 < k < ib); O©: th, LE J}k (f ¢ S l<kcs aj).

Figure 4. Illustration of transformation from 3-PARTITION to

P 1 = .
ereslll,chaln,pj llCmax




Conversely, suppose that there exists a feasible schedule with value

Cmax < 2tb. It is clear that in this schedule both machines and the resource

are saturated until time 2tb. Moreover, the chains Kj'(j € S) are executed
in the intervals [2(i-1)b, (2i-1)b] (i = 1,...,t) and the chains K% (j € 8)
in the remaining intervals. Let Si be the index set of chains K, completed

in the interval [2(i-1)b, (2i-1)b], for i = 1;...,t. Consider the set S,. It

1

> b, due to the definition of S the case

3 1

zjeS aj < b cannot occur either, since this would lead to machine idle
1

time in [b,2b]. It follows that Eies a

is impossible that Zj681 a

3 = b, and our assumption about the
size of aj (j € S) implies that ISll = 3. This argument is easily extended
to an inductive proof that {Sl""’st} constitutes a solution to 3-PARTI-

TION. []

4. OTHER MODELS

We will next comment on the computational complexity of three variations of

the models considered in the previbus section, viz.
(1) extensions to other optimality criteria,
(2) preemptive scheduling, and -

(3) multi-operation models.

4.1. Oother optimality criteria

If the Cmax criterion is replaced by other optimality criteria such as the.
total completion time ch or the maximum lateness Loax’ most results can be

extended in a straightforward way. -

In fact, all the NP—hardnessfxesults of Theorems 2, 3, 4 and 7 carry

over immediately to both ch and Lﬁa . For ch, we use the fact that the

X
machines are saturated in each of the transformations; e.g., in Theorems 2

and 4 we have C < t if and only if ZC.,S §t(t+1). For L , we define due
max - J 2 max -

dates d., = 0 for all jobs, so that L = C .
3 max max

"It has been noted already that the tranéportation network model of
Theorem 6 provides polynomial algépithms for Q!resl-l,pj=1er where y = ch

or y =L . The matching approach of Theorem 1 is easily adapted to solve
max .
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p2 res---,pj=1|ZCj as well: simply schedule the paired jobs before the re-
maining ones. It seems a safe conjecture that the algorithm of Theorem 5 can
be modified to solve Q2[resl--,p.=1|ZCj; we leave this as a challenge to the
reader. However, P2|res---,pj=1[Lmax and Qeresl°',pj=1 Lmax remain open

problems. We mention that P[resl-l,rj,p.=1iL , where the rj denote integer

. J max
release dates at which the jobs become available, is solvable in polynomial

time [Blazewicz 1979].

4.2. Preemptive scheduling

If the processing times are arbitrary and preemption is allowed, the nature
of the models changes considerably. It‘now becomes of interest to consider
the general case of parallel unrelated machines. |

The problem R|pmtn,res~-- Cmax can be formulated as a linear program'
in the following way (cf. [Weglarz et al. 1977; Slowinski 1980]) . First,
introduce a dummy job Jo with o =.0 for h=1,...,%, representing machine
idle time. Define S as the set of all resource feasible m-tuples k =
(kl,...,km) of job inaices; each k is characterized by: '
- ki e {0,1,...,n} for i = 1,...,m;
- each j € {1,...,n} occurs at most once;
- Z?=0 Thk; < Sy for h = 1,...,2. .
To each k ¢ S, assoclate a variable X 1 representing the time during which

Jkl,.;.,ka~are simultaneously executed on Ml""'Mm respectively. Then the

problem is to minimize

zkeS *x

subject to

m , _ o
Zi:l(zkES'ki:j xk>/Pij =1 (] i,... ) v
x 20 (k € S).

This linear programming problem has O(nm) variables. For a fixed number of
machines, its size is bounded by a polynomial in the size of the scheduling
problem. The existence of a polynomial algorithm for linear programming

[Khachian 1979] therefore implies that lepmtn,res---[cmax is solvable in




polynomial time.
For a variable number of machines, lemtn,reslll Cma can be solved as
follows. Replace the resource requiring jobs by a single job with execution

requirement zr -1 pj; this eliminates the resource constraints. Next, apply

the O(m log m +Jn) algorithm for Q|pmtn|Cmax from [Gonzalez & Sahni 1978] to

solve the resulting problem.

4.3. Multi-operation models

Multi-operation models, in which each operation has its own specific re-
source requirements, give rise to various interesting results and to many
open problems. By way of example, we consider opeh shops, flow shops and job
shops with two machines, nonpreemptable operations and the Cmax criterion.

In the case of an open shop, 02|res-°~,pij=1 Cmax is solvable by a
matching approach similar®to the one used in Theorem 1. If the processing
times are arbitrary, even 02|reslll|Cmax remains unresolved.

i
max
solvable in linear time by appropriately grouping jobs together according

Flow shop problems seem to be more difficult. F2|re5111,pij=1lc

to their overall resource requirements. Little can be said about the immedi-
ate extensions of this model with unit processing times, but F2|re5111|Cmax
is NP-hard in the strong sense by virtue of a simple transformation from '

3—PARTITION. | ‘

The simplest job shop model in this context, J2 reslll,P ij =1] max is

already NP-hard in the strong sense; the transformation from 3-PARTITION is

nontrivial.

5. CONCLUDING REMARKS

We have proposed a classification scheme for resource constrained scheduling
problems and outlined a range of initial results on their computational com-
plexity. Presumably, many of the remaining open problems can be resolved
along similar lines. We hope to have stimulated others to continue the in-

vestigation of this interesting research area.




APPENDIX. CLASSIFICATION OF SCHEDULING PROBLEMS

Suppose that n ]ObS Jl”"'J have to be processed on m machines Ml""’M -
Each machine can handle at most one job at a time and each job can be exe-
cuted by at most one machine at a time. Various job, machine and scheduling
characteristics are reflected by a three-field problem classification alBIy

tGraham et al. 1979]. Let © denote the empty symbol.

Machine environment

The first field a = a0, specifies the machine environment.

If a, € {pP,Q,R}, each Jj consists of a single operation that can be

processed on any Mi; the processing time‘of Jj on'Mi is pij (i=1,...,m;
j=1,...,n). The three values are characterized as follows.

- oy =.P (parallel identical machines): pij = pj for a given execution

requlrement pJ of JJ.

a
1
requirement pj of Jj and a given speed a; of'Mi.

= Q (parallel uniform machlnes) 1j = pj/qi for a given execution

o ay = R (parallel unrelated machines) : Pij is arbitrary.

If o € {o0,F,J}, each Jj consists of a set of m, operations oij7»oij has to

be processed on a. given machine uij durifig pij time units (i = 1,...,mj;
j=1,...,n). The three values are characterized as follows. ‘

- alA_ 0 (open shop): mj m, uij = Miu

a1 E'(flow shop) : mj = m, uij = Mi; Oi—l,j has to be eompleted before
Oij can start (i =2,...,m. S

# Hy and o,

i-1,3 i-1,3

has to be completed before 04 can start (i = 2,...,mj)

@, = J (job shop) : mj and uij are arbitrary; M.

If az'is a positive integer, then m is constant and equal to a2; if a2 is o,

then m is part of the input.

: Job characteristics

The second field B < {81,82,83,84} indicates a number of job characteristics,

which are defined as follows.

(1) e {pmtn,o}.

By




Bl = pmtp: Preemption (job splitting) is allowed; the processing of
any job may arbitrarily often be interrupted and resumed at the same
time on é different machine or at a later time on any machine.

Bl = o: No preemption is allowed.

82 specifies.the resource constraints; see Section 2.

By

83 = prec (arbitrary precedence constraints) : A directed acyclic graph

¢ {prec,tree,chain,o}.

H with vertices 1,...,n is given; if H contains a directed path from

j to k, we write Jj -+ J, and require that Jj is completed before Jk can

k
start.
B3 = tree (tree—iike precedence constraints): H has outdégree at most
one for each vertex or indegree at most one for each vertex.
83 = chain (chain-like precedence constraints): H has both outdegree
and indegree at most one for each vertex.

= o (no precedence constraints): H has no arcs.

: {pij=1,o}. ‘

= pij=1: Each operation has wunit processing time.

= o: The processing times are arbitrary nonnegative integers.

(1f a, € {p,Q}, then pij is replaced by pj; if @, =R, then 64 = o0,)

Optimality criteria

The third field y denotes the optimality criterion chosen. Any feasible
schedule defines for each'Jj a completion time Cj and, given an integer due
date dj, a lateness Lj = C.—dj (j = l,,..,n). Some common optimality crite-

J
ria involve the minimization of

- Cmax = max{Cll---,Cn} (maximum éQmpletion time) ;
- ch = C1+...+Cn (total completion time);

- L - - y
nax max{Ll,...,Ln} (maximum 1gteness).
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