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Abstract 

Marathe, M.V., R. Ravi and C. Pandu Rangan, Generalized vertex covering in interval graphs. Discrete 

Applied Mathematics 39 (1992) 87-93. 

Given an integer i and an undirected graph G. the genera!ized i-verkx OFJPY pr&!z~ is to find a 

minimum set of vertices such that all chques in G of size i contain at least one vertex from this set. This 

problem is known to be NP-complete for chordal graphs when i is part of the input. We present a greedy 

linear time algorithm for this problem in the case of interval graphs. 

1. Introduction 

In an undirected graph, a clique R of size j is said to cover a clique T of size i 
(kj) if V(R) E V(T). Let $(G) denote the set of all cliques of size i in G. Let 
XC SJG). X is an (i, j) clique cover of G if for every T in 2$(G), there is at least 
one R in X such that R covers T. X is said to be a minimum (i, j) clique cover if 
IX i I 1 Y 1 ior any (l, j) ciique cover Y. The cardinality of a minimum (i, j) clique 
cover in G is called the (i,j) clique cover number of G and is denoted by Q(G). 
When j = 1, we shall refer to its (i, 1) clique cover as its i-vertex cover for obvious 
reasons. 

Correspondence to: Professor Pdndu Rangan, Department of Computer Science and Engineering, Indian 

Institute of Technology, Madras 600036, India. 

* Current address: Department of Computer Science, SIJNY, Albany, NY 12222, USA. 

** Current address: Box 1910, Department of Computer Science, Brown University, Providence, RI 

02912, USA. 

0166-218X/92/$05.00 0 1992-Elsevier Science Publishers B.V. All rights reserved 



88 M. Vi Marathe et al. 

We define the Ci,j problem as follows [2]. Given an undirected graph G and an 
integer k, is ci,j(G)I k? This problem is shown to be NP-complete for general 
graphs when i>jz 1 and for chordal graphs when i>jz2 in [2]. We shall extend 
their notation and define the optimization version of the decision problem Ci,j as 
Cij. Thus, Clj is the problem of determining the exact value of Ci,j and finding an 
(i, j) clique cover of this size. As before, we shall call the Ci, l problem as the i- 
vertex cover problem. A polynomial time algorithm for the i-vertex cover problem 
for any fixed i was presented for chordal graphs in [2]. This employs a dynamic pro- 
gramming approach on a rooted clique tree of a chordal graph and has running time 
exponential in i. Further, it was also shown there that when i is part of the input, 
the problem is NP-complete. 

We present below a greedy linear time algorithm to solve the r-vertex cover prob- 
lem when i is the part of the input for interval graphs, a subclass of perfect graphs. 
Interval graphs are in fact a subclass of chordal graphs and they are extensively 
discussed in [3]. An interval graph is a graph whose vertices can be mapped to 
unique intervals on the real line such that two vertices in the graph are adjacent iff 
their corresponding intervals intersect. It is interesting to note that the 2-vertex cover 
problem is that of finding the minimum set of vertices such that all the edges of G 
are incident to at least one vertex from this set. This is exactly the minimum vertex 
cover problem. Thus, our result above also implies a linear time algorithm for the 
minimum vertex cover problem on interval graphs. Further, the 3-vertex problem 
on tile class of chordal graphs is equivalent to that of computing the minimum feed- 
back vertex set of the graph. This is because of the fact that chordal graphs do not 
have induced chordless cycles of size greater than three. Since interval graphs are 
a subclass of chordal graphs, our result above also implies a linear time algorithm 
for the minimum feedback vertex set problem on interval graphs. 

2. Definitions 

Let G=(V,E), IV1 = n, IE I= m be an interval graph. We assume that V = 
(1, .*., n> and that the vertices of G are labeled according to the IG ordering [S]. 
This is simply the order in which we consider the intervals in the intersection model 
of G in the nondecreasing order of their right endpoints. Fig. 1 dmw m interw! 

graph with its interval representation and its vertices labeled in the IG ordering. An 
ir;lportant property of this ordering is that for vertices X, y , z in V such that x<y<z 
in the ordering, if x’ is adjacent to z, then y is also adjacent to z [5]. This ordering, 
which can be computed in linear time, has led to several efficient algorithms on in- 
terval graphs [5,1,6,4]. 

If vertices x and y are adjacent, then we write x by or y w-x. The subgraph induced 
in G by the vertex set (1,2,..., k) is denoted by G(k). The IG ordering in interval 
graphs is a PEO (perfect elimination ordering) [3]. Hence we can build up a 
representation of the clique formed by each vertex and the vertices above it in the 
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Fig. 1. An iaterval graph and its representation. 

IG ordering that it is adjacent to. For every vertex v in V, define K,, as follows: 

K,,=(w: w>v and w-v). 

Since the IG ordering is a PEO, {v} U Ku forms a clique in G. We call this the 
associated clique of vertex v and denote it by Cu. It is well known that any chordal 
graph, and hence any interval graph, has at most n maximal cliques. We remark that 
the set of all maximal cliques in an interval graph is a subset of the set of associated 
cliques of all the vertices of the graph. We denote by MVCi, 1, a set of all l-cliques 
that together cover all the i-cliques of G, i.e., a set of vertices such that all cliques 
in the graph of size i contain at least one vertex from this set. In fact, we will drop 
the 1 from MVC,, 1 and denote it by MVCi hereafter. We shall refer to the mini- 
mum (i, 1) clique cover as the minimum i-vertex cover for brevity. We denote by 
MVCi(k), the minimum i-vertex cover of the subgraph G(k) that covers all cliques 
in G(k) of size i. We define C,(k) to be the part of CO that is in G(k). In other 
words, 

C,(k)={w: WEC’,, and l~w~k}. 

In the subgraph G(k), let e,(k) denote the number of vertices in the clique Co(k) 
formed so far in G(k) that :rre not in MVCi(k). In other wGrds, 

W,(k)= (w: w~‘C,(k) and w$n/rVCJk)] 

3. The algorithm 

We follow a greedy incremental approach in choosing the minimum i-vertex 
cover. That is, we choose a vertex v to be included in the minimum vertex cover only 
when it is absolutely essential. In other words, if the addition of the vertex i) to the 
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graph G(u - 1) creates new uncovered cliques of size i, then we include v in the 
minimum i-vertex cover. To keep track of such newly formed uncovered cliques, we 
incrementally build up the representation of the associated cliques of each vertex. 
At stage j, we compute CJ j) for all v such that 1 zz v % j. Further, for each vertex 
v, we maintain an uncovered weight Wu initialized to zero. The value of Wu at the 
jth iteration is the number of vertices in the associated clique for vertex v uncovered 
by the set MI/C,{ j - 1) collected until the previous stage and is denoted by W,(j). 
For any vertex u, we define 

min(w: WC v in the IG order and w- v), if such a w exists, 

9 otherwise. 

This definition facilitates the updates to be effected to the counters C”(j) and 
I#$( j). Since the definition of LO captures the regular nesting property of the max- 
imal cliques of the interval graph, the only vertices whose counter values would be 
affected at iteration j are those in the set (LO(j)? . . . , j}. If this iteration causes any 
of these uncovered weight counters to attain value i, then we add the vertex j to the 
vertex cover maintained so far. 

The algorithm is presented using two easy procedures “Update” and “Include” 
at each iteration. Procedure “Update” computes the revised weights of all the 
associated cliques. It then signals through a Boolean flag “Must” whether the inclu- 
sion of the present vertex has caused the formation of any clique of size i that is 
as yet uncovered. Thus, it indicates whether the current vertex must be included in 
the cover. Procedure “Include” adds the current vertex to the minimum i-vertex 
cover maintained so far. It also recomputes the ur;<overed weights of the associated 
cliques. This is done only if the “Must” flag was set to true in this iteration. The 
cover itself can be maintained as a simple bit vector. 

Algorithm MIN VERTEX COVER. 
Given an interval graph G with its vertices in the IG ordering and an array I.0 

giving the value of LO(v) for each vertex v and the integer i, a minimum i-vertex 
cover MVC is constructed as follows. 

(1) Initialize a counter II; for each vertex v to zero and MVC to null. 
(2) For each vertex v from 1 to n do 

(2.1) UPDATE(v, LO(v), Must). 

(2.2) If (Must) then INCLUDE(v, LO(v), MVC). 

Procedure UPDATE(v, LO(v), Must). 

(1) Set Must to false. 
(2) For each vertex u from LO(v) to v do 

(2.1) Increment Wu by one since vertex v expands the associated cliques of 
exactly these vertices u . 

(2.2) If any of these counters equal r’, then there is an uncovered i-clique that 
has been identified and so set Must to true. 
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Procedure INCLUDE@, LO(u), MVC). 
(1) Add u to the bit vector MVC. 
(2) For each vertex u from LO(u) to u do 

(2.1) Decrement Wu by one since the vertex v has now been included in the 
set MVC. 

4. Proof of correctness and complexity 

Theorem 4.1. Algorithm MIN VERTEX COVER produces the minimum i-vertex 
cover of an interval graph for any input i using linear time and space. 

Before we prove correctness of Algorithm MIN VERTEX COVER, we present 
a useful lemma. 

Lemma 4.2. A graph G = (V, E) with 1 V 1 = n is an interval graph iff its vertices can 
be numbered from 1 to n such that for i< j< k, (i, k) is an edge in the graph only 
if (j, k) is an edge in the graph, i.e., 

(i,k)EE*(j,k)EE. 

Such an ordering is the IG ordering of the interval graph. 

For a proof of the above, see [5]. The proof of correctness of Algorithm MIN 
VERTEX COVER follows directly from the observation that IQ at iteration k cor- 
rectly maintains W,(k) and from Lemma 4.3 below that establishes the minimality 
of the set MV%,(k) maintained by the algorithm. Note that inclusicn of the vertex 
k + 1 creates new i-cliques that are uncovered by the set MVCi(k) if and only if 
W,(k)<i and W$(k+l)=i for some Irusk+ 1. 

Lemma 4.3. Let v E V be such that as the above algorithm runs, W,(v)<i and 
&(r, + 1) = i for some u such that 1 I u I v + 1. Then 

MVCi(V+ l)=MVCi(u)U(V+ 1). 

Proof. We prove this in two parts. First, we show that in the above case, there exists 
no i-vertex cover of G(v + 1) of size less than 1 MVCi(U)! + 1. Then, we argue that 
the best vertex to include in MVCi(V + 1) is v + 1 which completes the proof. 

We show that if W,(v)<i and Wu(v + 1) = i for some u such that 15 UC o + 1, 
then IMVCi(o + 1)1= IMVCi(V)l + 1. The proof is by contradiction. Assume that 
there exists a set S that is an i-vertex cover of G(v -t 1) and is of cardinality less than 
IMVCi(V)l i- 1. Then, we can write S=MVC#)-XU Y where X and Y are dis- 
joint sets of vertices with IX 1 r I Y 1. In other words, we can obtain set S from 
MVCi(V) by removing from it a subset X of vertices and adding instead a set of 
vertices Y of smaller or at most the same cardinality as X. We consider only the 
case when IXI=IY1. 
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Notice that by way of formation of MICi(u), for any vertex z included in this 
set at stage z, we can identify at least one unique i-clique that it covers in the 
subgraph G(z). Thus, for each vertex X,E X, we can identify a corresponding 
vertex y+ Y such that yr covers the i-clique that x; covered in the graph G&J. 
Thus, yr<xr. Furthermore, there exists a y+ Y such that it covers n?t only the i- 
clique covered by the corresponding xj but also the new i-clique formed by the ad- 
dition of the vertex v + 1 to G(v) which made WU(v + 1) = i. But now since xj occurs 
later than yj in the IG ordering, it will form a new uncovered i-clique with the same 
vertices that yi did in the graph G(v + 1) due to the property of the IG ordering in 
Lemma 4.2. Thus, the set S is not an i-vertex cover since we identified an uncovered 
i-clique, a contradiction. This proves that IMK, (v + 1)1= IMvCi(V)I + 1. 

To prove that v + 1 is the best choice for inclusion in the set MV%,(V + l), 
observe that there is no other vertex y such that yr !)+ 1 tha: can be added to 
Mf’Ci(V + 1) and help in covering the new uncovered i-clique identified at this 
iteration and also cover more i-cliques at a later iteration. We can rule out 
1 l y< LO(v + 1) directly since these vertices cannot even cover the new i-clique in- 
volving v + i by the definition of LO. For any other y, if y forms an i-clique with 
vertices like z where y< v + 1 <z and z c {v + 2, . . . , n), then Lemma 4.2 implies that 
v + 1 would also be part of such a clique and would cover it. Thus, the best choice 
for inclusion in MVCi(U+ 1) is v+ 1 itself and the minimality of this set is main- 
tained from G(v) to G(v+ 1) proving that Algorithm MIN VERTEX COVER out- 
3uts a correct solution. Cl 

As for complexity, the IG ordering and LO array calculations take linear time and 
space [5]. Since at the jth iteration of the algorithm, we do exactly c!~ updates, 
where dj is the degree of the vertex numbered j, the overall time complexity of the 
algorithm is Q( x7= 1 dj) = O(m). Both MVC and the array y, take linear space to 
maintain. Thus the whole algorithm is of linear time and space complexity. 

Fig. 2. An example of a chordal graph where the greedy method doesn’t work. 
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5. Remarks 

We draw attention to a remark in [2] that the greedy approach used above cannot 
be applied to the Ci, l problem on chordal graphs. This can be seen in the example 
shown in Fig. 2 for the case i = 3. As we proceed incrementally and greedily, we are 
forced to choose vertices 4 and 7 when they are encountered since they are required 
to cover the 3-cliques (2,3,4} and (5,6,7) respectively in the graph G(7). But in the 
graph G(8), we are again forced to include vertex 8 to cover ( 1,3,8) while a smaller 
set (3,7) would suffice to cover all the 3-cliques in G. The failure of the greedy ap- 

in chor- preach here is because the nesting of the cliques is not as linear and regular 
da1 graphs as in interval graphs. 

for the It would be interesting to investigate if a polynomial algorithm exists 
C(i, j) problem for any fixed j in the case of interval graphs. 
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