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Abstract

Chung, S.-J., HW. Hamacher, F. Maffioli and K.G. Murty, Note on combinatorial optimization with
max-linear objective functions, Discrete Applied Mathematics 42 (1993) 139-145.

We consider combinatorial optimization problems with a feasible solution set SC{0,1}" specified by a
system of linear constraints in 0-1 variables. Additionally, several cost functions c;,...,c, are given. The
max-linear objective function is defined by flx):=max{c'x,...,c"x: x€S} where ¢*=(c%,...,c%) is for
g=1,...,p an integer row vector in R",

The problem of minimizing f{x) over S is called the max-linear combinatorial optimization (M1.CO)
problem.

We will show that MLCO is NP-hard even for the simplest case of §={0,1}" and p=2, and strongly
NP-hard for general p. We discuss the relation to multi-criteria optimization and develop some bounds
for MLCO.
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1. Introduction

We consider combinatorial optimization problems with a feasible solution set
S ¢ {0, 1}" specified by a system of linear constraints in 0-1 variables. Additionally,
several cost functions cy,...,c, are given. The max-linear objective function is
defined by

f(x):=max{clx,...,cPx: xe S}

where ¢?:=(c?,...,c?) is an integer row vector in R", g=1,...,p. (1.1)

The problem of minimizing f(x) over S is called the max-linear combinatorial
optimization (MLCO) problem.

MLCO can always be modeled as an integer program by standard techniques
(Nemhauser and Wolsey [15]). In the problem which we study in this paper the set
S always has a special structure so that a single linear objective function can be
optimized over it efficiently, i.e., in polynomial time. The focus of our investigation
will be MLCO problems with p=2 over such sets S.

MLCO plays a significant role in the assembly of printed circuit boards (see
Drezner and Nof [6]). There, S is the set of all incidence vectors of maximum
cardinality matchings in a bipartite graph. Other applications include partition
problems (Garey and Johnson [8]), multi-processor scheduling problems and certain
stochastic optimization problems (Granot and Zang [10]).

A special case of this problem is the ML matroid problem. The NP-completeness
of this problem has been proved by Warburton [17] who also analyzes worst-case
performances of some Greedy heuristics. Granot [9] introduces Lagrangean duals
for the problem.

In Section 2 of this paper we show that even the case S={0,1}" (the uncon-
strained MLCO) with p =2 is NP-hard and strongly NP-hard for general p. Section
3 deals with the relation of MLCO and discrete multi-criteria optimization
problems. Section 4 contains some remarks on branch and bound strategies for
MLCO.

2. Complexity results

Elegant methods are available for minimizing convex functions over convex sets
(see Fletcher [7], Luenberger [2]). However, this problem becomes hard even for
simple discrete sets as the following example taken from Murty and Kabaldi [14]
shows.

Let dy,d,,...,d, be given positive integers. Then the subset-sum problem is
that of checking whether there exists a Boolean vector xe€{0,1}" such that
d x, + -+ +d,x,=d,. This problem is well known to be NP-complete (Garey and
Johnson [8]). If we define the convex quadratic function f(x) := (d;x;+--- +d,x,—do),
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then the subset-sum problem is cquivalent to checking whether the optimal value in

min{ f(x): xe {0,1}"} is O or strictly greater than 0.

In this section we show that even the unconstrained MLCO problem defined with
the simplest convex functions—max-linear functions defined by two linear func-
tions ¢! and ¢>—leads to an NP-hard optimization problem.

Theorem 2.1. The unconstrained MLCO with respect to two linear functions is
NP-hard.

Proof. Consider an instance of the interval subset-sum (ISS) problem: Let ay, ..., @,
be positive integral weights, and let v and d be positive integers with v <d. The ISS
problem asks for a subset NV of {1,...,m} such that the sum of integral weights in-
dexed by the elements of N is contained in the interval [v, d]. Since the subset-sum
problem is a special case of the ISS problem (with v=d), ISS is NP-complete. We
reduce ISS to the unconstrained MLCO, such that an instance of ISS has a feasible
solution if and only if the optimum objective value in the corresponding instance
of MLCO is strictly less than 0.
Set n:=m+1, ¢ :=a;, c¢}:=a;, i=1,...,m, c,, :=—d-1 and pi=v—1.
Given any x € {0, 1}*"*1 the following two cases can occur.
Case 1: x,,,,=0. Then the objective value of x in the unconstrained MLCO is
greater than or equal to 0, since ¢;>0, i=1,...,m.
Case 2: x,,,,=1. The objective value of x in the unconstrained MLCO is less
than O if and only if
Y a<d+1 and Y (-a)<-(v-1)
ieN ieN
where N={i: 1<i=m and x;=1}.
In this case, N is a feasible solution to the given instance of the interval subset-
sum problem. [

Theorem 2.2. The unconstrained MLCO problem with p cost functions ¢y, ...,c, is
strongly NP-hard.

Proof. Let A be a (0,1) matrix with m rows and n columns and let e be the vector
with each of its m components being equal to 1. The set-partitioning problem (SPP)
is the problem to find some x€ {0, 1}" such that Ax=e. This problem is strongly
NP-hard (see Garey and Johnson [8]). [J

In order to reduce SPP to MLCO we denote with A; the ith row of matrix A4,
define p=2m, and introduce n+ 1 variables xy, ..., X,, x,., and p cost vectors ¢,,
each with n+1 components, defined by

o - (—A4,,0) for g=1,...,m,
a (Ayom»—2) forg=m+1,...,2m
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Then it can easily be verified that SPP has a feasible solution if and only if the op-
timum objective value in this MLCO is strictly less than 0.

3. Relation to multi-criteria problems

In multi-criteria optimization (MCO) we also consider several cost functions
¢!, ...,cP. The goal in MCO is to find efficient solutions, i.e., solutions xe S with
the following property.

If ye S and ¢%y<c%x for all g=1, ..., p, then none of these inequalities
is strict.

Ifx,yes8, cly<cixforallg=1,..., p, and at least one of these inequalities is strict,
then we call x dominated by y.

Theorem 3.1. For any instance of MLCO there is an optimum solution which is ef-
ficient with respect to the cost functions ¢, ..., ch.

Proof. Suppose x is an optimum solution to a given MLCO, and let x be dominated
by yeS. Then ¢'y<cix for all g=1,..., p implies

max{c'y,...,cPy} <max{c'x,...,c'x}.

Hence y is also optimal for MLCO. O

As a consequence of Theorem 3.1 we can solve MLCO by only considering the
efficient solutions of the corresponding multi-criteria combinatorial optimization
problem. Therefore for p=2 a solution of the following with problem parameters
o € {min, g c%x, max,.s ¢%x} will solve MLCO.

minimize c¢'x,

subject to xeS and cx=<o.

If S is the set of bases of a matroid, then the latter problem is a matroidal knap-
sack problem discussed in Camerini and Vercellis [3] and Camerini et al. [2]. These
papers applied to this particular MLCO problem give an alternative approach to the
ones taken by Granot [9] or Warburton [17].

4. Branch and bound approach
We first discuss some general bounding strategies.

Since the combinatorial optimization problem under consideration can be solved
in polynomial time for a single objective we can efficiently compute
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d7:=min{c'x: xe S}, q=1,...,p. 4.1)
Let x7 be the solution in which J7 is attained. Then

L(S)=max{d% g=1,...,m} 4.2)
is a lower bound for the MLCO problem. An upper bound is obtained by setting

U(S):=min{f(x9: g=1,...,p}. 4.3)

Let y be one of the solutions x4 such that J9 is equal to L(S) and let z be one
of the solutions x” such that f(x") = U(S). Let T be the union of all variables which
are equal to 1 either in y or z or both. One of the variables in T will be selected as
branching variable: For each te T let S(¢):={x€S: x,=0}. Compute L(S(¢)) and
U(S(¢)). Then take the ¢ with the smallest U(S(¢)) — L(S(¢)) and x, as the branching
variable.

The lower bound (4.2) can be improved by using Lagrangean relaxation: An LP-
formulation of MLCO is

minimize 2
subject to z—c'x=0,

2
emex=0, @.4)

z—¢cx=0,
Xes,
z unrestricted.

Let 7y, ..., n, be nonnegative Lagrange multipliers associated with the constraints
z—¢x=0,g=1,...,pin (4.4). Then a lower bound of MLCO is obtained by maxi-
mizing over all my,..., 7,>0 the function

min{z—7;(z—¢'x) —--- — m,(z — ¢x): z unrestricted, xe S}. 4.5)
Since (4.5) can be written as
min{(l—n,—--~—Tcp)z+(nlcl+~-+7zpc”)x: z unrestricted, xe S}, (4.6)

we can restrict ourselves to zy,...,n, satisfying n; +---+n,=1. Thus we get the
following result.

Theorem 4.1.

Li(S):= max min(ne'+- +7,cP)x
ayte+ap=1 x€§

is a lower bound for the MLCO. However L, improves the bound of (4.2), i.e.,
L(S)=sL,(S).

Proof. L,(S) is a lower bound since it is the optimal objective value of the
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Lagrangean dual of LP (4.4). Since n with n,=1 for exactly one ge{1,...,p} is
feasible the result follows. [

If the set S is specified by a unimodular system of linear constraints in (0,1)-
variables it can be solved through LP techniques. In this case (4.6) is a piecewise
linear concave function over the set of all nonnegative Ty 4= 1,...,p, and can be
computed efficiently by using techniques of nondifferentiable concave program-
ming (see, for instance, Shapiro [16]). For the case p =2 one can use algorithms for
solving parametric combinatorial optimization problems with respect to a single
parameter (see Carstensen [4,5], Hamacher and Foulds [11], etc.) or use efficient
approximation techniques for its solution (see Burkard et al. [1]).

If a linear description S={x: Ax=5, x;j=0orx;=1, j=1,...,n} of §is given, it
is well known (see, for instance, Murty [13]) that the bound L,(S) can be further
improved by replacing in Theorem 4.1 the set S by Sy, :={x: Ax=b, 0=x;=<0,
Jj=1,...,n}. Hence

Ly(S):=Ly(S):= max  min (me'+- +m,c”)x
7'[1+~~-+71'p=1 x € Siin

is a lower bound such that the optimal solution x* of MLCO satisfies

L(S)<L(S)=Ly(S)<f(x®=U(S). 4.7)
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