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Abstract 

Chung, S.-J., H.W. Hamacher, F. Maffioli and K.G. Murty, Note on combinatorial optimization with 

max-linear objective functions, Discrete Applied Mathematics 42 (1993) 139-145. 

We consider combinatorial optimization problems with a feasible solution set SC(O,I )” specified by a 

system of linear constraints in O-l variables. Additionally, several cost functions c,,., ,,c~ are given. The 

max-linear objective function is defined by flx):=max(c’x,...+!‘x: YES} where c?=(c~,.,,,c:) is for 

q=l,...,p an integer row vector in Iw”. 

The problem of minimizingflx) over S is called the max-linear combinatorial optimization (MLCO) 

problem. 

We will show that MLCO is NP-hard even for the simplest case of S={O,l}” andp=2, and strongly 

NP-hard for generalp. We discuss the relation to multi-criteria optimization and develop some bounds 

for MLCO. 
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1. Introduction 

We consider combinatorial optimization problems with a feasible solution set 

S c (0, I}” specified by a system of linear constraints in O-l variables. Additionally, 

several cost functions cl, . . . , cp are given. The max-linear objective function is 

defined by 

f(x):=max{clx,...,cPx:xES} 

where cq:=(cy,..., c,Q) is an integer row vector in R”, q = 1, . . . ,p. (1.1) 

The problem of minimizing f(x) over S is called the max-linear combinatorial 
optimization (MLCO) problem. 

MLCO can always be modeled as an integer program by standard techniques 

(Nemhauser and Wolsey [15]). In the problem which we study in this paper the set 

S always has a special structure so that a single linear objective function can be 

optimized over it efficiently, i.e., in polynomial time. The focus of our investigation 

will be MLCO problems with p? 2 over such sets S. 

MLCO plays a significant role in the assembly of printed circuit boards (see 

Drezner and Nof [6]). There, S is the set of all incidence vectors of maximum 

cardinality matchings in a bipartite graph. Other applications include partition 

problems (Garey and Johnson [S]), multi-processor scheduling problems and certain 

stochastic optimization problems (Granot and Zang [lo]). 

A special case of this problem is the ML matroid problem. The NP-completeness 

of this problem has been proved by Warburton [17] who also analyzes worst-case 

performances of some Greedy heuristics. Granot [9] introduces Lagrangean duals 

for the problem. 

In Section 2 of this paper we show that even the case S= (0, 1)” (the uncon- 

strained MLCO) with p = 2 is NP-hard and strongly NP-hard for general p. Section 

3 deals with the relation of MLCO and discrete multi-criteria optimization 

problems. Section 4 contains some remarks on branch and bound strategies for 

MLCO. 

2. Complexity results 

Elegant methods are available for minimizing convex functions over convex sets 

(see Fletcher [7], Luenberger [2]). However, this problem becomes hard even for 

simple discrete sets as the following example taken from Murty and Kabaldi [14] 

shows. 

Let do, d,, . . . , d, be given positive integers. Then the subset-sum problem is 

that of checking whether there exists a Boolean vector XE (0, l}” such that 

dlxl + ... + d,,x,, = do. This problem is well known to be NP-complete (Garey and 

Johnson [S]). If we define the convex quadratic functionf(x) := (dlxl + ... +d,x,-d~J~, 



then the subset-sum problem is equivalent to checking whether the optima1 value in 

min{f(x): XE (0, 1)“) is 0 or strictly greater than 0. 

In this section we show that even the unconstrained MLCO problem defined with 

the simplest convex functions-max-linear functions defined by two linear func- 

tions c1 and c*-leads to an NP-hard optimization problem. 

Theorem 2.1. The unconstrained MLCO with respect to two linear functions is 
NP-hard. 

Proof. Consider an instance of the interval subset-sum (ISS) problem: Let a,, . . . , a, 
be positive integral weights, and let u and d be positive integers with odd. The ISS 

problem asks for a subset N of { 1, . . . , m} such that the sum of integral weights in- 

dexed by the elements of N is contained in the interval [u, d]. Since the subset-sum 

problem is a special case of the ISS problem (with o = d), ISS is NP-complete. We 

reduce ISS to the unconstrained MLCO, such that an instance of ISS has a feasible 

solution if and only if the optimum objective value in the corresponding instance 

of MLCO is strictly less than 0. 

Set n:=m+l, cf:=ai, ~::=a;, i=l,...,m, &+,:=-d-l and ci+i:=u-1. 

Given any x E { 0, 1 } @+ ‘) the following two cases can occur. 

Case 1: x,+l= 0. Then the objective value of x in the unconstrained MLCO is 

greater than or equal to 0, since ai>O, i= 1, . . . , m. 
Case 2: x,+l = 1. The objective value of x in the unconstrained MLCO is less 

than 0 if and only if 

C ai<d+l and 
ieN 

iF&(-ai)<-(u-l) 

where N={i: lrilm and X,=1}. 

In this case, N is a feasible solution to the given instance of the interval subset- 

sum problem. q 

Theorem 2.2. The unconstrained MLCO problem with p cost functions c,, . . . , cp is 
strongly NP-hard. 

Proof. Let A be a (0,l) matrix with m rows and n columns and let e be the vector 

with each of its m components being equal to 1. The set-partitioningproblem (SPP) 
is the problem to find some XE (0, l}” such that Ax= e. This problem is strongly 

NP-hard (see Garey and Johnson [8]). 0 

In order to reduce SPP to MLCO we denote with Ai the ith row of matrix A, 

define p = 2m, and introduce n + 1 variables xi, . . . ,x,,, x,, + 1, and p cost vectors cq , 
each with n + 1 components, defined by 

(-A,, 0) for q=l,...,m, 
cq = 

(4-m, -2) for q=m+l, . . ..2m. 
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Then it can easily be verified that SPP has a feasible solution if and only if the op- 

timum objective value in this MLCO is strictly less than 0. 

3. Relation to multi-criteria problems 

In multi-criteria optimization (MCO) we also consider several cost functions 
1 c ,..., cp. The goal in MC0 is to find efficient solutions, i.e., solutions XES with 

the following property. 

Ify~Sand~~y<c~xforallq=l,..., p, then none of these inequalities 

is strict. 

Ifx,y~S,cqyIcqxforallq=l ,..., p, and at least one of these inequalities is strict, 

then we call x dominated by y. 

Theorem 3.1. For any instance of A4LCO there is an optimum solution which is ef- 
ficient with respect to the cost functions c’, . . ..cp. 

Proof. Suppose x is an optimum solution to a given MLCO, and let x be dominated 

by YES. Then c’ylcqx for all q= 1, . . ..p implies 

max{c’y, . . . . cPy}<max{clx,...,c’x}. 

Hence y is also optimal for MLCO. 0 

As a consequence of Theorem 3.1 we can solve MLCO by only considering the 

efficient solutions of the corresponding multi-criteria combinatorial optimization 

problem. Therefore for p = 2 a solution of the following with problem parameters 

CJE (minXEs c2x, maxXcs c2x} will solve MLCO. 

minimize c’x, 

subject to x E S and c2x5 0. 

If S is the set of bases of a matroid, then the latter problem is a matroidal knap- 

sack problem discussed in Camerini and Vercellis [3] and Camerini et al. [2]. These 

papers applied to this particular MLCO problem give an alternative approach to the 

ones taken by Granot [9] or Warburton [ 171. 

4. Branch and bound approach 

We first discuss some general bounding strategies. 

Since the combinatorial optimization problem under consideration can be solved 

in polynomial time for a single objective we can efficiently compute 
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6q:=min{cqx: XES), q=l,..., p. 

Let x4 be the solution in which a4 is attained. Then 

(4.1) 

L(S)=max{aq: q=l,...,m) (4.2) 

is a lower bound for the MLCO problem. An upper bound is obtained by setting 

U(S):=min(f(xq): q=l,...,p}. (4.3) 

Let y be one of the solutions x4 such that cYq is equal to L(S) and let z be one 
of the solutions xr such that f(x’) = U(S). Let T be the union of all variables which 
are equal to 1 either in y or z or both. One of the variables in Twill be selected as 
branching variable: For each t E T let S(t) := {xES: x, =O>. Compute L@(t)) and 
U@(t)). Then take the t with the smallest U(S(t)) -L,@(t)) and x, as the branching 
variable. 

The lower bound (4.2) can be improved by using Lagrangean relaxation: An LP- 
formulation of MLCO is 

minimize z 

subject to z - crxz 0, 
z - C2XZ 0, 
. . . 
z-CPXZO, 
XES, 
z unrestricted. 

(4.4) 

Let 7c1, . . . . rep be nonnegative Lagrange multipliers associated with the constraints 
z-cqxro, q=l,..., p in (4.4). Then a lower bound of MLCO is obtained by maxi- 
mizing over all rcl, . . . , nPcp’ 0 the function 

min{z-7rr(z-c’x)-... - rcp(z - cpx>: z unrestricted, x E S}. (4.5) 

Since (4.5) can be written as 

min{(l-7r,- ~~~-np)z+(nlcl+~~~+~pcP)x: z unrestricted, XES}, (4.6) 

we can restrict ourselves to or, . . . , np satisfying nl + ... + rep = 1. Thus we get the 
following result. 

Theorem 4.1. 

L,(S) := max min (nrc’ + 
n,+...+rr,=l XGS 

0.. + 7cpcP)x 

is a lower bound for the MLCO. However L, improves the bound of (4.2), i.e., 
L(S)iL,(S). 

Proof. L*(S) is a lower bound since it is the optimal objective value of the 
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Lagrangean dual of LP (4.4). Since rr with rcq = 1 for exactly one q E { 1, . . . , p> is 
feasible the result follows. 0 

If the set S is specified by a unimodular system of linear constraints in (O,l)- 
variables it can be solved through LP techniques. In this case (4.6) is a piecewise 
linear concave function over the set of all nonnegative rcq, q = 1, . . . , p, and can be 
computed efficiently by using techniques of nondifferentiable concave program- 
ming (see, for instance, Shapiro [16]). For the casep =2 one can use algorithms for 
solving parametric combinatorial optimization problems with respect to a single 
parameter (see Carstensen [4,5], Hamacher and Foulds [II], etc.) or use efficient 
approximation techniques for its solution (see Burkard et al. [l]). 

IfalineardescriptionS={x:Ax=b,xj=Oorx~=1,j=1,...,n}ofSisgiven,it 
is well known (see, for instance, Murty [13]) that the bound L,(S) can be further 
improved by replacing in Theorem 4.1 the set S by Siin := {x: Ax= b, O<XjsO, 
j=l 3 a**, n}. Hence 

L,(S):=L,(S):= max min (nr cl + .a. + 7+)x 
ZTl+.“+Rp=l XtZSli, 

is a lower bound such that the optimal solution x* of MLCO satisfies 

L(s)IL,(s)IL,(s)If(x*)_( U(S). (4.7) 
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