
Constructing Colorings for Diagrams �Stefan Felsnery Jens GustedtyTechnische Universit�at Berlin, GermanyMichel MorvanL.I.R.M.M., Universit�e de Montpellier II, FranceJean-Xavier RamponIRISA, Universit�e de Rennes, FranceIntroduction and OverviewAn undirected graph G = (V;E) is a (Hasse{) diagram if there is a poset P = (V;<) and anorientation ~E of E such that (x; y) 2 ~E i� x < y in P and there is no z with x < z < y. Wethen write G = DP . A pair (x; y) 2 ~E is called a covering and denoted by x � y.The chromatic number � (G ) is the least number of colors needed to color the vertices ofG such that no two adjacent vertices obtain the same color. The interest in the chromaticnumber of diagrams is motivated by a lack of small explicit examples of triangle-free graphswith chromatic number> 3. In [NR87] Ne�set�ril and R�odl showed that calculating the chromaticnumber is NP-hard for diagrams. In the �rst part we give bounds for the chromatic number ofan arbitrary diagram.In the second part we investigate the chromatic number of diagrams under the restrictionthat P belongs to a special class of orders. The �rst results are: � (DP ) � 3 for semi-ordersand series-parallel orders.It is know that lattices (Bollob�as [Bo77]) and 2-dimensional posets (K�r���z and Ne�set�ril[KN91]) can have diagrams of arbitrarily large chromatic number. We construct a familyIk of orders with � (DIk ) = k. An order Ik in this family is both, an interval orders andN -free. This leads us to the investigation of these two classes. In the case of N -free orders wecan show that dlog2(height (P ) + 1) e is an upper and lower bound for the chromatic number.For interval orders we provide an upper bound of l 3log2 3 log2 ( height (P ) ) m.�This work was supported by the PROCOPE Program.ypartially supported by the DFG 1



For all the constructions related to upper bounds there exist fast algorithms which givecolorings in that bound. For the algorithms we will always assume that G is given togetherwith a diagram orientation of a corresponding poset P . This assumption can not be removedsince the decision problem whether a given graph is a diagram or not is NP-complete. This isanother result of [NR87].1 General BoundsSome simple boundsFor an order P = (V;<) the height of a vertex v 2 V is de�ned byheight ( v ) = ( 1 i� v is minimalmaxw<v height (w ) + 1 otherwise. (1)The height (P ) is the maximal height of a vertex. The maximal di�erence of the height oftwo covering points is � (P ) = maxv�w height (w )� height ( v ) (2)Remark 1.1 � (DP ) � �(P ) + 1 and such a coloring can be given in linear time.Proof: Assign the color [height ( v ) mod (� (P ) + 1)] to a vertex v. By de�nition of � (P )two points v;w with w � v never obtain the same color. 2Since � (P ) < height (P ) we also obtain � (DP ) � height (P ).Let L = v1; : : : ; vn be a list of the elements of V . The list coloring of G = (V;E) withrespect to L is obtained by the following rule.for v = v1 to vn doColor vi with the �rst color which is not used for a vj with j < i and fvj; vig 2 E.The list L induces an orientation ~E on E, which may be used to bound the number of colorsneeded in the list coloring by (maxv2V indegree~E(v)) + 1.Let L be a linear extension of a poset P . Apply list coloring with respect to L to thediagram of P and note that indegree ( v ) � width (P ). Hence,Remark 1.2 � (DP ) � width(P ) + 1 and such a coloring can be given in linear time.2



Combining Height and WidthFor an order P = (V;<) consider a partition of V into V h and V w. Since we may color bothinduced suborders independently it is then clear that,� (DP ) � height �P ���V h �+ width �P ���V w �+ 1: (3)To make use of this observation we need a partition of V such that height �P ���V h �+width �P ���V w �is small. This is the aim of the following theorem.Theorem 1.3 Let P = (V;<) then there is a partition V1; : : : ; Vk of V such that each Vi iseither a chain or an antichain and k < �q2jV j � (4)The following proof is due to U. Faigle.Proof: We proceed by induction on n = jP j. We may assume that height (P ) and width (P )are both greater than p2n since otherwise we could easily cover P with height (P ) antichainsor width (P ) chains.So there is a chain C and an antichain A such that their union U is of size greater than2 � p2n� 1.By induction we may partition V n U into at most q2 � (n� 2 � p2n+ 1) chains and an-tichains. This value is always less than p2n � 2 and so we are done. 2Observe that the bound given in Theorem 1.3 is sharp. A family of examples are the ordersgiven by k parallel chains of size 1; : : : ; k.A decomposition theorem like ours has independently been obtained by Caro [Ca90] in themore general context of perfect graphs. Indeed the proof given here can also easily be adaptedto perfect graphs.Corollary 1.4 If a poset P has n elements then � (DP ) � lp2n m and a coloring using atmost this number of colors can be computed in O(n3).Proof: Let V w be the union of the chains and V h the union of the antichains we obtain fromTheorem 1.3. Now, the inequality is an immediate consequence of Formula (3).The complexity of the corresponding coloration algorithm is dominated by the complexityof the computation of an appropriate partition. According to our proof above we have to coverthe order with height (P ) antichains or width (P ) chains or we have to �nd maximum chainsand antichains iteratively. 3



The later can happen at most O (pn) times. In each iteration we have to �nd a maximumchain and antichain. A maximum chain together with a partition into height (P ) antichainscan be found by labeling and scanning in time O (n2). A maximum antichain together witha partition into width (P ) chains can be found by using matching in bipartite graphs in timeO (n2:5). So the running time is bounded by O (n3). 2A Bound that is Asymptotically BetterThe bound on � given by the previous construction in Corollary 1.4 is asymptotically improvedby the following theorem and proof that are due to Tuza, [Tu91].Theorem 1.5 Triangle free graphs, and hence diagrams, admit colorings with O( pnlog logn ) col-ors.Proof: First we combine two bounds on the size of independent sets in a triangle free graph.According to Ajtai et al. [AKS80], see also [Gr83], a triangle free graph (e.g. a diagram) ofaverage degree d contains an independent set of size 
(n ln dd ). On the other hand it containsan independent set of size d, namely the neighborhood of some vertex. A simple calculationusing the threshold d = pn lognlog logn warrants an independent set of size 
(pn log log n). Thislarge independent set can be found e�ciently.Now to show the overall bound, take a large independent set, assign a new color to it anditerate with the points that are not yet colored. After O( pnlog logn) steps all vertices are colored.22 Bounds for Special Classes of OrdersIn this part we investigate the chromatic number problem on diagrams corresponding to specialclasses of partial orders (we refer to [M�o89] for unde�ned terms). The hope was that { as withother NP-hard problems { the additional structural properties of these classes lead to betterbounds or even to polynomial algorithms. It turned out that this is indeed true.Some Classes with Bounded Chromatic NumberWith 1� k we denote the disjoint union of a k-element chain with a single point.Remark 2.1 If DP has no 1 � k as induced subdiagram then �(P ) < k, and hence { withRemark 1.1 { we have � (DP ) � k. 4



Semi-orders are those interval orders which do not have 1�3 as induced suborder, therefore:Remark 2.2 If P is a semi-order then � (DP ) � 3 and the chromatic number can be calculatedin linear time.To get linear time we need to know if � (DP ) = 1 or � (DP ) = 2, checking this is straight-forward.Theorem 2.3 If P is series-parallel then � (DP ) � 3 and � (DP ) can be calculated in lineartime.This is a direct consequence ofLemma 2.4 If P is series-parallel then there is a 3-coloring of DP with colors a, b and c suchthat all minimal elements of P are colored a and all maximal elements are colored either a orb.Proof: We proceed by induction on the decomposition.If P is a parallel composition the statement is trivial.So let P = P1 � P2 be a series composition with P1 as lower part. By induction they havecolorings as desired (see Fig. 1).
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a ba b abP2P1 PFigure 1: A Coloring for a series-composed orderApply the transposition �1 = (b; c) to the coloring of P1 and the transposition �2 = (a; b)to the coloring of P2. After that the colorings of P1 and P2 �t together to a coloring of P , since5



the minimal elements of P2 are now all colored with b and the maximal elements of P1 are onlycolored with colors in fa; cg .This coloring obviously has the desired properties. 2Diagrams with High Chromatic NumberWe give an explicit construction for diagrams with arbitrary chromatic number.For nonnegative integers k let Ik be the interval order de�ned by the open intervals withendpoints in n1; : : : ; 2ko. It has height ( Ik ) = 2k � 1.Two vertices v and w in Ik ful�ll v � w i� the right endpoint of the interval of v equalsthe left endpoint of w. The diagram of Ik has been studied under the name `shift-graph'. Weinclude the well-known proof of the next lemma (see e.g. [HE72]), since we will need similarmethods when discussing the case of general interval orders.Lemma 2.5 � (DIk ) = kProof: Suppose we have a proper coloring of DIk with colors f1; : : : ; cg . With each pointi associate the set C(i) of colors used for the intervals having their right endpoint at i. Notethat for 1 � i < j � 2k we have C(j) 6� C(i). Therefore all the 2k subsets C(i) of f1; : : : ; cgare distinct. Hence 2c � 2k and c � k.A coloring of DIk using k colors can recursively be obtained by the following construction.The intervals with both endpoints in n1; : : : ; 2k�1o are an Ik�1. A second Ik�1 consists of thoseintervals with endpoints in n2k�1 + 1; : : : ; 2ko. Color the vertices of each copy with the sameset of k � 1 colors. A new color is used for the remaining vertices of Ik, i.e. for the antichainof intervals containing 2k�1 + 12 . Since intervals of the two copies of Ik�1 are separated by theinterval (2k�1; 2k�1 + 1) we have thus constructed a proper coloring. 2Theorem 2.6 � (DP ) can be arbitrarily large for N-free orders and interval orders.Proof: Ik is an interval order. We have to show that it is also N -free.Let u; v; w; x be an N , say u � v;w � v;w � x. Then we know that v and x have the sameleft endpoint and u and w have the same right endpoint. But then u � x, too. This contradictsthe assumption that u; v; w; x induce an N . 26



N-free OrdersRemark 2.7 For every k 2 IN there is an N-free order P such thatdlog2(height (P ) + 1) e � � (DP ) = k : (5)The remark is a direct consequence of the previous theorem. We now give an upper boundfor the chromatic number of diagrams of N-free orders which is logarithmic in height (P ) too.The family fIkg of Lemma 2.5 is shown to consist of extremal N -free orders with respect tothe chromatic number of the diagram. The technique used relies on the fact, that an N -freeorder can always be subdivided by an antichain.Theorem 2.8 If P is N-free then � (DP ) � dlog2(height (P ) + 1) e and such a coloring canbe calculated in linear time.Proof: The proof is by induction on height (P ).The elements v of P with height ( v ) = l12height (P ) m = k form an antichain A. It neednot be maximal, but elements which are parallel to all the elements in A have smaller height.Let A0 = nv 2 V height ( v ) < k and 8w � v ; height (w ) > ko : (6)Note that A� = A [A0 is a maximal antichain. Now partition V nA� into two setsV � = nv v < a for some a 2 A�o and V + = nv a < v for some a 2 A�o (7)It is then clear that the suborders induced by V + and V �, P� and P+ say, both have heightless than k. The N -freeness of P warrants that no element of P� is covered by an element ofP+. So we may color both suborders independently and assign a new color to A�. This givesa coloring as desired.The color of an element only depends on its height and the height of its immediate successors.With l(v) = minv�w fheight (w )� 1g, the color of v can be found by some bit operations onheight ( v ) and l(v). 2Interval OrdersA similar idea as for N -free orders can also be used for interval orders. We could e.g. dividean interval order into two parts, but then we would need two antichains to separate them ingeneral. To get the constant small (� 1:8) we use a partition into three parts and get thefollowing. 7



Theorem 2.9 If P is an interval order then� (DP ) � & 3log2 3 log2 ( height (P ) )' (8)and such a coloring can be determined in linear time.Proof: We proceed by induction on the height of P . We may assume that height (P ) � 3.The following arguments are illustrated in Fig. 2.V1 V2 V3v wlv rv lw rwC BA1 A2Figure 2: Splitting an interval orderTake an interval representation of P . For v 2 V let lv and rv be the left respectively rightendpoint of the interval in this representation. We say that v dominates w if the interval of wis contained in the interval of v. Note that there is always a maximum chain of P such that noelement of that chain dominates any other element.In such a chain we choose elements v and w at height 13 and 23 . De�ne seven sets of elementsV1 = nx rx < lvo, A1 = nx lv � rx � rvo,V2 = nx rv < lx < rx < lwo, A2 = nx lw � lx � rwo,V3 = nx rw < lxo, B = nx lx < lw � rxo,C = nx lx � rv < rx < lwo.No cover relations holds between elements of di�erent Vi , i = 1; 2; 3, since the interval ofeither v or w lies between them. So they may be colored independently by induction.8



Each of A1, A2, B and C is an antichain. Use three new colors to color them. One for B,one for C and one for A1 and A2 together, this can be done as long as V2 is not empty.The total amount of colors needed then is 3 times the maximal recursion depth, which islog3 height (P ) = log2 height(P )log2 3 .To obtain the linear time complexity observe that the color of an element is determinedby the �rst recursion level in which it falls into one of the sets A1; A2; B;C. But this can becalculated iteratively if we1. determine a non-dominating maximum chain in scanning P from bottom to top2. determine for each element the lowest and highest element of that chain which is parallel2Recently, Felsner and Trotter [FT91] have obtained a much stronger result concerning thechromatic number of the diagram of interval orders: If P is an interval order then � (DP ) �dlog2 ( height (P ) ) e + 2.References[AKS80] M. Ajtai, J. Koml�os and E. Szemer�edi, A note on Ramsey numbers, J. Comb.Th. (A) 29 (1980), 354{360.[Bo77] B. Bollobas, Colouring Lattices, Algebra Univ. 7 (1977), 313{314.[Ca90] Y. Caro, On the covering number of combinatorial structures, Preprint (1990).[FT91] S. Felsner and W.T. Trotter, Colorings of Diagrams of Interval Orders and�-Sequences of Sets, Preprint 308, TU-Berlin 1991.[Gr83] J. R. Griggs, An upper bound on the Ramsey numbers, J. Comb. Th. (A) 35 (1983),145{153.[HE72] C.C. Harner and R.C. Entriger, Arc Colorings of Digraphs, J. Comb. Th. (B)13 (1972), 219{225.[KN91] I. K�r�i�z and J. Ne�set�ril, Chromatic Number of Hasse Diagrams, Eyebrows andDimension, Order 8 (1991), 41{48.[M�o89] R.H. M�ohring, Computationally tractable classes of ordered sets, In Algorithmsand Order, I. Rival ed., Kluwer 1989.[NR87] J. Ne�set�ril and V. R�odl, Complexity of Diagrams, Order 3 (1987), 321{330.[Tu91] Zsolt Tuza, private communication (1991)9


