Note on combinatorial optimization with max-linear objective functions

Sung-Jin Chung

Department of Industrial Engineering, Seoul National University, Seoul, South Korea; and Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

Horst W. Hamacher*

Fachbereich Mathematik, Universität Kaiserslautern, Kaiserslautern, Germany

Francesco Maffioli*

Dipartimento di Elettronica, Politecnico di Milano, Milano, Italy

Katta G. Murty

Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA

Received 15 August 1990 Revised 1 March 1991

Abstract

Chung, S.-J., H.W. Hamacher, F. Maffioli and K.G. Murty, Note on combinatorial optimization with max-linear objective functions, Discrete Applied Mathematics 42 (1993) 139–145.

We consider combinatorial optimization problems with a feasible solution set $S \subseteq \{0,1\}^n$ specified by a system of linear constraints in 0-1 variables. Additionally, several cost functions c_1, \ldots, c_p are given. The max-linear objective function is defined by $f(x) := \max\{c^1 x, \ldots, c^p x: x \in S\}$ where $c^q := (c_1^q, \ldots, c_n^q)$ is for $q=1,\ldots,p$ an integer row vector in \mathbb{R}^n .

The problem of minimizing f(x) over S is called the max-linear combinatorial optimization (MLCO) problem.

We will show that MLCO is NP-hard even for the simplest case of $S=\{0,1\}^n$ and p=2, and strongly NP-hard for general p. We discuss the relation to multi-criteria optimization and develop some bounds for MLCO.

Correspondence to: Professor S.-J. Chung, Department of Industrial Engineering, Seoul National University, Seoul, South Korea.

^{*} Supported by NATO Grant RG85/0240.

1. Introduction

We consider combinatorial optimization problems with a feasible solution set $S \subseteq \{0,1\}^n$ specified by a system of linear constraints in 0-1 variables. Additionally, several cost functions c_1, \ldots, c_p are given. The max-linear objective function is defined by

$$f(x) := \max\{c^1 x, \dots, c^p x : x \in S\}$$
where $c^q := (c_1^q, \dots, c_n^q)$ is an integer row vector in \mathbb{R}^n , $q = 1, \dots, p$. (1.1)

The problem of minimizing f(x) over S is called the max-linear combinatorial optimization (MLCO) problem.

MLCO can always be modeled as an integer program by standard techniques (Nemhauser and Wolsey [15]). In the problem which we study in this paper the set S always has a special structure so that a single linear objective function can be optimized over it efficiently, i.e., in polynomial time. The focus of our investigation will be MLCO problems with $p \ge 2$ over such sets S.

MLCO plays a significant role in the assembly of printed circuit boards (see Drezner and Nof [6]). There, S is the set of all incidence vectors of maximum cardinality matchings in a bipartite graph. Other applications include partition problems (Garey and Johnson [8]), multi-processor scheduling problems and certain stochastic optimization problems (Granot and Zang [10]).

A special case of this problem is the ML matroid problem. The NP-completeness of this problem has been proved by Warburton [17] who also analyzes worst-case performances of some Greedy heuristics. Granot [9] introduces Lagrangean duals for the problem.

In Section 2 of this paper we show that even the case $S = \{0,1\}^n$ (the *unconstrained MLCO*) with p=2 is NP-hard and strongly NP-hard for general p. Section 3 deals with the relation of MLCO and discrete multi-criteria optimization problems. Section 4 contains some remarks on branch and bound strategies for MLCO.

2. Complexity results

Elegant methods are available for minimizing convex functions over convex sets (see Fletcher [7], Luenberger [2]). However, this problem becomes hard even for simple discrete sets as the following example taken from Murty and Kabaldi [14] shows

Let d_0, d_1, \ldots, d_n be given positive integers. Then the subset-sum problem is that of checking whether there exists a Boolean vector $\mathbf{x} \in \{0, 1\}^n$ such that $d_1x_1 + \cdots + d_nx_n = d_0$. This problem is well known to be NP-complete (Garey and Johnson [8]). If we define the convex quadratic function $f(\mathbf{x}) := (d_1x_1 + \cdots + d_nx_n - d_0)^2$,

then the subset-sum problem is equivalent to checking whether the optimal value in $\min\{f(x): x \in \{0,1\}^n\}$ is 0 or strictly greater than 0.

In this section we show that even the unconstrained MLCO problem defined with the simplest convex functions—max-linear functions defined by two linear functions c^1 and c^2 —leads to an NP-hard optimization problem.

Theorem 2.1. The unconstrained MLCO with respect to two linear functions is NP-hard.

Proof. Consider an instance of the interval subset-sum (ISS) problem: Let $a_1, ..., a_m$ be positive integral weights, and let v and d be positive integers with $v \le d$. The ISS problem asks for a subset N of $\{1, ..., m\}$ such that the sum of integral weights indexed by the elements of N is contained in the interval [v, d]. Since the subset-sum problem is a special case of the ISS problem (with v = d), ISS is NP-complete. We reduce ISS to the unconstrained MLCO, such that an instance of ISS has a feasible solution if and only if the optimum objective value in the corresponding instance of MLCO is strictly less than 0.

Set n := m+1, $c_i^1 := a_i$, $c_i^2 := a_i$, i = 1, ..., m, $c_{m+1}^1 := -d-1$ and $c_{m+1}^2 := v-1$. Given any $x \in \{0, 1\}^{(m+1)}$ the following two cases can occur.

Case 1: $x_{m+1} = 0$. Then the objective value of x in the unconstrained MLCO is greater than or equal to 0, since $a_i > 0$, i = 1, ..., m.

Case 2: $x_{m+1} = 1$. The objective value of x in the unconstrained MLCO is less than 0 if and only if

$$\sum_{i \in N} a_i < d+1$$
 and $\sum_{i \in N} (-a_i) < -(v-1)$

where $N = \{i: 1 \le i \le m \text{ and } x_i = 1\}$.

In this case, N is a feasible solution to the given instance of the interval subsetsum problem. \square

Theorem 2.2. The unconstrained MLCO problem with p cost functions $c_1, ..., c_p$ is strongly NP-hard.

Proof. Let A be a (0,1) matrix with m rows and n columns and let e be the vector with each of its m components being equal to 1. The set-partitioning problem (SPP) is the problem to find some $x \in \{0,1\}^n$ such that Ax = e. This problem is strongly NP-hard (see Garey and Johnson [8]). \square

In order to reduce SPP to MLCO we denote with A_i the *i*th row of matrix A, define p = 2m, and introduce n + 1 variables $x_1, \ldots, x_n, x_{n+1}$, and p cost vectors c_q , each with n + 1 components, defined by

$$c_q = \begin{cases} (-A_p, 0) & \text{for } q = 1, ..., m, \\ (A_{q-m}, -2) & \text{for } q = m+1, ..., 2m. \end{cases}$$

Then it can easily be verified that SPP has a feasible solution if and only if the optimum objective value in this MLCO is strictly less than 0.

3. Relation to multi-criteria problems

In multi-criteria optimization (MCO) we also consider several cost functions $c^1, ..., c^p$. The goal in MCO is to find *efficient solutions*, i.e., solutions $x \in S$ with the following property.

If $y \in S$ and $c^q y < c^q x$ for all q = 1, ..., p, then none of these inequalities is strict.

If $x, y \in S$, $c^q y \le c^q x$ for all q = 1, ..., p, and at least one of these inequalities is strict, then we call x dominated by y.

Theorem 3.1. For any instance of MLCO there is an optimum solution which is efficient with respect to the cost functions $c^1, ..., c^p$.

Proof. Suppose x is an optimum solution to a given MLCO, and let x be dominated by $v \in S$. Then $c^1 v \le c^q x$ for all q = 1, ..., p implies

$$\max\{c^1 v, ..., c^p v\} < \max\{c^1 x, ..., c^1 x\}.$$

Hence y is also optimal for MLCO. \Box

As a consequence of Theorem 3.1 we can solve MLCO by only considering the efficient solutions of the corresponding multi-criteria combinatorial optimization problem. Therefore for p=2 a solution of the following with problem parameters $\sigma \in \{\min_{x \in S} c^2 x, \max_{x \in S} c^2 x\}$ will solve MLCO.

minimize
$$c^1x$$
,
subject to $x \in S$ and $c^2x \le \sigma$.

If S is the set of bases of a matroid, then the latter problem is a matroidal knap-sack problem discussed in Camerini and Vercellis [3] and Camerini et al. [2]. These papers applied to this particular MLCO problem give an alternative approach to the ones taken by Granot [9] or Warburton [17].

4. Branch and bound approach

We first discuss some general bounding strategies.

Since the combinatorial optimization problem under consideration can be solved in polynomial time for a single objective we can efficiently compute

$$\delta^{q} := \min\{c^{q}x \colon x \in S\}, \quad q = 1, \dots, p. \tag{4.1}$$

Let x^q be the solution in which δ^q is attained. Then

$$L(S) = \max\{\delta^q: q = 1, ..., m\}$$
 (4.2)

is a lower bound for the MLCO problem. An upper bound is obtained by setting

$$U(S) := \min\{f(x^q) : q = 1, ..., p\}. \tag{4.3}$$

Let y be one of the solutions x^q such that δ^q is equal to L(S) and let z be one of the solutions x' such that f(x') = U(S). Let T be the union of all variables which are equal to 1 either in y or z or both. One of the variables in T will be selected as branching variable: For each $t \in T$ let $S(t) := \{x \in S: x_t = 0\}$. Compute L(S(t)) and U(S(t)). Then take the t with the smallest U(S(t)) - L(S(t)) and x_t as the branching variable.

The lower bound (4.2) can be improved by using Lagrangean relaxation: An LP-formulation of MLCO is

minimize 2

subject to
$$z-c^1x \ge 0$$
,
 $z-c^2x \ge 0$,
...
 $z-c^px \ge 0$,
 $x \in S$,
 $z \text{ unrestricted}$. (4.4)

Let $\pi_1, ..., \pi_p$ be nonnegative Lagrange multipliers associated with the constraints $z - c^q x \ge 0$, q = 1, ..., p in (4.4). Then a lower bound of MLCO is obtained by maximizing over all $\pi_1, ..., \pi_p \ge 0$ the function

$$\min\{z - \pi_1(z - c^1x) - \dots - \pi_p(z - c^px): z \text{ unrestricted, } x \in S\}.$$
 (4.5)

Since (4.5) can be written as

$$\min\{(1-\pi_1-\cdots-\pi_p)z+(\pi_1c^1+\cdots+\pi_pc^p)x: z \text{ unrestricted, } x \in S\}, \quad (4.6)$$

we can restrict ourselves to π_1, \dots, π_p satisfying $\pi_1 + \dots + \pi_p = 1$. Thus we get the following result.

Theorem 4.1.

$$L_1(S) := \max_{\pi_1 + \dots + \pi_p = 1} \min_{x \in S} (\pi_1 c^1 + \dots + \pi_p c^p) x$$

is a lower bound for the MLCO. However L_1 improves the bound of (4.2), i.e., $L(S) \le L_1(S)$.

Proof. $L_1(S)$ is a lower bound since it is the optimal objective value of the

Lagrangean dual of LP (4.4). Since π with $\pi_q = 1$ for exactly one $q \in \{1, ..., p\}$ is feasible the result follows. \square

If the set S is specified by a unimodular system of linear constraints in (0,1)-variables it can be solved through LP techniques. In this case (4.6) is a piecewise linear concave function over the set of all nonnegative π_q , $q=1,\ldots,p$, and can be computed efficiently by using techniques of nondifferentiable concave programming (see, for instance, Shapiro [16]). For the case p=2 one can use algorithms for solving parametric combinatorial optimization problems with respect to a single parameter (see Carstensen [4,5], Hamacher and Foulds [11], etc.) or use efficient approximation techniques for its solution (see Burkard et al. [1]).

If a linear description $S = \{x: Ax = b, x_j = 0 \text{ or } x_j = 1, j = 1, ..., n\}$ of S is given, it is well known (see, for instance, Murty [13]) that the bound $L_1(S)$ can be further improved by replacing in Theorem 4.1 the set S by $S_{\text{lin}} := \{x: Ax = b, 0 \le x_j \le 0, j = 1, ..., n\}$. Hence

$$L_2(S) := L_1(S) := \max_{\pi_1 + \dots + \pi_p = 1} \min_{x \in S_{\text{lin}}} (\pi_1 c^1 + \dots + \pi_p c^p) x$$

is a lower bound such that the optimal solution x^* of MLCO satisfies

$$L(S) \le L_1(S) \le L_2(S) \le f(x^*) \le U(S).$$
 (4.7)

References

- [1] R.E. Burkard, H.W. Hamacher and G. Rote, Approximation of convex functions and application to mathematical programming, Report 89-1987, Institute of Mathematics, Technical University of Graz, Graz (1987).
- [2] P. Camerini, F. Maffioli and C. Vercellis, Multi-constrained matroidal knapsack problems, Math. Programming 45 (1989) 211-231.
- [3] P. Camerini and C. Vercellis, The matroidal knapsack: A class of (often) well-solvable problems, Oper. Res. Lett. 3 (1984) 157-162.
- [4] P.J. Carstensen, The complexity of some problems in parametric and linear combinatorial optimization, Ph.D. dissertation, Department of Mathematics, University of Ann Arbor, MI (1983).
- [5] P.J. Carstensen, Complexity of some parametric integer and network programming problems, Math. Programming 26 (1983) 64-75.
- [6] Z. Drezner and S.Y. Nof, On optimizing bin picking and insertion plans for assembly robots, IEEE Trans. 16 (1984) 262-270.
- [7] R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1987).
- [8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, CA, 1979).
- [9] D. Granot, A new exchange property for matroids and its application to max-min problems, Z. Oper. Res. 28 (1984) 41-45.
- [10] D. Granot and I. Zang, On the min-max solution of some combinatorial problems, Working paper, Faculty of Commerce, University of British Columbia, Vancouver, B.C. (1982).
- [11] H.W. Hamacher and L.R. Foulds, Algorithms for flows with parametric capacities, Z. Oper. Res. 33 (1989) 21-37.

- [12] D.G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984).
- [13] K.G. Murty, Linear and Combinatorial Programming (Wiley, New York, 1976).
- [14] K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Math. Programming 39 (1987) 117-129.
- [15] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley Interscience Series in Discrete Mathematics and Optimizations (Wiley, New York, 1988).
- [16] J. Shapiro, Mathematical Programming: Structures and Algorithms (Wiley, New York, 1979).
- [17] A. Warburton, Worst case analysis of greedy and related heuristics for some min-max combinatorial optimization problems, Math. Programming 33 (1985) 234-241.