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Abstract
Marathe, M V.. R Ravi and C. Pandu Ranean. Generalized vertex covering in interval graphs. Discrete
Marathe, MLV, R. R and L. ranGy nangan, UCHCTanzZea vericx Coverng i intcrvai grapns, LJiscrets

Applied Mathematics 39 (1992) 87-93.

Given an integer / and an undirected graph G. the generalized i-vertex cover problem is to find a
minimum set of vertices such that all cliques in G of size i contain at least one vertex from this set. This
problem is known to be NP-complete for chordal graphs when i is part of the input. We present a greedy

linear time algoritnm for this probiem in the case of intervai graphs.

1. Imtroduction
In an undirected graph, a clique R of size ; is said to cover a clique T of size i
(i=)) if V(R)C V(T). Let S;(G) denote the set of all cliques of size i in G. Let

X S;(G). Xis an (i, j) clique cover of G if for every T in §;(G), there is at least
one R in X such that R covers T. X is said to be a minimum (@i, j) clique cover if
|X|=|Y| ior any (i, j) ciique cover Y. The cardinality of a minimum (i, j) clique
cover in G is called the (i, j) clique cover number of G and is denoted by c; (G).
When j =1, we shall refer to its (/, 1) clique cover as its i-vertex cover for obvious
reasons.
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We define the C; ; problem as follows [2]. Given an undirected graph G and an
integer k, is ¢; ;(G)<k? This problem is shown to be NP-complete for general
graphs when i>j=1 and for chordal graphs when i>;=2 in [2]. We shall extend
their notation and define the optimization version of the decision problem C; ; as
C; ;. Thus, C} ; is the problem of determining the exact value of ¢; ; and finding an
(i, j) clique cover of this size. As before, we shall call the C;, problem as the i-
vertex cover problem. A polynomial time algorithm for the i-vertex cover problem
for any fixed i was presented for chordal graphs in [2]. This employs a dynamic pro-
gramming approach on a rooted clique tree of a chordal graph and has running time
exponential in i. Further, it was also shown there that when i is part of the input,
the problem is NP-complete.

We present below a greedy linear time algorithm to solve the i-vertex cover prob-
lem when i is the part of the input for interval graphs, a subclass of perfect graphs.
Interval graphs are in fact a subclass of chordal graphs and they are extensively
discussed in [3]. An interval graph is a graph whose vertices can be mapped to
unigue intervals on the real line such that two vertices in the graph are adjacent iff
their corresponding intervals intersect. It is interesting to note that the 2-vertex cover
problem is that of finding the minimum set of vertices such that all the edges of G
are incident to at least one vertex from this set. This is exactly the minimum vertex
cover problem. Thus, our result above also implies a linear time algorithm for the
minimum vertex cover problem on interval graphs. Further, the 3-vertex problem
on the class of chordal graphs is equivalent to that of computing the minimum feed-
back vertex set of the graph. This is because of the fact that chordal graphs do not
have induced chordless cycles of size greater than three. Since interval graphs are
a subclass of chordal graphs, our result above also implies a linear time algorithm
for the minimum feedback vertex set problem on interval graphs.

2. Definitions

Let G=(V,E), |V|=n, |E|=m be an interval graph. We assume that V=
{1,...,n} and that the vertices of G are labeled according to the IG ordering [5].
This is simply the order in which we consider the intervals in the intersection model
of G in the nondecreasing order of their right endpoints. Fig. 1 shows an interval
graph with its interval representation and its vertices labeled in the IG ordering. An
important property of this ordering is that for vertices x, y, zin Vsuch that x<y<z
in the ordering, if x is adjacent to z, then y is also adjacent to z [5]. This ordering,
wilich can be computed in linear time, has led to several efficient algorithms on in-
terval graphs [5,1,6,4].

If vertices x and y are adjacent, then we write x ~ y or y ~x. The subgraph induced
in G by the vertex set {1,2,...,k} is denoted by G(k). The IG ordering in interval
graphs is a PEO (perfect elimination ordering) [3]. Hence we can build up a
representation of the clique formed by each vertex and the vertices above it in the
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Fig. 1. An interval graph and its representation.

IG ordering that it is adjacent to. For every vertex v in V, define K, as follows:
K,={w: w>v and w~v}.

Since the IG ordering is a PEO, {v}UK, forms a clique in G. We call this the
associated clique of vertex v and denote it by C,. It is well known that any chordal
graph, and hence any interval graph, has at most » maximal cliques. We remark that
the set of all maximal cliques in an interval graph is a subset of the set of associated
cliques of all the vertices of the graph. We denote by MVC, ,, a set of all 1-cliques
that together cover all the i-cliques ot G, i.e., a set of vertices such that all cliques
in the graph of size / contain at least one vertex from this set. In fact, we will drop
the 1 from MVC; , and denote it by MVC; hereafter. We shall refer to the mini-
mum (i, 1) clique cover as the minimum j-vertex cover for brevity. We denote by
MVC;(k), the minimum i-vertex cover of the subgraph G(k) that covers all cliques
in G(k) of size i. We define C,(k) to be the part of C, that is in G(k). In other
words,
C(k)={w: we(C, and 1=ws<k}.

In the subgraph G(k), let W, (k) denote the number of vertices in the clique C,(k)
formed so far in G(k) that are not in MVC;(k). In other words,

Wyky={w: we C,(k) and w¢ MVC;(k)}

3. The algorithm

We follow a greedy incremental approach in choosing the minimum i-vertex
cover. That is, we choose a vertex v to be included in the minimum vertex cover only
when it is absolutely essential. In other words, if the addition of the vertex v to the
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graph G(v— 1) creates new uncovered cliques of size i, then we include v in the
minimum i-vertex cover. To keep track of such newly formed uncovered cliques, we
incrementally build up the representatlon of the associated cliques of each vertex.

At stage j, we compute C,( j} or ail v such that 1 =v=j. Further, for each vertex
....................... oht 7 initinlioad +a 2ara Tha valiva Af I/ at tha
LIALILVNA LU ZMIV. 1INV Valubw vl "U QAL L1l
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by the set MVC;(j —1) collected until the previous stage and is denoted by W,(j).

J min{w: w<u in the iG order and w~v}, if such a w exists,

LO(v)= N
Lo, otherwise.

This definition facilitates the updates to be effected to the counters C,(j) and
W,(j). Since the definition of LO captures the regular nestmg Dronerty of the max-
imal cliques of the interval graph, the only vertices whose counter values would be
affected at iteration j are those in the set {LO(j), ...,/ }. If this iteration causes any
of these uncovered weight counters to attain value /, then we add the vertex j to the
veriex cover maintained so far.

The algorithm is presented using two easy procedures ““Update’’ and ‘Include’’

at each iteration. rroceaure "Upaate compuies the !'€VlS€Cl welgms of au the

inatad Al Te &
addulial \.uunb it

[

ag *
sion of the nresent vertex hag caused the formation of anv cligue of cize /7 that ic
A ¥ Pl WOWIIL Vwilwn 11T WURUOWVM Lilv LV RMIGLIVIL VUl “ll] »ll“ub 1 OLL § LiiQL 10
as vet unccvered. Thus, it indicates whether the current vertex must be included in

the cover. Procedure ‘‘Include” adds the current vertex to the minimum i-vertex
cover maintained so far. It also recomputes the uricovered weights of the associated
cliques. This is done only if the ““Must’’ flag was set to true in this iteration. The
cover itself can be maintained as a simple bit vector.

Algorithm MIN VERTEX COVER

Given an interval graph G with its vertices in the IG ordering and an array 7.0
giving the value of LO{w) f or each vertex v and the integer i/, a minimum i-vertex
cover A /C =S csnstr“nfnﬂ ac fallawe
LAV 4 Iva v wIWU Q) 1UIIUWO

(2) For each vertex v from 0
(2.1) UPDATE(y, LO(v),Must)
(2.2) If (Must) then INCLUDE(v, LO(v), MVC).

Pracodunras ITPNDATE, T 00\ Adiicf)
E EULVIEMEIY WA AFIRE RNV EII\U S iVIROL J.
(1) Set Must to false.
(2) For each vertex u from LO() to v do

(2.1} Increment W, by one since vertex v expands the associated cliques of
exactly these vertices u.

(2.2) If any of these counters equal i, then there is an uncovered i-clique that
has been identified and so set Must to true.
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Procedure INCLUDE(v, LO(v), MVC).
(1) Add v to the bit vector MVC.
(2) For each vertex u from LO(v) to v do

(2.1) Decrement W, by one since the vertex v has now been included in the
set MVC.

4. Proof of correctness and complexity

Theorem 4.1. Algorithm MIN VERTEX COVER produces the minimum i-vertex
cover of an interval graph for any input i using linear time and space.

Before we prove correctness of Algorithm MIN VERTEX COVEK, we present
a useful lemma.

Lemma 4.2. A graph G =(V,E) with |V | =n is an interval graph iff its vertices can
be numbered from 1 to n such that for i<j<k, (i,k) is an edge in the graph only
if (j,Kk) is an edge in the graph, i.e.,

(,kYeE=(j,k)eE.

Such an ordering is the IG ordering of the interval graph.

For a proof of the above, see [S5]. The proof of correctness of Algorithm MIN
VERTEX COVER foliows directly from the observation that W, at iteration % cor-
rectly maintains W, (k) and from Lemma 4.3 below that establishes the minimality
of the set MVC;(k) maintained by the algorithm. Note that inclusicn of the vertex
k+1 creates new i-cliques that are uncovered by the set MVC;(k) if and only if
W, (k)<iand W, (k+1)=i for some l<u<k+1.

Lemma 4.3. Let ve V be such that as the above algorithm runs, W,(v)<i and
W, (v+1)=i for some u such that 1<u<v+1. Then

MVCi(v+1)=MVC;)U{v+1}.

Proof. We prove this in two parts. First, we show that in the above case, there exists
no i-vertex cover of G(v+ 1) of size less than |MVC;(v)| + 1. Then, we argue that
the best vertex to include in MVC;(v+1) is v+ 1 which completes the proof.

We show that if W, (v)<i and W,(v+1)=i for some u such that 1su=<v+1,
then |MVC;(v+1)| =|MVC;(v)| +1. The proof is by contradiction. Assume that
there exists a set S that is an i-vertex cover of G(v + 1) and is of cardinality less than
|MVC;(v)| 4 1. Then, we can write S=MVC;(v)—XUY where X and Y are dis-
joint sets of vertices with | X |=|Y|. In other words, we can obtain set S from
MVC;(v) by removing from it a subset X of vertices and adding instead a set of
vertices Y of smaller or at most the same cardinality as X. We consider only the
case when | X |=]Y].
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Notice that by way of formation of MVC;(v), for any vertex z included in this
set at stage z, we can identify at least one unique i-clique that it covers in the
subgraph G(z). Thus, for each vertex x,€ X, we can identify a corresponding
vertex y,€ Y such that y, covers the i-clique that x, covered in the graph G(x,).
Thus, y,<x,. Furthermore, there exists a y;€ Y such that it covers not only the i-
clique covered by the corresponding x; but also the new i-clique formed by the ad-
diiion of the vertex v+ 1 to G(v) which made W, (v+ 1)=i. But now since X; occurs
later than y; in the IG crdering, it will form a new uncovered i-clique with the same
vertices that y; did in the graph G{v + 1) due to the property of the IG ordering in
Lemma 4.2. Thus, the set S is not an i-vertex cover since we identified an uncovered
i-clique, a contradiction. This proves that |[MVC,(v+ 1)| = |MVC;(v)| + 1.

To prove that v+1 is the best choice for inciusion in thc set MVC;(v+1),
observe that there is no other vertex y such that y=n+1 tha: can be added to
MVC;(v+1) and help in covering the new uncovered i-clique identified at this
iteration and also cover more i-cliques at a later iteration. We can rule out
1= y<LO(v+1) directly since these vertices cannot even cover the new i-clique in-
volving v +1 by the definition of LO. For any other y, if y forms an i-clique with
vertices like z where y<v+1<zand ze {v+2,...,n}, then Lemma 4.2 implies that
v+ 1 would also be part of such a clique and would cover it. Thus, the best choice
for inclusion in MVC;(v+1) is v+ 1 itself and the minimality of this set is main-
tained from G(v) to G(v+ 1) proving that Algorithm MIN VERTEX COVER out-
ruts a correct solution. O

As for complexity, the IG ordering and LO array calculations take linear time and
space [5]. Since at the jth iteration of the algorithm, we do exactly d; updates,
where d; is the degree of the vertex numbered j, the overall time complexity of the
algorithm is O(X}_, d;) =0(m). Both MVC and the array W, take linear space to
maintain. Thus the whole algorithm is of linear time and space complexity.

Fig. 2. An example of a chordal graph where the greedy method doesn’t work.
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5. Remarks

We draw attention to a remark in [2] that the greedy approach used above cannot
be applied to the C; , problem on chordal graphs. This can be seen in the example
shown in Fig. 2 for the case i=3. As we proceed incrementally and greedily, we are
forced to choose vertices 4 and 7 when they are encountered since they are required
to cover the 3-cliques {2, 3,4} and {5, 6,7} respectively in the graph G(7). But in the
graph G(8), we are again forced to include vertex 8 to cover {1, 3,8} while a smaller
set {3,7} would suffice to cover all the 3-cliques in G. The failure of the greedy ap-
proach here is because the nesting of the cliques is not as linear and regular in chor-
dal graphs as in interval graphs.

it would be interesting to investigate if a polynomial algorithm exists for the
C(i, j) problem for any fixed j in the case of interval graphs.
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