
Lawrence Berkeley National Laboratory
Recent Work

Title
File Migration in Distributed Computer Systems

Permalink
https://escholarship.org/uc/item/2zf8q48c

Author
Porcar, J.M.

Publication Date
1982-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zf8q48c
https://escholarship.org
http://www.cdlib.org/

LBL- 14 763

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

RrT!e

Physics, Computer ScienceRATO
Mathematics Division 	t1982

LIBRARY AND
DOCUMENTS SECTION

FILE MIGRATION IN DISTRIBUTED COMPUTER SYSTEMS

Juan M. Porcar
(Ph.D. thesis)

July 1982 TWO-WEEK LOAN COPY

Thisjs aTibrary Circulating Copy

1hich may be b6rrowed for two weeks

'Fora 4ersonal retention copy, call
Tech. Info. DivisiQn, Ext. 6782.

P 	
'I

r 	-

11
-

I%

Prepared for the U.S. Department of Energy. under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-14 763
Progres-82.6

) V

File Migration in Distributed Computer Systems

Juan M. Porcar

Physics, Computer Science and Mathematics Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

Ph.D. Thesis

July 1982

Copyright 0 1962

\- 	I

*The United States Department of Energy has the right to use this
thesis for any purpose whatsoever including the right to reproduce
all or any part thereof.

This research was supported by the Applied Mathematical Sciences
Research Program, Office of Energy Research of the U.S. Department
of Energy under Contract DE-ACO 3- 76SF00098; and DE-ACO 3- 76SF00515
(SLAC), and by the National Science Foundation grants Nos.
MC575-06768 and MCS77-28429.

ACKNOWLg1JGMENTS

I wish to thank my advisor, Professor Alan J. Smith, for making this

dissertation possible by providing the topic, data to conduct the research,

financial support, and staunch direction for almost five years.

My gratitude goes to Professor Domenico Ferrari for his example as a

researcher and as a teacher. Without his encouragement and his sugges-

tions, this thesis might have never been completed.

I want to thank Professor Ronald Wolff for serving on my thesis commit-

tee.

I am also indebted to the following persons and organizations:

Two generations of members of the PROGRES research group at Berke-

ley. Their comradeship will never be fogotten. Particular thanks go to my

friends Ozalp Babaoglu and Frank Olken for being always ready to listen and

to share their knowledge.

Carl Quong and his staff of the Computer Science and Applied Mathemat-

ics Department.at the Lawrence Berkeley Laboratory for being exceedingly

cooperative and for providing the unbounded computer resources required

by my research and my mistakes.

0 	 The 'Comisión de Intercambio Cultural entre Espaha y los Estados Uni-

dos de America' for a Fulibright Foundation Grant to come to Berkeley in the

first place.

The National Science Found ation,under grants MCS75-06768 and MCS77-

28429 and the Department of Energy under Contracts DE-AC03-76SF00098 (to the

0

11

Lawrence Berkeley Laboratory) and DE-AC03-76SF00515 (to the Stanford

Linear Accelerator Center) for financial support.

Finally my parents and Michelle, for their love and their encouragement

during the research and the writing of this dissertation.

0

91

TABLE OF CONTENTS

Computer Networks Concepts . 	1

1.1 Introduction 	 . 	1

	

1.2 The File Assignment Problem .. 	5

	

1.2.1 System Model ... 	6

	

1,2.2 Cost Functions ... 	8

	

1.2.2.1 Storage Costs ... 	8

	

1.2.2.2 Transmission Costs .. 	8

1.2.2.3 Delay Costs 	... 	9

	

12.3 Type of Solution .. 	10

1.3 Related Work 	... 	11

	

1.3.1 Static Assignment of Files ... 	11

	

1.3.2 Dynamic Assignment of Files ... 	13

	

1.3.3 Hierarchical File Systems Management 	15

	

1.4 Objectives and Contributions of this Research 	16

Nxploratory Data Analysis ..

	 19

	

Summary.. 	19

	

Introduction.................. .. 	j.

	

2.1 Obtaining the Activity Traces .. 	20

	

2.1.1 The System Management Facility (SMF) 	21

	

2.1.2 The Generation of the Reduced Traces 	2.

	

.22 The SLAC Installation ... 	23

111

iv

2.2.1 Basic Numbers 23

2.2.2 	Activity 	OverTime 	... 28

2.2.3 File 	Usage Characteristics 	... 32

2.3 The 	Hughes 	Installation 	.. 41

2.3.1 	Basic 	Numbers 	.. 42

2.3.2 	Activity 	Over Time 	... 44

2.3.3 File 	Usage Characteristics 	... 44

2 .4 	Conclusion 	.. 53

3. Partitioning of Centralized Computhr Systems 57

Summary.. 57

Introduction... 57

3.1 	The 	Distribution Problem , 	 58

3.1.1 	Statement of the Problem 60

3.2 Solution of the Distribution Problem 	.. 61

3.3 The 	Partitioning 	Procedure 	... 63

3.3. 1 	Definition of 	Proximity 	.. 63

3,3.2 	Clustering 	Algorithm 	.. 67

3.3.3 Assignment of Components to Nodes 68

3.4 Choice of a Partitioning Strategy 	.. 69

3.4.1 	The 	Migration Algorithms 	... 70

3.4.2 	Experimental 	Results 	.. 70

3.4.2.1 	SLAC 	Trace 	... 7

3.4.2.2 	Hughes 	Aircraft 	Trace 	.. 77

3 .5 	Conclusion 	... 80

, 	.-'

V

4. Single-Copy Migration Policies 	 . 83

Summary... 83

Introduction... 83

4.1 Access to Remote Information 	.. 85

4.2 Model 	of 	File 	Sharing 	... 87

4.2.1 	Full Markov Model 	... 89

4.2.2 	Reduced Model 	... 93

4.3 Optimal Long Term Solution .. 96

4.4 Suboptimal Policies 	.. 103

.4.4.1 	Remote 	I/O 	.. 104

4.4.2 	Optimal Remote 	I/O 	... 104

4.4.3 	Most Recently 	Used 	.. 105

4.5 	Simulation Results 	.. 106

4.5.1 	SLAC 	Trace 	... 108

4.5.2 Hughes Aircraft Trace 	... 110

4.6 	Conclusions 	... 113

• . 	 5. Multiple-Copy Migration Policies ..114

Summary...114

Introduction..114

5.1 Management of Multiple Copies of Files ..115

5.1.1 Mode of Operation ..117

5.1.1.1MasterCopy 	..117

5.1.1.2 Write Lock ..117

• 	5.1.1.3 Read Locks ..118

vi

5.1.1.4 Reading the File 	 118.

5.1.1.5 Updating the File ...118

5.1.1.6 Distributing the Updates ...119

5 .1.2 Cost Model 	...120

5.2 The Migration Policies ...122

5.2.1 Mean Update Rate (MUR) ...124

5.2.2 Working Set (WS) ..124

5.2.3 Space-Time Update Working Set (STUWS)125

5.2.4 Delete On Update (DOU) ..125

5.3 Experimental Results ..126

5 .3.1SLAC ...127

5.3.2 Hughes Aircraft 	..132.

5 ,4 Conclusions 	..132

6 . conclusion ..136

6 .1 Summary ..136

6.1 Directions for Future Research ...137

6,1.1 Extension to Other Systems ...137

6.1.2 Database Management Systems ..138

6 .1.3 Related Files 	...138

6.1.4 Constrained Design Problem ...139

6 .1.5 Other Policies ..139

Bibliography..140

Acknowledgments ...i

CBAPTKR 1

COMPIJIER NETWORK CONCEPTS

1.1. Introduction

In the last decade the areas of computing and communications have

been converging rapidly. In the communications industry, computers are

used extensively for switching, routing, maintenance and a number of so

called enhanced services, like message storing and forwarding. At the same

time, communication devices have become an essential component of com-

puter systems. Many computers are linked to remote terminals and to other

computers. This allows a collection of machines to work together in the solu-

tion of a single problem, or to share a database. A collection of autonomous

but interconnected computers is called a Computer Network [Tan6l]. When

there is a great degree of cohesiveness and transparency in the operation of

the computer network, it is known as a distributed computer system or a dis-

tributed system for short.

In the past several years there has been an increasing interest in the

design and the use of distributed systems. We will elaborate briefly on three

of the reasons behind this rise in popularity: the need for sharing unique

resources, the favorable price/performance ratio of small computers corn-

pared to large mainframes, and the changes in the relative pricing of corn-

puting and communications.

Computer networks first appeared in organizations that were operating

many independent computers, often located far apart. By connecting the

machines together, all resources can be made available to all users,

2

irrespective of their physical location. These computer networks, also known

as resource-sharing networks, allow users to share expensive hardware,

unique software and valuable data. They can also provide better service

through load leveling and backup of failed machines.

Large geographically distributed networks have served as testing

grounds for new hardware and software technologies upon which more recent

distributed systems are based. These technologies include store-and-forward

packet switching [Dav79, Tob78], adaptive routing [McQ74] and layered pro-

tocols [McQ78].

The best known among the resource-sharing networks is the ABPA1ET

[McQ77], which connects over one hundred computers belonging to universi-

ties and defense contractors, spanning half the globe, from Hawaii to Norway.

The Arpanet is a unique system but there exist some commercial networks

that offer the same type of services. For example, computer manufacturers

offer networking products under the form of Network Architectures,. A net-

work architecture is a set of hardware and software modules that allow users

to turn their geographically dispersed computing facilities into an intercon-

nected network. Two examples of these products are IBM's SNA [GreBO,

HobBO] and DECs DECNET [WecBO] An even more general networking service

is provided by the Public Networks Like Telnet and Tymnet in the U.S. or

Datapac in Canada. Almost any machine can be connected to one of these

networks by means of a special adapter. Internationally agreed upon proto-

cols, like X.25 [Fo160] permit the transfer of information between machines

and between networks [Bog, UnsBl].

The second reason that we gave for the recent development of distri-

buted computer systems was the superior price/performance ratio of mini

3

and microcomputers over large mainframes. Networks of small computers

are replacing large mainframes in applications where no single, task requires

the processing power of a large machine. In this type of distributed system,

all the machines are usually within the limits of a room, a building, a

manufacturing complex or a university campus. Hence the name of Local

Area Network (LAN) [Thu79].

Besides lower total cost, Local Area Networks provide incremental

growth. When a local area network. requires more processing power, addi-

tional processors can be added without the need for a total system change.

This also means that the, average system cost over a period of time is lower

because of the smaller initial investment.

Distributed systems in general can match the decentralized structure of'

an organization better than a central data processing facility. Several divi-

sions in a company may want to use their computers for different purposes

while still being able to access some global database. To this end, they can

optimize their machines by purchasing different processor models, different

peripherals or different software packages. This usually results in managers

feeling in control of their computing facilities and having a better attitude

towards data processing.

The third and last reason for the widespread use of distributed systems

is. the relative pricing of computing and communications equipment. In the

nineteen sixties, information processing was relatively expensive and sys-

tems that gathered data from wide geographical areas tended to transmit

raw data to a central computing facility, where it was processed, and maybe

stored or sent back to the point of origin. More recently, the pricing struc-

ture has changed dramatically and communications costs tend to be higher

4

than processing costs. Therefore, it makes sense to use as much local pro-

cessin,g power as possible to reduce the volume of data transmitted.

Many distributed computer systems are now in operation whose primary

design goal is to reduce the transmission costs of an application. One such

example is the on-line inventory control and customer invoicing of Lowes

Companies, Inc [Ch.a77]. This particular system has one small computer with

disk storage and up to sixteen terminals at each one of the. chain's 140

stores. Most information about store inventory, customers and prices is kept

locally and updated once a day from the central corporate computer center.

Distributed systems of this same kind can be found in banking, manufactur-

ing, airline seats reservations, etc.

Performance is an important factor in the design of distributed systems.

Most performance evaluation studies of distributed systems concentrate on

the communications subsystem. Popular topics are the measurement and

modeling of various topologies [ShoBO, Bux81, Mar81], performance com-

parisons for different protocols [Hay8l, ArtBla], routing algorithms [Gop8l]

and flow control for local and geographically distributed networks [Lam8la,

Won78, LamBib, TenBl, RazBO]. While work in these areas is necessary in

order to solve unavoidable engineering problems, there is a more fundamen-

tal problem in the performance of distributed computer systems: the parti-

tion of the workload and the assignment of its components to the elements of

the distributed system. In general terms, the good performance of a distri-

buted system depends on the existence of both parallelism and locality in

the application for which it is used. The parallelism is necessary in order to

process as many tasks in parallel as possible. On the other hand, there must

be a good amount of locality to keep the communications requirements

5

moderate. ma general purpose system, good locality is achieved by a sensi-

ble assignment of files to nodes. The goal is to keep the files as close to their

users as possible.

In this dissertation we study some of the performance issues related to

the transmission of 'information in distributed computer systems. More

specifically, we are seeking algorithms for placing and migrating information

in distributed systems, in order to minimize both the volume of data being

transmitted along communication links and the delay experienced by the

users. In the remainder of the introduction, we will discuss this in more

detail, both reviewing past work in the area and presenting our approach to

the problem.

1.2. The File Assignment Problem

The distribution of files among the storage elements of a distributed sys-

tem may have a serious impact on its overall performance. A distribution of

files that results in many remote access to files is likely to result in poor sys-

tem performance. Remote accesses increase the load on the transmission

susbsystem, thus delaying other sources of communication, such as terminal

traffic. Remote access is also slower than local access because the network

delay gets added to the disk access delays. Finally, remote accesses

increase the load on the processor and memory in the form of operating sys-

tern overhead. This overhead comes from the handling of protocols, creation

of packets, maintenance of buffer pool space, checksum computation and

error handling. In conclusion, any application will perform much better if all

its files reside in the local system than if it needs to access remote files. The

File Assignment Problem (FAP) is concerned with optimizing performance in

the context of where to put the files in a distributed system.

It is not too difficult to formulate the FAP as a general optimization

problem by using a simplified model of the workload. This has been done in
V

the past and section 1.3 reviews this approach to the problem. However, it is

very difficult to obtain a solution to this problem for any reasonable system

size and number of files. Implementing this on a real distributed computer

system would be even costlier because the optimization algorithm would

have to be run rather frequently to keep the assignment optimal. We will

narrow down the scope of our research space, in order to obtain less general

but more useful solutions to the FAP.

In the next subsections, we will characterize the type of systems that we

are interested in (system model), the type of cost functions that we consider

and the type of solution that we are seeking.

1.2.1. System Model

For the purposes of our research, the system model has three relevant -

components: the computers at the nodes, the way in which the information is

stored and the type of network that connects the nodes.

We only consider general purpose computers, with enough processing

power and storage capacity to be able to run all their programs locally. This

eliminates systems that are used in real-time applications or personal com-

puters that do not have any disk capacity.

We also require that the information be stored in a relatively large

number of independent files. This rules out the database management sys-

tems, which usually keep most of their data in a single logical entity: the

database. One of the reasons for choosing this type of system as the object

of our research has to do with our methodology. We will use trace-driven

simulations to evaluate our policies and the traces that we have were

VA

obtained from general purpose systems used for program development and

production runs of scientific and business-oriented programs. It is certainly

not obvious (a priori) that the results based on these measurements can be

applied to drastically different systems like transaction-based or database

management systems.

Our model for the network is a fully connected network with equal corn-

munication costs on all the links. In essence, we eliminate all the topology

and routing considerations from the problem. This model of the communica-

tions subnetwork does not match some real systems, like the ARPANET,

where the degree of connectivity is much lower and wherethe connections

have widely varying bandwidth and delay characteristics. However, this is

not to say that our results will not extend to most computer networks. In the

first place, most local area networks do have fixed routing. This includes

ethernet-like networks [Met76, Eth8l], rings [Wi180], star-shaped networks

[Lud8l] and their derivatives. But even for networks with arbitrary topology,

there are good reasons for not modeling too closely the structure of the

communications subnetwork. The main reason has to do with the layered

structure of the protocols that are used in most networks. In the framework

of the Reference Model of the Open System.s Interconnection [ZimSO] for

example, all the decisions about routing and delay optimization are done at

the Network Layer (layer 3 in the OSI model). File migration, on the other

hand, should be implemented at the Presentation Layer (layer 6) or at the

Application Layer (layer 7), as a file system service. Since all layers above

the Network Layer regard the network s a fully connected grid, and the

information on which the optimal routing is done is not available above that

layer, it would be very difficult to make decisions at the file migration level

that could influence (positively) the traffic conditions in the subnetwork.

F;]

1.2.2. Cost Functions

We will consider three types of cost in the operation of distributed sys-

tems: storage costs, traffic costs and delay costs.

1.2.2.1. Storage Costs

Storage costs are incurred when information storage devices are bought

or leased. The price structure of storage is very dependent on current tech-

nology. In particular, there are large economies of scale tobe made when

buying disk storage (the predominant type of on-line storage in today's sys-

tems). Furthermore, disk storage can only be purchased in discrete

amounts, adding to the complexity of the price as a function of the total

capacity of the system. We will adopt a much simplified price structure

where storage costs are proportional to the amount of information stored in

a given node. In some cases we will make the extra assumption the the unit

cost is the same at all the nodes.

1.2.2.2. Transmission Costs

Transmission costs are incurred when some information is actually sent

over communication lines. The best way of thinking about these costs is to

assume that the communication between machines is through a public data

network. In a public data network (like Telenet or Datapac) one basically

pays for the number of packets that are actually sent. Under those condi-

tions, and assuming that packets are utilized efficiently, the transmission

costs are just proportional to the amount of traffic generated. We will not

consider the problem of packet fragmentation because, in a situation where

most of the transfers are large file records or entire files, the utilization of

the packets should be of no concern. Trying to model the cost- of communi-

cations over leased lines or switched circuits is much more difficult because

one is paying for the circuit: even when it is idle, and the circuit's utilization,

in turn, depends on the dynamic characteristics of the traffic.

When measuring traffic in a communications network, it may be con-

venient to make the distinction between data traffic and control traffic. Data

traffic comes from the transmission of useful information. Data traffic is in

many ways independent of the details of the communication subsystem and

therefore easy to measure. Control traffic can be considered as overhead

traffic and it includes acknowledgments, directory 'inquiries, routing infor-

mation and so forth. Control traffic is more dependent on the particular

implementation of the system. Nevertheless, control overhead is largely pro-

portional to the number of lOs and it may be estimated by measuring this

number.

1.2.2.3. Delay Costs

Delay. costs are due to the cost of the resources that are allocated to:a

task and held unproductive while the task is waiting for the completion of .a

transmission. User time is an example of delay cost., Delays occur because

of physical limitations in the transmission of information. The transmission

rate measures the amount of data that can be transmitted through a com-

munication channel per unit of time with a nominal probability of error.

Given this physical limitation, a data transfer is subject to two sorts of delay:

the delay that the transfer would experience if the entire bandwidth of the

channel were assigned to it, and the delay due to the fact that it shares the

channel with other transfers. In this research, we are interested primarily in

the first type Of delay. This delay consists of the transmission time and of

some unavoidable propagation time in the network (including that consumed

10

by the network interfaces). The transmission time is proportional to the

amount of information transmitted. The propagation delay is a characteris-

tic of the circuit and hence is a constant, P , for all transmissions between

two points of a network. Therefore, the delay A involved in sending x bytes

over a network is of the form:

-

1.2.3. Type of Solution

The File Assignment Problem is usually formulated as a constrained

optimization problem. Total storage at each node, maximum response time

and line bandwidth are given, and an optimal assignment is found. Our treat-

ment, on the other hand, is to minimize the overall traffic and delay and to

determine what storage capacity and what line bandwidths are necessary.

Eliminating storage and bandwidth constraints from the statement of the

problem allows us to consider files independently of each other. This in turn

means that a global optimal performance for the system can be achieved by

optimizing the operation of each file in the system.

We are interested in solutions to the File Assignment Problem that can

be implemented in a distributed file system. In order to be implementable,

policies may only rely on past information about the files and the system.

Under these conditions, a policy is a mapping from the present state of the

file (including some of the file history) into a set of possible actions (migrate

the file, generate a new copy, destroy a copy, etc).
I

Finally, we prefer decentralized policies, that do not require a central

database. Decentralized policies can be easier to implement, are more

robust in the face of partial failures and may even eliminate some of the

traffic.

11

After this introduction to the File Assignment Problem, we present

related work that is relevant to this research.

1.3. Related Work

The File Assignment Problem has received substantial attention in the

literature. A large fraction of the work on this topic finds its inspiration in

the Plant Location Problem. The Plant Location Problem is well documented

in the Operations Research literature [Coo63, Coo64. A1c76]. Given a set of

consuming locations 'spread over a network of distribution channels, the

Plant Location Problem deals with the assignment of manu.facturirg plants to

nodes of the network in order to minimize the distribution costs of the goods

from factories to consumers. The analogy with the File Assignment Problem

is clear when plants are substituted by storage elements and consumers by

processes accessing the files.

We now review some work related to our research in the following areas:

Static assignment of files.

Dynmic assignment of files.

Hierarchical file system management.

13.1. Static Assignment of Files

The topic of static assignment of files to the nodes of a computer net-

work is by far the most popular among the papers dealing with the File

Assignment Problem. A static assignment is a time-invariant mapping

between nodes of a computer network and the files of the system. The

assignment determines how many copies of each file should exists in the sys-

tem and in what nodes should the copies be stored. All the papers that we

are aware of present the problem as a 0-1 integer program [Cas72, Cas73,

"l

12

Chu76, Ho173, Lun77, Luri7B, Mah76, Mor77, Ram79, Wah79]. The unknown

variables (one for each file-node pair) indicate whether a given file has a copy

assigned at a given node. Most papers make the following assumptions in

writing the operating equations.

The amount of information transmitted from any file to any node per

unit of time is a known quantity. This information is transmitted at a

constant average rate.

Queries are performed from the closest copy of the file. Updates are

sent to all the copies of the file.

The cost function is, in most cases, a sum of storage and traffic costs. A

few papers consider delay costs. In this type of formulation it is very easy to

add constraints to the problem. Most statements of the, problem consider

constraints in the storage available at each node, in the bandwidth of the

transmission lines and on the average response time of queries.

A paper by Eswaran [Esw74] shows that the File Assignment Problem,

formulated as a 0-1 integer program, is an NP-problem in the general case.

It is hence very unlikely that an efficient algorithm can be found to solve the

problem. However, quite some effort has gone in trying to find good heuris-

tics to solve this type of 0-1 integer problem. Two approaches have been

taken: purely theoretical and experimental. Among the theoretical papers,

there are studies of particular issues, like the maximum number of copies

that the optimal solution can have [Be176, Gra77] or the form of the optimal

solption for networks that have an easy topology [Whi7O].

The more experimental papers use standard solution methods for

integer programs, like branch and bound, with heuristics to limit the solution

space. Most of these studies report successful attempts to apply these

13

heuristics to small problems. In these small case studies, the times needed

to find optimal solutions are similar to those needed to solve linear pro-

grams. However, it must be pointed out that the size of the examples is

exceedingly small, various orders of magnitude smaller than the size of real

systems [Cha76, Tri8O, FisBO].

There are three major problems with the treatment given to the PAP by

the papers that we have mentioned so far:

The workload model is top simple. Except for very specialized systems,

modeling the access tofiles by a constant rate over long periods of time

is an oversimplification and does not correspond to the obser*d

behavior of file systems in general purpose computers.

There is no validation work based on measurements or simulation.

The solution is difficult to implement beyOnd the design stage. In order

to use this approach during system operation, a central location should

collect all the information regarding rates of access and run the optimi-

zation. The optimization is basically done using mean values for the

parameters. Unless the workload is very stable, it is unlikely that the

resulting optimal assignment will perform very well.

The work that we describe in the next subsection addresses some of

these criticisms.

1.3.2. Dynamic Assignment of Flies

A few papers in the literature deal with the dynamic allocation of files in

distributed systems. One approach that has been suggested is to solve

repetitively one of the static formulations [Lev78; Ros73, Ros75]. This takes

care of our objection about the stationarity of the access rates, but makes

14

the problem even more difficult from the computational point of view. Furth-

ermore, none of the authors has looked into the problem of the adaptive esti-

mation of the access rates.

A more promising approach has been proposed in the automatic control

field [Seg76, Seg79]. The main tool here is dynamic programming, both

deterministic and stochastic. The deterministic dynamic program provides

the true dynamic optimum once the period of the experiment is divided in a

number of periods where the access rates remain constant. The complexity

of the problem grows with the number of such intervals, so the dynamic solu-

tion is obtained at ahigh price. The stochastic version is also treated and

solved in a rather elegant manner. Our problem with this result, again, is the

model of file reference. The access rate is modeled as a continuous random

variable with a fixed number of different values that vary according to a Mar-

kov model. While this makes the model solvable, it is not the behavior that

we have observed in real systems. In particular, users are supposed to

access files with time-varying rates that are independent of each other.

What we have observed, rather, is that there is a strong structure in the

order in which users access a given file and this characteristic of the file

referencing process is important when designing migration algorithms.

There are a number of papers which find closed form expressions for the

optimal number of copies under some rather restrictive conditions [CofBOa,

Gra77, Cof8Ob, Cof81]. These papers come from the database management

field and their opt.imality criterion involves both the traffic considerations

and the reliability of the system.

Finally, we note that some of the papers on the subject of task assign-

ment in distributed systems have used solution methods that could be used

kq

15

in the dynamic assignment of files. In particular, a series of papers [Bok79,

Rao79, Lee 77] use methods of Network Flow Theory [For62] to minimize the

- traffic originated by a collection of tasks executing in a distributed computer

system. In this formulation, the processors are represented by the nodes of

the network and the amount of information exchanged by the tasks is

represented by the flow in the links of the network. The minimization of the

flow produces an assignment of tasks to nodes that minimizes the traffic in

the communications network.

The same approach can be adapted to the file placement problem by

assigning as flows on the network the traffic induced by the migration of

files. Solving the minimal flow problem then yields the optimal assignment of

the files to the nodes of the computer network.

1.3.3. Hierarchical File Systems Management

Our research is very much influenced by a small number of studies on

file migration between secondary and tertiary storage [Str77, Smi8la,

SmiBib, ArtBlb]. These studies pay much more attention to the workload

characteristics of the file system than any of the papers that we have

described in the previous sections. Moreover, they provide some type of vali-

dation through the use of trace-driven simulation. The traces used were

obtained during normal operation of large installations. All solutions are

It based on the existence of some sort of Locality [Cof73] in the reference pro-

cess and on the fact that Working Set policies are quasi-optimal in the pres-

ence of locality

The difference between hierarchical file system management and distri-

buted file system management is that the latter has one more dimension:

the position of the active copies. Active copies of the file can be at more

IV

than one location. In the hierarchical case, the files move betweenlevels of a

single system and there is only one active copy of the file, if any, at the top

level. If the file is not referenced for a period of time, it starts migrating to

lower levels until it ends up in an archival store. When the file is updated,

only the top level copy is updated. Having stale copies at lower levels is not a

problem because they are never accessed while there exists a copy at a

higher leveL

The distributed case has more degrees of freedom. In the first place,

ref erencing the file does not imply that the file is transferred to the location

of the process accessing it. It can be accessed remotely. Furthermore,

there are many 'top levels', one at every node, and each of the top levels

could have an active copy at a given time. Also, in the event of a file update,

all the copies must be updated.

Especially relevant to our work is Smith's paper on Long Term File

Migration [Smi8lb] where he introduces the concept of policy as a mapping

• from the current state of the file to the value of the control parameter

(there the working set window size). We use this concept in our description

of migration algorithms.

1.4. Objectives and Contributions of this Research

The emphasis of this research is on the evaluation of policies for placing

and migrating files in computer networks. We will restrict our attention to

shared files; i.e. files that are used by more than one user in the system.
I

Files accessed by only one user should be stored at the node from where the

user normally accesses the system. A different strategy could be adopted if

there were constraints in the amount of storage at certain nodes (or big

differences in storage price), but we do not consider this aspect of the

17

problem.

One of the objectives of the thesis is to characterize the process of

referencing shared files. This process has four main aspects: the order in

which users access the file, the interreference times, the frequency of

updates compared to the total number of accesses, and,the fraction of the

file that is accessed when it is opened. We will model this referencing pro-

cess by a semi-Markov process where the states are the nodes of the net-

work.

The evaluation of the migration policies will be done, when possible,

analytically, using the above mentioned model. Trace-driven simulations will

be used both to validate the models and to evaluate the policies that are not

tractable analytically. A brief outline of the thesis follows.

Chapter 2 consists of an exploratory analysis of the traces that are used

in the rest of this work. The initial data analysis is needed to learn some

basic facts about the traces (the number of shared files, the number of

users, etc), and also to discover files or users that must be declared outliers.

Examples of these outliers are files used by the system, like spooling files or

logs.

Chapter 3 is devoted to the generation of synthetic distributed systems.

This is necessary because the traces that we have were obtained from cen-

tralized systems. In this chapter we perform a partitioning of the user corn-

munity and obtain distributed systems that have the same number of users

and files, the same requirements of processing and I/O activity as the traced

systems but where users are located in a number of imaginary nodes in a

computer network. The procedure has some merit in itself because quite a

few installations will be facing this problem as they move from a large main-

RM

frame system to a distributed environment.

Chapter 4 present the single-copy policies for placement and migration

of files in distributed systems. We look at this type of policy in the first place

because it is easier to model and to implement. As a matter of fact, most of

the services provided by current networks are some sort of single-copy

mechanism [Hui8l, HwaBO].

Chapter 5 is devoted to the study of the more ambitious policies that

maintain several copies of each file in the network. We will limit our atten-

tion to the policies that maintain only up-to-date copies of the files.

EXPLORATORY DATA ANALYSIS

IuIIIli1A

Successful optimization of. computer systems requires the study of

actual systems behavior. This chapter presents an exploratory analysis of

traces of activity from two large computer installations (SLAC and Hughes

Aircraft). Distributions of variables such as interreference times, number of

users per file, file size, number of opens per file and fraction of file size

accessed per open are presented.

In the systems that we analyze, shared files (files used by more than one

user) are responsible for about 25 of I/O activity even though they only

represent a very small fraction of the number of files. This suggests that it is

important to optimize the management of shared files in distributed corn-

puter systems, where shared files generate unavoidable traffic on the com-

munications network.

Introduction

In this chapter, we present an exploratory analysis of the data that we

use in the rest of the thesis. The data consist of traces of computer systems

activity. These traces were obtained from large computer installations dur-

ing periods of normal operation.

We have two main goals in conducting this exploratory data analysis:

(1) Classify the files that appear in the trace. All files in a corñputer system

cannot be treated as coming from a homogeneous population because

19

20

different classes of files serve different purposes. Temporary files, for

example, are usually created to store information while a job is running.

Users are often times unaware of the existence of these files and have

no control over them. Permanent files, on the other hand, are used for

lông term storage' and users are usually responsible for the space that

they use up. It is normal that these two types of files show completely

different types of behavior. The exploratory data analysis also allows

one to detect files that are used in unusual ways and that should not be

included in: our studies. One example of this kind of Outliers are the

zero-sized files that are used as locks or time-stamps by some applica-

tions.

(2) Measure the systems activity. It is necessary to have measurements of

the systems activity in 'order to devise methods to improve its perfor-

mance. Literally thousands of masurements can be taken from the

traces that we study. In this chapter we present the measurements that

are related to the design of file placement and migration algorithms.

Section at describes how the traces were obtained and explains some of

their characteristics. The following two sections are devoted to the study of

two different installations. Section 2.2 presents the data from the Stanford

Linear Accelerator Center. Section 2.3 repeats the analysis for the Hughes

Aircraft system.

2.1. Obtaining the Activity Traces

The traces of system activity were generatd in two steps. First, IBMs'

System Management Facility (SMF) was used to obtain raw traces. Then,

reduced traces were created by extensive processing of the raw traces. We

will describe 'these two steps in the following subsections.

21

2. 1.1. The System Management Facility (SMF)

The System Management Facility (SMF) [1BM78, 1BM73] was primarily

conceived as an accounting tool. As such it collects data on system perfor-

mance and on the use of resources by jobs and job steps. It also collects

data on creation and use of data sets (files). SMF organizes the data in

records and writes these records onto files on disk or tape. It also backs up

these data sets to archival storage. All these capabilities were used to gen-

erate the raw traces.

As it comes out of the system, the data is not very usable. In the first

place, there are problems with the way the data is collected by SMF (see

[Dur78] for details). In addition, the format of the traces is not well suited

for statistical analysis and for use in trace-driven simulations. We will

describe these problems while, explaining how they have been solved in

preparing the reduced traces.

2.1.2. The Generation of the Reduced Traces

Reduced traces .bring improvements in at least five areas;

The records as archived by SMF may be out of chronological order. For-

tunately, each record contains a time stamp in microseconds. This is

enough to reconstruct the original series of events. The reduced traces

have all their records in chronological order. This facilitates sequential

processing of the traces and it makes possible the use of traces as input

to trace-driven simulations,

The traces generated by SMF have a problem related to warm start.

When tracing is turned on, some jobs are running, some files are open,

- 	 and many files exist in the file system. This may be a nuisance in a

trace-driven simulation and the expedient solution of forgetting the first

portion of the tape may cause further problems. The reduced traces

have dummy records for the jobs that are running at the beginning of

the trace. They also have dummy open records for the files that are

open at the beginning of the trace. Dummy records are also provided if

problems with the hardware or with the operating procedures produce

inconsistent events.

Naming problems are common in the SMF traces. Keeping track of

renaming operations and of files with the same name on different

volumes is more easily done once and for all during the generation of

the reduced traces than every time the traces are used. Unique ID's

(small integers starting at 0) have been assigned to all files, volumes,

opened files, user accounts, jobs and job steps.

SMF provides mostly "right parentheses" for the events that it records.

For example, it produces a job record at the end of each job and a close

file record after each use of a file. A trace in this form can be very diff i-

cult to use in trace-driven simulations. The reduced traces have "left

parentheses" for all events and they provide in those all the information

that is available about the event, even if that implies "future

knowledge".

Finally the reduced traces contain information about the size of files.

This information is not directly available in the raw traces. Rather, it

has to be computed from the amount of information that has been

stored in the file since creation. The size information has been very use-

ful in our studies.

23

el 	 We will not discuss here the format of the reduced traces. A paper by

Richardson [RicBO] contains a full description of the record format and the

operating procedures to generate reduced traces.

2.2. The SLAC Installation

The SLAC Computer Center is a large installation that serves a commun-

ity of physicists and scientific programmers. Programmers develop their

programs using Wylbur [Faj73], an interactive text editor and remote job

entry system. They then submit their jobs to the batch input queue, through

the ASP [Vin80] subsystem. The batch jobs interact with the file system

through the usual interface of IBM's OS operating system. Job output is

spooled by ASP and the users can look at their output files using again the

Wylbur editor.

We have described the mechanism of job submission because it has an

important relationship with SMF and with our traces. Wylbur runs as a single

job (task) for all users. Since it never ends during the normal operation of

the system, SMF does not report on the resources that it uses. In particular,

the SMF traces do not contain any indication of the files used from Wylbur.

In other words, our SLAC trace is exclusively a trace of the batch subsystem.

2.2.1. Basic Numbers

The trace spans a period of 13 days 1310 hours), starting Saturday, the

29th of January, 1978, at 11:00pm. During this period of time, 552 users sub-

mitted 25,039 jobs. Of these users, 369 accessed at least one shared file. A

shared file is a file that has been opened by more than one user during the

span of the trace. The definition does not require that the file be opened by

more than one user at the same point in time.

24

Table I. Basic Job Counts. Slac Trace.

Number of hours 310
Number of wk-days 10
Number of wkend-days 3
Number of jobs 25039
Number of jobs /wk-day 2198
Number of jobs/wkend-day 1017
Number of accounts 552
Accounts sharing files 369

Because SLAC has strong ties with Stanford University, activity on nights

and weekends is usually high compared to other non-academic installations.

For example, the average number of jobs processed during weekend days is

about half the number of jobs processed during week days. Table I contains

more information about jobs and accounts at SLAC.

During the 13 days that the system was traced, about 152,000 different

files were accessed. This includes any file that was created, opened, closed

or scratched during that period. Of these files, 142,000 are temporary files.

Even though they represent more than ninety percent of the files accessed in

the system, it must be remembered that they are mainly used to hold tem-

porary information between job steps. Since they are not involved in the

long term storage of data, we will not consider these files any further. Table

II contains more information about them.

About 2000 files are sequential files on tape. These files are usually very

large and too expensive to be stored permanently on disk. Because of their

size, we will not include tape files in our studies. It must be noted that it is

not practical to transmit very large files across networks with today's tech-

nology. It would take hours to transmit the information stored in a reel of

magnetic tape across a typical ARPANET link, for example.

25

About 500 files are "system" files, including dummy libraries, SMF data

sets, etc. Our reason for not considering these files any further has to do

with the special ways in which they are used. On the one hand, many system

files are heavily used in read-only mode. These include language processors,

system libraries and the like. In the context of distributed computer sys-

tems, the best thing to do is to provide each node of the computer network

with a copy of each of these files. Most of our algorithms would end up doing

this anyway and we can save much effort by not including these files in our

simulations. On the other hand, files like system logs, that are frequently

written by many users must be regarded as a system peculiarity that would

be implemented differently in a distributed system. For example, account-

ing files could be kept in independent files, one in each machine, and the

accounting and billingprograms would do an explicit merging of the files if

necessary.

The remaining 6,310 files are permanent user files, stored on disk.

These are the files that contain the long term information of the computer

system. We have a special interest in the files that are used by more than

one user account during the span of the trace. We call them shared files

even if they are never used concurrently by more than one user. There are

495 shared files in the SLAC trace (shared files are a subset of the permanent

files).

Some of the data in Table 11 are self explanatory, like the number of

files. Other entries require further clarification. For example, the files

listed as existing initially are files that did exist at the beginning of the trac-

ing period and that were deleted during that period. For these files the SMF

scratch record provided the creation date. Files that existed at the begin-

26

/

Table II. Basic File Counts. SLAC Trace.

TAPE 	TEMP 	PERM SHARED 	SYS 	TOTAL

Number of files 1994 142576 6310 466 1028 151908

Number of files initially 32 8 308 84 162 510

Number of files at end 1994 0 1955 386 675 4624

Number of reed-write files 1461 - 5482 297 808 7751

Volume of files (MBytes) 55615 108974 2336 363 524 167449

Ave. files created/wk-day 145 12470 478 - 	29 88 13182

Ave. files created/wlcend-day 181 5958 509 59 49 6696

Ave. files scratched/wk-day 0 12473 373 7 33 12880

Ave. files scratched/wkend-day 0 5949 207 3 7 6163

Ave. opens/wk-day 441 21412 11735 3174 5261 38848

Ave. opens/wkend-day 317 10059 7230 1342 3335 20941

Ave. reads/wk-day 524687 800864 364676 235407 198777 1889004

Ave. reads/wkerid-day 384978 616373 178193 79462 97407 1276951

Ave. writes/wk-day 557625 1295246 166629 52806 50491 2069992

Ave. writes/wkend-day 707264 * 	730911 90212 11613 5918 1534305

ning of the trace and that were not scratched within the span of the trace

appear as being created at the time when.they are first referenced.

Another point that requires clarification is what we mean by read-write

files. Files can be opened in one of five modes:

CREATE: the file is opened in this mode when it is being created.

INPUT: the file is opened in read-only mode,

UPDATE: the (existing non-sequential) file can be read and/or modified.

APPEND: the existing sequential file is extended with new information.

OVERWRITE: the existing sequential file is erased and overwritten with

new information.

By read-write files we mean files that have been opened at least once in

either APPEND, OVERWRITE or UPDATE mode. Note that opening a file in

UPDATE mode does not imply that the file is going to be modified.

27

The volurrte of files was computed as the sum of sizes in megabytes of

all the. observed files. Since many files, especially temporary files, are

deleted during the span of the trace, the full reported volume of files was

never present in the system. It is rather the amount of space requested
/ 	

from the system during the tracing period.

The figure for the number of writes to the files has the same problems

as that of the read-write files above. Again, we are counting as writes all of

the I/O operations that occurred during any open in APPEND, OVERWRITE or

UPDATE mode. Since many of the opens in question are UPDATE mode opens

and a fraction of the I/O operations in UPDATE mode are reads, the actual

number of writes could actually be smaller than reported here.

What fraction of the system activity is generated by shared files? Only

7% of the permanent files are shared, and shared files only account for 15% of

the volume of permanent files. However, shared files are quite heavily used.

They are responsible for 27% of all opens to permanent files, for 64% of all

reads and for 31% of all writes. In other words, shared files are an important

subset of the permanent files as far as system activity is concerned. As a

first approximation (distributions will be shown later) shared files also tend

to be larger and to be opened more frequently in read-only mode than other

permanent files

One important aspect of file sharing is the number of users that share a

particular file, both for reading and for writing. Table III shows the distribu-

tions for these variables.

The table has been cut after twenty users but it still covers 98% of the

values observed. The maximum observed for the number of users is 55, the

mean is 3.7 and the median and the mode are both 2 users. Another impor-

Table III. Number of users per shared file. SLAC trace.

Number 	All 	 Readers 	 Writers

of Users 	Freq 	Cuzn 	F'req 	Cum 	Freq 	Cum

0 0.0 0.0 0.16 0.16 0.37 0.37

1 0.0 0.0 0.10 0.26 0.33 0.70

2 0.59 0.59 0.40 0.66 0.19 0.89

3 0.15 0.74 0.12 0.78 0.041 0.904

4 0.080 0.82 0.055 0.835 0.018 0.922

5 0.041 0.861 0.040 0.875 0.0 0,922

8 0.021 0.882 0.012 0.887 0.0093 0.9313

7 0.021 0.903 0.020 0.907 0.0031 0.9344

8 0.017 0.920 0.0093 0.9163 0.010 0.9444

9 0.010 0.930 0.010 0.9283 0.0015 0.9459

10 0.010 0.940 0.010 0.9363 0.0 0.9459

11 0.0077 0.9477 0.0062 0.9425 0.0015 0.9474

12 0.0077 0.9554 0.0062 0.9487 0.0015 0.9489

13 0.0046 0.9600 0.0031 0.9518 0.0031 0.9520

14 0.0031 0.9631 0.0031 0.9549 0.0 0.9520

15 0.0015 0.9646 0.0015 0.9564 0.0 0.9520

16 0.0046 0.9692 0.0046 0.9810 0.0 0.9520

17 0.0 0.9692 0.0 0.9610 0.0 0.9520

18 0.0031 0.9723 0.0031 0.9641 0.0 0.9520

19 0.0015 0.9738 0.0031 0.9672 0.0 0.9520

20 0.0031 0.9769 0.Ô015 0.9687 0.0 0.9520

tant characteristic, from the Writers columns, is that 70% of shared files are

only written by one or less users (creation of the file is not counted as a write

operation).

2.2.2. Activity Over Time

The number of permanent files opened per unit of time is a good indica-

tor of system activity. In Fig. 2.1, the unit of time chosen is 4 hours. The

plot of the number of opens per four-hour period shows quite conclusively

that the system s activity cannot be considered stationary: The data has no

obvious trend, either in average or in maximum values. However, there is a

very strong seasonality with the hour of day and day of week. The same com-

ments apply to the shared files.

I 	I I I 	I 	I 	1 J 1 	I 	I 	I 	I 	I 	I 	 I I I 	I 	I
ermanent Filee

	

i 	; 	 •.• 	••

g
E

I

Number of Opens

ME

5000

En 4000

0

3000

• 2000
(li

04
1000

()
50 100 150 200 250 300 350

Saturday 11:00 pm

Time in Hours

Fig 2.1. Number of opens per 4 hour period. Slac trace. Weekends can be
seen clearly. Activity is about half that of week days. The peaks of
activity are centered around noon.

Files can be opened basically in two modes: read-only mode and read-

write mode. The distinction between read-only and read-write usage of files

is important to us because it affects the consistency of replicated data. Fig

2.2 shows the number of 10 operations in read-only mode for permanent and

shared files. There is no visible trend in the activity from one day to the next

but there are wide changes of activity during the day. We also note that read

F11e3

100000

	

FLISM 	

I
v 50000
0

I
V

30

operations from shared files are a big fraction of the total number of reads.

When files are opened 'in read-write mode, our traces do not show

whether the 10 operations performed on the file are reads or writes. We have

to lump them together and assume that they are potential writes. Fig. 2.3

shows that the number of 10 operations in read-write mode is about half that

of reads. The fraction of writes to shared files is smaller than that of the

I/Os in Read—Only Mode
150000

'0 	50 100 150 200 250 300 350
" Saturday 11:00 pm

Time in Hours

Fig 2.2. Number of read operations per 4 hour period. (Slac trace). Shared
files are a big fraction of the total activity. Peak values for per-
manent and shared files do not show any visible trend.

31

reads from them. Within the limitations of our data, we have to conclude

that shared files are accessed in read-only mode more often than the general

population of permanent files. This should encourage the use of multiple

copies of the files..

I/Os in Read—Write Mode
75000

1/)

50000

.-

U) 25000
0

C

ermsnant FU.i

bared 	 -

A. 1i i- 	I I..j L.:1 '...I I II II Ii I

I

50 100 150 200 250 300 350
aturday 11:00 pm

Time in Hours

Fig 2,3. Number of 10 operations in read-write mode per 4 hour period.
(Slac trace).

/

32

2.2.3. File Usage Characteristics

File size is an important parameter when working with files. It has been

shown that it is a good predictor of file usage [Smi8la]. Fig. 2.4 shows that

files on disk tend to be smaller than files on tape. Let us point out that at 	
U -

Slac huge amounts of data from physics experiments are stored on tapes to

be analyzed later on. Likewise, the shared files tend to be larger than the

permanent files as a class. Most disk files have sizes between 10 kilobytes

and 10 megabytes. The exact distribution can be seen an Fig. 2.4.

It was pointed out in [Smi8la] that most files are used (opened) a small

number of times. If we look at Fig. 2.5 we see indeed that 60% of all per-

manent files are used only once ortwice. However, shared files, and spe-

cially shared files on disk, are used many more times. Actually 95% of these

files are opened more than twice [Cof73].

A measure that is relevant to the study of file migration is the amount of

10 activity per open. As can be seen in Fig. 2.6, files on disk have fewer 10's

per open than files on tape. In particular, 40% of the opens (for permanent

files on disk) result in less than three 10 operations being performed.

For policies that try to minimize the communications traffic, a very

important measurement of activity is the amount of information that is actu-

ally accessed during an open. A good way to measure this amount of inf or-

mation is as a fraction of the size of the file. For the permanent files on disk

and for the shared files on disk, only a small number of the opens result in an

access to the whole file . One of the reasons for this is the large number of

shared files that are partitioned data sets (libraries) and concatenated data

sets. In both cases, only a small fraction of the total amount of information

is needed at each open. In 20% of the opens, the file is accessed repeatedly

33

Size of Files

E
E

/

1.

10' 1.00 10' 	10 2 103 	104106108

Size in Kilobytes

Fig 2.4. File size distributions for permanent and shared files. Statistics for

1

.8

0 6
Q.)

a)

.2

n

Table 2.4. Size of Files in Kilobytes (SLAC)

Type or File Min Max 	Mean Median Std. Deviation

Perm. on Disk 0. 94000. 	549. 80. 2290.
Perm. on Tape 0. 339000. 	41500, 2700. 61400.
Shared on Disk 3.2 15025. 	1200. 240. 2150.
Shared on Tape 0. 338000. 	56900. 25000. 15200.

34

1

.8

C.)

.2

11

Number of Opens per File

V .

!

r '

=at on Tsp.

on DIIk

bared

• F r7L_on TaM
- 	 -

r J

• 	II r
r- 	I

U
I 	1111111 	I 	I 	111111 	 I 	II 	11111

F

I

10 0 	10 1 	102 	103

Number of, Opens

Fig 2.5. Distribution of the number of opens per file. The parameters for
the distributions are shown in Table 2.5. SLAC trace.

Table 2.5. Number of Opens per File (SLAC)

Type of File 	 Min 	Max 	Mean Median - Std. Deviation

Perm..on Disk 0. 2861. 12. 2. 66.
Perm. on Tape 86. 2.8 1. 4.7

Shared on Disk 2661. 76, 22. 11.

Shared on Tape 2. 86. 10. 5. 11.

I/O's per Open
1

.8

C) 6
'2)

'2)

I

35

I

I
I

10 	10 	1.02 	io 3 	io 4 	10 5

Number of I/O Operations

Fig 2.6. Distributions of the number of 10 operations per open. SLAC trace.

Table 2.6. Number of 10's per Open (SLAC) -

Type or File 	 Mm 	Max 	Mean Median Std. Deviation

c
Perm. on Disk 	0. 	30156. 	77. 	5. 	398.

Perrn. on Tape 	0. 	70012. 	2630. 	280, 	5400.

Shared on Disk 	0. 	27300. 	88. 	9. 	437.

Shared onTape 	0. 	21100. 	1640. ' 280. 	2900.

(as in a multiple-pass algorithm) and the total amount transferred is hence

larger than the size of the file itself. Fig. 2.7 shows the measured distribu-

tion.

There are quite a few measurement problems associated with determin-

ing the amount of information accessed per open as well as the size of cer-

tarn files. The number of bytes transferred during an open is determined by

multiplying the block size of the file by the number of 1/Os associated with

the open. The problem here is that the number of I/O's as counted by SMF

can differ from the number of I/O records actually transferred (sometimes

SMF counts the I/O operations required to open and close the file; sometimes

the block size is not reported).

A serious problem in determining the size of files is created by the

existence of concatenated data sets. Concatenated data sets are obtained by

concatenating a number of files and assigning them a new name (this pro-

cedure is often used for subroutine libraries during linking of programs).

SMF reports only the name of the first file in the concatenated data set and

yet the size is that of the whole data set. This make very difficult to keep

track of the size of files that only appear as members of concatenated data

sets.

For the shared files, we wanted to know whether the size of the file is a

good indicator of the fraction that is accessed at each open. We divided the

files in five classes according to size.

Fig. 2.8 shows the distribution of the percentage of file accessed per

open for the five classes of files. If we ,disregard the very small files (< 10

Kbytes), the fraction of file transferred per open is smaller for larger files.

Our last set of measurements is concerned with the frequency of usage

of the files as shown by the distribution of the interopen time, i.e., the time

between a file being opened and it being opened again. As indicated above,

Fraction Accessed per Open
I 	I 	I 	

111111 	
I 	I 	I 1111111 i 	I 	fill 	I11111

r r "
- 	_.P.Tm*n.nt on Tsp.

Shared on Disk

Shared on Tel

jj

.2 -

n 	i I 	il 	I ii 	i I ill I I 	I iii.

10 0
 10 1 	102 	103 	10

Percentage 	of file 	accessed

Fig 2.7. 	Distributions of the percentage of the file size accessed per open.
SLAC trace. Statistics of these distributions are shown in Table 2.7.

Table 2.7. Percentage of File Accessed per Open (SLAC)

Type of File Mfri 	Max 	Mean 	Median 	Std. Deviation

Perrn. on Disk 0. 	72500. 	96. 	21. 	693.
Perm. on Tape 0. 	100. 	80. 	100. 	38.
Shared on Disk 0. 	44122. 	113; 	29. 	620.
Shared on Tape 0. 	100. 	69. 	100. 	42.

37

0

Q)

q)
1.4

E

Fraction Accessed per Open (Shared)
1

.8

C) 	.6
.3)

a) 	.4

.2

i 	iliiiI 	i 	i 	iI.iiiI 	I 	I 	1111111 	I 	I 	111111]

100 	10' 	102. 	10 3 	1 o4

Percentage, of File Accessed

Fig 2.8. Distributions of the percentage of file size accessed per open. for
the five size classes. SLAC trace. More statistics in Table 2.8

Table 2.8. Percentage of File Accessed per Open (SLAC)

File Size 	 Min 	Max 	Mean 	Median Std. Deviation

< 10 KBytes 0. 200, 55. 18. 55.
10 - 100 KBytes 0. 8720. 79. 50. 204.

100-1000KBytes . 	0. 44122., 154. 22. 859.

- 10 MBytes 0. 4778. 63. 12. 172.
> 10 MBytes 0. 59. 9.4 11 14.

T1

I'

E

I
a

we have not considered the time after the last close of the file. Various solu-

tions to the right censoring problem can be found in [Srni8lb]. Fig. 2.9

[ci!]

4.

shows the distribution of interopen times for the permanent files at Slac.

Again we note the fact that tape files have larger interopen times than disk

files. Interopen times for tape files are two to three orders of magnitude

larger than those for the disk files. More than 807 of the interopen times for

the disk files are under one hour.

It has been noted in {Smi8la] that the distribution of interopen times

varies with the size of the file. Fig. 2.10 shows these distributions for the five

File Interopen Times
1

.8
/

C.)

I,

P.raoont on Diak

P.rmin.nt on Tap. 	 .
-I

Sb.r.d on Dak 	 I 	 H

1.r 	 j:F

- 	 _.fr.qijIiflI 	I I I II ill! 	I I I Ii, iii 	i I I I iil

'I
N

10_2 10 	.100 10 1 	102 	10
3

10
4
	10

5

Time in Seconds

Fig 2.9. Distributions of interopen times for the SLAC trace. More informa-
tion about the distributions is given in Table 2.9.

C)

a)

a)

'S

Table 2.9. Interopen Times in Seconds (SLAC)

Type or File 	 Min 	Max 	Mean 	Median Std. Deviation

Perm. on Disk 0. 967000. 8350, 50. 44300.
Perrn. on Tape 0.25 949000. 50200. 20000. 114000.
Shared on DiSk 0. 862000. 6030. 360: 36000.
Shared on Tape 0.70 949000. 45800. 70000. 95800.

size classes that we used in Fig. 2.8.

40

File fl'I(J t.] s1)I TimesKJ air.SJ
Li 	IHJJ IHthfIUth1utllilIIIHilIulIthIIfl1

5.1

4
N

E

I

I

PU. Siz. C IOK

PU. Sii. lOX - lOOK -Tj r1

PU. SzS lOOK - I -.__. 	, r' j 	r
P11. Slis I - ION 	 r i 	ii

PU. S.

>

IOU

rj

••-':I 	,1 	[1
f r

r

	

Hill 	I 	liii

10_2 10_ 1 100 10' 	102 10 3 104 iü

Time in Seconds

Fig 2.10. Distributions of interopen times for shared files for the SLAC trace.
More statistics for the distributions are presented in Table 2.10.

41

Tabre 2.10. Interopen Times in Seconds (SLAC)

File Size Min Max Mean Median Std. Deviation

<10 KBytes 5. 521000. 37000. 5100. 75000.
10-100KBytes 0. 862000. 8131. 500. 33900.
100 - 1000 KBytes 0. 850000. 7650. 170. 38000.
I - 10 MBytes 0. 686000. 7510, 450. 30000.
> 10 MBytes 0.5 338000. 19800. 1900. 52000.

From figure 2.10, if we disregard the case of the very small files (< 10

Kilobyte), it can be seen that smaller files have shorter interopen times. In

particular, interopen times of less than two minutes are almost nonexistent

for files larger than one megabyte. We have observed some very long

sequences of repeated opens to the same file. These opens are very close to

one another (typically within one second) and they are partly responsible for

the large proportion of short .interopen times. We suspect that this is the

result of some non-standard usage of the file system. However, this peculiar-.

ity does not affect much our experiments since none of our algorithms take

decisions in such short periods of time.

A similar analysis of the data is now presented on the trace data on-

ginated at the Hughes Aircraft computer center.

2.3. The Hughes Installation

The Hughes Aircraft computer cente is in many respects similar to the

SLAC center. For example, the hardware and the basic file system are

almost identical. On the other hand, the interface to the user is quite dif-

ferent because the Hughes installation uses a standard IBM product, TSO, to

support its time-sharing users.

This fact has two important consequences in our study of the file sys-

tern.' The first is that files created under TSO are easy to recognize because

42

the installation uses a convention for naming files. The second is that, since

TSO runs as a single job step for each user, the open time of the files

accessed under TSO is reported by SMF as being the starting time of the TSO

step. This produces some errors in the evaluation of interopen times, for

example.

2.3.1. Basic Numbers

The trace spans a period of 9 days (191 hours), starting Monday, the

19th of September, 1977, at 0:00 am, During this period of time, 1637 users

submitted 25,039 jobs. 854 of these users were involved in accessing shared

files. This installation has three times more users than SLAC but the number

of jobs executed per week day is about the same. The weekend activity is

much lower, though. On weekends, SLAC runs roughly half the number of

jobs that it runs on week days. The activity at Hughes on weekends is below

207 that of regular week days. Table N contains more information about

jobs and accounts at Hughes.

The trace for the Hughes system shows that 170,000 files were accessed

during the 9 days during which the system was observed. When compared to

the SLAC system (150,000 files in 13 days), it appears that the Hughes system

has a higher level of I/O activity. Table V also shows that the number of I/O

Table IV. Basic Job Counts. Hughes Trace

Number of hours 191
Number of wk-days 7
Number of wke nd-days 2
Number of jobs 16815
Number of jobs /wk-day 2273
Number of jobs/wkend-day 450
Number of accounts 1637
Accounts sharing files 854

43

	

11 	

operations (reads + writes) on week days at Hughes is twice the number at

	

-. ,. 	 SLAC. Of the 170000 files, 18,343 are permanent and 2,301 are shared files.

This again represents from three to four times the number of files at SLAC.
-I 	 •

All the comments that were made about the contents of Table II hold for

Table V. In particular, we note that the number of writes is particularly high

compared to the number of reads. This is due, as explained earlier, to the

failure by SMF to indicate the real type of I/O operation that is performed on

files.

The shared files also in this system are responsible for a large fraction

of file activity. Forty percent of the opens and forty percent of the 10

activity of permanent files comes from shared files

The number of users per shared file has a distribution very similar to

that of the SLAC system. Table VI shows the distributions for these variables.

In this case, we have cut the table after 10 users because that covers 997 of

the observed cases. The maximum observed is 109 users per file, the mean

Table V. Basic File Counts, Hughes Trace.

TAPE 	TEMP 	PERM SHARED 	SYS 	TOTAL

Number of files 5020 133797 18343 2301 14485 171645

Number of files intiafly 316 0 7992 1149 1507 9815

Number of files at end 5020 0 8831 1813 4153 18004

Number of read-write files 4044 - 14117 2001 13338 31500

Volume of files (MBytes) 43448 34107 4697 462 9135 91387

Ave. files created /wk-day 588 17480 2507 323 . 1802 • 22378

Ave. files created /wkend-day 452 5718 396 21 935 7501

Ave. files scratçhed/wk-day 0 17482 1224 59 1241 19946

Ave. files scratched /wkend-day 0 5713 473 39 823 7009

Ave. opens/wk-day 1096 37186 15983 7465 16684 70948

Ave. operis/wkend-day 798 14422 1449 472 5473 22142

Ave. reads/wk-day 869770 528670 290716 126255 1253803 2942959

Ave. reads/wkend-day 852920 368797 107609 12051 713455 2042781

Ave. writes/wk-dáy 743056 2136479 248226 93795 1899712 5027473

.Ave.writes/wkend-day 1077515 1275317 133746 12943 675122 3161699

44

Table VI. Number of users per shared file. Hughes trace.

Number 	AB 	 Readers 	 Writers

of Users 	.Freq 	Cuin 	Freq 	Curn 	Freq 	'Cum

0 	0.0 	0.0 	0.11 	0.11 	0.13 	0.13
1 	0.0 	0.0 	0.22 	0.33 	0.37. 	0.50
2 	0.69 	0.69 	0.45 	0.78 	0.40 	0.90
3 	0.19 	0.88 	0.14 	0.92 	0.072 	0.972
4 	0.065 	0.945 	0.042 	0.962 	0.013 	0.985
5 	0.014 	0.959 	0.011 	0.973 	0.0056 	0.9906
6 	0.0082 	0.9672 	0.0073 	0,9803 	0.00086 	0.9915
7 	0.0043 	0.9715 	0.0039 	0.9842 	0.0 	0.9915
8 	. 0.0021 	0.9736 	0.0017 	0.9859 	0.00043 	0.9919
9 	0.0013 	0.9749 	0.00086 	0.9668 	0.0 	0.9919

10 	0.00086 	0.9758 	0.00086 	0.9876 	0.0 	0.9919

is 2.6 users/file and the median and the mode are both 2 users. An impor-

tant characteristic, from the Writers columns, is that 50 of shared files are

only written by one or less users (creation of the file is not considered a

write operation).

2.3.2. Activity Over Time

The number of files opened per unit of time is a good indicator of system

activity. in Fig. 2.11, the unit of time chosen is 4 hours. The plot of the

number of opens per four hours shows quite conclusively that the system

activity cannot be considered stationary. The data has no obvious trend, net-

ther in average nor in maximum values. This figure can be compared with the

corresponding figure from SLAC. In this case the activity on weekends is

actually very low.

2.3.3. File Usage Characteristics

Most characteristics of the SLAC files can be found in the files of the

Hughes system. Fig. 2.14 shows a difference in size between tape and disk

Number f: Opens

45

liii 1 1 111111 11111111 11111 	iulIl Ill

.rmanent rues

b..z.4FU.s

Cl)

2000
0

lI I IlTI I 	II 	I III r1+i 	 lI_

50 	100 	150 	200

%onday 00:00 sin

Time in Hours

Fig 2.11. Number of opens per 4 hour period (Hughes trace). Weekends can
be seen clearly. The number of opens is almost zero during the
weekend. The peaks of activity are centered around noon.

I
. a

6000

4000

46

I/Os in Read—Only Mo4e
200000 	I I I I I I I I I 1 1,1 I I I I I I I I I I I I I I I I I 	 I

.-an.nt Files

bared Fuss

En
150000

100000

cn

50000

(1
50 	100 	150 	200

Monday 00:00 am

Time in Hours

Fig 2.12. Number of read operations per 4 hour period. (Hughes trace).
Shared files are a good fraction of the total activity. Peak values
for permanent and shared files do not show any visible trend.

I

47

150000

120000
5-4

0
90000

It

•- 60000
En
0

— 30000

I/Os in Read—Write Mode
• I 1111111111 	TIl 1111 1 111111 JIll 11111 JIll :

ermanent Files

ar.dFU.s

A
50 	100 	150 	200

Monday 00:00 am

Time in Hours

Fig 2.13. Number of 10 operations in read-write mode per 4 hour period.
(Hughes trace).

files of two orders of magnitude. Two comments about the disk files:

There is very little difference (if any) between the shared files and the

general population of permanent files.

There is a large proportion of permanent files (almost 40) that have

exactly the same size: 12 kilobytes. This is probably a consequence of

the way TSO files are allocated.

I

48

I
10' 10 0 	10 1 	102 10 3

10 4 10
5 10 6

Size in Kilobytes

Fig 2.14. File, size distributions for permanent and shared files. Hughes
trace. More information about files sizes can be found in Table 2.14.

Table 2.14. Size of Files in Kilobytes (Hughes)

Type of File 	 Min 	Max 	Mean 	Median Std. Deviation

Perm. on Disk 	0. 	73700. 	350. 	18. 	1940.
Perrm on Tape 	0. 	1310000. 	12700. 	700. 	39000.
Shared on Disk 	4. 	40000. 	215, 	24. 	1140.

Fig. 2.15 confirms that most permanent files are used only a few times.

However, shared files are used many more times on the average. Actually

C)

G)

a)

.2

I

I C)

Z4

.2

Mrs

. 	 r r'.

on Dak

r 	 P.rm..at on ?p.

on DIak

I i
r

r

- 	 -

r

: 	 I 	I 	1111111

49

90% of the shared files are opened more than twice.

Number of Opens per File
1

100 	10 1 	10 2 	10 3

Number of Opens

Fig 2.15. Distributions of the number of opens per file. Hughes trace. Mo-
ments for these distributions can be found in Table 2.15.

Table 2.15. Number of Opens per File (Hughes)

Type of File 	 Min 	Max 	Mean Median Std. Deviation

Perm. on Disk 0. 1046. 5.9 2. 26.

Penn. on Tape 1. 45, I.B. 1. 1.9

Shared on Disk 3. 1046. 23. 9. 61.

N I
C)

a)

a)
'4

r j

on Disk
r .

on Tsp.

bsr.d on Disk

I
-J

V ..

1

50

Figure 2.16 shows again how similar are the shared files in this installa-

tion to the rest of the permanent files. It is also remarkable how similar is

this distribution to that of Figure 2.6, the corresponding distribution for

SLAC.

Fig. 2.17 contains the distribution of the fraction of file accessed per 	
/

open in the Hughes system. Fig; 2.18 shows the same distribution broken

I/O's per Open

	

0 I 	I 	I I I 11111 	I 	I I II 'iiI 	I 	I I 111111 	I 	I 1111111

	

100 	10 1 	102 	103
	 104 	106

Number of I/O Operations

Fig 2.16. Distributions of the number of 10 operations per open for the
Hughes trace. Moments for the distributions are shown in Table
2.16.

5'l

Table 2.16. Number of 1/0s per Open (Hughes)

Type of File 	 Min 	Max 	Mean Median Std. Deviation

Perm. on Disk 	0. 30000. 	39. 2. 270.
Perm. on Tape 	0. 123000. 	1830. 200. 5060.
Shared on Disk 	0. 8500. 	29. 2. 170.

Fraction
4

Accessed per Open

.1 I NO

C)

a)

a)
1.4

.1

.4

.2

.ru.n.nt on Disk

P.rmsn.nt on Tsp*

bar.d on Disk
r

r r

	

01 	I 	I 	11 ii i1 	I 	I 	I I I I III 	I 	I I I I I III 	I 	I 	I I I IlLI

	

100 	10' 	102 	10 3 	104

Percentage of file accessed

Fig 2.17. Distributions of the percentage of the file size accessed per open.
Hughes trace. Moments for these distributions are shown in Table
2.17.

52

Table 2,17, Percentage of File Accessed per Open (Hughes)

Type of File Min Max Mean Median Std. Deviation

Perrn. on Disk 0. 63700. 57. 25. 320.
Perm. on Tape 0. 100. 88.5 100. 29.
Shared on Disk 0. 33000. 53. 25. 270.

down by size classes.

Fraction Accessed per Open (Shared)
Si

E
N

N

I
10 1
	 102 	10 3 	 104

Percentage of File Accessed

Fig 2.18. Distributions of the percentage of file size accessed per open for
the five size classes. Hughes trace. See Table 2.18 for the moments
of the distributions.

J

C.)

a)

a)

I

.8

.6

.4

.2

OL
10 0

I

53

Table 2.8. Percentage of File Aôcessed per Open (Hughes)

File Size 	 Miri 	Max 	Mean Median Std. Deviation

<10 KBytes • 0. 370. 29. 15. 40.
10 - 100 KBytes 0. 33900. 53. 35. 198.
100 - 1000 KBytes 0. 14000. 58. 2. 444.
I - 10 MBytes 0. 3500. 47. 1. 174.
> 10MBytes 0. 170. II. 1. 37.

Our last set of measurements is concerned with the frequenoy of usage

of the files as shown by the distribution of the interopen times. Fig. 2.19

shows the distribution of interopen times for the permanent files at Hughes.

1
Fig. 2.20 is again, the distribution of the interopen times when the files are

put in classes according to their size. The classes are the same that are used

inFig. 2.18.

2.4. , Conclusion

In this chapter, we have conducted an exploratory analysis of two large

scientific computer installations: SLAC and Hughes Aircraft. The analysis has

revealed many characteristics of the two systems. However, we would like to

comment explicitly on three points:

The file parameters from both systems are in the same order of magni-

tude. This is particularly true of the distributions of such measures as

the number of opens per file, the size of the files, the fraction of the file

accessed per open and the interopen times. Table VII gives acorn-

parison of the means and medians of these distributions.

The permanent files used by more than one user (shared files) are

responsible for an important fraction of the system activity, (see Table

VIII) and it is very likely that this will still be true in a distributed

environment.

File Interopen Times
1

.8

C)

a)

a)
I-

54

0 	.1_.i.itTiIJ4nI 	i huh 	I I I hiuuul 	I I I 111111 	I I ilituil 	I I I

102 10' 100 10' 	102 10
3

10
4

10
6

Time in Seconds

Fig 2.19. Distribution of interopen times for the Hughes trace. More informa-
tion about the interopen times can be found in Table 2.19.

Table 2.19. File Interopen Times in Seconds (Hughes)

Type of File Min Max Mean Med.ian Std. Deviation

Perrn. on Disk 0. 867000, 13200, 130. 52300.
Penn. on Tape 0. 652000. 35600. 1050. 83500.
Shared on Disk 0. 867000. 11900. 140, 46000.

File Interopen Times (Shared)

-

55

I
C)

a)

.2

rt

too SI.. (bE -

Ills $135 10K
-

P11. SI.. bOOK -

P11. SIx. IN - 10K 	 -

- 	P11. SI..

> 	 -

• 	 Ffir.r

111111 	1 II hull 	I I I 111111 	I 11111111 	I 	I

I 11111111 	
I
 11111111 	

I
 11111111 	I I I 111111 	I I 1111111 	

1 I 1 lIllif

I

10_2 	10_1 	10 ° 	10' 	102 	io3 io4 	io 6

Time in Seconds

Fig 2.20. Distributions of interopen times for shared files. Hughes trace. Mo-
ments for the distributions are given in Table 2.20.

Table 2.20. File Interopen Times in Seconds (Hughes)

File Size 	 Min 	Max 	Mean 	Median 	Std. Deviaiori

<10 KBytes 	 0. 	460000. 	33300. 	580. , 	76400.
10-100KBytes 	 0. 	867000. 	11800. 	130. 46500.
100-1000KBytes 	0. 	777000. 	12500. 	205. 47000.

- 10 M3ytes. 	 0. 	853000. 	7850. 	210. 40800.
> 10 MBytes 	 2. 	524000. 	15100. 	55. 70300,

56

Table VII. Comparison of Means and Medians

SLAC Hughes

Mean Median Mean 	Median

Size of Files in Kilobytes 1200 240 215 	24

Opens per File 76 22 23 	9

I/O's per Open 88 9 29 	2

% accessed per Open 113 29 53 	25

Jnteropen Time in Sec. 8030 360 11900 	140

Table VII. Fraction of Permanent File Activity due to Shared Files

- 	
SLAC 	 Hughes

Number of Opens 	 0.27 	 0.20

Number of Reads 	 0.65 	 0,43

Number of Writes 	 0.32 	 0.38

(3) The distribution of the number of users per file is similar in both sys-

tems and it shows that the most common case of file sharing, by far, is

when a file is shared by two users. This may simplify the problem of file

migration in a distributed system.

I

PARTITIONffiG OF CENTRALIZED COMP1YflR SYSTEMS

This chapter presents heuristic methods for partitioning centralized

computer systems (the resulting distributed systems will be used in later

chapters). The heuristics are based on certain aspects of the systems work-

load such as file referencing, file sharing among users and requests for pro-

cessor and 1/0 resources.

We test various partitioning heuristics on two real centralized systems

(SLAC and Hughes) using trace-driven simulations. We conclude that a parti-

tion based on the number of user inversions (changes in the active user of a

file) achieves the lowest overall traffic in the communications network of the

resulting distributed system. The synthetic distributed computer system

obtained by this procedure is used in the nexti two chapters to test file

• 	 migration policies.

Introduction

In the last two chapters of this dissertation, trace-driven simulations are

used to compare the performance of various algorithms for placing and

migrating files in distributed systems. Traces of activity from real distri-

buted systems are not available at the present time. Hence, it becomes

necessary to create synthetic distributed systems with data collected from

non-distributed, real computer installations. This is possible because the

traces of activity available' from centralized computer systems are traces of

57

58

logical actions, and it can be argued that user behavior does not substan-

tially depend on whether the system is centralized or distributed as long as

performance remains acceptable. All that has to be done to obtain a syn-

thetic distributed system is to partition the set of users of a centralized sys-

tern and to assign the resulting groups of users to the nodes of the distri-

buted system. In this chapter, a procedure to partition the users of a com-

puter installation will be presented and the procedure will be applied to two

real systems.

Section 3.1 introduces the distribution problem. Various heuristics to

solve this problem are then presented in section 3.2. Section 3.3 is a

detailed description of the partitioning procedure. In section 3.4, we

describe the simulatiOns used to evaluate the synthetic systems and the

results obtained.

3.1. The Distribution Problem

In the last few years, many computer installations have gone through a

process of system partitioning. For example, the Computer Center at the

University of California at Berkeley was operating, in the academic year

1976-1977, a large machine (a CDC 6400) that supported most of the

research and the instructional workloads. By the end of the 1981-1982

academic year, the CDC machine will no longer be in operation and the Corn-

puter Center will be operating, instead, almost twenty machines of different

makes and models. Conceptually, the transition from the situation in 1977 to

the present system can be described as the partitioning of the user corn-

munity of the old CDC machine into a number of sub-communities and the

assignment of the sub-communities to the new smaller machines. The actual

procedure has been much more complicated because the global user

59

community has grown extraordinarily in the last five years and because the

Computer Center has introduced its new machines at different times during

this period. Also, the partitioning has not always been legislated from above

- 	 but rather prompted by the needs of users.

In distributing its users, the Computer Center must consider basic

aspects of capacity planning like the number of terminals, the processing

power and the storage capacity of each individual machine. The university

environment puts additional constraints on the assignment of users to

machines. For example the members of a class are usually assigned to the

same machine for reasons of basic fairness (same down times, same

throughput). Another constraint is that some researchers must be assigned

to particular machines in order to use specific hardware or software capabil-

ities. Finally, the machines operated by the Computer Center are for the

moment linked by a network of extremely low bandwidth and they must be

considered as independent for most purposes. This implies that users need-

ing access to each other's files must reside on the same machine. The

methods used by the Computer Center for assigning users to machines have

been ad hoc and based on past experience and power struggles among the

sectors of the user community.

System partitioning may be needed for other purposes. In our case, we

want to partition some real centralized systems to obtain synthetic distri-
K

buted systems. We need the distributed systems to run trace-driven simula-

tions of migration algorithms. We will assume that we do not have adminis-

trative constraints of the type that the Computer Center has to deal with.

This will enable us to use a more systematic approach to system partitioning.

3.1.1. Statement of the ProNem

We can now state the distribution problem. Let C be a centralized corn-

puter system defined by the set U of its users and by a trace of its activity

during the time period [O,T]. The trace contains a record for each job execu-

tion and for each file creation, deletion, open and close during [O,T].

Let D be a distributed system built around a fully connected communi-

cations subsystem. The distribution problem consists of finding a partition

of the user community U such that, when its subsets (classes) are assigned

to the nodes of D, the aggregate volume of traffic in the communications

network of the system is minimized,

Without additional constraints, the problem is not well defined. In the

first place, we must specify how we are going to manage the files in the sys-

tem. This is important in that it will determine what is the aggregate traffic

in the system. Our approach will be to use two different policies (to be

defined later) and to optimize the partition with respect to both policies.

This will giveus some assurance that the partitioning procedure does not

depend on a particular file management policy.

As stated, the distribution problem has thedegenerate and trivial solu-

tion of assining all the users to the same node of the network. This has the

effect of reducing the traffic to zero. In order to obtain non-trivial solutions,

we will require that the partition have a given number of nodes and that each

node contain at least one user. This way, we will be able to obtain distributed
t

computer systems with any number of nodes.

In a real distribution case like the one involving the UCB Computer

Center, the computing power and the storage capacity of the machines at

the nodes of the distributed system are given. In our case, there is no clear

61

indication about how to choose these values. A canonical assumption is that

all the machines at the nodes of the distributed system have similar charac-

teristics. We will make this assumption and therefore require that the CPU

and 10 requirements of the groups of users beas homogeneous as possible.

This will achieve a long-term load balancing in the system.

3.2. Solution of the Distribution Problem

We now present a procedure for partitioning a centralized system. We

recall from our discussion of the File Assignment Problem in Chapter 1 that

we are mostly interested in the management of shared files. We argued that

temporary files and permanent single-user files should be stored at the node

where they are used and that system files should be replicated at every node

of the distributed systems. Under these conditions, only shared files will

generate internode traffic. Since we want to create distributed computer

systems that minimize this traffic, we would like 'to cluster together the

users that share roughly the same set of files. A partition of the set of users

that eliminates completely the traffic among components is not generally

achievable because of the overlap in the use of shared files by different

users. Therefore, we must resort to a clustering procedure based on the sta-

tistical properties of the users and, of the shared files.

We use a heuristic procedure based on the clustering of users according

to the way in which they share files. We do not use an optimal procedure for

two reasons:

(1) Sensitivity to the migration policy. In order to use an optimal pro-

cedure, we would have to define a cost function. In our case, the cost

function would be some combination of traffic, delay and storage costs.

Unfortunately, the amounts of traffic, delay and storage needed by any

62

given partition depend on the choice of migration policy for the system.

A partition that would optimize such a cost function would be explicitly

linked to a particular migration policy. On the other hand, our purpose

for partitioning systems is to study the performance of migration poli-

cies. It would be very difficult to compare migration policies on the

bases of a partition that is optimal for one of the policies to start with.

(2) Computational complexity. In the first place, if there are N users and

we want to partition the system K ways, the number of thfferent parti-

tions is on the order of KN. In addition, computing the cost of one of the

partitions involves running a. trace driven simulation. No matter how

efficient is the searching procedure for the optimum, it is obvious that

the whole process will be very expensive.

Our heuristic procedure is much less expensive in terms of computation

and it can be carried out independently of any particular migration policy,

even though some migration policies are used to determine the goodness of

the partition.

The procedure has three logical steps:

(i) Define a number of measures of proximity Pj for each pair of users

(i,j) e UxU. Each one of the measures must reflect how much two dii-

ferent users access the files that they share. Users that share many

files or that access heavily the files that they share should have high
	

"I-

proximities. Based on each measure, obtain a partition of U by some
I.

standard clustering algorithm, and create the synthetic distributed sys-

tem by assigning partition classes to nodes. The number of nodes is

given in each case and the assignment will try to balance the processing

and I/O requirements of the users in each node (a precise algorithm will

63

be described later).

Measure the goodness of the partitions. This is done by running a

trace-driven simulation of each of the systems (two, four, eight, sixteen

nodes) using two different migration algorithms and collecting measures

of the induced traffic.

Choose the proximity measure (and therefore the partition) that results

in the lowest traffic.

The first of these steps, the partitioning procedure, is described below.

3.3. The, Partitioiung Procedure

The partitioning procedure is best described in three steps:

Various measures of proximity between users are defined.

The set of users is partitioned according to their proximities, using a

standard clustering algorithm. The result is a set of components.

One or more of the resulting components are assigned to each node of

the synthetic distributed system.

Each step is now described in more Uetail.

3.3.1. Definition of Proximity

In this section we define seven measures of proximity P, between users

of a computer system. All measures are defined for a period of time [OT].

For a given computer system, proximities can be arranged as a symmetric

matrix of size nxn, where n is the cardinality of U.

3.3.1.1. Random

A random partitioning of the system can be obtained by def thing a ran-

dom measure of proximity between each pair of users. One way of achieving

64

this is to assign to each pair of users a number between 0 and 1, drawn from

a standard uniform distribution.

U(0i)

A random partition of the system cannot be expected to produce very good

results in terms of reducing traffic. Indeed, we will use this partition as a

yardstick to measure how much the other algorithms can reduce the traffic

below what is obtained with a totally random partition.

3.3.1.2. User Group

In many computer installations, users are assigned to user groups. User

groups usually follow the structure of the organization so that users in the

same group belong to the same project, the same class or the same adminis-

trative unit. In many cases, users in the same group share data files and

libraries of procedures that have been developed for their particular needs.

Belonging to the same user group is an indirect measure of the degree of

sharing of the files. This particular measure can only be used with the SLAC

data beàause the Hughes installation does not maintain an.-assignment of

users to groups. Since users belong to exactly one user group, the user

groups generate a total partition of the set of users that can be obtained

directly from a list of the users and their user groups. However, in order to

make this partitioning method more similar to the others that we will intro-

duce, we define a proximity Pij as follows:

1 if users i andj belong to the same User Group

P%j=
0 otherwise

65

3.3.1.3. Number of Shared Files

This measure of proximity is based on the number of files shared by

each pair of users during the interval [O,T].

Let H = 	 ,h. be the set of files accessed by user i belonging

to the set of all shared files in the system. Let H5 = Jhj1 .hj2 , . . , h7' be the

set of files accessed by user j from the set of all shared files in the system.

Furthermore, let n = lH fl H, 1 . The proximity measure is:

Pt5 = n.s

3.3.1.4. Shared Space

This measure of proximity, closely related, to the previous one, takes

into account the size of the files involved. Let us define the function s(h) as

the function which returns the size of file h in bytes. In addition, let

= H, fl 1-15 = 	. 	be the set of the files shared by users i

and j and rt j = I H 1 the cardinality of this set. We define Pij as follows:

P5=s(hL)

This measure should perform better than the previous one when used

with migration policies that move entire files in the event of remote accesses

since it takes into consideration not only the number of files shared but also

their sizes.

3.3.1.5. Shared Transfer

This proximity measure is based on the amount of information accessed

in the shared files, i.e., the, sum of all the bytes transferred to and from a file

by all the jobs run by a user. This measure of proximity, under a slightly dif-

ferent form, is proposed in [Buc79]. In essence, we consider the amount of

information transferred to and from a file that two users have in common.

Let a1k be the amount of information in file k accessed by user i during the

time interval [0,1']. Let us define:

Pu = 	[kk

The reason for using the min function as opposed, say, to the average or the

sum of the transfers is that we expect the migration algorithms to be able to

detect the best position for the file (in this case the user with the highest

access rate). If this is indeed achieved, it is the amount transferred by the

other user (the mm of the two transfers) that actually originates traffic.

3.3.1.6. Number of Inversions

Let h be a shared file, h undergoes an inverswn when it is opened suc-

cessively by two different users. It is easy to see that, if h is shared by m

users during the time interval [0,T] and is opened n times, then h undergoes

at least m - 1 inversions and no more than n - 1 inversions. Let 1,(h) be

the number of times that h is opened first by user i and then by user 2 with

no intervening opens. The measure of proximity based on the number of

inversions is:

Puj ={I,(h) +

This measure of proximity is specially useful when the migration policy

moves the entire file from one user to the next. In that case, it tends to keep

together users that would cause a large number of transfers of the file.

3.3.1.7. Inversions Space

This measure is very similar to the previous one except for the fact, that

inversions are weighted by the size of the file.

67

744

x {I 1 (h) + I, (h.)]

3.3.2. Clustering Algorithm

At this point, we could use any of the many existing clustering algo-

rithms [Har75] to partition the set of users according to any of the proximity

measures. We have chosen the one described by Zadeh in [Zad7l] because it

allows to. change easily the target number of components of the partition.

This clustering method, based on the similarity matrix is fully described

in [Zad7l] and we describe here the main steps of the algorithm only for

completeness.

The first step is to turn the proximity matrix, made of all the proximi-

ties among users, into a similarity matrix. The reason for doing this is that a

proximity measure (or relation) is not transitive and therefore is not an

equivalence relation. However, it is easy to derive a similarity relation from

a proximity relation by calculating the transitive closure of the proximity

matrix. A similarity relation is an equivalence relation (it is reflexive, sym-

metrical and transitive) and hence is suitable to effect a partition on a set, in

this case the set of users.

A similarity matrix actually defines a family of partitions. To obtain a

rhember of the family of partitions, we need to specify one more parameter:

I a similarity threshold. If the similarity between two users is greater than the

threshold, then they belong to the same component of the partition. Other-

wise they belong to different components. The method works as follows.

(1) Pick any value from the matrix. The choice of this value determines the

number of components in the partition. A small value will produce a

few, large components. A large values will yield many small corn-

ponents

Use this value as a critical value, and set all elements less than it to zero

and all greater than or equal to it to one.

Interpret the matrix as the connectivity matrix of a graph. The cliques

of the graph are the partitions (similarity classes) of the set of users.

At the end of this procedure, we might have obtained more components

than there are nodes in the distributed system. Next, one has to assign corn-

ponents of the partition to nodes of the distributed system.

3.3.3. Assignment of Components to Nodes

The goal of this procedure is to assign user subsets to the N nodes of

the distributed system in such a way that the total processing power and I/O

bandwidth of all nodes be approximately the same fraction of the total pro-

cessing and I/O requirements R. In practice, for the two real systems that

we have partitioned, it turns out that assigning nodes based on'the process-

ing needs results in systems that are also reasonably well balanced in the I/O

requirements. To achieve this goal, we use the following strategy:

(1) By choosing the appropriate critical value, obtain a partition with a

larger number of components than the number of nodes of the system,

such that no single partition has requirements exceedingObtaining

this value is an iterative process. An initial critical values is chosen

arbitrarily. The partition is obtained, the processing and I/O require-

ments are computed, and the results sorted. If any of the component

requirements exceedsa new (higher) critical value is picked and the

procedure is repeated. If the requirements of the larger component are

not within the order of magnitude of the target, a smaller critical value

is chosen and the procedure is repeated. A binary search of the space

of critical values eventually yields an adequate partition.

(2) Assume that a good partition has been obtained. The components of the

partition are then sorted by processing and 1/0 requirements and the

top N components are chosen as seeds for the assignments. The

remaining components are assigned, in decreasing order of resource

requirements, to the node that can accommodate them without getting

more than -of the total system resources. In practice, the procedure

has worked very well. It must be noted that the partitioning procedure

usually produces scores of very small components and these are very

useful towards the end of the assignment procedure to even out the pro-

cessing and I/O requirements of the nodes.

The assignment of components to nodes is a problem that could be f or-

mulated as an integer program and hence could be solved by standard

mathematical programming methods. Since the solution of the integer pro-

gram can be computationally expensive and the assignment is not a crucial

part of our study, we have used the heuristic procedure described above.

3.4. Choice of a Partitioning Strategy

The next step in our choice of a partitioning strategy is to determine

which one of the seven proximity measures yields the system with the lowest

average communication traffic. As was mentioned earlier, we determine that

by running trace-driven simulations of the synthetic distributed systems. We

perform two sets of experiments, using two different file migration policies.

The first policy maintains a static assignment of files to nodes. The second

one dynamically assigns the file to the node of the current user (these poli-

70

cies are more precisely defined in the next section). 	 -

Conceptually, each partitioning strategy could have been tested using

more than two policies. Unfortunately, this would require a number of exper-

iments that is beyond our capabilities. Therefore, we have chosen two

single-copy policies that are easy to implement and different enough so that

a partitioning strategy performing well under both policies can be con-

sidered a good strategy independently of the migration policy.

3.4.1. The Migration Algorithms

The first of the two algorithms is RIO (Remote i/O). RIO is a static algo-

rithm and it can be described by the two following rules:

A file is placed at the node where it is created. If the trace does not

contain the creation record for the file, then the file is placed at the

node where it is first used during the span of the trace.

Whenever a reference is made to the file from a remote node, the

required records are transferred to or from the remote node. The

records are not cached at the remote node.

The second algorithm is MRU (Most Reôently Used). MRU maintains a

single copy of the file at the node where it has been most recently used.

When using MRU, users located at different nodes are not allowed to access

simultaneously a file.

The next section presents the results of the simulations using these

migration policies.

3.4.2. Experimental Results

The partitioning procedure that we have described in the two previous

sections have been performed on the SLAC and the Hughes Aircraft systems.

71.

For the SLAC trace, all the experiments have been repeated twice. The first

time, the entire trace has been used to determine the system partition.

Then the whole trace has been used to run the trace-driven simulations and

to measure the traffic. The second time, only the first half of the trace has

been used to determine the partition. Then the second half has served as

input to the simulation. Our objective in performing this second experiment

is to see whether the proximity measures that we had chosen would be able

to predict the utilization of the files in the future. The experimental results

show that there is little difference in the ranking of proximity measures in

both cases.

3.4.2.1. SLAC Trace

We look first at the results obtained by running the RIO migration algo-

rithm (Figs 3,1, 3.2, 3.3, 3.4).

All partitioning strategies tested perform better than random partition-

ing in terms of average traffic. For all the strategies, the traffic function has

a decreasing slope as the number of nodes increases. The partitioning based

on the user group is the best, followed by the ones based on the inversion

space and the number of inversions.

When the experiment is repeated on the second half of the trace (Fig

3.2), the results change very little. The average traffic is actuafly lower. This

is not due to the partitioning procedure, but rather to the different charac-

teristics of the data in the second half of the trace. The User Group proxim-

ity becomes even better than the other policies and the Shared Space policy

now ranks in third place, indicating that it is a very robust measure of prox-

imity.

10

8
0
C-)
C)

Cl)
6

C)

U)
C) 4

0
— 74 2

Average Traffic vs.
Number of Nodes

ii

• 	1nversons

• 	I-Space

Uesr Group

' 	I
Shared flies

Shared Xtsr

Shared Space

a.

0

S..'

72

(1
0 	2 	4 	6 	.5 	10 	12

Number of Nodes

Fig 3.1. Average traffic as a function of the number of nodes in the system
(SLAC trace). This traffic is generated by the RIO (Record I/O) ml-
gration algorithm, which keeps a single copy of the file at the crea-
tion node. Both partitioning and simulation use the entire trace.

Average Traffic vs.
Number of Nodes

• 	 Shirsd PU..

1iuin4om ,/ '

Inverdons
• 	 /

	

I 	 •..
• 	I 	 ..

/ 	•• 	 SbiredXf.r
• 	 / 	1...•••

Sbtr.d Spao. -

I-Space

U.sr Group

73

10

Pc,
8

0
C)
a)

cn
6

0)

Cl) 	4 a)

0
0

— 	2

0

2 	4 	6 	8 	10 	12

Number of Nodes

Fig 32. The same experiment of Fig 3.1, but partitioning is done on the first
half of the data and it is tested on the second half.

Average values are useful to determine which partitioning procedure

generates the least total traffic in a particular time period. However, worst

case design rules are often used. In this case, we are interested in peak

traffic values as generated by the various synthetic systems. Fig 3.3 shows

peak hourly traffic for, the interval [UT]: when the full trace is used for parti-

tioning and testing. The ranking of the policies is almost the same. 1-Space

is better that the user group proximity, indicating a smoother demand on

74

0
C)
a)
V)

a)

U)
a)

0
0

50

Peak Hourly Traffic vs.
Number of Nodes

I 	I 	I
I 	J 	 I

/ 	Shr.4 Fit.. Random / 	Stiar.d XI.r

invaritons I 	 Shar.d Span.

Ussr Group 	:

I.
=

0

-S..

U

UI

r7
/

ii
/

/

40 , ~~ l-Sp.o.

	

301 	i 	I 	I 	1 1 	i 	I 	i 	I 	i

	

0 	2 	4 	6 	8 	10 	12

Number of Nodes

Fig 3.3. The maximum hourly traffic generated by RIO (Record I/O) for the
SLAC, two week trace. The full trace is used in the experiment.

the communications system. The same measurements of Figure 3.3 are

shown in Figure 3.4 when the first half of the trace is used for partitioning

and the other half for testing.

To make sure that the results are not too sensitive to the migration

algorithm used so far (RIO), we repeat most of the experiments using MRU to

manage the files in the system. The experiments, again, are conducted both

for the full trace(Figure 3.5) and for the second half only (Figure 3.6). Figure

0
0
a)
(n 5

a)

a)
4 1

.0
0

—

am

Peak Hourly Traffic vs.
Number of Nodes

6C

75

	

RlDdom/ / 	Sltar.d Spe.

	

I I 	.-•-• I,w.r,tca

I 	
.....

.........
I I.....

/
I-Spum

j

I

0

3

Number, of Nodes

Fig 3.4. The same experiment of Fig. 3.3 using half of, the trace for parti-
tioning and the other half for testing.

10

Average Traffic vs.
Number of Nodes

WI

0
C)
a)

U)

a)

U,
a)

0
0 —

mine

2

0

/
smrsd

/

- 	

Sbar.d Xf.r

II,,! 	
Sad Spce

Inversions

2 	4 I 	

I 	 I 	I
8 	10

Number of Nodes

Fig 3.5. Average traffic versus space time when using the MRU (Most Re-
cently Used) migration policy. Both partitioning and testing done on
the full SLAC trace.

1

77

4

r

A-

Average Traffic vs.
Number of Nodes

N.

"0 	2 	4 	6 	8 	10 	12

Number of Nodes

Fig 3.6. MRU policy on half of the SLAC trace.

3.7 shows the peak hourly traffic when using the MRU policy and the whole

trace both in partitioning the system and to run the simulation.

These results confirm that User Group and Inversion Space are the two

best criteria for partitioning the SLAC user community.

3.4.2.2. Hughes Aircraft Trace

The partitioning procedure has been repeated for the Hughes trace.

There are a few differences in the results:

"U

8
C)
a)
(n

6
a)

Cfl
a) 4

4-,

2

1,

0
C)
a)

Cl)

S-i

En
a)

0

50

40

kyal

IZOII

MA

Peak Hourly Traffic vs.
Number of Nodes

Random

I..
=
1..

Shared YtMi

/ 	1

SbaredXftr

/ 	/ 	ussr Groi*p

/.................:.-,- 	Shared Spec.
I

I 	H
2 	4 	6 	8 	10 	12

Number of Nodes

Fig 3.7. Maximum hourly traffic vs. number of nodes for the MRIJ migration
policy on the full SLAC trace.

The experiments based on partitioning on the first half of the trace and

testing on the second half have not been done.

The characteristics of the Hughes systems are such that most of the

proximity measures achieve excellent partitions.

The User Group measure has not been used because it is not possible to

extract this information from the trace.

4

V

b

4 0
C)

Cl)
3

'a)

U) 2 C)

,0
0
- 1

n

79

Figure 3.8 and Figure 3.9 correspond to the simulations using RIO. As we

mentioned before, the Hughes systems can be very easily partitioned. Figure

3.8 shows the average traffic and Figure 3.9 the hourly peak traffic. In both

cases, the entire trace is used to obtain the partition and to measure the

traffic.

- 	 Average Traffic vs.
- 	Number of Nodes

0

2 	46 	8 	10 	12

Number. of Nodes

Fig 3.8, Average traffic as a function of the number of nodes in the system
(Hughes trace). This traffic is generated by the RIO (Record i/o)
migration algorithm, which keeps a single copy of the file at the
creation node. Both partitioning and simulation use the entire
trace.

ME

Peak Hourly Traffic vs.
Number of Nodes

20 0
()
()

V)
15

a)
04

tn 10 a)
4.)

.0
0
- 5

n

Figure 3.10 shows the traffic generated when the MRU policy is used with

the Hughes trace.

3.5. Conclusion

In this chapter, we have developed a heuristic method for distributing

centralized systems. The procedure begins by defining a measure of proxim-

ity between each pair of users. Using this proximity measure, the system is

0

I

2 	4 	6 	810 	12

Number of Nodes

Fig 3.9. The maximum hourly traffic generated by RIO (Record I/O) for the

'I-

Lu

8 0
C)
a.)

V)

6
a)

Cl)

I .

0
- 2

(1

S.

Average Traffic vs.
4 	

Number of Nodes

D

a

R

a

2 	4 	6 	'8 	10 	12

Number of Nodes

Fig 3.10. Average traffic versus space time when using the MRLT (Most Re
cently Used) migration policy. Both partitioning and testing done on
the full Hughes trace.

partitioned and the resulting classes of users are assigned to the nodes of a

synthetic distributed system. The goodness of the distribution is then tested

by running trace-driven simulations of the distributed system. Two sets of

simu1ations.have been performed, using two different file management poli-

cies. The results have been consistent.

81

82

We have performed the distribution procedure on two systems: SLAC and

Hughes. The partitioning of the SLAC user community has produced subsets

with a great amount of overlapping among them. We have also observed that

the partition based on the user group of each user yields a very good parti-

tion in terms of generated traffic. Of the proximity matrices based on meas-

urements of the data, the best two are the one based on number of inver-

sions and the one based on inversion space. Because it is somewhat simpler

to obtain and it does not rely on the size of the files provided by the trace, we

choose the proximity measure based on the number of inversions for obtain-

ing the distributed systems to be used in later chapters.

When we have applied the same methods to the user community of the

Hughes system, we have obtained partitions that generate much less traffic

among components. This is probably due to the fact that the user conimun-

ity is itself strongly partitioned into projects so that little sharing exists

between projects. In any case, the proximity measure based on the number

on inversions is again the one performing best and we choose it for obtaining

the synthetic distributed computer systems that we need for the simulations

of the next two chapters.

17

CHAPTER 4

SINGLE-COPY MIGRATION POliCIES

In this chapter we present a number of policies for migrating files in dis-

tributed computer systems. We only consider policies that maintain a single

copy of each file in the system.

Based on a simple model of file sharing, we develop a migration policy

that is optimal in the sense of minimizing the global network traffic. This

policy is then compared to a number of heuristic algorithms using trace-

driven simulations.

Introduction

Both centralized and distributed computer systems allow users to share

information. In centralized systems, sharing is usually based on the access

to some common storage area. This common area can be in main memory or

on a secondary storage device. Access to shared memory can be inexpensive

because the information need not be copied, in principle, from one user's

space to the other user's space. A remappirig of the physical storage region

is all that is needed.

When dealing with distributed systems, sharing information always

means transferring it from one system to another (we consider remote I/O's

as transfers of data). Since transferring data can be an expensive operation

and it can be done in many different ways, a number of dcisions need to be

made in order to implement sharing of information in a distributed system.

S

' a

83

84

Let us assume that two users located at different nodes of a computer net-

work want to share the information contained in a file. Should the file be

permanently placed with one of the users? If so, with which one? What if

there are more than two users? Should the file be moved back and forth

between nodes as it is accessed? Should copies of the file be made and dis-

tributed to all users of the file? In this case, what should be done with the

copies when one of the users updates the contents of the file? Or should the

users be moved between systems? The decisions made about placement and

transmission of shared files may have quite an impact on the overall perfor-

mance of a distributed system. How to make these decisions is the subject

of the remaining chapters of this thesis.

We will start by considering algorithms that manage only one copy of

each file. These so-called single-copy policies are easier to implement and

easier to model than the policies that create multiple copies of files. As we

will show, single-copy policies do not provide, in general, the best results in

terms of system performance. However, they are worth studying for a

number of reasons: they can be implemented with existing file handling

mechanisms, they are easier to optimize and they can outperform the

multiple-copy policies under certain conditions, eg. heavy updating or expen-

sive storage

Section 1 is a brief review of the nièchanims that can be used for 	 -

accessing remote files. Section 2 presents a simplified model of reference

for shared files. The model is powerful enough to evaluate the class of poli-

cies that we consider in this chapter. Section 3 uses the model developed in

the previous section to find an optimal policy for file migration under some

rather general cost functions. Section 4 introduces sub-optimal policies for

85

migration of shared files and uses the model of section 2 to predict their

cost. Finally, section 5 uses trace-driven simulation to compare the behavior

of all the policies in the synthetic distributed systems generated in the previ-

ous chapter.

4.1. Access toRemote Information

There are basically two ways for a user to access remote information:

Run a task on the machine where the data is.

Transfer the data to the users local machine.

The first alternative can be implemented as remote login or remote exe-

cution. Remote login [Dav77, Day8O, Tan8l] provides interactive access to a

remote machine. The user can run his programs in the remote machine and

has access to all the data stored in that machine. This arrangement can

result in low transmission requirements, especially if the result of the com-

putation is a small amount of data that can be displayed on a terminal or

printed on a hardcopy device. If the amount of data generated by the execu-

tion of the program is not so small or if the necessary data is actually

resident in more than one machine, then remote login is not powerful

enough. Some networks also provide remote execution [HwaBO]. This is a

less interactive mechanism, that triggers execution of a task in the remote

computer. It is usually combined with some transfer of data, as with remote

mail programs. The topic of remote execution is an interesting one but

beyond the scope of this research. it involves the study of load balancing

[Bok79, ChuBO, Mit79] and we believe that the issues of file placement and

migration can be studied independently of process migration. Also, process

migration is a less general approach, usually limited to homogeneous net-

works, while file transfer has been used in heterogeneous networks for quite

NN

some time.

From now on, we will assume that users have been assigned by a system

administrator to specific machines and that all their tasks must run on their

local machine. When a user needs to access a remote file, two mechanisms

can be used:

Transmit the records needed by the user, leaving the fi1eat its current

location.

Move the entire file to the user's location.

The first method of access is known as remote file access or remote

open. It has been implemented in a number of systems. Some of these sys-

tems have machines with almost no storage and all the files are located in a

file server. The Cambridge Ring [Dio8O] is a good example of such a system.

In other cases, remote file access is the mechanism of choice for the access

of remote information because it eliminates the problems of updating direc-

tories that refer to the files being moved Pec8l, Coa81. As far as perfor-

mance is concerned, remote file access has pros and cons. On the plus side,

it does not generated unwanted traffic in that the only information that is

transmitted has been expliciUy requested by a user. Since the file is not

moved, there is no need to update directory information. It has potential for

optimization: In the frequent case of sequential access, special protocols can

be used that do not require one request message per file record. Finally,

records can be cached at the local machine, so that repeated accesses to the

same record do not require extra transmissions. On the negative side,

transmission can be inefficient if the records are too small. In the worst

case, multiple messages may be needed for each file record that is to be

transmitted, increasin.g the delay involved in remote access Finally, remote

87

access disregards the locality of user reference that may exist in a system.

This can generate repeated remote opens from the same user to the same

file, generating unneeded traffic.

The other way of moving the data to the user is to move the file per-

manently to the node where it is needed. This action is called a file trarsfer.

File transfer protocols are available in most computer networks [Gie78,

Hui8l, HwaBO}. The automatic transfer of files can be a rather involved

operation depending on the way that network directories are organized. On

the other hand, file transfer is a potentially efficient mechanism for various

reasons. First, only one message from the requesting site is needed to

transmit the entire file. This is in contrast with remote file access, where

one message may be needed for each file record. Secondly, tranfers of

large amounts of information tend to use the available bandwidth more eff 1-

ciently, by eliminating packet fragrrientation, for example. Finally, if the

user is going to access the file repeatedly, only one file transfer is needed, as

opposed to multiple remote accesses

In the remaining sections of this chapter, we will investigate how the

mechanisms of remote open and file transfer can be combined in order to

optimize the operating cOst of a distributed system.

4.2. Model of FIle Sharing

A real, genuine model of file sharing would be very complex and would

include many parameters, like relations among files, relations among users,

characteristics of the individual files (size, life, organization). A more rea-

sonable description of the general model, oriented towards our studies of file

migration algorithms, could include the following items:

85

The order in which different users access a file.

The distribution of the interreference times;

The distribution of the fraction of the file accessed per open.

The probability that an open results in the file being updated.

The correlations between the previous parameters. For example, inter-

reference times may be shorter when the same user opens a file twice in

a row.

The relationships between different files.

Even this description is too complex and the models considered will be

limited in certain ways. For example, we will not consider relationships

among different files even though, in most systems, files are often used in

groups. Furthermore, we are making the assumption that, in a single-copy

environment, the cost of a remote write is the same as the cost of a remote

read. This is true in terms of volume of data transmitted since a single copy

has to be update. It is only an approximation in terms of delay because

remote reads have to incur a round trip network delay (pre-fetching can help

reducing this delay) while remote writes can be implemented so that the

issuing program does not have to wait at all. As a result, the sharing process
/

can be modeled by considering only two aspects: the order of reference by

- users. and the fraction of file accessed per open. Such a model can be used

to estimate the cost of all the policies that we consider in this chapter. This

applies to the costs related to traffic and delay. The storage costs in the

single-copy case are constant if the unit storage costs are the same on all

the nodes.

1

MM

4.2.1. ThllMarkov Model

Figure 4.1 shows a typical pattern of access to a file that is shared by

twelve users. Each line represents one user and each horizontal dash a four-

hour time interval. Digits stand for the number of times that the file was

opened during that one hour period (a dash means zero opens). Two charac-

teristics of the access pattern are worth noting:

s.d 	eel
p

lid 	--- 3s. --- 3a3.14732..722..-a37.1194I12-2-o--z1 i."2i ---111b3-.-

re.d 	mnu2155

rid 	•.1

r•.d 	----------- S__0112___.1122___tll.2_l_1___1___d72 --- I_dl.. --------- .

r•.d 11•111211 ... 1•11 It 113.-211--tZ.-1l-L..*1?••
22 ---- 3 ------------------- 22 C

rs.d 	---------- 341--il ----------------- 22.3.e313..232 ------- ...e.....Iees22s•ellSee•

reid 	-------- - 2 ----- tl
...

12 -----.eece•e.......CCC.SSCCS

reed 	---------- b2ee11"'Il 121321 ---------------

risc' 	---- ------ 3_.e_j . ------------- 73ee311°1 - 3I--Il l.e.l..ls..e.ee

read I - 22

rtad I I Ii.eeei.eeeeell ,,,,,,,,,,,

Fig 4.1. Pattern of access to a typical shared file. Each row corresponds to
one user. In a row, each dash stands for a period of four hours dur-
ing which the file was not opened by the user. Digits indicate the
number of opens during a given period.

When a file is opened by a given user, it is very likely that the same user

will be the' next to open the file.

In many of the observed cases, one single user accounts for a large per-

centage of all accesses to the file. It is not uncommon for this user to

be the only one that updates the file. We will call this user the owner or

the htgh frequency user of the file.

In trying to model the observed behavior of shared files, an LRU model

[Rau77] would correctly capture aspect (1). Actually, a fall LRU model may

be an overkill, because the system does not seem to have any memory of the

order in which users access the file besides the current user. A simpler

model, with a single parameter a, could be used. This model would assume

that the probability of a user opening a file twice in a row is a. The probabil-

ity of any other user opening the file instead is 1 - a. Both the LRUM and

this one-parameter model keep track of the order in which the file is being

opened by its users. However, they do not keep track of the names of the

users. Consequently, these models cannot accommodate characteristic (2).

In order to do that, the model has to remember who is the owner of the file.

A Markov Chain model can handle both requirements by remembering in

its states both the name of the high frequency user and the current user of

the file. This is the model that we have adopted. Some extra care is needed

in the assignment of users to nodes though:

In the first place, we consider the network nodes, rather than individual

users, as states of the model. For the purpose of this optimization, refer-

ences to a file originating from a cluster of users are equivalent; that is, it

does not matter which user makes the reference because the open is local or

remote regardless of who is the originator within the node.

11

.1

91

A second consideration is the assignment of nodes to the states of the

Markov Chain. Our initial goal was to assign all the Owners (highest frequency

users) to state 1, the second highest frequency users to state 2, and so on.

This would require two passes over the trace: one to compute the frequency

of access in order to assign the users to the states of the chain and a second

pass to estimate the parameters of the chain. Fortunately, we have observed

that in more than 907 of the cases (this figure was obtained by sampling 50

files at random), the first user that accesses the file is also the highest fre-

quency user. There are two possible explanations for this experimental evi-

dence. First, if the first access to the file corresponds to its creation, then

the user is the real owner of the file and, as we mentioned before, this tends

to be a high frequency user. Second, whether or not the first access is the

file creation, the probability of observing a high frequency user is obviously

higher than that of observing a user that seldom references the file. In the

rest of this chapter, we will use interchangeably the concepts of owner of the

file, first user and user assigned to state 1 of the Markov chain.

From the previous observations, we have decided on the following assign- -

ment of users to state: for each file, the first node that references the file is

mapped Into state 1 of - the chain, the second node into state 2, and so on.

One last decision to be made is how to estimate the parameters of the

Markov model. This could be done independently for each file, for some

groups of files or for the whole file population. Estimating the parameters

for independent files is made difficult by the small number of references to

each file. Files could be aggregated by file type, file size, or by the number

of users of each file. -

.93 	 .79

.51 	 .63

92

We have estimated the parameters of the model by aggregating all

shared files in the system. Figure 4.2 shows the state diagram of the Markov 	 -

chain for the synthetic distributed system with four nodes obtained from the

SLAC trace.

The model of file reference is not complete if we do not specify the frac-

tion of file referenced per open. For this, we choose a very simple model. We

make the assumption that the fraction of the file used is independent of the

Fig 4.2. An aggregate model of file sharing for the 4-node system obtained
from the SLAC trace.

\

93

user that is accessing the file. Furthermore, we assume that the fraction of

file used per open is independent of the file or any of its characteristics, like

size or age (these two assumptions are made for modeling convenience). The

• distribution of the fraction of file used per open can be estimated directly

from the data as an empirical distribution. As a matter of fact, only the first

moment of this distribution is needed for our optimization model.

To conclude this section, we review the main aspects of our model of file

reference.

All files are assumed independent and belonging to a single population.

The order in which users reference files is modeled as a Markov chain

where each state' corresponds to a node in the computer network. The

states are assigned to the nodes so that state 1 corresponds to the node

that creates, the file or references it in the first place.

The fraction of the file that is accessed during each open is considered

independent of the other characteristics of the file (size, age), of the

user (node) referencing the file and of the fraction of the file accessed

during previous opens.

4.2.2. Reduced Model

• 	 The full Markov model that we just introduced is useful for a number of

purposes, like predicting the cost of certain migration algorithms. The prob-

lem with this model is that it has 0(N2) parameters, where Nis the number

of nodes. Beyond four or five nodes, the number of parameters becomes too

big.

Even if the parameters could be estimated, the problem of finding the

optimal one-copy policy becomes intractable because it requires solving a

94

system of 2 N 2 linear equations in 2 N2 variables. Doing this symbolically is

impossible except for the smallest values of N.

This prompted us to look more carefully at the model of Figure 4.2. Fig-

ure 4.3 shows again the same model obtained from the same data. However,

this time, the edges are not labeled with the transition probabilities as it is

customary in Markov chains. Rather, they are labeled with the stationary

transition probabilities, that is, the product of the transition probabilities by

the state stationary probabilities. These numbers indicate the long-term

probability that the transitions represented by the edges occur.

It is clear from looking at the figure that state 1 is in a class by itself. In

the first place, the probability of reentering state 1 is extremely high, com-

pared to the other transitions in the model. In the second place the proba-

bilities of the transitions from state 1 to the other states are also higher than

the probabilities of the transitions among the other states. This suggests

that a model with only two states, one state equivalent to state 1 and one

state equivalent to the remaining states, would capture most of the proper-

ties of the full model at a smaller cost. This reduced model should yield the

same stationary probabilities than the full model and the same probability of

reentry into state 1. The parameters of the reduced model can be derived, if

needed, from those of the full Markov model. The reduced model has only

two states and hence two parameters no matter what the number of nodes is.

Let N be the number of states of the full model. Let P2 be the transi-

tion probabilities of the full model and p' jj those of the reduced model (p12

and P21 are the two parameters of the model). Likewise, let rrt be the sta-

tionary state probabilities of the full model and r.- 'i those of the reduced

model. The two conditions to be satisfied are then:

iT'1 = IT1

and

(4.la)

P ' ii Pii 	 (4.1b)

The first parameter, P12 is obtained from eq. (4.1b):

P12 1 P'ii = 1 —p 	 (4.2)

To derive the second parameter; P'12 we first recall that, for a 2-state

Markov chain, the stationary probabilities can be obtained in closed form:

.11 	 .13

.149 	 ItS

Fig 4.3. Stationary transition probabilities. Same data as Figure 4.2.

95

am

= 	P'21 	 (4.3a)
PeiP12

= 	Pia 	 (4.3b) 	 -
P12+P21

From (43a) we obtain:

Pei = 1 _çP'12

By using (4.1a) and (4.2) we get to the final result:

P21 = 	— Pu) TrI

4.3. Optimal Long Term Solution

Given the reduced model of file sharing presented in section 4.2, we can

now derive an optimal policy for the placement and migration of a file in a

distributed system. A policy is a mapping between the state of a system and

.81

Fig 4.4. Transition probabilities of the reduced model. P12 and P21 are ob-
tained from the full model.

97

4 	
a set of actions. The state is not an intrinsic property of real systems. It is,

rather, a modeling decision. In the first place, the number of state variables

can vary widely, depending on the required degree of accuracy. Secondly,

• the state of a system may involve only a few current variables or the whole

history (past, present and future) of the system. For the model of file shar-

ing the state consists exclusively of the name of the current user, or, more

precisely, of the node where the current user resides.

Actions are decisions that (probabilistically) may alter the state of the

system. In the framework of the Markov model, this means that when the

system enters a state, the probabilities governing departure from the state

are not fixed, but rather may be selected from a set of alternatives, depend-

ing on the action taken. If there are costs involved in the change of state,

these costs may also depend on the action taken.

We now turn to the specific problem of finding the optimal migration pol-

icy for the model of file sharing that we described in section 4.2. We start by

defining the states of our model. The state of a file is determined by its

current user the users that has opened the file most recently) and by its

current location. In our reduced model, the current users may be the

"owner" (state 1) or any other user (state 2). Independently of who the

current user is, the file may be physically stored in the owner's node or in

one of the other nodes. In other words, a user can read and write either
I

from a local copy or from a remote; copy. The model remembers both the

current user and the current location of the file. The set of states is

s
=

IS1,S2,S3.S4 I. Figure 4.5 shows the expanded model.

In each of these states, two actions can be taken: M (Move the file in the

event of a remote open) and D (Do not move the file and perform a remote

-

11 1 0

pea, 0

4

94

Fig 4.5. Markov model of reference and storage for shared files. The Markov
chain results from choosing the "Move" action in all states.
State 1: file at node 1, current user is 1.
State 2: file at node 2,current user is 1:
State 3: file at node 1, current user is 2.
State 4: file at node 2, current user is 2.
The labels on the state transitions are the probability of the transi-
tion and the cost of making that transition.

4

I]

pit

12

pea /

'0- 	 21

I'x

'0

'0

Fig 4.6. Markov model of reference and storage for shared files. The Markov
chain results from choosing the "Do Not Move" action in all states.

access). Let A = fM,D I be the set of actions M is the action than uses a

transfer protocol to move the file to the location of the user that needs it.

The cost of this action may be zero if the file is local or it may be nonzero

and proportional to the size of the file, if the file is not local. D is the action

that does not move the file. The cost of accessing the file is zero if the file

and the user are in the same node, and the cost is proportional to the

amount of information needed from the file if it is in a remote location.

100

We will also consider the cost of storing the file. This cost is propor-

tional to the size of the file and to the average length of time that the file

remains in a particular node. More specifically, the costs are as follows:

S; Average cost of transferring the file between nodes one and two.

X: Average cost of a remote open (amount transfer during an open).

Storage cost per unit of storage per unit of time at node 1.

S2: Storage cost per unit of storage per unit of time at node 2.

Average interopen time.

The model and the optimization procedure can handle different storage

costs for the two nodes and different average costs for remote opens. .Even

though we carry these different costs through the whole optimization pro-

cedure, we do not use them in our simulations. In the simulations we assume

a common storage unit price and a single average cost for the remote opens.

It should be noted that the optimization procedure only requires that the

costs associated with the transitiOns be stationary.

A Markov model where the assignment of probabilities depends on a set

of actions is called a Markov Dec'ts'wn Process [Ber76, Ros70]. Such a pro-

cess can be defined as a series of transition matrices, T, and cost matrices,

C, one for each element of A, the set of actions. Upon entering a state, an

action is chosen (maybe according to a pre-defined strategy) and the selec-

tion of this action impacts the probabilities for leaving the state and the

costs of the various alternatives. In our case, we have two actions, M and D

and hence two sets of matrices TM, CM and TD, CD.

The first set corresponds to the Move action. It describes the transition

probabilities and the costs if the action Move is chosen in all states.

101

0 °P12

0 °Pie
TM -

1P21 0 0 P22

[P21 °°P22

a Dos

_ CM 	
S 0 0 0

- ODDS

These two matrices correspond to the diagram of Figure 4.5.

The second set of matrices correspond to the Do Not Move action:

rp 11 0 P12 0

0 P11 0 P12. TD
P21 0 P22°

o P21 0 P22

0 0 x 0
0 x 0 0

- CD
_OoxO

0xo0

These two matrices correspond to the diagram of Figure 4.6.

The elements of C' are the costs incurred in making transitions between

states ie. at the time of opening the file. In addition, files incur a cost S 1 .r

when they are stored at node 1 between opens and a cost S 2 .T when they are

stored at node 2.

Given the transition probabilities and the costs for each alternative, we

want to find an optimal policy (a set of actions) that minimizes the average

cost of operating the system over an infinite horizon. The techniques for

finding this optimal policy are well known [How60, How7l]. It can be shown

that the optimal policy is a stationary policy under very general conditions.

With the help of an algebraic manipulation program f, we have been able to

derive the optimal stationary policies for this problem in closed form. The

102

method used has been the policy iteration algorithm described in [HowSO].

A policy is a vector of actions, one for each state of the model. In this

case, the optimal policy is stationary. Therefore, it is a vector of actions that

do not depend on the time. Since the policy iteration has been performed in

closed form, we are able to derive parametric optimal policies, based on the

parameters of the problem (transition probabilities and costs). In the case

at hand, we obtain three different policies: P'. P2 and P3 depending on the

relationships among X, S. P12 P21, S 1 . S2 and T. For each optimal policy P.

the policy iteration method also yields G, the average cost of operation over

the infinite horizon.

M X> 2 S P21 + (52 S1)T
' 	X>2Sp12+(S1—S2)r

M

= 2 Sp12p21
+

p 12s2 +p21 S 1

(P12 +p21)r 	P12 +P21

The first policy, P', tells us to always move the file in case of a remote

open. Intuitively, we see that P' is optimal when the average amount

transferred per open, X, is relatively large, compared to the size of the file.

D

p2_
M .X 2Sp 21 +(S2 —S 1)T

- D 	 P21>P12

M

2 	Xp12 	cz' G — _ 	 +_)1
(P12 + P21) 1

The second optimal policy applies when P21 > P12. i.e., when the file has a

probability of being in state 1 (of the reduced model) greater than that of

being in state 2. This is true for the systems that we have observed. In this

t Vaxirna, a descendant of Macsyrna.

1031

case, P2 is optimal if the amount transferred per open is relatively small.

The policy tells us to move the file away from state 2 (non owner) in case of a

remote open, but to keep the file in state 1 (owner), even in the case of a

remote open. Therefore, if the file starts in node 1 (as can be expected), the

optimal policy in this case is to store it permanently there.

• 	 1M1

PS
 ID' 	jX< 2 S P12 + (S1_S2)T

= 	if 	
P21 <P12

[DJ

Xp21 	
+52

(P12+P21)r

P3 applies when P21 <P12 and it is the symmetrical of P2 .

The migration algorithm that chooses and implements the optimal poi-

icy will be called AVOPT. It is not a realizable algorithm because it requires

the knowledge of the averages of the file sizes and file transfers over an infin-

ite period. A realizable version of AVOPT would use running estimates of all

the parameters and it would recompute the optimal policy at each remote

open. This adaptive policy is only optimal during the periods where the

parameters remain more or less constant. We will call this policy DYNOPT

and we will test it, together with AVOPT, using trace-driven simulations.

4.4. Suboptimal Policies

- 	 The previous section has1eft open the problem of estimating the param-

eters of the model. We will go back to this in the last section of the chapter.

But first, we will present thre.e non-optimal policies that do not require the

estimation of parameters in order to work.

104

4.4.1. Remote I/O

The first of the three policies is Remote I/O or RIO for short. This is a

simple policy that stores the file permanently with the user that crated it.

All accesses from remote users are handled through remote file access and

the file is never moved. The policy can be defined in the full Markov model as

pRIO

It must be noted that all the actions besides the one for state 1 are

irrelevant. Since the file is placed, upon creation, in state 1 and the action

for state 1 is Do Not Move, none of the other states will ever be visited, and

the actions will not be used.

In the calculation of the costs for the policies and in the trace-driven

simulations that we conduct in the next section, we will assume that the

storage costs are identical at all nodes and equal to S 1 . The average cost of

the policy,, calculated from the full model, is

GRIO= (1_1T1)xs
1

Substituting 711 from (4.3a), we get:

	

r-'RIO - 	Xp12

	

- 	 + 1
(P12 + P21) r

So GRIO is equal to G2 . This comes to no surprise because pW is actually the

same policy as P2 when the model is started in state 1.

4.4.2. Optimal Remote J/O

RIO has the assumption built in it that most of the accesses to the file

will come from users located at the node of its owner. It would be interesting

to see how good an assumption this is. One way of conducting the test is to

*

105

IN 	 implement a non-realizable policy, that actually places each file at the node

of greatest activity. We call this policy Optimal Remote I/O, OPRIO for short.

One other reason for introducing this policy and measuring its behavior

is that OPHIO is the policy that is implicitly used in many of the papers that

solve the file assignment problem by mathematical programming methods.

Using this policy in simulations will allow us to compare the best one-copy

policy attainable by a fixed assignment of files to some of our more dynamic

policies.

In terms of actions, this policy is

D

pOPRIO -

D

The difference with pR0 is, of course, in the initial location of the file.

Conceptually, two passes over the data are needed in order to implement

this policy: one to find the heaviest user for each file and one to measure the

cost of the policy. OPRIO could be approximated by using an exponential

weighting estimator of the frequencies and by moving the file to the node

with the highest frequency of use.

4.4.3. Most Recently Used

This policy moves the file to the node of the current user at every open.

It is called the Most Recently Used (MRU) policy, because the file is always

located at the node where it has been most recently opened In terms of

actions, it can be defined as:

106

rM

MRJ - M

M

The cost obtained from the full Markov model is:

N
1— EpjI

GM= 	s+sl
T

4.5. Simulation Results

Trace-driven simulations have been run in order to compare the perfor-

mances of the policies that we have introduced. We measure their perfor-

mance based on two variables:

The number of remote opens originated.

The average traffic generated.

Before we show the results obtained in the simulations, we must explain

certain implementation details for some of the policies. In the definition of

RIO, for example, we stated that the file is placed with the user that creates

it. In the simulation, however, we do not see the creation of all the files and

in some cases it is not possible to determine the owner of the file. In these

cases, we have placed the file with the user that has first opened the file in

the span of the trace.

Some explanation is needed for AVOPT, the average optimal policy and

DYNOPT, its adaptive version. Let us recall that the optimal policy was

derived from the two-state, reduced model of file reference. The reduced

model do2s not contain any transitions between two non-owner users. Conse-

quently, the optimal policy does not provide an action for such a transition.

In our implementation of AVOPT and DYNOPT, in the event of a transition

107

between non-owners, we transfer the file. It is very likely that the next tran-

sition will be to the same user or to the owner of the file. In that case,. the

optimal policy can be applied again. The transitions between non-owners

could be handled in several other ways. For example, we could do what the

optimal policy says when there is a transition between non-owner and owner.

Alternatively, we could dowhat the policy specifies whenever there is a tran-

sition between non-owner and owner.

Finally, in the case of DYNOPT, we must describe how the parameters of

the model are estimated. The model has three types of parameters, the

transition probabilities, the file sizes and the amount of information

accessed per open. For each one of these parameters we have chosen a dif -

ferent estimation procedure.

The transition probabilities are estimated as an unweighted average of

the last five transitions out of a particular state for each file (only two

parameters, P12 and P21 need to be estimated). The exploratory data

analysis shows that 70 of the shared files are opened more than ten times.

In the period of time before the estimates can be obtained, the files are

managed using MRIJ.

We use the current size of the file as the estimate for the long term

average. This requires some explanation. It has been observed in the trace

that the size of a file rarely changes during its entire life. Furthermore

most of the changes in size are increases. Under these circumstances, it

makes sense to forget past information about the size of the files.

The amount of information accessed per open shows much more varia-

bility that the size of the file. Our estimate is an unweighted average of the

observed values since the last change in file size.

M110*1

Finally, we must say what are the costs that we consider in obtaining the

optimal policies AVOPT and DYNOPT. One assumption that we make in all the

cases is that the storage costs are the same at all the nodes of the computer

network. This in turn means that storage costs for all single-copy policies

are the same and they can be disregarded in the optimization procedure.

The only cost left is the cost of transmission. Both in the file transfers and in

the remote accesses, we have made the assumption that the transmission

costs are proportional to the amount of information (bytes) that is transmit-

ted.

Based on all these assumptions, we have run trace-driven simulations for

the five policies (RIO, OPRIO, AVOPT, MRIJ, DYNOPT) and have measured both

the number of remote opens and the average traffic generated by each one

of the policies.

4.5.1. SIAC Trace

The first set of figures corresponds to the SLAC trace.

It is not surprising that MRU is the policy which generates the smallest

number of remote opens. After all, the Markov model of file sharing shows a

very strong user locality in the referencing process and MRU is the policy

that adapts the fastest to the changes in locality. As for the amount of

traffic generated, it is normal that the optimal policies come ahead of MRU,

since the optimization was done in terms of average traffic. We should also

explain why the two optimal policies produce such close results and why in -

some cases the adaptive policy is even better than AVOPT, even though it is

not backed up by the theoretical optimality result. The main reason is that

AVOPT uses parameters for the Markov model that are estimated over the

entire population of files, while DYNOPT uses estimates of the parameters on

• 	 I
.1

-

P
8

I
4

- r
I 	I

12 a

I

2

I

U)
r.
0. 100,00

4-4

0

J 5000

109

Number of Remote Opens for

15000
	ingie uopy L-'oiicies

4

RIO OPRIO AVOPT MRU DYNOPT

Policy

Fig 4.7. A comparison of the number of remote opens for the one-copy poli-
cies in three different synthetic distributed systems with 2, 4 and 8
nodes. SLAC trace.

r. 4 0
C)
a)

(I)
3

a)

2 a,

0
— 1

A

Average Traffic for
ingie opy rotictes

0

p e

0 6
14

4

C,

rn

110

RIO OPRIO AVOPT MRU DYNOPT

Policy

Fig 4.8. A comparison of the traffic generated by the five one-copy policies
in three different synthetic distributed systems with 2, 4 and 8
nodes, SLAC trace.

a per file basis. This implies that the decisions made by DYNOPT are closer

to the behavior of each particular file.

4.5.2. Hughes Aircraft Trace

When the Hughes system was partitioned in chapter 3 we made the

remark that the components were a'most completely disconnected in terms

of the files that they share. Therefore, the number of remote opens and the

111

traffic generated by the shared files should be very low This is actually the

case. Figure 4.9 shows thd number of remote opens generated by the five

policies that we study. The number of remote opens is about half of that gen-

erated by the SLAC installation even though the Hughes system has a higher

number of opens per hour. As was the case in the SLAC simulation the smal-

lest number of remote opens is generated by MRU.

Number of Remote Opens for
1 	 1-4

[IiIsIi1
	ingie copy roticies

f..

4

4000

4-4

0

2000

r

I I 8
8

14

RIO OPRIO AVOPT URU DYNOPT

Policy

Fig 4.9. A comparison of the number of remote opens for the one-copy poli-
cies in three different synthetic distributed systems with 2, 4 and B
nodes. Hughes trace.

Average Traffic for
Single Copy Policies

P

I,

4

8

I I

P

ru.

0
C)
()

U)

a)

crJ
a)

,0
0

2

1

—í

112

RIO OPRIO AVOPT MRU DYNOPT

Policy

Fig 4.10. A comparison of the traffic generated by the five one-copy policies
in three different synthetic distributed systems with 2, 4 and 8
nodes. Hughes trace.

The measurement oftraffic (Figure 4.10) produces some surprising

results in the traffic generated by MRU. After closer examination, it appears

that a few very large files that are used by more of one node are responsible

for the traffic. The performance of RIO, for example, is better because the

large files are not moved. Again, the main reason for these results is that

there are very few remote opens and the relative performance of the policies

113

are dominated by the large sizes of a few files.

V.. 	 4.6. Conclusions

In this chapter, we have developed a model of file sharing and from this

model, we have derived an optimal one-copy policy (AVOPT) for the migration

of files in distributed systems. Improvements in the order of 50 in gen-

erated transmission traffic with respect to the most static policy are

achieved with an adaptive, implementable policy (DYNOPT). The cost model

for this policy is very flexible. Our optimizations and simulations have been

focused on average traffic but any other stationary cost measures could be

handled. For example, it would be as easy to introduce costs related to the

delay in obtaining remote data or a composite of traffic, delay and storage

sp aö e.

One policy that has performed better than expected is OPRIO, the

optimal static assignment of files. An adaptive version of OPRIO, that keeps

the file in the most active node over a period of time, would be worth investi-

gating.

-S

Lei UM'

MULTIPLE-COPY MIGRAnON P011 CIES

This chapter presents a simplified mode of operation for a distributed

computer system that maintains multiple copies of files. Based on this mode

of operation, we introduce a family of file migration policies: the Space-Time

Update-Rate Working Set policies.

Tiace-driven simulations are used to evaluate the performance of these

policies. The simulations suggest that the best policies (in terms of network

traffic generated) are those that penalize copies that are not being locally

referenced but are being updated through the network in order to maintain

their consistency.

Introduction

In Chapter 4 we presented various single-copy policies for placing and

migrating files in distributed systems. Some of the policies allocated files to

nodes of the network using very simple heuristics. Others were much more

complicated and used a dynamic assignment based on adaptive estimation of

various parameters. One of the main conclusions of that study is that the

most complex policies achieve, at best, a fifty percent reduction in network

traffic over the simplest policy.

Further inspection of the patterns of access presented in chapter 4

reveals the existence of extended Localities. Extended localities occur when

a (generally small) number of users access a file over a short period of time

•'0

115

in a random order. This situation generates unavoidable traffic as users

located at different nodes access the file almost concurrently. Still, the

existence of some locality should be exploited. One way of doing so is to pro-

vide each active member of the extended locality with a copy of the file:

Keeping multiple copies of files in a system can be an expensive mode of

operati9n. First of all, copies take up physical storage space. Secondly, the

structure of the directories becomes more complex and looking for files may

be slower, increasing user delay. Finally, maintaining the copies of the file in

a consistent state may require a fair amount of update traffic if the file is

updated frequently. Our goal in this chapter is to see whether the decrease

in the number of file transfers can offset these costs.

In Section 1 we will propose a mode of operation for file systems main-

taming multiple copies of files. The placement and migration policies are

introduced in Section II. Finally, Section III contains the results of the

trace-driven simulations that have been conducted to evaluate the policies.

5.1. Management of Multiple Copies of Files

It is not the goal of this research to devise new concurrency control

algorithms for distributed file systems. There is a large body of literature on

the subject [Min79, Bad78, Lin79, Sto78, Tho79] and two recent surveys

[BerBl, Kol81, have covered thoroughly this area of research. However, it

must be pointed out that most of the effort has been directed to the mode of

operation of DDBMSs (Distributed DataBase Management Systems)., not dis-

tributed file systems. The distinction is important because the concern with

concurrency control and with crash recovery in DDBMS's has produced

updating algorithms that are very expensive in terms of overhead [Bad8,

Rie79, Gar79]. This overhead is so big under general assumptions that some

116

researchers have concluded that it is not worth replicating data in distri-

buted databases unless availability is an overriding factor [GarBi]. We

believe that the operating requirements of distributed file systems are sub-

stantially different from those of DDBMS's and that the question of file repli-

cation should be investigated.

It must be noted, before we make any more statements about distri-

buted file systems, that we are not talking about transaction-oriented sys-

tems like DFS [StuBO] or the Cambridge File Server [Dio8O] but rather about

the distributed versions of 'classical' file systems provided by operating sys-

tems like IBM/OS or UNIX. These file systems basically provide a read opera-

tion, a write operation and some primitive internal locking mechanism to

preserve the internal consistency of the file and the associated directories.

Under these conditions, we can describe the reasons why the operation of

this type of file system is considerably simpler than that of a DDBMS.

In the first place, crash recovery is usually not handled directly by the

file system. File systems and device malfunctions are usually corrected by

restoring information from periodic dumps. In any case, the update algo-

rithms do not have to be concerned with possible crashes. Secondly, con-

currency control in file systems is in a much more primitive state than in

database management systems (many operating systems do not provide any

concurrency control at all). Usually, it is not a feature of file systems to pro-

vide synchronization primitives as a side-effect of the read and write opera-

tions. Rather, applications programs use other Interprocess Communication

(IPC) mechanisms to control concurrency.

We conclude from these remarks that a very simple mechanism with

write-locks is sufficient in most cases to maintain consistent copies of files in

117

a computer network. We will now describe this mode of operation in more

detail.

5.1.1. Mode of Operation

The main purpose of this section is to present a plausible mode of opera-

tion in order to estimate the costs involved in the management of multiple

copies of files. An actual implementation would have to take into account

many more details, including race conditions and deadlock detection and

avoidance. We will not discuss these details nor the directory mechanisms

necessary to search files and copies of files in a network, We first describe

the data structures needed and then present the way in which the major file

access operations work.

5.1.1.1. Master Copy

For each file, there is at least one copy, the master copy, in the system

at all times. This copy may be statically assigned to a node of the network or

it may logically move from node to node. In our implementation, the master

copy is the most recently accessed copy. The master copy is never deleted.

5.1.1.2. Write Lock

The master copy has a write-lock associated with it. In order to write to

the file, a user must obtain the write lock from the master copy. If it

- succeeds, it owns the lock and the local copy becomes the 'current master

copy. If the master copy is being updated, the lock cannot be obtained and

the user has to wait until the master copy is closed and the lock released.

118

5.1.1.3. Readbocks

All copies of the file have read locks. The read lock of a copy is set only 	 ..

when updates that have taken place at a remote master copy are being

transmitted to the copy. This is the only time when copies are locked for

reading

5.1.1.4. Reading the flEe

When a user wants to read the file and there is a copy at the local node,

this copy is used, as long as it not read-locked. If it is read-locked, meaning

that the copy is being brought up-to-date with the master copy, the user

must wait. Since the length of time that the copy is read-locked is short

(updates are sent in one batch) we make users. wait instead Of allowing

remote access to a non-read-locked copy. If there is not a copy at the local

node, a fresh copy is brought over the network from any copy that is not

read-locked. This is done even if the file as a whole is write-locked.

5.1.1.5. Updating the File

When a user wants to update the file, he must make sure that the file is

not being updated by another user. This is done by checking whether the

master copy is write-locked. If it is, the user has to wait until the lock is

released. If it is not, the user obtains the lock, and the user proceeds with

updating the file. If there is no local copy, one is brought in from another

node. This transfer can be avoided if the user is overwriting the file rather

than updating it. When the updates are done and the copy is closed, the

write lock is released and the updates are distributed to the other copies of

the file.

119

5.1.1.6. Distributing the Updates

/ 	When the master copy has been updated, the remaining copies have to

be brought up to date. This is done by read-locking all the other copies (this

is the only time that the read locks are used) and transmitting all updates in

a batch. In order to read-lock a copy, it must not be opened. If it is, the

updating has to wait until the copy is not being referenced.

The mode of operation that we have just described ensures that copies

of the file are always available for reading except during the periods when

updates are being distributed. In particular, users can read their (slightly

outdated) local copies when the master copy is being actively updated.

Furthermore, opening a file for reading does not involve any network opera-

tion if there is a local copy of the file. This is important because more than

eighty percent of all opens are read-only opens and because the policies that

we are going to define achieve hit ratios on the order of 0.9 and higher.

Therefore, we want to make reads to local copies inexpensive even if that

increases the cost of writing into the file when there is no local copy (writing

to the master copy does not involve any communications either).

If an application is sensitive to the on-going updating of a file at a dif-

ferent node, then a high level inter-process communication protocol should

be used for synchronization purposes.

One last aspect of our mode of operation is that all the copies of the file

• are maintained up-to-date between opens. This is in contrast with the updat-

ing algorithm used in WFS [Gif79]. In WFS, there are stale copies of the file in

the system. The file system uses a weighted voting mechanism and file ver-

sion numbers to decide what are the copies that contain current informa-

tion. Since we are more concerned with the performance aspects of the

120

algorithms than with the reliability issues, we will not consider maintaining

stale copies of the files in the system. Stale copies are costly in terms of 	 - -

storage and users incur extra delay because of the voting when they need to

use the file.

5.1.2. Cost Model

In our cost model we will be making most of the assumptions that we

made in the study of single-copy policies about storage and transmission

costs. Namely, storage and transmission costs will be considered propor-

tional to the size of the file.

We will consider three main costs in the operation of the file system:

C: Cost of creating a new copy and transferring it to a node.

C: Storage cost.

Cu : Cost of maintaining a copy upto-date when the file is being updated

at remote nodes.

The cost of creating a new copy of the file is, for our purposes, equal to

the cost of transferring the file from the node having the master copy, let us

say, to the node that needs the new copy. This is a traffic cost and is equal

to:

= S x Ct

where

S: 	Size of the file.

c g : Communication cost per unit of information.

The storage cost will be considered to be proportional to the size of the

file and also to the length of time the copy spends at the node:

121

Cs = S x C. X t

where

S: 	Size of the file.

c 	Cost of storing one unit of storage per unit time.

t 	Time during which the file is stored at the node.

To calculate the update cost, we make the assumption that the traffic

generated by the locking messages is negligible. These messages are only

needed at open and close time and have a small, constant size. Further-

more, only fifteen percent of all opens (for shared files) are update opens

and these are the only opens requiring locking messages. Consequently, the

cost of updating copies of files is the traffic cost of transmitting the changes

to the remote copies. As we mentioned before, these updates can be

transmitted all at once when the active copy is closed after updating.

As we described in section 5.1.1, every time that the master copy is

updated, all the other copies are updated. Lets U be the average rate of

information (bytes per second) written toa file (or to its master copy, since

there may not be concurrent updates to other copies) by all its users. The

updates to the master copy are free in terms of network traffic or delay

because the master copy is local to the user updating the file. Eventually,

the updates have to be transmitted to all the existing copies of the file. Over

the long run, each copy will incur a cost:

C,A =,Ur XC U Xt

where:

U: Average rate of update.

c: Unit cost of update traffic. This cost can be equal to Cg in many cases.

We make the distinction, though, because this traffic can be considered

122

as low priority traffic and could possibly benefit from lower communica-

tion rates.,

t:. Time that the copy remains at the node.

5.2. The Migration Policies

The mode of operation that we have outlined in the last section some-

what constraints the type of policies that are available to us. All the policies

that we will study have the following characteristics:

They are demand policies.

They use file transfer as opposed to remote I/O. This constraint could

be relaxed in later studies. In particular, a combination of the optimal

policies of Chapter 4 and of multiple-copy policies should be investi-

gated.

They are variable space policies.

They treat files independently..

We are limiting this study to demand policies. In this environment, a

demand policy is one that transfers files only when a user wants to open a file

and there is no local copy available. In particular, we do not consider moving

files when other related files are being moved. Related files are files that are

frequently used together by a same program, for example. Policies that ini-

tiate the transfer of files before they are accessed by the users called pre-..

fetching policies. This type of policy incurs two types of transmission traffic:

demand traffic and pre-fetching traffic. It is usually expected that some of

the pre-fetching traffic will offset some of the demand traffic and a substan-

tial part of the delay costs.

123

Our policies do not generate pre-fetching traffic but they create update

traffic in addition of the demand traffic. As a matter of fact, we will present

results showing that a considerable amount of traffic can be generated by

updates being transmitted to all the copies of.a file in the system.

There are at least two ways of maintaining.the master copy of each file

in the system. One way is to assign the master copy statically to a node in

the network. Another way would be to make the most recently used copy

play the role of the master copy. For our simulation studies, we have

selected the second approach.

Our migration policies are an extension of the Space-Time Working Set

policy [Den78, SmiBlb]. Space-Time Working Set (STWS) removes any file for

which the space-time product is greater than a certain parameter C:

Sxtxc>C

Note that this policy has only one parameter: -c-that can be interpreted as
cs

the ratio of fetching costto storage cost and that the fetching cost is con-

sidered constant (independent of the size of the file). This is in accordance

with the characteristics of many secondary and tertiary storage devices, f or

which the time necessary to access a file is mostly spent in the movementof

mechanical parts. The actual transfer times of the files constitute such a

small portion of the whole process that it is usually disregarded.

Our policies are Space-Time Update-Rate Working Set (STURWS) policies.

They remove any copy for which:

Sxtxc+Urxtxc>C 	 5.1

The implicit assumption is that the file that has accumulated the largest

retention cost is likely to incur the largest retention cost to the next refer-

ence and hence removed. STURWS policies have two parameters:

124

(1) -c--, a ratio of fetching cost to storage cost.
Cs

CU (2) 	-, a ratio of update communications cost to storage cost.
cS

In our case, unlike in the classical STWS policy, we will consider the fetching

cost proportional to the size of the file, as we said in section 5.1.2.

This general policy generates two subclasses of policies, depending on

how U. is computed.

U, can be computed as an long term average of the update activity.

U, can be measured since the last reference.

Of all the possible policies that can be derived from the general STURWS,

we have chosen four in order to run the trace-driven simulations. We now

describe each one of these policies.

52.1. Mean Update Rate (MUR)

This policy uses an overall average of the update rate (including future

activity) as an estimate of U, in equation (5.1). Consequently, it is not a real-

izable policy. We test this policy anyway in order to compare it to the poli-

cies that actually measure the amount of update transmission received by

the copy since the last reference.

5.2.2. Working Set (WS)

This policy is obtained by setting c = 0 in (5.1). The rule for removing

copies becomes:

Sxfxc>C

and if we assume that C is proportional to the size of the file, we obtain:

S xt x C5 > Cj X S

125

where S is the size of the file, C5 is the cost of storing one unit' of storage per

unit time, cg is the communication cost per unit of information and t is the

time since the last reference. Therefore, this policy removes any file that.

has gone unreferenced for a time t such that:

t 	
Cg

>—
Cs

Since 	is a constant for all files, this policy is Working Set (WS) By further

ct
 varying the ratio - we can obtain working set policies operating at thf-

ferent transfer rates and with different storage requirements. At one end,

for f!_ 0, the working set policy behaves like MRU, the single-copy policy

Cg
presented in the last chapter. At the other end, for -= , the working set

C s

policy degenerates into a policy that maintains all the copies of the files ever

created in the system in a consistent state.

5.2.3. Space-Time Update Working Set (UWS)

This policy uses a real measurement of (Jr X t since the last reference

rather than an average of Ut.. As was mentioned earlier, our policies have

two parameters,
Cg 	 C
- and 	For our simulations we have chosen the two
Cs 	CS

parameters such that c = c g . One interpretation of this equality is that we

are using the same priority (hence the same cost) to transfer files on

demand and to distribute updates from the master copy.

5.2.4. Deleth On Update (DOU)

A conceptually different policy can be obtained by setting c = in eq.

(Si). This policy will remove any copy (other than the master copy) that is

126

about to receive any updates. In the absence of updates, the policy behaves

- -

like a pure Working Set policy. In the limit, when
Ct
-', the policy keeps
Cs

read-only copies indefinitely but flushes them as soon as they have to be

updated.

Before showing the results of the trace-driven simulations that have

been run to test the four policies that we have described in the last four sub-

sections, we shall make a comment about the small effect that the size of the

files seems to have on these policies. This may seem surprising to the reader

who is familiar with the generalizations of the working set policy to variable

size objects. For example, in the classical case of file migration between disk

and tape, the size of the file plays an important role. This is because, while

the cost of storage is always considered proportional to the size, the cost of

transferring the file from tape to disk is usually considered a constant, due

to the large delay involved, This explains why Space-Time Working Set poli-

cies tend to eliminate large files from active storage while retaining the

smaller ones. In our case, both the storage cost and the transfer costs are

proportional to the size of the file and hence, the size of the file becomes an

irrelevant factor in determining which copies must remain and which must

be deleted.

5.3. Experimental Results

	

In order to compare the policies that we have defined, trace-driven 	 -

	

simulations have been conducted on the same synthetic systems that were 	 -

used to test the single-copy policies in Chapter 4. For each policy we have

measured the average storage space needed and the average traffic gen-

erated. In order to estimate the average delay experienced by the users in

127

accessing their files, we have measured the number of opens that result in a

file transfer and the amount of information transmitted during these

transfers. From these measurements and the characteristics of the network

(network delay; network' bandwidth, operating system overhead), a measure

of delay can be obtained.

5.3.1. SIAC

The first measure used to compare the policies is the number of remote

opens that they generate. As a first approximation, the delay experienced by

the users of the file system can be considered to be proportional to the

number of remote opens. Figure 5.1 shows the performance of all the poli-

cies when used in three synthetic systems, with two, four, and eight nodes.

For comparison, the performance point of MRU (Most Recently Used, single-

copy policy) is plotted for each system. All the policies behave very similarly

to pure Working set as far as the number of remote opens is concerned.

Table I shows that, for the WS policy, almost a thirty percent reduction in

demand traffic can be obtained by maintaining copies of files alive for one

hour after they have been referenced. The penalty in storage space for doing

this is almost negligible (under two percent). By retaining the copies 4 hours

after the last reference, we can achieve a fifty percent reduction in the

demand traffic. The rate of return in reduction of demand traffic and

number of remote opens decreases substantially after the twenty four hour

mark. From then on large increases in storage space have a small payoff in

remote opens saved and finally, when all the copies are kept for periods of

time in the order of weeks, the demand traffic is one order of magnitude less

than the traffic incurred by the single copy policy MRU.

30(
j
p.

A cl-I

20(

41-4

0

500

I.'
a)

10(

z

300 	400

128

I

LI

Number of Remote Opens vs.

Megabytes

Fig 5.1. Number of remote opens vs. average system space for the SLAC
trace. Each curve corresponds to one value of the update traffic
cost. The points on the curve are obtained by varying the demand
traffic cost with respect to the storage cost.

129

Table 1. Retention Times for the Working Set Policy (SLAC)

Retention Avrg. System Space Avrg. Total Thaffic Avrg, Demand Traffic

Time (Hours) (Megabytes) (KbytesiSec.) (Kbytes/Sec.)

• 	 0. 216,7 3.25 3.25

 220.6 2.64 2.31

 225.1 2.43 1.87

4. 229.1 2,27 1.63

6. 232.8 2.25 1.51

B. 246.1 2.40 1.26

18. 289.7 2.34 1.00

32. 288.5 2.23 0.724

64. 302.5 2.22 0.648

128. 345.2 2.29 0.500

256. 395.1 2.41 0.386

512. 432.8 2.52 0.338

Figure 5.2 shows the demand traffic generated by the transfer of remote

files at open time. The demand traffic follows very closely the number of

remote opens that are incurred by the system. Again, the differences

between policies that handle update traffic in different ways is very small. It

must be noted, though, that the policies that do not charge copies for their

update traffic perform slightly better, in terms of demand traffic. This is not

surprising since copies are kept alive longer, in the average, when the cost of

updating them is disregarded.

Figure 5.3 shows the average total traffic generated by the operation of

the migration policies. Here the policies that take into account the update

traffic are clearly superior to the ones that do not. A good point of reference

in Figure 5.3 is the curve for the case where the cost of updates is considered

infinite. This has the effect of deleting any copy that is going to be updated.

This policy is called "delete on update" in the Figure 5.3. Since this policy

incurs no update traffic, its total traffic is equal to the demand traffic gen-

erated and hence is identical to the corresponding curve in Figure 5.2. Com-

pared to this policy, the policy that makes the costs of demand and update

3

ej

0

PO

0
a)

a)

'2)

0
—

2

1

n

Demand Traffic vs.
Jveige .JysLt1u 	pttee

vs

1 II I I I I I I I 	 I 	 I I I

STUWS
- 	 UUR

- 	 - DOU

- I 	A 	URU

8 Nodes

4 Nodes
2

•
 Nodes

I II I I I I I I I I I I i i i i i i i i i I i i i i i i
ZOO 	275 	350 	425 	500

Megabytes

Fig 5.2. Demand traffic vs, average system space for the SLAC trace. Each
curve corresponds to one value of the update traffic cost. The
points on the curve are obtained by varying the demand traffic cost
with respect to the storage cost. This in turn determines the max-
imum time that a copy remains alive after its last reference.

130

j

I
II

1

8 Nodes

r.
0
8 	

3

()
U)

Q)
.4)

o

131

Total Traffic vs.

4
	Average System Space 	

I
-- -- 	PS

- .-. 	STUWS

FAIM

Me

_-4 Nodes

Nodes
liii 	1111111

300 	400
	

500

Megabytes

Fig 5.3. Total traffic vs. average system space for the SLAC trace. Each
curve corresponds to one value of the update traffic cost. The
points on -the curve are obtained by varying the demand traffic cost
with respect to the storage cost. This in turn determines the max-
imum time that a copy remains alive after its last reference,

traffic equal performs almost identically. The performance of the policies

that either do not consider the update traffic or only consider its mean value

is much worse, Basically, the update traffic increases almost linearly with

the time the copy is kept alive, and this generates very large amounts of

traffic. The difference turns out to be really small between policies that

assign different costs to update traffic. Making a decision about the type of

132

policy that should be chosen still depends on the relative costs of update and

demand traffic. In several distributed systems, the total bandwidth of the

system is much larger than the demand traffic and yet the delay is still too

high (this is particularly true of satellite networks). In these cases, it may be

advantageous to sustain large volumes of update traffic in order to reduce

delay by twenty or thirty, percent. The operating point on the curves of

update traffic vs. demand traffic is ultimately chosen by the user according

to his performance goals.

5.3.2. Hughes Aircraft

The same experiments have been conducted for the Hughes trace. Fig-

ures 5.4 and 5.5 show the demand traffic and the total traffic generated by

the policies. Table II gives the retention times for the WS policy. The results

are essentially identical to those obtained for the SLAC system.

5.4. Conclusions

This chapter has presented a simplified but realistic mode of operation

for a distributed file system that handles replicated data. Based on this

Table II. Retention Times for the Working Set Policy (Hughes)

Retention 	Avrg. System Space Avrg. Total Traffic Avrg. Demand Traffic

Time (Hours) 	(Megabytes) 	(Kbytes/Sec.) 	(ICbytes /Sec.)

0. 276.8 2.58 2.58

 279.3 2.08 2.01

 282.4 1.98 1.48

4. 297.8 1.84 0.97

8. 320.1 1.75 0.72

16. 334.7 1.83 0.62

32. 378.5 1.87 0.48

64. 392.2 1.89 0.41

128. 404.1 1.90 0.37

256. 430.8 1.82 0.32

2

1

-c
0
0
a)

S...
a)
0..

a)

0

'S

STUWS

MUR

DOU

Nodes

133

- Demand Traffic vs.
veuge OYNLULIL 	piee

N
N

N

U

N

I 	ii

50 	300 	350 	400 	450

Megabytes

Fig 5.4. Demand traffic vs. average system space for the Hughes trace.
Each curve corresponds to one value of the update traffic cost. The
points on the curve are obtained by varying the demand traffic cost
with respect to the storage cost. remains alive after its last refer-
ence.

4

0
C) a,

U)

a,

a)
4-,

0
- .-

3

2

1

Total Traffic vs.
average DYSLeM 3PUCe
F 	I 	1 	I 	I 	I 	I 	I 	I 	I 	1.1

vs
sruws
MUR

DOU

£ MRU
A

8 Nodes,

4 Nodes •'

A
2'50 	300 	350 	400 	450

Megabytes

Fig 5.5, Total traffic vs. average system space for the Hughes trace. Each
curve corresponds to one value of the update traffic cost. The
points on the curve are obtained by varying the demand traffic cost
with respect to the storage cost.

mode of operation, the costs of operating the file system have been shown.

Our policies are Space-Time Update-Rate Working Set policies. That means

that copies that exceed a retention cost based on storage costs and update

traffic costs are removed. Using trace-driven simulations, we have shown the

operating curves of four distinct policies. Most of the policies achieve a

reduction of an order of magnitude in demand traffic and number of remote

134

I.'

E
N

I

-

opens compared to the single-copy policies.

135

4-.

CHAFFER 6

CONCLIJSION

6.1. Summary

The management of global (shared) files can have a big impact on the

performance of distributed computer systems. In this dissertation, we have

devoted most of our effort to the study of the file referencing process and to

the development of algorithms to place and migrate files in distributed com-

puter systems.

The topic of assigning files to the nodes of computer networks has

received considerable attention in the past. Unfortunately, most of the work

in this area has concentrated on the optimization of distributed file systems

based on extremely simple models of the workload. Our study is based on

traces of activity collected from a number of real systems. This allowed us

to analyze the workload and to adapt our algorithms to it.

In Chapter 3 we obtained synthetic distributed systems from the real

centralized systems that generated the traces. In particular, we used the

SLAC and the Hughes systems. This partitioning of the users of a large cen-

tralized computer system into a number of smaller user communities was

based on their utilization of shared files. We found that the SLAC system pro-

duced user subsets with a higher degree of overlapping (in terms of shared

files) than the Hughes Aircraft installation.

• Chapters 4 and 5 introduced the file migration policies. First the single

copy policies were presented. Inthis context, we developed a migration poi-

i36

4

137

icy that is optimal in the sense of minimizing the average network traffic.

The existence of extended localities in the use of shared files suggested the

use of multiple-copy policies in order to reduce the network traffic even

further. We studied a number of policies based on the Working Set model.

The best performing policies in terms of generated traffic are those that

closely monitor the update traffic and that react to it by deleting the copies

that are too expensive to maintain up to date.

6.1. Directions for Future Research

In this final section of thedissertation, we present a listof topics for

research that have been suggested by our work.

6.1.1. Extension to.Other Systems

The research we have described in this dissertation can be extended in

many directions. One obvious direction is to study of the performance of our

algorithms in different environments. In particular, the two systems that we

have analyzed can be described as scientific centers containing essentially

the same hardware and the same file system. It would be interesting to see

whether our results carry over to other types of workloads and to other

types of operating systems, especially those that encourage sharing of files

more than does IBM/OS.

The type of system on which this study should be repeated, though, is a

real distributed system. Back in 1977, when the traces that we have used

were obtained, there were not many distributed systems in operation and

those that existed were too new to be traceable. Today, there are thousands

of distributed computer systems in operation, and some of them have sophis-

ticated measurement tools. It would be interesting to see what sorts of work-

138

loads are supported by these systems and how our migration algorithms

would fare in this environment.

6.1.2. Database Management Systems

There is a great deal of interest in Distributed Database Management

Systems. Our results cannot be extended a priori to DDBMS's for two main

reasons:

The workload of a DBMS is intrinsically different from that of a file sys-

tern: The total volume of information is very large and yet users typi-

cally access a small fraction of the whole database.

The mode of operation in many DDBMS'S is based on the paradigm of

transactions. In order to preserve the consistency of the transaction

and the integrity of the database, intricate controls and locking

mechanisms are used. The result, in a distributed environment, is that

a considerable amount of control traffic is needed to maintain the

operation of the system. This traffic is such a large portion of the total

communications activity that most of our assumptions would have to be

revised.

It would be interesting to repeat our experiments based on traces of

database activity and under a more appropriate mode of operation, including

a two-phase commit protocol and taking into consideration the traffic gen-

erated by the locks.

6.1.3. Related flies

Our study has not considered any relations between files. Yet, it is 	 -

rather intuitive that in any computer installation files are not used indepen-

dently but rather in well defined groups. This knowledge should be used to

I.

139

improve the performance of distributed file systems. In particular, the delay

experienced by the users of one of these groups of files could be drastically

reduced by migrating the entire group when one of the members of the

- 	 group has to be migrated. This hypothesis has to be tested experimentally:

6.1.4. Constrained Design Problem

Our approach to the problem of the assignment of files to the nodes of a

computer network has been to a'sume that there are no. constraints in

storage space or communications bandwidth, and to measure the needs for

these resources in an environment without queueing delays. In some situa-

tions, the resources are alloàated based on other considerations. It would be

interesting to see how our algorithms work in an environment where big

bursts of traffic cannot be accommodated.

6.1.5. Multiple-copy Policies

In the realm of single-copy policies, the optimal static assignments

should be investigated further.

Our coverage of the variable space, multiple-ôopy policies has been

rather incomplete. In particular, we have not investigated policie.s that use

estimates of interreference times in order to calculate the, times copies

should be allowed to stay at a given node. Given the positive results obtained

by Smith [SmiBlb] in his study of, hierarchical file migration, such a study

should be undertaken.

S

BIBLIOGRAPHY
	

t

[A1c76] A. Alcouffe and G. Muratet, "Optimum Location ofPlants," Manage-

merd Science 23(3) pp. 267-274 (Nov. 1976).

[Art8ia] E. Arthurs and B. W. Stuck, "A Theoretical Performance Analysis of

Polling and Carrier Sense Collision Detection Communication Sys-

tems," Computer Communication Review 11(4) pp. 156-162 (Oct.

1981). Proc. Seventh Data Corn. Symp.

[ArtSlb] H. Pat Artis, Predicting the Behavior 0/Secondary Storage Manage-

ment Systems for IBM Computer Systems, Bell Laboratories, Pisca-

taway, New Jersey (1981).

[Bad78] D. Z. Badal and G. J. Popek, 'A Proposal for Distributed Con-

currency Control for Partially Redundant Distributed Data Bases

Systems," Proc. 3rd Berkeley WOrkshop on Distr. Data Management

and Cbmp. Networks, pp. 273-288 (August 1978).

{Bad8l] D.Z. Badal, "Concurrency Control Overhead or Closer Look at Bloc-

kin vs. Nonblocking Concurrency Control Mechanisms," Proá. 5th

Berkeley Workshop on Distr. Data Management and Cornp. Net -

works, pp. 85-104 (February 1981).

[Be176] Geneva G. Belford, "Optimization problems in Distributed Data

Management." Proc. Third International Conference on Computer

Communication, pp. 297-301 (3-6 August 1976).

[BerBi] Philip A. Bernstein and Nathan Goodman, 'Concurrency Control in

Distributed Database Systems," Corrtptng. Surveys 13(2) pp. 185-

222 (June 1981).

I 0

p.

141

[Ber76] Dimitri P. Bertsekas, Dy'n.arnic Programming and Stochastic Con-
e

trot, Academic Press, Inc., New York (1976).

[Bog] 	David R. Boggs, John F. Shoch, Edward A. Taft, and Robert M.

Metcalfe, Pap: An Internetwork Architect'are.

[Bok79] S. H. Bokhari, "Dual Processor Scheduling with Dynamic Reassign-

ment," IEEE Trans. Soft, Eng, SE-6(4) pp. 341-348 (July1979).

[Buc79] B. P. Buckles and D. M. Hardin, "Partitioning and Allocation of Logi-

cal Resources in a Distributed Computing Environment," pp. 247-

276 in Distributed System Design, ed. D. F: Palmer, (Oct. 1979).

[BuxBl] W. Bux, "Local-Area Subnetworks: A Performance Comparison,'

IEEE Trans. Comm. COM-29(10) pp. 1465-1473 (October 1981).

[Cas72] R. G. Casey, 'Allocation of copies of a file in an information net-

work," Proc. Spring Joint Cornptr. Conf., pp. 617-625 AFIPS Press

(1972).

[Cas73} R. G. Casey, "Design of Tree Networks for Distributed Data," Proc.

AFIPS, (1973);

[Cha77] G. A. Champine, "Six Approaches to Distributed Data Bases," Data-

mation, (May 1977).

[Cha76] K. M. Chandy and J. E. Hewes, "Optimal file allocation in Distributed

Systems," Proc. mt. Symp. Computer Performance Modeling Meas-

urem.ent and EvaLuation, pp. 10-13 (March 1976).

[Chu76] Wesley W. Chu, "Performance of File Directory Systems for Data
4

Bases in Star and Distributed Networks," Proc. NCC, AF1PS Press

(1976).

11>

'I

142

[ChuBO] Wesley W. Chu, Leslie J. Holloway, Min-Tsung Lan, and Kemal El e,

"Task Allocation in Distributed Data Processing," Corrz.puter

13(11) pp. 57-69 (November 1960).

[Coa8l] K. E. Coates, D. L. Dvorak, and R. M. Watts, "An Overview of BLN: A

Bell Laboratories Computing Network" Computer Communication

Review 11(4) pp. 224-229 (Oct. 1981). Proc. Seventh Data Corn.

Symp.

[Cof73] E. G. Coffman and P.J. Denning, Operating Systems Theory,

Prentice-Hall, Enlewood Cliff, New Jersey (1973).

[CofBOa] E. G. Coffrnan, Jr., Erol Gelenbe, and Roger C. Wood, "Optimal Repli-

cation of Parallel-Read, Sequential-Write Systems," Performance

Eval. Rev. 9(2) pp. 209-216 (Summer 1980). Proceedings of Perfor-

mance 80

[Cof80b] E. G. Coffman, Jr., Erol Gelenbe, and B. Plateau, Optimization of

the Number of Copies in a Distributed Data Base,' Performance

Eval. Rev. 9(2) pp. 257-263 (Summer 1980). Proceedings of Perfor-

mance 80

[Cof8l] E.G. Coffman, Jr., H.O. Pollak, E. Gelenbe, and R.C. Wood, 'An

analysis of Parallel-Read Sequential-Write Systems," Performance

Evaluation 1(1) pp. 62-69 (January 1981).

[Coo63] L. Cooper, "Location-Allocation Problems," Operations Research

11(3) pp. 331-343 (1963).

[Coo64] L. Cooper, - Heuristic Models for Location-Allocation Problems,"

SL4M Rev. 6(1)(1964).

11

I

143

[Dav77] J. Davidson, W. Hathaway, J. Postel, N. Mirnrio, R. Thomas, and D.

Walden, "The Arpanet Telnet Protocol: Its Purposes, Principles,..

Implementation, and Impact on Host Operating System Design,"

Proc. 5th Data Comm. Symp., (1977).

[Dav79] D. W. Davies, D. Barber, W. L. Price, and C. M. Solomonides, Corn-

puter Networks and Their Protocols, Joim Wiley, New York. (1979).

[Day80] John D. Day, "Terminal Protocols," IEEE Trans. Cornrnurt.. 28(4) pp.

585-593 (April 1980).

[Den78] Peter J. Denning and Donald R. Slutz, "Generalized Working Sets for

Segment Reference Strings," Comm. ACM 21(9) pp. .750-759 (Sep-

tember 1978).

[DioBO] Jeremy Dion, "The Cambridge File Server," tYperating Syst. Rev.

14(4) pp. 26-35 (Oct. 1980)

[Dur78] Gary Durbin, Todd Kinney, Peter Lamasney, Edward Newman, and

Edward Syrett, "Guideline on Major Job Accounting Systems: The

System Management Facilities (SMF) for IBM Systems under

OS/MVT," NBS Special Publication 500-40, U.S. Department of Com-

merce (October 1978).

[Esw74] K. P. Eswaran, "Placement of records in a file and file allocation in a

Computer network," Proc. IFIPS, pp. 304-307 (1974).

- -, 	 [Eth8i] The Ethernet, "The Ethernet. A Local Area Network. Data Link

Layer and Physical Layer Specifications," Computer Corn.rn.unica-

lion Review 11(3) pp.. 20-66 (July 1981).

[Faj73] Roger Fajman and John Borgelt, "WYLBUR: An interactive Text Edit.-

ing and Remote Data Entry System," Comm. Ac'M 16(5) pp. 34-322

Ar

144

(May 1973). 	 1.

[FisBO] Marshall L. Fisher and Dorit S. Hochbaurn, "Database Location in

Computer Networks' J. ACM 27(4) pp. 718-735 (October 1980).

[FoIBO] H. C. Folts. "Procedures for Circuit-Switched Service in Synchro-

nous Public Data Networks,' IEEE Trans. Comm.. COM-28(4) pp.

489-496 (April 1980).

[For62] L. H. Ford and D. H: Fulkerson, Flows in Networks, Princeton ;

University Press, Princeton, N. J. (1962).

[Gar79] Hector Garcia-Molina, Performance of Update Algorithms for Repli-

cated Data in a Distributed Database, Dept. of Computer Science,

Stanford University (June 1979). Ph.D. Dissertation

[GarBl] Hector Garcia-Molina, "The Cost of Data Replication," Corrz.pu.ter

Comrriunication Review 11(4) pp. 193-198 (Oct. 1981). Proc.

Seventh Data Corn. Symp.

[Gje78] M. Gien, "A File Transfer Protocol (FTP)," Computer Networks 2 pp.

312-319 (Spt. 1978).

[Gif79] David K. Gifford, "Weighted Voting for Replicated Data," Proc.

Seventh surrz.posium on Operating Systems Principles, pp. 150-162

(Dec. 1979).

[Gop8l] Gita Gopal and J. W. Wong, "Delay Analysis of Broadcast Routing in

Packet-Switching Networks," IEEE Trans.. Cornput. C-30(12) pp:

915-922 (Dec. 1981).

[Gra77] Enrique Grapa and Geneva C. Belford, "Some Theorems to Aid in

Solving the File Allocation Problem," Comm. ACM 20(i1) 1 3November

1977).

145

[GreBO] P. E. Green, 'An Introduction to Network Architectures and Proto-
t

cols," IEEE Trans. Corn.mun. 26(4) PP. 413-424 (April 1980).

[Har75] John A. Hartigan, austering Algoriihrns, John Wiley & Sons, Inc.

New York (1975).

[Hay8l] Jeremiah F. Hayes, "Local Distribution in Computer Communica-

tions," IEEE Communication Mag. 19(2) pp. 6-15 (March1981).

[HobBO] Verlin L. Hoberecht, "SNA Function Management,' IEEE Trans.

Comrrz.un. 26(4) pp. 594-603 (April 1980).

[Ho173] E. Holler, "Files in Computer Networks," First European Workshop

on Computer Networks, pp. 381-396 (April 1973).

[How6O] Ronald A. Howard, Dynamic Programming and Markov Processes,

Technology Press and John Wiley &Sons, Inc., New York (1960).

[How7l] Ronald A. Howard, Dynamic Probabilistic Systems. Volurrie II:

Semi-Markov and Decision Processes, John Wiley & Sons, Inc., New

York (1971).

[Hui8l] C. Huitema and I. Valet, "An Experiment on High Speed File

Transfer Using Satellite Links," Computer Communication Review

11(4) pp. 254-257 (Oct. 1981). Proc. Seventh Data Corn. Symp.

[HwaBO] K. Hwang, B. W. Wah, and F. A. Briggs, A Hardwired Network of UNIX

Computer Systems. Oct. 25, 1980.

[1BM73] IBM, "OS SMF," GC28-6712-7, IBM (April 1973). Eigth Edition

[1BM78] IBM, "OS/VSZ MYS System Programming Library: System Manage-

ment Facilities (SMF)" GN28-2903, IBM (May 5, 1978).

[K01811] Walter H. Kother, "A Survey of Techniques for Synchronization and

Recovery in Decentralized Computer Systems.' Comptng. Surveys

146

13(2) pp. 149-184 (June 1951).

[LamSla]

Simon S. Lam and Y. Luke Lien, "Modeling and Analysis of Flow Con-.

trolled Packet Switching Networks," Computer Communication

Review 11(4) pp. 98-107 (Oct. 1951). Proc. Seventh Data Corn.

Symp.. 	 .

[Lam8lb]

S. S. Lam andY. C. L. Lien, "Congestion Control of Packet Commum-

cation Networks by Input Buffer Limits - A Simulation Study," IEEE

Trans. on Camp.. C-30(10) pp. 733-742 (October 1951).

[Lee77] Robert P. Lee and Richard R. Muntz, "On the Task Assignmnet Prob-

lem for Computer Networks," Proc. Tenth Hawaii International
1'

ConfeTence on System Sciences, (1977).

[Lev78] K. Dan Levin and Howard Lee Morgan, 'A Dynamic Optimization

Model for Distributed Databases," Operations Research 26(5) pp.

824-835 (Sept.-Oct. 1978).

[Lin79] W. K. Lin, "Concurrency Control in a Multiple Copy Distributed Data-

base System," Proc. 4th Berkeley Workshop on IYLstr. Data Manage-

ment and Camp. Networks, pp. 207-220 (August 1979).

[Lud8I] G. W. Luderer, H. Che, J. P. Haggerty, P. A. Kirslis, and W. T.

Marshall, "A Distributed UNIX System Based on a Virtual Circuit

Switch," Operating Syst. Rev. 15(5) pp. 160-168 (Dec. 1981).

Proceedings Eight Symposium on Operating Systems Principles

[Lun77] Allen W. Luniewski, F1e Allocation in a Distributed System, M.I.T.

Laboratory for Computer Science (December 19, 1977).

S.,

147

[Lun78] Allen W. Luruewski, Some Results on File Allocation in a Local Net-

work, M.I.T. Laboratory for Computer Science (March 22, 1978).

[Mah76] Samy Mabmoud and J. S. Riordon, "Optimal Allocation of Resources

in Distributed Information Networks,' ACM Trans. Database Systs.

1(1) pp. 66-78 (March 76).

[Mar81] Madhav Marathe and Sujit Kumar, "Analytical Models for an

Ethernet-Like Local Area Network Link," Performance Evaluation

Review 10(3) pp. 205-215 (Fall 1981).

[McQ74] J. M. McQuillan, "Adaptive Routing Algotithms for Distributed Com-

puter Networks," BBN Report No. 2831 (May 1974). (Ph. D. Thesis,

Harvard University)

[McQ77] J. M. McQuilan andD. C. Walden, "The ARPA network Design Deci-

sions," Computer Networks 1 pp. 243-289 (Aug. 1977).

[McQ78] J. M. McQuillan and Vinton G. Cerf, A Practical View of Computer

Corn.munications Protocols, The Institute of Electrical and Electron-

ics Engineers, Inc. (1978). Library of Congress No. 78-61492

[Met76] R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed Packet

Switching for Local Computer Networks," Comm. ACM 19 pp. 395-

404 (July 1976).

[Min79] T. Minoura, "A New Concurrency Control Algorithm for Distributed

Database System,' Proc. 4th Berkeley Workshop on IJi.str. Data

Management and Comp. Networks, pp. 221-236 (August 1979).

[Mit79] I. Mitrani and K.C. Sevcik, "Evaluating the Trade-off Between Cen-

tralized and Distributed Computing," Systems, pp. 520-528

Huntsville, Alabama(Oct. 1979)'

IN

148

[Mor77] Howard L. Morgan and K. Dan Levin; 'Optimal Program and Data

Locations in Computer Networks,' Comm. ACM 20(5) pp. 315-322

(May 1977).

[Pec8l] Michael A. Pechura, "Microcomputers as Remote Nodes of a Distri-

buted System," Comm., ACM 24(11) pp. 734-738 (Nov. 1981).

{Ram791 C.V. Ramamoorthy and B. W. Wah, "Data Management in Distributed

Data Bases," Proc. NCC, pp. 1011-1024 AFIPS Press (1979).

Rao79] Gururaj S. Rao, Harold S. Stone, and T. C. Hu, 'Assignment of Tasks

in a Distributed Processor System with Limited Memory,' IEEE

Trans. CorrLptrs. C-28(4)(April 1979).

[Rau77] Ramakrishna Rau, "Properties and Applications of the Least-

Recently-Used Stack Model," Technical Report No. 139, Digital Sys-

tems Laboratory, Stanford University, Stanford (May 1977).

[Raz80] Rami R. Razouk and Gerald Estrin, "Modeling and Verification of

Communication Protocols in SARA: The X.21 Interface," IEEE Th'ans.

Com.ptrs. C-29(12) pp. 1038-1051 (December 180).

[Ric80] James Richardson, Creating and Using Reduced Tapes. August 19,

1980.

[Rie79] David R. Ries, The Effects of Concurrency Control on Database

Management System Performance, Computer Science Dept.,

University of Californi, Berkeley (April 1979). Ph.D. Dissertation

[Ros73] Lawrence L. Rose and Malcolm H. Gotterer, "A Theory of Dynamic

File Management in a Multilevel Store," International Journal of

Computer and Information Sciences 2(4) pp. 249-256 (1973).

149

[Ros75] Lawrence L. Rose and Malcolm H. Gotterer, "An Analysis of File

Movement under Dynamic File Management Strategies" BIT, pp.

304-313(1975).

[Ros70] S. M. Ross, Applied Probability Models with Optimization Applica-

tiorts, Holden-Day, San Francisco (1970).

[Seg76] A. Segall, "Dynamic File Assignment in a Computer Network,' IEEE

Trans. Automatic Control AC-21(2)(April 1976),

[Seg79] A. Segall, "Dynamic File Assignment in a Computer Network-Part II:

Decentralized Control," IEEE Trans. Automatic Control AC-

24(5)(October 1979).

[ShoBO] John R. Shoch and Jon A. Hupp, "Measured Performance of an Eth-

ernet Local Network," Comm. ACM 23(12) pp. 711-721 (December

1980).

[Smi8ia] Alan Jay Smith, "Analysis of Long Term File Reference Patterns for

Application to File Migration Algorithms," IEEE Trans. Soft. En,g,

7(4) pp. 403-417 (July 1981).

[SmiBlb]Alan Jay Smith, "Long Term File Migration Development and

Evaluation of Algorithms," cAC'M 24(8) pp. 512-532 (August 1981).

[Sto78] Michael Stonebraker, "Concurrency Control of Multiple Copies of

Data in Distributed INGRES," Proc. 3rd Berkeley Workshop on Distr.

Data Management and C'omp. Networks, pp. 235-258 (August 1978).
'4

[Str77] Edward P. Stritter, "File Migration," STAN-CS-77-594 (January,

1977). Ph: D. Dissertation

{ Stu8O] H. Sturgis, J. Mitchell, and J. Israel, "Issues in the Design and Use of

a Distributed File System," Operating Syst. Rev, 14(3) pp. 55-79

150

(July. 1980). 	 :

[Tan8l] Andrew S. Tanenbaum, Computer Networks, Prentice Hall, Inc.,

Eriglewood Cliffs, N.J. (1981).

[Ten8l] Richard L. Tenney, Gilbert Falk, and Douglas H. Hunt, "Impact of

Satellite Technology on Transport Flow Control,' Corn.puter Corn-

rnunication Review 11(4) pp. 248-253 (Oct. 1981). Proc. Seventh

Data Corn. Syrnp.

[Tho79] H. Thomas, "A Solution to the Concurrency Control Problem foi Mul-

tiple Copy Databases," ACM TODS 4(2) (June 1979).

[Thu79] Kenneth J. Thurber and Harvey A. Freeman, 'A Bibliography of

Local Computer Network Architectures," Computer Architecture

News 7(5) pp. 22-27 (February 1979).

[Tob78] Fouad A. Tobagi, Mario Gerla, Richard W. Peebles, and Eric G. Man-

ning, Modeling and Measurement Techniques in Packet Communi-

cations Ntworks," Proc. IEEE 66(11) pp. 1423-1445 (Nov. 1978).

[TriBO] Kishor S, Trivedi, Robert A. Wagner, and Timothy M Sigmon,

"Optimal Selection of CPU Speed, Device Capabilities, and File

Assignments," J. ACM 27(3) pp. 457-473 (July 1980).

[lJns8l] Mehmèt S. Unsoy and Theresa A. Shanahan, "X.75 Internetworking

of Datapac and Telenet,' Computer Communication Review

11(4) pp. 232-239 (Oct. 1981). Proc. Seventh Data Corn. Symp.

[VinBO] Ilse Vinsin, Calvin Ross, and Ed Russell, ASP User Guide, SLAC Corn-

puting Services (SCS), Menlo Park, California (24 March 1980).

[Wah79] B. W. Wah, Data Management in Distrthuted Data Bases, University

of California, Berkeley (1979). Ph.D. Dissertation

151

[Wec80] Stu Wecker, "DNA: the Digital Network Architecture" IEEE Trans.

Co7nmun. COM-28(4) pp. 510-526 (April 1980).

[Whi70] Kevin M. Whitney, Optimal design of message processing and corn-

rnunicatwn systems, The University of Michigan (1970). Ph. D.

Dissertation

[WilBO] Maurice V. Wilkes and Roger M. Needham, "The Cambridge Model

DistributedSystem," Operating Syst, Rev. 14(1) pp. 21-29 (January

1980).

[Won78] J. W. Wong, "Queueing Network Modeling of Computer Communica-

tion Networks," Comptng. Surveys 10(3) pp. 343-352 (September

1978). -

[Zad7l] L. A. Zadeh, "Similarity Relations and Fuzzy Orderings," Infôrrna-

twn Sciences, (3) pp. 177-200 (1971),

[Zim80] H. Zimmermann, "OSI Reference Model - The ISO Model of Architec-

ture for Open Systems Interconnection," IEEE Trans. Commun.

28(4) pp. 425-432 (April 1980).

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

1!

Jo

tr1 	,

tTl ttI1

Q
t11

