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Introduction and Overview

An undirected graph G = (V, E) is a (Hasse—) diagram if there is a poset P = (V, <) and an
orientation £ of F such that (x,y) € Eiff v < y in P and there is no z with « < z < y. We
then write G = Dp. A pair (z,y) € E is called a covering and denoted by = < y.

The chromatic number x (') is the least number of colors needed to color the vertices of
(G such that no two adjacent vertices obtain the same color. The interest in the chromatic
number of diagrams is motivated by a lack of small explicit examples of triangle-free graphs
with chromatic number > 3. In [NR87] Nesettil and Rodl showed that calculating the chromatic
number is NP-hard for diagrams. In the first part we give bounds for the chromatic number of
an arbitrary diagram.

In the second part we investigate the chromatic number of diagrams under the restriction
that P belongs to a special class of orders. The first results are: x ( Dp ) < 3 for semi-orders
and series-parallel orders.

It is know that lattices (Bollobds [Bo77]) and 2-dimensional posets (Kiiz and Nesetiil
[KN91]) can have diagrams of arbitrarily large chromatic number. We construct a family
I of orders with x ( Dy, ) = k. An order [; in this family is both, an interval orders and
N-free. This leads us to the investigation of these two classes. In the case of N-free orders we
can show that [log,(height (P )+ 1)] is an upper and lower bound for the chromatic number.
For interval orders we provide an upper bound of [% log, (height (P )) 1
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For all the constructions related to upper bounds there exist fast algorithms which give
colorings in that bound. For the algorithms we will always assume that G is given together
with a diagram orientation of a corresponding poset P. This assumption can not be removed

since the decision problem whether a given graph is a diagram or not is NP-complete. This is

another result of [NR8T7].

1 General Bounds

Some simple bounds

For an order P = (V, <) the height of a vertex v € V' is defined by
. 1 iff v 1s minimal
height (v) = max height (w)+ 1 otherwise. (1)

The height ( P ) is the maximal height of a vertex. The maximal difference of the height of
two covering points is

A(P) :rriaxheight(w)—height(v) (2)
Remark 1.1 y(Dp) < A(P)+1 and such a coloring can be given in linear time.

Proof: Assign the color [height (v) mod (A( P )+ 1)] to a vertex v. By definition of A( P)

two points v, w with w < v never obtain the same color. O

Since A ( P) < height ( P') we also obtain y ( Dp ) < height ( P ).
Let L = vy,...,v, be a list of the elements of V. The list coloring of G = (V| E) with
respect to L is obtained by the following rule.

for v = v; to v, do

Color v; with the first color which is not used for a v; with 7 < ¢ and {v;,v;} € F.

The list L induces an orientation £ on E, which may be used to bound the number of colors
needed in the list coloring by (rglea‘gc indegreeg(v)) + 1.

Let L be a linear extension of a poset P. Apply list coloring with respect to L to the
diagram of P and note that indegree (v) < width ( P). Hence,

Remark 1.2 y ( Dp ) < width(P)+ 1 and such a coloring can be given in linear time.



Combining Height and Width

For an order P = (V, <) consider a partition of V into V" and V*. Since we may color both

induced suborders independently it is then clear that,

X (Dp) < height (P

va ) + width (P

vo ) L (3)

To make use of this observation we need a partition of V' such that height ( Plun )—I—width ( Pl )

is small. This is the aim of the following theorem.

Theorem 1.3 Let P = (V,<) then there is a partition Vi,..., Vi of V such that each V; is

etther a chain or an antichain and
k< L/Qwﬂ (4)

The following proof is due to U. Faigle.

Proof: We proceed by induction on n = |P|. We may assume that height ( P ) and width ( P)
are both greater than v/2n since otherwise we could easily cover P with height ( P ) antichains
or width ( P') chains.

So there is a chain €' and an antichain A such that their union U is of size greater than
2-v2n — 1.

By induction we may partition V' \ U into at most \/2 -(n—2-v2n 4 1) chains and an-
tichains. This value is always less than V2n — 2 and so we are done. 0

Observe that the bound given in Theorem 1.3 is sharp. A family of examples are the orders
given by k parallel chains of size 1,... k.

A decomposition theorem like ours has independently been obtained by Caro [Ca90] in the
more general context of perfect graphs. Indeed the proof given here can also easily be adapted

to perfect graphs.

Corollary 1.4 If a poset P has n elements then x ( Dp) < [\/an and a coloring using at

most this number of colors can be computed in O(n?).

Proof: Let V" be the union of the chains and V" the union of the antichains we obtain from
Theorem 1.3. Now, the inequality is an immediate consequence of Formula (3).

The complexity of the corresponding coloration algorithm is dominated by the complexity

of the computation of an appropriate partition. According to our proof above we have to cover

the order with height ( P') antichains or width ( P ) chains or we have to find maximum chains

and antichains iteratively.



The later can happen at most O (y/n) times. In each iteration we have to find a maximum
chain and antichain. A maximum chain together with a partition into height ( P) antichains
can be found by labeling and scanning in time O (n?). A maximum antichain together with
a partition into width ( P ) chains can be found by using matching in bipartite graphs in time

O (n*®). So the running time is bounded by O (n?). 0

A Bound that is Asymptotically Better

The bound on x given by the previous construction in Corollary 1.4 is asymptotically improved

by the following theorem and proof that are due to Tuza, [Tu91].

v/ ) col-

Theorem 1.5 Triangle free graphs, and hence diagrams, admit colorings with O(loglogn

ors.

Proof: First we combine two bounds on the size of independent sets in a triangle free graph.
According to Ajtai et al. [AKS80], see also [Gr83], a triangle free graph (e.g. a diagram) of
average degree d contains an independent set of size Q(%). On the other hand it contains
an independent set of size d, namely the neighborhood of some vertex. A simple calculation
using the threshold d = \/ﬁlolgol% warrants an independent set of size (y/nloglogn). This
large independent set can be found efficiently.

Now to show the overall bound, take a large independent set, assign a new color to it and

N

loglogn

iterate with the points that are not yet colored. After O( ) steps all vertices are colored.

a

2 Bounds for Special Classes of Orders

In this part we investigate the chromatic number problem on diagrams corresponding to special
classes of partial orders (we refer to [M689] for undefined terms). The hope was that — as with
other NP-hard problems — the additional structural properties of these classes lead to better

bounds or even to polynomial algorithms. It turned out that this is indeed true.

Some Classes with Bounded Chromatic Number

With 1 & k£ we denote the disjoint union of a k-element chain with a single point.

Remark 2.1 If Dp has no 1 & k as induced subdiagram then A(P) < k, and hence — with
Remark 1.1 — we have x (Dp ) < k.



Semi-orders are those interval orders which do not have 1@ 3 as induced suborder, therefore:

Remark 2.2 [If P is a semi-order then x ( Dp ) < 3 and the chromatic number can be calculated

in linear time.

To get linear time we need to know if x ( Dp ) =1 or v ( Dp) = 2, checking this is straight-

forward.

Theorem 2.3 [If P is series-parallel then x ( Dp ) <3 and x ( Dp) can be caleulated in linear

time.
This is a direct consequence of

Lemma 2.4 If P is series-parallel then there is a 3-coloring of Dp with colors a, b and ¢ such

that all minimal elements of P are colored a and all mazimal elements are colored either a or

b.

Proof: We proceed by induction on the decomposition.
If P is a parallel composition the statement is trivial.
So let P = P; x P, be a series composition with P; as lower part. By induction they have

colorings as desired (see Fig. 1).

a|b b|a

P, .

Figure 1: A Coloring for a series-composed order

Apply the transposition w1 = (b, ¢) to the coloring of Py and the transposition w5 = (a,b)
to the coloring of P,. After that the colorings of Py and P, fit together to a coloring of P, since
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the minimal elements of P, are now all colored with b and the maximal elements of P; are only
colored with colors in {a,c} .

This coloring obviously has the desired properties. O

Diagrams with High Chromatic Number

We give an explicit construction for diagrams with arbitrary chromatic number.

For nonnegative integers k let [ be the interval order defined by the open intervals with
endpoints in {1, . ,2’“}. It has height (I ) = 2% — 1.

Two vertices v and w in [ fulfill v < w iff the right endpoint of the interval of v equals
the left endpoint of w. The diagram of I has been studied under the name ‘shift-graph’. We
include the well-known proof of the next lemma (see e.g. [HET72]), since we will need similar

methods when discussing the case of general interval orders.

Lemma 2.5

X(ka):k

Proof: Suppose we have a proper coloring of Dy, with colors {1,...,¢}. With each point
i associate the set C'(i) of colors used for the intervals having their right endpoint at ¢. Note
that for 1 <1 < j < 2% we have C(j) € C(7). Therefore all the 2% subsets C'(z) of {1,...,c}
are distinct. Hence 2¢ > 2% and ¢ > k.

A coloring of Dy, using k colors can recursively be obtained by the following construction.
The intervals with both endpoints in {1, .. ,Zk_l} are an {/,_;. A second [,_; consists of those
intervals with endpoints in {2’“‘1 +1,... ,2’“}. Color the vertices of each copy with the same
set of & — 1 colors. A new color is used for the remaining vertices of [, i.e. for the antichain
of intervals containing 2%~! 4 % Since intervals of the two copies of [_; are separated by the

interval (251,281 4+ 1) we have thus constructed a proper coloring. O

Theorem 2.6 x ( Dp) can be arbitrarily large for N-free orders and interval orders.

Proof: [; is an interval order. We have to show that it is also N-free.
Let w,v,w,z be an N, say u < v,w < v,w < z. Then we know that v and x have the same
left endpoint and u and w have the same right endpoint. But then u < x, too. This contradicts

the assumption that u,v,w, x induce an N. O



N-free Orders

Remark 2.7 For every k € IN there is an N-free order P such that
[log,(height (P)+1)] < x(Dp) =k . (5)

The remark is a direct consequence of the previous theorem. We now give an upper bound
for the chromatic number of diagrams of N-free orders which is logarithmic in height ( P) too.
The family {/;} of Lemma 2.5 is shown to consist of extremal N-free orders with respect to
the chromatic number of the diagram. The technique used relies on the fact, that an N-free

order can always be subdivided by an antichain.

Theorem 2.8 [If P is N-free then x ( Dp ) < [log,(height ( P)+ 1) ]| and such a coloring can

be calculated in linear time.

Proof: The proof is by induction on height ( P ).

The elements v of P with height (v) = [%height ( P)W = k form an antichain A. It need
not be maximal, but elements which are parallel to all the elements in A have smaller height.
Let

A = {U € Vl height (v) < k and Yw = v , height (w) > k} (6)

Note that A* = AU A’ is a maximal antichain. Now partition V' \ A* into two sets
V_:{vl v<af0rsomea€A*} and V"’z{vl a<vf0rsomea€A*} (7)

It is then clear that the suborders induced by V* and V=, P~ and P* say, both have height
less than k. The N-freeness of P warrants that no element of P~ is covered by an element of
P*. So we may color both suborders independently and assign a new color to A*. This gives
a coloring as desired.

The color of an element only depends on its height and the height of its immediate successors.

With {(v) = Hiin{height (w) —1}, the color of v can be found by some bit operations on
height (v) and [(v). 0

Interval Orders

A similar idea as for N-free orders can also be used for interval orders. We could e.g. divide
an interval order into two parts, but then we would need two antichains to separate them in
general. To get the constant small (& 1.8) we use a partition into three parts and get the

following.



Theorem 2.9 If P is an interval order then

3
Dp) < 1 height ( P 8
V(Dr) < ([ tow, (height (7)) )
and such a coloring can be determined in linear time.

Proof: We proceed by induction on the height of P. We may assume that height ( P) > 3.

The following arguments are illustrated in Fig. 2.

Figure 2: Splitting an interval order

Take an interval representation of P. For v € V let [, and r, be the left respectively right
endpoint of the interval in this representation. We say that v dominates w if the interval of w
is contained in the interval of v. Note that there is always a maximum chain of P such that no
element of that chain dominates any other element.

In such a chain we choose elements v and w at height % and % Define seven sets of elements

Vi={a| re <1}, Av={e| L < <},
%:{xlrv<lx<rx<lw}, Azz{xllwglxgrw},
Vg,:{:zjlrw<ll,}, B—{:Jcllx<lw§rx},

C:{x| lxgru<rx<lw}.

No cover relations holds between elements of different V; , ¢ = 1,2, 3, since the interval of

either v or w lies between them. So they may be colored independently by induction.



Each of Ay, Ay, B and (' is an antichain. Use three new colors to color them. One for B,
one for C' and one for A; and A, together, this can be done as long as V5 is not empty.

The total amount of colors needed then is 3 times the maximal recursion depth, which is

log, height (P) = logaheiahi(P)

log, 3
To obtain the linear time complexity observe that the color of an element is determined

by the first recursion level in which it falls into one of the sets Ay, Ay, B, C. But this can be

calculated iteratively if we

1. determine a non-dominating maximum chain in scanning P from bottom to top

2. determine for each element the lowest and highest element of that chain which is parallel
O

Recently, Felsner and Trotter [F'T91] have obtained a much stronger result concerning the

chromatic number of the diagram of interval orders: If P is an interval order then y ( Dp) <

[log, (height (P))] + 2.
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