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ABSTRACT

In deterministic sequencing and scheduling problems, jobs are to be processed

on machines of limited capacity. We consider an extension of this class of

problems, in which the jobs require the use of additional scarce resources

during their execution. A classification scheme for resource constraints is

proposed and the computational complexity of the extended problem class is

investigated in terms of this classification. Models involving parallel ma-

chines, unit-time jobs and the maximum completion time criterion are studied

in detail; other models are briefly discussed.
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1. INTRODUCTION

In the traditional class of deterministic sequencing and scheduli
ng problems

[Conway etal. 1967; Graham et al. 1979], jobs J1 1...,Jn consisting of one or

more operations are to be processed on machines M1'
...,M Each machine can

handle at most one job at a time and each job can be executed by
 at most one

machine at a time. Thus, at any time, the execution of a job is restricted

by the presence of a single scarce resource. We shall consider an exten
sion

of this class by allowing for the presence of more than one scarce resource.

Each operation of a job requires the use of a given fraction of each of the

resources, and the problem is to find an .optimal schedule subject to these

additional resource constraints. Such models occur for example in the c
on-

text of computer operating systems and project scheduling.

Various assumptions can be made about the number of resources, ab
out

the amounts in which they are available, and about the amounts whi
ch are re-

quired by the operations'.. Section 2 introduces a simple classifica
tion

scheme for resource constraints that captures many variations of t
he model.

It expands the classification scheme for scheduling problems given in

[Graham et. a/. 1979], the relevant part of which is included as an Ap
pendix.

In general, the addition of resource constraints to a scheduling 
problem

may affect its computational complexity. In particular, .certain well
-solved

problems; for which polynomial-time algorithms exist, may be transforme
d into

NP-hard ones, for which the existence of such algorithms is very unlikely

[Karp 1975; Garey & Johnson 1979]. The obviousresearch program would be 
to

determine the borderline between easy and hard resource constrained schedu
l-

ing problems, much in the same vein as has been done for the trad
itional

class, and possibly through the use of an extension of the computer 
aided

complexity classification developed for that purpose [Lageweg et
 al. 1980].

Rather than attempting such a complete and probably somewhat 
tedious analy-

sis, we will concentrate on single operation models with unit 
processing

times and the maximum completion time criterion. Section 3 
presents our

results for these models. Section 4 deals briefly with 
some other models,

viz, extensions to other optimality criteria, preemptiv
e scheduling, and

multi-operation models. Section 5 contains some con
cluding remarks.

•••



2. CLASSIFICATION OF RESOURCE CONSTRAINTS

The classification scheme for resource constrained scheduling problems in-

troduced in [Graham et a/. 1979] will be used in this paper as well. Briefly,

a problem type corresponds to a three-field notation alffly, where a speci-

fies the machine environment, f3 indicates certain job characteristics, and

y denotes the optimality criterion. Readers not familiar with this notation

are referred to the Appendix, where all the relevant definitions can be

found.

We shall expand this classification scheme by allowing the jobs to re-

quire the use of additional scarce resources. Suppose that there are 9. re-

sources R1, .,Rt. For each resource Rh, there is a positive integer size

sh which is the total amount of Rh 'available at any given time. In single-

operation models, there is for each resource R, and job J. a nonnegative
Rh 3

integer requirement r
hi 

which is the amount of Rh required by J. at all

times during its execution. A schedule is feasible with respect to the re-

source constraints if at any time t the index set St of jobs being executed

at t satisfies X r s (h = 1,...,k). In multi-operation models,
jeSt hj h

there is for each resource Rh and operation 0.. a nonnegative integer re-

quirement r
11 

with a similar condition for the feasibility of a schedule.
13

The presence of scarce resources will be indicated in the second field

of our classification scheme by

resAap

where A, a and p are characterized as follows.

- If A is a positive integer, then the number of resources 2 is constant

and equal to A; if A • , then 2, is part of the input.

- If a is a positive integer, then all resource sizes sh are constant and

equal to a; if a = then all -sh are part of the input.

- If p is a positive integer, then all resource requirements r (r )
hj

have a constant upper bound equal to p; if p = then no such bounds

are specified.

Many types of resource constraints are not represented by this classification,

but in a sense more than enough detail is included already. In fact, we shall
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assume that A, o and p are either equal to 1 or to -; this restriction still

generates most of the relevant and previously studied prob
lem types.

Remembering that G = 1 excludes p = we obtain six types of resource

constraints, some of which are obvious generalizations 
of others. Figure 1

illustrates these six types and the simple transformatio
ns between them; an

arc from type (a) to type (b) indicates that (a) is a sp
ecial case of (b).

ice's • • •

Aez • •

iLeA 1 • 1

it.e)s • 11

kez111

Figure 1. Reductions between six types of resource 
constraints.

We can draw an additional arc from res.-• to res1.-
 under the restric-

tion that the machines and resources are all satura
ted in each feasible

schedule, i.e., is 1 = m and r = s (h = 1,...,Z) at any time t until
jESt hj

a given deadline. In this case the R, requirements rlj 
...,r

9.j 
can be encoded

into a single mixed radix number rii [Garey & Johnson 1975].

3. SINGLE-OPERATION MODELS WITH UNIT PROCESSING TIMES AND THE
 Cmax CRITERION

We will now investigate the computational complexity of models i
nvolving

parallel identical or uniform machines, unit-time jobs, (pos
sibly empty)

precedence constraints and the maximum completion time c
riterion. Theorems

1 to 7 determine the complexity of all such problems; the 
complete picture

is given in Figure 2.

Our starting point is the observation that a polynomial 
algorithm exists

for the case of two identical machines, even under the most 
general type of

resource constraints.



NP-hard

solvable in polynomial time

minimally NP-hard

' (see Theorems 2, 3, 4, 7)

(2) •
maximally solvable in polynomial time

(see Theorems 1, 5, 6)

Flgure '. Complexity of 
resAop,ii.,pj -,1ICmax problems.
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THEOREM [Garey & Johnson 1975]. P2 Lres---,p.=1 Cmax 
is solvable in

221 
0(2,n +n -) time.

Proof. Given any instance of P2Ires---, Pj=1(Cmaxl construct a graph G with

vertices 1,...,n and edges {j ,k} whenever rhj .+rhk 
s (h = 1,...,2). Thus,
h

the vertices correspond to the jobs and the edges to pairs of jobs that can

be executed simultaneously. Next, obtain a matching S (i.e., a set of vertex-

disjoint edges) in G of maximum cardinality. Obviously, the minimum value of

C
max 

is equal to n-IS1. Construction of G requires 0(211
2
) time, and the al-

gorithm from [Even & Kariv 1975] finds S in O(n2 ) time. This proves the

polynomial time bound. 0

The correspondence between resource feasible sets of jobs and certain subsets

of vertices in a graph can be turned around to obtain NP-hardness results

for problems with three identical or two uniform machines. Given any graph

G with vertex set V and edge set E, jobs and resource constraints of type

res.11 can be defined in the following way:

- for each vertex j E V, introduce a job J.;.

- for each vertex pair fj,k1 / E, introduce a resource R{i,k} of size

•
sij,k} = 1 with requirements rli,o,i = = 1, r{j,k}, = 0

otherwise.

Thus, two jobs can be executed simultaneously if and only if the correspond-

ing vertices are adjacent.

THEOREM 2. P3Ires.11,p =11C is NP-hard in the strong sense'.
max

Proof. We present a straightforward transformation from the following NP-

complete problem [Garey & Johnson 1979]:

PARTITION INTO TRIANGLES: Given a graph G = (V,E) with IVI = 3t, can V

be partitioned into t disjoint subsets, each containing three pairwise

adjacent vertices?

Given any instance of this problem, we construct an instance of P3Ires.11,

p.=1IC in the way indicated above. Clearly, PARTITION INTO TRIANGLES has
3 max

a solution if and only if there exists a feasible schedule with value

C t.fl
max 



THEOREM 3. Q2Ires.11,pi=11Cmax is NP-hard in the strong sense.

Proof. In this case, we start from the following NP-complete problem [Garey

& Johnson 19791:

PARTITION INTO PATHS OF LENGTH 2: Given a graph G = (V ,E) with IV1 = 3t,
can V be partitioned into t disjoint subsets, each containing three
vertices, at most two of which are nonadjacent?

Given any instance of this problem, we construct an instance of Q2Ires-11,

p
j=

11
Cmax 

in the way indicated above, with machine speeds q
1 
= 2, q2 - 1.

It is easily seen that PARTITION INTO PATHS OF LENGTH 2 has a solution if

and only if there exists a feasible schedule with value Cmax t. 0

Theorems 1, 2 and 3 indicate that, when there are no precedence constraints

we can restrict our attention to the case of a single resource. First, we

recall a classical NP-hardness result.

THEOREM 4 [Garey, & Johnson 1975]. P3 Ires1.-,p

strong sense.

C is NP -hard in themax

Proof. When the machines and resources are all saturated, P3Iresl-.

is equivalent to the following problem:

3-PARTITION: Given a set S =

a1' 
... a

3t' jES 
b with X a = tbl can S b' j

3-element subsets S. such that a.
jES. 3

This celebrated problem was the first number

in the strong sense. 0

max

and positive integers

e partitioned into t disjoint

=b (i = 1,...,t)?

problem proved to be NP-complete

It turns out that polynomial algorithms exist for all special oases of

Qlresw,p =1IC
ax 

whose complexity status has not been settled so far. Thej m 
solution methods are presented in Theorems 5 and 6.

THEOREM 5 Q2Ires1--,pi=11Cmax is solvable in 0(n log n) time.

Proof. Given any instance of Q2iresti--,p =1IC , an optimal schedule can be
j max

obtained in the following way. Suppose that ql q2. First, schedule all



jobs on M in order of nonincreasing resource requirement. Next, successive-

ly remove the last job from Mi and schedule it as early as possible on M2,

as long as this reduces the value of Cmax

This 0(n log n) algorithm clearly generates the best schedule among

those satisfying the following properties:

(a) the jobs J on M
1 
are executed in order of nonincreasing r without

j 
machine idle time;

(b) the jobs Jk on M2 are executed in order of nondecreasing r

(c) r > r for all J on M and all J on M
1j lk j 1 k 2.

The correctness of the algorithm will now be proved by showing that any

feasible schedule can be transformed into a schedule that is at least as

good and satisfies properties (a), (b) and (c).

To avoid the introduction of some cumbersome notation, the transforma-

tion is presented in an informal way. Starting from a feasible initial sched-

ule, one proceeds as follows (cf.' Figure 3).

Step 1. Move the jobs that are executed on M2 while M1 is idle to Ml.

Interchange parts of the schedule simultaneously on both machines such that

the jobs or fractions of jobs that are executed on M1 while M2 is idle are

in the first positions on Ml.

Step 2. Interchange parts of the schedule simultaneously on both ma-

chines such that all jobs Jk on M2 are in order of nondecreasing 
r1k.

Step 3. Rearrange the (fractional) jobs Jj that are executed on M1

while M2 is busy in such a way that they are in order of nonincreasing rli

and the preemptions created by Step 2 are eliminated. (This does not lead to

resource infeasibility.)

Step 4. Insert the (fractional) jobs that are executed on M while M
2

is idle in positions on M
1 
chosen in such a way that all jobs J

j 
on M

1 
are

in order of nonincreasing 
r1i 

and the preemptions created by Step 1 are
,

eliminated; it may be necessary to introduce periods of idle time on M2.

Left-justify the resulting schedule.

Step 5. Let Jj be the last job on Mi and Jk the last job on M2. If

rlj 
> 
r1k' 

the transformation terminates. Otherwise, schedule J, in the

position of Jk on M2, schedule Jk as early as possible on M1, left-justify

the schedule, and return to Step i.

None of these steps increases the value of Cmax 
. After each application



of Steps 1 to 4, properties (a) and (b) are satisfied, and after a finite

number of applications of Step 5, property (c) holds as well. This validates

the algorithm given above. 0

Instance of Q2kte61--,pf=11Cmax:

n= 6; ql = 1/2, q2 = 1/3; 6 =
'

Notation:

•=j (1= 1,...,6).
Initial schedule

J. on M during 1/q = 2 time units

k on M2 during 1/q2 = 3 time units
• • • • • • • • •

0 1 2 3 4 5 6 7 8 910

Iteration

Step 1

6 5

• • •

Step 4

6

• • • • • • . • •

5 3 2

1 ••••••••••••,

4

• • • • • • • • •

Step 2

6 5 3 5

• • • • • • •

Step 5

6

• • •

5 3 4

1
2

• • • •

•

Step 3

• • •

6 55

4

• • • • • •

Iteration 2

Optimal schedule

• • •

6 5 4 3

1
2

• • • • • 5 • • • • * • • • •
•••

Figure 3. Illustration of transformation of a Q2Iresl.., .= C
max 

schedule.

THEOREM 6. Qlres1.1,pi=11Cmax is solvable in 0(n
3
) time.

Proof. Given any instance of Qlres1-1,p.=11C , construct a transportation
3 max

network with n sources j (j = 1,...,n) and mn sinks (i,k) (i = 1,...,m; k =

1,...,n). Each arc (j,(i,k)) has a cost 
ck'
. to be defined below. The arc
ij 



flow xijk is to have the following interpretation:

x..
13

= if J. is executed on M. in the k-th position,
1

otherwise.

The number of resource requiring jobs executed simultaneously must never be

allowed to exceed the resource size. This can be effectuated by requiring

that these jobs are assigned only to the fastest s machines. Thus, assume
1

that qh qi for all h = 1,...,si and all a.= s
1 
+1,...,m, and define

f cci if s and rli
c.
1j

k/qi otherwise.

Then the problem is to minimize

subject to

max . x.
,j,k ijk ij

m vn
i=1'k=1  x. .k

7n
Lj=1 xijk 1

(j = n),

(i = , ,m; k -=

(i.= ..m; j =

This bottleneck transportation problem can be formulated and solved in 0(n3)

time. 0

Note. Similar transportation network models provide efficient solution meth-

ods for 021res1-1,p =11y, where y c {max tf (C )},y f.(C )). for arbitrary

nondecreasing cost functions f (j = 1,...,n).

When the presence of precedence constraints between the jobs is allowed,

NP-hardness in the strong sense has been established for P2Ires1••,tree,

Pj IIC 
[Garey & Johnson 1975] and P2Ires111,prec,p =11Cmax 

[Ullman 1976].
max j 

These results are both dominated by Theorem 7.

THEOREM 7. P21 res111,chain,p .=1 1c, is NP-hard in the strong sense.
3 max
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Proof. We prove this result by means of a transformation from 3-PARTITION

(see Theorem 4), where we assume without loss of generality that ib < aj

for all j E S. Given any instance of this problem, we construct an instance

of P2Ires111,chain,p
j 
=1IC in the following way:

max

- there is a single chain L of 2tb jobs:

L = J'
1 2
j I
13+1 b+2

•••

-...--J1 +j1
4 j j

2b b+1

2
-4- j

b+2
4. • • • 4 j

2b

4-J 1 4.J 1 4 4 j ' 4 . . . ;
(t-1)b+1 (t-1)b+2 tb (t-1)b+1 (t-1)b+2 t

- foreadajES,therearetwochainsK.and K!, each of a. jobs:
3

K. = J J -4- .
3 j1 j2

K' = J' JI -4-
j j 1 j2

. 4 J. 
3a3 

e,

• Jai

moreover, it is required that K. precedes K .e., i J Ji• 
3 j jai

the primed jobs do require the resource, the unprimed jobs do not.

We claim that 3-PARTITION has a solution if and only if there exists a feasi-

ble schedule with value C 2tb.
max

Suppose that 3-PARTITION has a solution {Si, ,St}. A feasible schedule

with value C = 2tb is then obtained as follows (cf. Figure 4). First, the
max

chain L is scheduled on machine M
1 
in the interval [0,2tb]; note that this

leaves the resource available only in the intervals [2(i-1)b,(2i-1)b] (i =

1,...,t). For each i E [1,. it is now possible to schedule the three

chains K. (j S) on machine M in the interval [2(i-1)b,(2i-1)b] and the
2

chains K! (j E S) on M
2 
in [(2i-1)b,2ib]. The resulting schedule is feasible

with respect to resource and precedence constraints and has total length 2tb.

Part of feasible instance for 3-PARTITION:

b = 15, al = 4, a = 5, a3 = 6; Si = {1,2,3}.

Part of feasible schedule for P2Ite4111,chain,pi.11Cmax:

1  • 

2 P-1114-11110-50-1111

2(i -1)b (2i-1)6 2-Lb

0: Jiz, 0• itz ((-1)b+1 5_ k ib); 0: 
3j la' jk 

(j c S.
k 
, 1 <k aj). 

Figure 4. Illustration of transformation from 3-PARTITION to

P2Ires111,chain,p0.=11C .
3 max

•••
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Conversely, suppose that there exists a feasible schedule with value

C 2tb. It is clear that in this schedule both machines and the resource
max

aresaturateduntiltime2tb.Moreover,thechainsK.(j E S) are executed
3

in the intervals [2(i-1)b,(2i-1)b] (i = 1,. .,t) and the chains K! (j E S)
3

in the remaining intervals. Let Si be the index set of chains Ki completed

in the interval [2(i-1)b,(2i-1)b], for i = 1,...,t. Consider the set Sl. It

is impossible that X, a. > b, due to the definition of Sl; the case
36b1 3

X. a. < b cannot occur either, since this would lead to machine idle
3€S1 3

time in [b,2b]. It follows that X. a = b, and our assumption about the
JES1

size of ai (j E S) implies that ISi l = 3. This argument is easily extended

to an inductive proof that {s1, constitutes constitutes a solution to 3-PARTI-

TION. 0

4. OTHER MODELS

We will next comment on the computational complexity of three variations of

the models considered in the previous section, viz.

(1) extensions to other optimality criteria,

(2) preemptive scheduling, and

(3) multi-operation models.

4.1. Other optimality criteria 

If the 
Cmax 

criterion is replaced by other optimality criteria such as the

total completion time YC, or the maximum lateness L , most results can be
max

extended in a straightforward way,

In fact, all the NP-hardness results of Theorems 2, 3, 4 and 7 carry

over immediately to both IC and L . For IC , we use the fact that the
j :max j

machines are saturated in each of the transformations; e.g. in Theorems 2

3and 4 we have C t if and only if XC -t(t+1). For L , we define due
max j 2 max

dates d. = 0 for all jobs, so that L = C
7 max max

It has been noted already that the transportation network model of

Theorem 6 provides polynomial algorithms for Qlres1.1,p.=11y, where y = IC.
or y = La . The matching approach of Theorem 1 is easily adapted 

to solve
m 
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P2Ires--,p =1IIC as well: simply schedule the paired jobs before the re-

maining ones. It seems a safe conjecture that the algorithm of Theorem 5 can

be modified to solve Q2Ires1..,p =111C ; we leave this as a challenge to the
reader. However, P2Ires---, =1IL and 021res1--,p =1IL remain openPi max j max

problems. We mention that Plres1-1,ri,pi=1IL , where the rj denote integer
max

release dates at which the jobs become available, is solvable in polynomial

time [Blazewicz 1979].

4.2. Preemptive scheduling

If the processing times are arbitrary and preemption is allowed, the nature

of the models changes considerably. It now becomes of interest to consider

the general case ,of parallel unrelated machines.

The problem Ripmtn,res• ICmax can be formulated as a linear program

in the following way (cf. [Weglarz et a/. 1977; Slowinski 1980]). First,

introduce a dummy job Jo with rho =.0 for h = 1,...,2,, representing machine

idle time. Define S as the set of all resource feasible m-tuples k =

(k1, of of. job indices; each k is characterized by:

k. E {0,1,...,n} for i= 1,...,m;

each j E {1,...,n} occurs at most once;

Z7.0 rhki sh for h =

To each k E S, associate a variable xk, representing the time during which

Jk ,...,J
km

-are simultaneously executed on M1,...,Mm respectively. Then the
1

problem is to minimize,

subject to

sxk

41.=1(1kES,ki=j
xk 0 (k E S) .

(j = 1,...,n

This linear programming problem has 0(nm) variables. For a fixed number of

machines, its size is bounded by a polynomial in the size of the scheduling

problem. The existence of a polynomial algorithm for linear programming

[Khachian 1979] therefore implies that Rmipmtn,res• •• ICmax is solvable in
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polynomial time.

For a variable number of machines, Qlpmtn,res1111C can be solved as
max

follows. Replace the resource requiring jobs by a single job with execution

requirement p; this eliminates the resource constraints. Next, apply
rli=1 j

the 0(m log m + n) algorithm for QlpmtnIC
max 

from [Gonzalez & Sahni 1978] to

solve the resulting problem.

4.3. Multi-operation models 

Multi-operation models, in which each operation has its own specific re-

source requirements, give rise to various interesting results and to many

open problems. By way of example, we consider open shops, flow shops and job

shops with two machines, nonpreemptable operations and the 
Cax 

criterion.
m 

In the case of an open shop, 02Ires..., 
Pij 
, =1ICmax is solvable by a

matching approach similar'to the one used in Theorem 1. If the processing

times are arbitrary, even 02Ires1111Cmax remains unresolved.

=Flow shop problems seem to be more difficult. F2Ires111/Pij
1C

max is

solvable in linear time by appropriately grouping jobs together according

to their overall resource requirements. Little can be said about the immedi-

ate extensions of this model with unit processing times, but F2Ires1111C
max

is NP-hard in the strong sense by virtue of a simple transformation from

3-PARTITION.

The simplest job shop 'model in this context, 
J21res111,pij =1Icmax- is

already NP-hard in the strong sense; the transformation from 3-PARTITION is
nontrivial.

5. CONCLUDING REMARKS

We have proposed a classification scheme for resource constrained scheduling

problems and outlined a range of initial results on their computational com-

plexity. Presumably, many of the remaining open problems can be resolved

along similar lines. We hope to have stimulated others to continue the in-

vestigation of this interesting research area.
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APPENDIX. CLASSIFICATION OF SCHEDULING PROBLEMS

Suppose that n jobs J11...,Jn have to be processed on m machines M m

Each machine can handle at most one job at a time and each job can be exe-

cuted by at most one machine at a time. Various job, machine and scheduling

characteristics are

[Graham et al.

reflected by a three-field problem classification alaly

1979]. Let 0 denote the empty symbol.

Machine environment

The first field a = a1a2 specifies the machine environment.

If al E {P,Q,R}, each J consists of a single operation that can be

processed on any M.; the processing time'i'of J. on M. is p,. i = 1,...,m;
1 13

j =

a
1 
=

n). The three values are characterized as follows.

P (parallel identical machines).: pij = pi for a given execution

requirement p, of

= Q (parallel
1

requirement p, of

J4.

uniform machines): /p. = p./q for a given execution
ij j 1

J, and a given speed q. of M..

a
1 
= R (parallel unrelated

If a
1 

E {0,F,J}, each J, consis
3

be processed on a given machine

= 1,...,n). The three values

a
1 
= 0 (open shop):

a
1 
= F (flow shop):

m.
3
m.

0 can start (i = 2,.
ij

machines): p. is arbitrary.
1j

ts of a set of m. operations 0..; O. has to
j 13 ij

P.. during p.. time units (.i = 1, • a • ,11.1 . li:
lj lj 3

are characterized as follows.

= m, P ij

llij

al = J (job shop): mi and pij are arbitrary;

has to be completed before Oij can tart (i = 2, ,m

If a2 is a positive integer, then m is constant and equal to a2;

then m is part of the input.

Job characteristics

The second field C{a1, 2,f33,

which are defined as follows.

(1) {pmtn,0}.

has to be completed before

p. and O.
1 . 1-1,3

if a is

indicates a number of job characteristics,



1
any job may arbitrarily often be interrupted and resumed at the same

time on a different machine or at a later time on any machine.

= pmtn: Preemption (job splitting) is allowed; the processing of

15

= 0: No preemption is allowed.
1

(2)
2 
specifies the resource constraints; see Section 2.

(3) f3.3 {prec,tree,chain,0}.

= prec (arbitrary precedence constraints): A directed acyclic graph
3
H with vertices 1,...,n is given; if H contains a directed path from

j to k, we write J
j 

J
k 

and require that J. is completed before J k 
can

3 

(4)

start.

= tree (tree-like precedence constraints): H has outdegree at most
3

one for each vertex or indegree at most one for each vertex.

3 
= chain (chain-like precedence constraints): H has both outdegree

and indegree at most one for each vertex.

. 0 (no precedence constraints): H has no arcs.3

134 E. 1="0/.
pi =1: Each operation has unit processing time.

4 ij

= 0: The processing times are arbitrary nonnegative integers.
4

(If al {P,121, then p. is replaced by p.; if al = R, then 04 . 00
13

Optimality criteria 

The third field

schedule defines for

date d., a lateness L = C.-d.(j

ria involve the minimization of

denotes the optimality criterion chosen. Any feasible

each 'J, a completion time C. and, given an integer due3

= Some common optimality crite-

- 
Cmax 

= max{C
1' 
...,C } (maximum completion time);

n
- XC = 

C1n 
(total completion time);

j 
Lmax = max{L1' ...,L } (maximum lateness).
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