Lawrence Berkeley National Laboratory
Recent Work

Title
File Migration in Distributed Computer Systems

Permalink
https://escholarship.org/uc/item/2zf8g48d

Author
Porcar, .M.

Publication Date
1982-07-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2zf8q48c
https://escholarship.org
http://www.cdlib.org/

LBL-14763

Lawrence Berkeley Laboratory
s UNIVERSITY OF CALIFORNIA
o f . . R!Ef;iééésif\
A Physics, Computer Science&e eommon
@ Mathematics Division SepC. 31882
: LIBRARY AND
DOCUMENTS SECTION
FILE MIGRATION IN DISTRIBUTED COMPUTER SYSTEMS
Juan M. Porcar
(Ph.D. thesis) e ™\
' July 1982 TWO-WEEK-LOAN COPY
Thls sz a}’llbrary Clrculatmg Copy
- ""whlch may be borrowed for two weeks.
For a.personal retention copy, call
* Tech. Info. Division, Ext. 6782.
| - - - -/

Prepared for the U.S. Department of Energy-under Contract DE-AC03-76SF00098

—C_ >

< U g

!

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,

~ process, or service by its trade name, tradémark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. ' ‘

. : ‘ IBL~-14763
. ' ’ . Progres-82.6

File Migration in Distributed Computer Systems
Juan M. Porcar

Physics, Computer Science and Mathematics Division
. Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Ph.D. Thesis

July 1982

*
Copyright © 1982

e *The United States Department of Energy has the right to use this
thesis for any purpose whatsoever including the right to reproduce
all or any part thereof. o

This research was supported by thé Applied Mathematical Sciences
Research Program, Office of Energy Research of the U.S. Department
of Energy under Contract DE-AC03-76SF00098; and DE-AC03-76SF00515
(SLAC), and by the National Science Foundation grants Nos.
MC575-06768 and MCS77-28429. '

ACKNOWLEDGMENTS

-1 wish to thank my advisor, Professor Alan J. Smith, for making this
dissertation possible by providing the topic, data to conduct the research,

financial support, and staunch direction for almost five years.

My gratitude goes to Professor Domenico Ferrari for his example as a
researcher and as a teacher. Without his encouragement and his sugges-

tions, this thesis might have never been completed.

1 want to thank Professor Ronald Wolff for serving oh my thesis commit-

tee.

I am also indebted to the following p'ersons and organizations:

Two generations of members of the PROGRES research group at Berke-
ley. Their comradeship will never be forgotten. Particular thanks go to my
friends ézalp Babaoglu and Frank Olken for being always ready to listen and

to share their knowledge.

Carl Quong and his staff of the Computer Science and Applied Mathemat-

~ics Department at the Lawrence Berkeley Laboratory for being exceedingly

booperative and for providing the unbounded computer resources required
by my research and my mistakes.

The "Con‘lis‘ién’ de Intercambio Cultural entre Espana y los Estados Uni-
dos de América" for a F‘ullbright Foundation Grant to come to Berkeley in the

first place.

The National Science Foundation under grants MCS75-06768 and MCS77-

28429 and the Department of Energy under Contracts DE-AC03-765F00098 {to the

i

Lawrence Berkeley Laboratory) and DE-AC03-76SF00515 (to the Stanford

Linear Accelerator Center) for financial support.

Finally my parents and Michelle, for their love and their encouragement

during the research and the writing of this dissertation.

EOR A

2%

A

v

TABLE OF CONTENTS

1. Computer Networks Concepts B USRS PRSPPI ‘

1.1 Introduction ;

1.2 Thé File Assignment. Problemcooovoiviiiir :

1.2.1 System Model ..

1.2.2 Cost Functions

...

1.2.2.1 Storage CostSccccorvvveiiriiiniiiiciiiiiii e

1.2.2.2 Transmission Costsoiviiiiiiiininnnns OTTTRUR

1.2.2.3 Delay Costs

1.2.3 Type of Solution s U PPPRTP '

1.3 Related Work

1.8.1 Static Assignment of Filesc..oooovviiiiin o

1.3.2 Dynamic Assignment of Filesc..ooo

1.8.8 Hierarchical File Systems Management e,

1.4 Objectives and Contributions of this Research

Introduction-........c........ .

2.1 Obtaining the Activity

Traces ..o.oocoveiviiiiiinnnn e

2.1.1 The System Management Facﬂity (SMF) oo

2.1.2 The Generation

2.2 The SLAC Installatio.n

of the Reduced Tracescoovviviivvvene.

10

11

11

13

15

16

19

19

23

iil

2.2.1 Basic Numbersccocovvvevnnn., TSRO

2.2.2 Activity Over Time

2.2.3 File Usage Characteristics e ..

2.3 The Hughes Installation e e T

2.3.1 Basic NUMDEers ..o SUUTUIR

2.3.2 Activity Over T +ooveeveveveeeereeeeeeee e, [T

2.3.3 File Usage Characteristics e, SR

2.4 Conclusion

3. Partitioning of Centralized Co.mput,er- Systemscooeoiiiin

.Summary
introductio'n
3.1 The Distribution Problem B P TR IR R TIRTE e :

3.1.1 Statement of the Problem T |

3.2 Solution of the Distribution Problem

3.3 The Partitioning Procedurec..cccooviiiiiiiiiiii

3.3.1 Definition of Proximity JO

3.3.2 Clustefing Algorithm PSRN e PR

3.3.3 Assignment of Components to Nodes e .

3.4 Choice of a Partitioning Strategyc...c.cc.coo.... ST PR

3.4.1 The Migration Algorithms T

3.4.2 Experimental Results DU P PSP PP

3.42.1 SLACTrace e, [UUTOTI e

3.4.2.2 Hughes Aircraft Tracec.o

3.5 Conclusion

iv

23

28

32

41

42

IS

53

57

o7

57

o8

60

63

63

67

68

69

70

70

7

B0

4. Si;zgleCopy_Higration Policies 83
Summary AT R R e . 83
Introduction e SOV RURPPRPN e 83
4.1 Access to Remote Information et RIS - B5
4.2 Model of File Sharingcoovn0s e - B7

" £.2.1 Full Markov Modelrrooocoerrrr.. ST SR e 89
4.2.2 Reduced MOloovvveooveereveeereeeereesrereeeeee 93
4.3 Optimal Long Term Solutionc......ccov..oovvvreeres e 9%
'4.4 Suboptimal Policies S PRI 103
4.4.1 Remote 1/0 ST OUORTTSRURTS - 104
| ;}.4,2 Optimal Remote 1/0c...ccccvene. B P RN 104
4.4..3'MostRecently Used»...............i S PP _105_
4.5 Simulation Results et 106
4.5.1 SLAC Trace JO SOOI 108 ¢
~ 4.5.2 Hughes AIFCTATt TEACE .eoioveveieeesoreseees e ssoeerse s | biklO
4.6 Conclusions ... 113
. Multiple-Copy Migratioﬁ Policiesovvvvvvvvrin i 114
5150001 0 T-\ o N USRS P TR ITY 114
INLrOAUCHION ..vvvviiiiicciie e 114
5.1 Management of Multiple Copies of Filésc.... B 115
5:1.1 Mode of Operationccoccoviiviiiiiinii 117
| 5.1.1.1 Master C.opy .. 117
5.1.1.2 WEIte LOCK wvvorroooveereesereeeeseesrern] e, 117

5.1.1.8 REAA LOCKS e ovoeoeoee oo, 118

5.1.1.4 Reading the File e S R | 118 .
51,15 Updating the File ..o 118 o
. g -
5.1.1.6 Distributing the Updates erereserreses o re s sinsones . 119
‘ 5.1.2 Cost Model s S TN R ... 120
5.2 The Migration Policies e, | 122
5.2.1 Mean Update Rate (MUR) ..o 124
5.2.2 Working Set (WS) ... oo . . 124
5.2.3 Space-Time Update Working Set (STUWS) 125
5.2.4 Delete On Update (DOU) e O 125
5.3 EXperimental RESUILSoo.coorvvovoosrseeoseessssseeeesssseseensoes i 126
5.3.1 SLAC et et o 127
5;3.2 Hughes Aircraft ‘ 132 .
5.4 Conclusions e, e e . 132
6. Conciusion e, [P | 136
6.1 SUMMATY ...ooovvevveeeriirierereeseeee s, evrerssonsiserenas SO 7136
6.1 Directjons for Futuré Researchcoocovvviiiiiiivc, e 157
6.1.1 Extension to Other Systems ..o 137
6.1.2 Database Managément Systemsoooiinn ,,,,,,,,,,, 138
6.1.3 Related Files PP e 138)
6.1.4 Constréined Design Problem 139 . .(
18.1.5 Other POiCIES ...vvvvvviverrrnerieeieviees s s 139 | ’/
Bibliography e 140.

Acknowledgmentsooiiiiiiii i, i

Te

CHAPTER 1

COMPUTER NETWORK CONCEPTS

1.1. Introduction

In the last decade the areas of computing and communications have

been converging rapidly. In the communications industry, computers are

- used extensively for switching, routing, maintenance and a number of so

called enhanced services, like message storing and forwarding. At the same

time, communication devices have become an essential component of com-

_puter systems. Many eomputers are linked to remote terminals and to other

computers. This allows a collection of machines to work together in the solu-

tion of a single problem, or to share a database. A collection of autonomous

‘ but interconnected computers is called a Computer Network [TanB1]. When

there is a great degree of cohesiveness and transparency in the operatxon of
the computer network, it is known as a distributed computer system or a dis-

tributed system tor short

In the past several. years there has been an increasing interest in the
design and the use of d1str1buted systerns We will elaborate briefly on three
of the reasons behlnd this rise in popularity: the need for sharing umque
resources, the favorable price/performance ratio of small computers com-
pare-d to large rpamframes. and the changes in the relative pricing of com- \

puting and communications.

Computer networks first appeared in organizations that were operating
many independent computers, often located far apart. By connecting the

machines together, all resources can be made "available to all users,

irrespective of their physical location. These computer networks, also known
as resource-sharing networks, allow users to share expensive hardware,
unique software and valuable data. They can also provide better service

through load leveling and backup of failed machines.

Large geographically distributed networks have sefved as testing
grounds for new hardware and softwaré technologies upon which rﬁore recent
distributed systéms are based. These technologies include store-and-forward
packet switching [Dav79, Tob78], adaptive routing [McQ74] and layered pro-

tocols [McQ78].

The best known among the resource-sharing networks is the ARPANET

[McQ77], which connects over one hundred computers belonging to universi-

ties and» defense contract'oré, spanning half the giobe‘. from Hawaii to NorWay.
The Arpanet'is a unique_ system but there exist some rcom'mercia.d networks
that offer the same type of services. For éxample. compuier‘ mahufacturers
offef ne‘tworkingv products under the fofm of Network Architectures,. A net-
work architecture is a set of hardware and software modules that allow users
to turn t;heir géographjcally dis;persed computing facilities inio an inﬁercon—
nected networv'k'v. Two exarnples of these products are IBM's SNA [GreB80,

HobBO]. and DEC's DECNET [WecB0] An even mbre general networking service

is provided by the Public Networks like Telnet and Tymnet in the U.S. or

Datapac in Canada. Almost any machine can be connected to one of these
networks by means of a special adapter. Internationally agreed upon proto-
cols, like X.25 [FolB0] permit the transfer of information between machines

and between networks [Bog, UnsB1].

The second reason that we gave for the recent development of distri-

buted computer systems was the superior price/performance ratio of mini

T

_and microcomputers over large mainframes. Networks of small computers
afe replacing large mainframes in applications where no single task fequires :
the processing power of a large machirkzme‘ In this type of distributed syst_ern,
all the machines are usually within the limits of a room, a building, a
manufacturing complex or a university campus. Hence the name of Local

Area Network (LAN) [Thu79].

,Bésides lower total cost, Local Area Networks provide incrémental
gfowth. When a local area netwo_rk_‘v requires more procléssing power, addi-
tional processors can be added without the need for a total system change.
" This also means that the average system cost over a period of time is lower

because of the smaller initial investment.

Distributed systems in general can match the decentralized structure of"
an organization better than a central data processing facility. Several divi-
sions in a company may want to use their computers for different purposes
while still being able to access some giobal database. To this end, they can
optimize their machines by purchasing different proéessor models, different
peripherals or different software pac\kages. This usually reéults in managers.
feeling in control of their computing facilities and having a better attitude

towards data processing.

The third and last reason for the widespread use of distributed systems
is the relative pricing of computing and communications equipmeﬁt. In the
nineteen sixties, -information processing was relatively expensive and sys-
tems v_that gathered data from wide geographical areas tended to transmit
raw data to a central computing facility, where it was procéssed. and maybe
stored or sent back to the point of origin. More recently, the pricing‘struc-

ture has changed dramatically and communications costs tend to be higher

than processing costs. Therefore, it makes sense to use as much local pro-

cessing power as possible to reduce the volume of data transmitted.

Many distributed cbmputef systems are now in bperaﬁion whose primary
design goal is to reduce the transmission costs of an application. One such
examble is the on-line inventory control and customer invoicing of Lowes
Companies, Inc [Cha77]. This pafticular system has one small computer with
disk storage and up to sixteen terminals at each one of the.chain's 140
stores. Most infbrvmation about store inventory, customers and pfices is kept
locally and updated once a day from the central corporate computer center.
Distributed systems of this same kind can be found in banking, manufactur-

ing, airline seats reservations, etc.

- Performance is an important factor in the design ovf distributed systems.
Most performance evaluation studies: of distributed systems concentrate on
the communications subsystem. Popular topics are the rneasureﬁlent and
modeling of various topologies [ShoB0O, Bux81, Mar81], performance com-
parisons for different protocols [HayB81, ArtBla], routing algorithms [GopB1]
and flow cont.rbl for local and geographically distributed networks [LamB1a,
Won78, LamB1b, TenB1, RazB0]. While work in these areas is necessary in
order to solve unavoidable engineering problems, there is a more fundamen-
tal problem in the performance of distributed computer systems: the parti-
tion of the workload and the assignment of its components to the elements of
the distributed system. In general terms, the good performance of a distri-

buted system depends on the existence of both parallelism and locality in

the apphcatlon for which it is used The parallelism is necessary in order to.

process as many tasks in parallel as possible. On the other hand, there must

be a good amount of locality to keep the communications requirements

g

moderate. In’'a general purpose system, good locality is achieved by a sensi-
ble assignment of files to nodes. The goal is to keep the files as close to their

users as possible.

In this dissertation we study some of the performance issues related to
the transmission of -information iﬁ distributed computer systems. More
specifically, we are seeking algorithms for placing and migrating information
in distributed systems. in order to minimize both the volume of data being
transn’iitt'e.d along communication links and the delay experienced by the
users. In the remainder of the introduction, we will discuss this in more
detail, both reviewing past work in the area and presenting our approa;ch to

the problem.

1.2.. The File Assignment Problem

The distﬁbution of files among the storage elements of a distributed sYé-
tem may have a serious impact on its overall performance. A distribution of
files that results in many remote access to files is likely to result in poor sys-
tem performance. Remote accesses increase the load on the transmission
susbsystem, thus delaying other sources of communication, such as terminal
traffic. Remote access is also slower tha'r‘z‘local access because the network
~delay gets added to the disk access delays. Finally, remote accesses
increase the load on the pi‘ocessor and memory in the form of operating sys-
tem overhead. This overhead comes from the handling of protocols, creation
of packets, maintenance of buffer pool space, checksum cémput_ation and
error handling. In conclusion, any application will perform much better if all
its ﬁies reside in the locai system than if it needs to access remote files. The
File Assignment Problem (FAP) is concerned with optimizing performance in

the context of where to put the files in a distributed system.

a)

It is not too difficult to formulate the FAP as a general optimization
problem by using a simplified model of the workload. This has been done in
the past and section 1.3 reviews this approach to the problem. However, it is
very difficult to obtain a solution to this problem for any reasonable system
size and nhmber of files. Implementing this on a real distributed computer
system wouldv be even costlier because the opt_imizatidn algorithm would
have to be run rather frequently to keep the assignment optimal. We will
narrow down the scope of our research space, in order to obtain less general

but more useful solutions to the FAP.

In the next subsections, we will characterize the type of systems that we
are interested in (system mbdel). the type of cost functions that we consider

and the type of solution that we are seeking.

1.2.1. System Model

For the purposes of our research, the system model has three relevant .
components: the computers at the nodes, the way in which the information is

stored and the type of network that connects the nodes.

We only consider general purpose computers, with enough processing
power and storage capacity to be able to run all their programs locally. This
~ eliminates systems that are used in real-time applications or personal com-

puters that do not have any disk capacity.

We also require that the information be stored in a relatively .1arge
number’ of independent files. This rules out the database management sys;
tems, which usually keep most of their data in a single logical entity: the
database.. One of the reasons for choosing this type of system as the object
of our research has to do with our methodolégy. ‘We will use trace-driven

simulations to evaluate our policies and the traces that we have were

obtained from general pufpose systems used for program ﬂevelophent and
production runs of scientific and business-oriented programs.. It is certainly
not obvious (a priori) that the results based on these measurements can be
applied to drastically different systems like transaction-based or database

management systems.

Our model for the network is a fully conne»cte.d netﬁotk with equal com-
municatioh costs on all the links. In essence, we eliminate all the topology
and routing considerations from the prt;blefn. "This model of the communica-
tions subnetwork does not match some real systems, ﬁke' the ARPANET,
\ where the degree of connectivity is much lower and wheré the connections
have widély varying b‘and‘width and delay charactéristics. However, this 1s
not to say that our results will not extend to most computer networks. In the
firét place, most local area ﬁetWorks dov have fixed routing. This includes
ethernet-like networks‘[Met'?B. Eth81], rings [WilB80], star-shéped networks
[LudB1] vand their derivatives. Bﬁt even for networks with arbitrary topology,
there are good reasons for not modeling too closely the ’struct.ure of the
communications subnetwork. The main Areason has to do with the laygred
structure of the protocols that are used in most networks. In the framework
of the Reference Model of the Open Systems Interconnection [Zim80] for
exarnpl_e, all the decisions about routing and'delay optirhization are done at
the Network Layer (layer 3 in the 'QSI model). File migration, on the other
hand, should be implemented at the Presentation Layer (layer 8) or at the
Application Layer (layer 7), as a file system service. Since all layers above
the Network Léyer regard the network as a fully connect'eii grid, and the
information on which the optimal routing is done is not available above that
layer, it would be very difficult to make decisionvs at the file migrdtion level

that could influence (positively) the traffic conditions in the subnetwork.

1.2.2. Cost Functions

We will consider three types of cost in the operation of distributed sys-

tems: storage costs, traffic costs and delay costs.

1.2.2.1. Storage Costs

Storage costs are incurred when information storage devices are bought
or leased. The price structure of storage is very dependent on current tech-
‘nology. In particular, there are large ecoﬁomies of scale to be made when
‘buying disk storage (the predominant type of on-line storage in today's sys-
téms). Furtherm'ore. dlsk storage can §my be purchased in discrete
amounts, adding to the complexity of the price as a function of the total
capacity of the systéin. We will adopt a much simplified price structm_;e
where storage costs are proportional to the amount of information stored in
a given node. In some cases we will make the extra assumption the the unit

cost is the same at all the nodes.

1.2.2.2. Transmission Costs

Transmission costs are incurred when some information is actually sent
over communication lines. The best way of thinking about these costs is to

assume that the communication between machines is through a public data

network. In a public data network (like Telenet or Datapac) one basically ‘

pays for the number of packets that are actually sent. Under those condi-
tions, and assuri;ing that packets are utilized efficiently, the transmission
costs are just proportional to the amount of traffic generated. We will not
consider the problem of packet fragmentation because, in a situation where
most of the transfers are large file records or entire files, the utilization of

the packets should be of no concern. Trying to model the cost of communi-

)

\

cations over leased lines or switched circuits is much more difficult because

one is paying for the circuit even when it is idle, and the circuit's utilization,

in turn, depends on the dynamic characteristics of the traffic.

When measuring traffic in a communications network, it may be con-
venient to make the distinction betweén data traffic and control traffic. Data
traffic comes from the transmission of useful information. Data traffic is in
many ways independent of the details of the communication subsystem and
therefore easy to measure. Control traffic can be considered‘ as overhead
traffic and it includes acknowledgme‘nts, directory inquiries, routing infbr-
mation and so forth. Control traffic is more dependent on the particular

implementation of the system. Nevertheless, control overhead is largely pro-

portional to the number of 10s and it may be estimated by measuring this

number. . |

1.2.2.3. Delay Costs

Delay.costs are due to the cost of the resources that are allocated to:a
task and held unproductive while the task is waiting for the completion of a
transmission. User time is an example of delay cost.. Delays occur because
of physical limitations in the transmission of information. The transmission -
raie measures the amount of data_ that can be transmitted through a com-

munication channel per unit of time with a nominal probability of error.

Given this physical limitation, a data transfer is subject to two sorts of delay: .- '

the delay that the transfer would experience if the entire bandwidth of the
channel were assigned to it, and the delay due to the fact that it shares the
channel with other transfers. In this research, we are interested primarily in
the first type of delay. This delay consists of the transmission time and of

some unavoidable pi‘opagation time in the network (including that consumed

10

by the ‘n‘e‘twork‘ interfaces). The transmission time is proportional to the
amount of informatidn transmitted. The propagation delay‘ is a characteris-
tic of the circuit and hence is a constant, g. for all transmissions between
two points ;)f a network. Therefore, the delay A involved in sending z bytes -

" over a network is of the form:
- A=az + 8

1.2.3. Type of Solution

The File Assignment Problem is usually formulated as a constrained
optimization problem. Total storage at each node, 'maximum response time
and line bandwidth are given, and an optirﬁal assignment is found. Our treat-

‘ment, on the other hand, is to minimize the overall traffic and delay and to
determine what storage capaciﬁy and what line bandwidths are necessary.

Eliminating storagé and bandwidth constraints from the statement of the |
problem allows us to consider files independently of each other. This in turn

means that a global optirnal' performance for the system can be achieved by

optimizing.the operation of each file in the system.

We are interested in soluti_ons to the File Assignment Problem that can |
be implemented in a distributed file system. In order to be implementable.
policies may only rely on past information about the files and the system.
Under these conditions, a policy is a mapping from the present state of t-he '
file (including some of the file history) into a set of possible actions {migrate

the file, generate a new copy, destroy a copy, etc).

Finally, we prefer decentralized policies, that do not require a central
database. Decentralized policies can be easier to implement, are more
robust in the face of partial failures and may even eliminate some of the

traffic.

11

After this introduction to the File Assignrnent Problem, we pfesent

related work that is relevant to this research.

1.3. Related Work

The File Assignment Problem has‘revceived substantial attention in the
literature. A large fraction of the work on this topic finds its inspiration in
the Plant Location Problem. The Plant Location Problem is well documént'ed
in the Operations Research literature [Coo63, Coo64, Alc76]. Given a set of
consuming locations 'spread over a network of distribution channels, the
Plant Location Problem deals with the assignment of manufacturing plants to
nodes of thé_network in order to minimize the distribution costs of the goods
from factories to consumers. The analogy with the Fﬂe Assi_gnment. Problern
is clear when plants are substituted by storage elements and consumers by

processes accessing the files. .

We now review some work related to our research in the following areas:
’ (

(1) Static assignment of files.
() Dynémic assignment of files.

(3) Hierarchical file system management.

1.3.1. Static Assignment of Files

A

The topic of static assignment of fﬂes to the nodes of a computer net-
work is by far the most popula.r‘ambng the papers dealing' with the File
Assignment Problem. A static aséignment is a time-invariant mapping
between nodes of é computer network and the files of the systemm. The
assignment determines how many copies of each file should exists iﬁ the sys-
tem and in what nodes should the copies be stored. All the papefs that we

are aware of present the problem as a 0-1 integer program [Cés?z. Cas73,

12

Chu76, Hol?73, Lun77, Lun78, Mah76, Mor?7, Ram79, Wah79]. The unknown

variables (one for each file-node pair) indicate whether a given file has a copy
assigned at a given node. Most papers make the following assumptions in

writing the operating equations.

(1) The amount of information transmitted from any file to any node per

unit of time is a known quantity. This information is transmitted at 21.

constant average rate.

(é) Queries are performed from the closest copy of the file. Updates are

sent to all the copies of the file.

- The cost function is, in rﬁost cases, a sum of storage and traffic costs. A
- few papers consider delay costs. In this type of formulation it is very easy to
- add constraints to the problem. Most statements of the problem consider
constraints in the storage available at each node, in the band*n;idth of the

transmission lines and on the average response time of queries.

A baper‘by Eswaran [Esw74] shows that the File Assignment Problem,
formulated as ‘a 0-1 integer program, is an Né-problem in the general case.
It is hence very unlikely that an efficient algorithm can be found to solve the
problem. However, quite some effort has»goné in trying to find good heuris-
tics to solve this type of 0-1 integer problem. Two approaches have been
taken: purely theoretical and experimental. Among the theoretical papers,
there are studies of particular issues, like the maximum number of copies
that the optimal solution can have [Bel76, Gra77] or the form of the optimal

solution for networks that have an easy topology [Whi70].

The more experimental papers use standard solution methods for
integer programs, like branch and bound, with heuristics to limit the solution

épace. Most ‘of these studies report successful attempts to apply these

13

heuristics to small problems. In these small case studies, the times needed
to find optimal solutions are similar to those needed to solve linear pro-
grams. However, it must be pointed out thaf the size of the examples is
exceedingly small, various orders of magnitude smaller than the size of real

systems [Cha78, TriB0, FisB0].

There are three major problems with the treatment given to the FAP by

the papers that we have mentioned so far:

(1) The workload model is too simple. Except for very specialized systems,
modeling the access to files by a constant rate over long periods of time
is an oversimplification and does not correspond to the observed

‘behavior of file systems in general purpose computers.
(2) There is no validation work based on measurements or simulation.

(3) The solution is difficult to implement beyond the design stage. In order
to usle this a‘pvpr‘oach during system operation, a central location should
collect all the information regarding rates of access and run the optimi-
zation. The optimization is basically done using meaﬁ values for the |
parameters. Unleés the workload is very stable, it is unlikelf that the

resulting opt'm’ial assignment will perform very well.

The work that we describe in the next subsection addresses some of

these criticisms.

1.3.2. Dynamic Assignment of Files

A few papers in the literature deal with the dynamic allocation of files in
distributed systems. One approach that has been suggested is to solve
repetitively one of the static formulations [Lev78; Ros73, Ros75]. This takes

\
care of our objection about the stationarity of the access rates, but makes

14

the problem even more difficult from the computational point of view. Furth-
ermore, none of the authors has looked into the problem of the adaptive esti-

mation of the access rates.

A more promising approach has been proposed in the automatic control
field [Seg76, Seg79]. The main tool he_re- is ciynamic programming, both
déterminisﬁc and stochastic. The deterministic dynamic program provides
the true dynamic optimum once the period of the e);periment is divided in a
number of periods where the access rates remain constant. The complexity
of the problem grows with the number of such intervals, so the dynamic solu-
tion is obtained at a high pric'e. The stochastic version is also treated and
solved in a rather elegant manner. Our problem with this result, agairi, is the
model of file reference. The access rate is mvodeledAas a continuous random
variable with a fixed number of different values that vary according to a Mar-
kov model. While this makes thé model solvable, it is not the behavis.r thét
we have observed in real systems. In particular, users.are supposed to
access files with time-varying rates that are independent of each other.
What we have observed, rather, is that there is a 'stfong structure in the
order in which users access a given file ﬁnd this charavcteristic of the file

referencing process is important when designing migration algorithms.

There a.re. a. number of papers which find closed form expressions for the
optimal number of copies under some rather restrictive conditions [beBOé,
Gra77, Cof80b, CofB1]. These papers come from the database management
field and their optimality criterion involves both the traffic considerations

and the reliability of the system.

Finally, we note that some of the papers on the subject of task assign-

ment in distributed systems have used solution methods that could be used

15

in the dynamic assignment of files. In particular, a series of'papers [Bok?g,.

Rao79, Lee77] use methods of Network Flow Theory [For62] to minimize the.

traffic originated by a collection of tasks executing in a distributed cbmputer

system. In this formulation, the processors are represented by the nodes of

the network and the amount of information exchanged by the tasks is

represented by the flow in the links of the network. The rnirﬁrnization of the
flow produces an assignment of tasks to nodes that minimizes the traffic in

the communications network.

The same approach can be adapted to the file placement problem by
assigning as flows on the network the traffic induced by the migration of
files. Solving the minimal flow problem then yields the optimal assignment of

the files to the nodes of the computer network.

1.3.3. Hierarchical File Systems Management

Our fesearch is very much influenced by a small number of studies on
file migration between secohdar_'y and tertiary storage [Str77, SmiBla,
SmiB1b, ArtBib]. These éiudies pay much more attention to the workloa‘d
characteristiés of vthe file systém than any of the pépers that we have
described in the previous sections. Moreover, they provide some type of vali-‘
dation through the use of tface-driven simulation. The traces used were
obtained during normal operation of large installations. All solutions are
based on the existence of some sort of Locality [Cof73] in the reference pro-
cess and on the fact that Working Set policies are quasi-optimal in the pres-

ence of locality.

The difference between hierarchical file system management and distri-
buted file system management is that the latter has one more dimension:

the position of the active copies. Active copies of the file can be at more

16

than one location. In the hierarchical case, the files move bevtween-levels of a
single system afld there is only one active copy of the file,. if any, at the top _
level. If the file is not referenced for a period of time, it starts migrating to
lower levels until it ends u;S in an archival store. When the file is updated,
only the top level copy is updated. Haﬁng stale copies at lower levels is not a
‘problem because they are never accessed while there exists a copy at a

~ higher level.

Thé distributed case has more degre_es of freedom. In the first place,
referencing the file does not imply that tt;e file is transferred to the location
of the process accessing it. It can be accessed remotely. Furthermore,
there are many ‘top levels’, one at every node, and each of the top levels
could have an active copy at a given time. Also, in the event of a file update,

all the copies must be updated.

Especially relevant to our work is Smith's paper on Long Term File
Migration [SmiB1b] where he introducesvthe concept of polic.y as a mapping
from the current state of the file to the value 6f the control parameter
(there the working set window size). er use th/is coﬁcept in our de‘scr‘ipti.on

of migration algorithms.

1.4. Objéct.ives and Contributions of this Research

~The emphasis of this research is on the evaluation of policies for placing
and migrating files in computer networks. We will restrict our attention to
shared files; i.e. files that are used by more than one.user in the system.
Files accessed by only one user should be stored at the node from where the
user normally accesses the system. A different strategy could be adopted if
there were constraints in the :arnount of storage at certain nodes (or big

differences in storage price), but we do not consider this aspect of the

17

problem.

One of the objectives of thf thesis is to characterize the process of
referencing shared files. This process has four main aspects: the order in
which users access the file, the interreference times, the frequency of
updates compared to the t'btal numﬁer of accesses, and the fraction of the
file that is acceséed when it is opened. We will model this referencing pro-
cess by a semi-Markov process where the st}ates are the nodes of ‘the -net;

work.

The evaluation of the migration policies will be done, when possible,
analytically, using the above mentioned model. Trace-driven simulations will

be used both to validate the models and to evaluate the policies that are not

‘tractable analytically. A brief outline of the thesis follows.

Chapter 2 consists of an exploratory anaiysis of the traces that are used
in the rest of this work. The initial data analysis is needed to learn some
basic facts about the traces (the number of shared files, the number of
users, etc), and also to discover files or users that must be declared outliers.
Examples of these outliers are files used by fhe system, like spooling files or

logs.

Chapter 3 is devoted to the generatiori of synthetic distributed systems.
This is necessary because the traces that we have were obtained from cen-
tralized systems. In this chapter we perform a .partitioning of the user com-

munity and obtain distributed systems that have the same number of users

and files, the same requirements of processing and 1/0 actiﬁty as the traced

systems but where users are located in a number of imaginary nodes in a
computer network. The procedure has some merit in itself because quite a

few installations will be facing this problem as they move from a large main-

18

frame system to a distributed environment.

Chapter 4 present the single-copy policies for placémen’t and migration
of files in distributed systems. We look at thivs type of policy in the first place
because it is easier to model and to implement. - As a matter of fact, most of
the services provided by current networks are some sort of single-copy

mechanism [Hui81, Hwa80].

Chapter 5 is devoted to the study of the more ambitious policies that
maintain several copies of each file in the network. We will limit our atten-

tion to the policies that maintain only up-to-date copies of the files.

3

CHAPTER 2

EXPLORATORY DATA ANALYSIS

Summary

Successful optimization of computer systems requires the study of
actual systernvs behavior. This chapter presenﬁs an,exploratory analysis of
traces of activity from two large computer installations (SLAC and Hughes
Aircraft). Distributions of variables such as interreference times, number of
users per file, file size, number of opens per file and fraction of file size

accessed per open are presented.

 In the systems that we analyze, shared fi‘les ifiles used by more than one
user) are responsible: for about ‘25%' of 170 activity even though they only -
represent a very small fraction of the number of files. This 'suggesfs that it 1s
important to optiﬁdze the management of shared files in &istributed COI’I"I‘

putér systems, where shared files generate unavoidable traffic on the com-

. munications network.

- Introduction

In this chapter, we present an exploratory analysis of the data that we
use in the rest of the thesis. The data consist of traces of computer systems
activity. These traces were obtained from large computer installations dur-

ing periods of normal operation.
We have two main goals in conducting this exploratory data analysis:

(1) Classify the files that appear in the trace. All files in a computer system

cannot be treated as coming from a homogeneous population because

19

20

different classes of files serve different purposes. Temporary files, for
example, are usually cfeated to store information while a job is running.
Usefs are often times unaware of the existénce of these files and have
r_io control over them. Permanent files, on the other hand, are used for
ldng term storage and users are usually responsible for the space that
they use up. It is normal that lt.hese two types of files. show'complétely
different types of behaviof. The exploratory data analy_sis also allows
one to detect files that-are used in unusual ways and that‘ shéuld not be
included in:our -studies. One example of this kind of outliers are the

zero-sized files that are used .as;locks or time-stampé by some applica-

tions.

('2) Measure thé system's activity. It is neéessary_ to-have measurements of
the-sj’stem’s activity'iﬁlorder to devise methods to improve its perfor-
“~mance. Literally thoﬁsands of measurements can be taken f{'orﬁ the
traces that we study. In this chapter we present the measurements that

are related to the design of file placement and inigration algorithms.

Section 2.1: describes how the traces were obtained and explains some of
their characteristics. The folloﬁng two sections éfe devoted to the study of
two different installa’tions._‘ Section 2.2 presents the data from the Stanford
Linear Accelerator Center. Section 2.3 repeats the analysis for th? Hughes

Aircraft system.

2.1. Obtaining the Activity Traces

The traces of system activity were generatéd in two steps. First, IBMs’
System Management Facility (SMF) was used to obtain raw traces. Then,
reduced traces were created by extensive processing of the raw traces. We

will describe these two steps in the following subsections.

X

21

' 2.1.1. The System Management Facility (SMF)

The System Management Facility (SMF) [IBM78, lBM’?S]. was’ prim'arily
conceived as an abcounting tbol. As such it collects data on system perfor-
mance and on the use of resources by jbbs and job steps. It also collects
data on creation and use of data sets (files). SMF organizes the data in
records and writes these records onto files on disk or tape. AIt also backs up
théseidata sets to archival storage. All these capabilities were used to gen-

erate the raw traces.

As it comes out of the system, the data is not very usable. In the first
place, there are‘problems with the_way the data is collected by SMF (see
{Dur78] for details). In addition, the format of the traces is not well suited _
for vstatistical analysis and for use"in trace-driven-sirmﬂa_tions. We will
describe these problems while explaining hbw they have been solve.d in

preparing the reduced traces.

2.1.2. The Generation of the Reduced Traces
Reduced traces bring improvements in at least five areas:

(1) The records as archived by SMF may be out of chronological order. For-
tunately, each record contains a .tirne stamp in microseconds. This is
enough to reconstruét the original series of events: The reduced traces
have all their records in chronological order. Thié facilitates sequential
proéessing of the traces and 1t makes possible the use pf traces as input

to trace-driven simulations.

(2) The traces generated by SMF have a problem related to warm start.
When tracing is turned on, some jobs are running, some files are open,

and many files exist in the file system. This may be a nuisance in a

(3)

(5)

22 -

trace-dﬂven simulation and the expedient solution of forgetting the first
portion of the tape may cause further problems. The reduced traces
have dummy records for the jobs that are running at thg beginning of
the trjvace.. They also have dummy open records for the files that are
open at the beginning §f the trace. Dummy records are also providéd if
problems with the hardware or wﬁh the operating procedurés_produce‘

inconsistent events.

Naming problems are common in the SMF traces. Keeping track of
renaming operations and of files with the same name on different.

volumes is more easily done once and for all during the generation of

. the reduced traces than every time the traces are used. . Unique ID's

(small integers starting at 0) have been assigned to all files, volumes,

opened files, user accounts, jobs and job steps.

SMF provides mostly "right parentheses” for the events that it records.
For example, it produces a job record at the end of each job and a close
file record after each use of a file. A trace in this form can be very diffi-

cult toﬁusve in trace-driven simulations. The reduced traces have "left

‘parentheses’ for all events and théy provide in those all the information

that is available about the e.vent. even if that implies "future

knbwle dge".

Finally the reduced traceé contain information about the size of files.

“This information is not directly available in the raw traces. Rather, it

has to be computed from the amount of information that has been
stored in the file since creation. The size information has been very use-

ful in our studies.

23

We will not discuss here the format of the reduced traces. A paper by
Richardson [RicB0] contains a full description of the record format and the

‘operating procedures to'ge_nei'ate reduced traces.

2.2. The SLAC Installat_.ion .

The SLAC Computer Center is a large installation that serves. a commun-
ity of physicists and scientific programmers. Programmers develop their
programs using Wylbur [Faj73], an interactive text editor and rempte job
entry system. They then submit their jobs to the batch input queue, through
the ASP [VinB0] subsystem. The batch jobs interact with the file system -
through the usual interface of IBM's 0S operating system. Job output s
spooled by ASP and the users can look at their output files using again the

Wylbur editor.

We have described the mechanisﬁ of job submission because it has an
important relationship with SMF and with our\traces.' Wylbur runs as a single
job (task) for all users. Since it never ends during the normal operation of
the system, SMF does not report on the resources that it uses. In particular,
the SMF traces d§ not contain any indication of the files used from Wylbur.

In other words, our SLAC trace is exclusively a trace of the batch subsystem.

2.2.1. Basic Numbers

The trace spans a period of 13 days (310 hours), starting Saturday, the
29th of January, 1978, at 11':00p'r_n, Dﬁring this period of time, 552 _u_éers sub-
mitted 25,039 jobs. 'Of these users, 369 accessed at least one shar‘e_d fii.e. A
shared f{ile is a filé that has been opened by more than one user during the
span of the trace. The definition does not require that:the file be openedvby

more than one user at the same point in time.

24

Table I. Basic Job Counts. Slac Trace.

Number of hours v 310

Number of wk-days 10
Number of wkend-days 3
Number of jobs 25039
Number of jobs/wk-day 2198
Number of jobs/wkend-day 1017
Number of accounts - 552
Accounts sharing files 369

Because SLAC has strong ties with Stanford University, activity on nights
and weekends is usually high corﬁpared to other non-academic installations.
For example, the average number of jobs processed during weekend days is
about half the number of jobs processed during Week days. Table I contains

more information about jobs and accounts at SLAC.

During “the 13 days that the system was traced, about 152,000 different
files were accessed. This-includes any file that was created, opened, closed
ér scratched during tha; period. Of these files, 142,000 are temporary files.
Even though they fepfesent more than ninety percent of the files accessed in
the system, it must be remembered that they are mainly used to hold tem-
po‘rary information between job steps. ‘Since they are not involved.in the

long term storage of data, we will not consider these files aﬁy further. Table

1I contains moré information about them:.

About 2000 files are sequential files on tape. These files are usually very
large and too expensi've to be stored permanently on disk. Because of their
size, we will not inciude tvape files in our studies. IE must be noted that it is
not practical to fransmit very large files across networks with tbday’s tech-
noibgy. It would take hoﬁr‘s to transmit the information stored in a reel of

magnetic tape across a fypical ARPANET link, for example.

-~

25

~ About 500 files are "system" files, including dummy libraries, SMF data
sets, etc. Our reason for not considering these files any further has to do
with the special ways in which they are used. On the one‘,hand. many syétem '
files are heavily used in read-only mode. These include languagé proceésors,
system libraries and the like. In the context of distributed computer sys-
ten}s, the best thing to do is to provide each ﬁode of the computer ne.tQSrk
with a copy of each of these files. Most of our algorithms would end up doing
this anyway and we can savé much effort by not including these files in our
simulations. On the other hand, files like system logs, that are frequently
writtéﬁ i)y many usérs must be regarded as a system peculiarity that would
be: implementéd diffefently in a distributed system. Fof exarﬁple, account-
ing files could be kept in indepéndent files, one in each machine, and the
accounting and billing programs would do an exp‘licit' mérging of the files if
necessary. |

'f‘he remaining 6.310 files éfe permanent user files, stored on disk.
These are the fiies that contain the long tefm information of the. com’pute.r
system. We have a special interest in thé ﬁleé that are used by more than
one usef account during the span of the trace. We call them shared Jfiles
even if they are never used concurrently by more than one user. There are
495 shared files in the SLAC trace (shared files are a subset of the permanent
files).

Some of the data in Table Il are self eXplanatbry, like the number of
files. Other entries require further PIarification. For exarnplé, the files
listed as existing initially are files that did exist at the beginning of the trac-
ing period and that were deleted during that period. For these files the SNF

scratch record provided the creation date. Files that existed at the begin-

Table II. Basic File Counts. SLAC Trace.

26

TAPE TEMP PERM SHARED SYS TOTAL
Number of files 1994 142576 6310 4868 1028 151908 .
Number of files initially 32 8 308 84 1682 ‘510
Number of files at end 1694 0 1955 386 875 4624
Number of read-write files 1461 - i 5482 297 808 7751
Volume of files (MBytes) 55615 108974 2338 383 524 167449
Ave. files created/wk-day 145 12470 478 20 88 13182
Ave. files created /wkend-day 181 5958 508 59 49 6696
Ave. files scratched /wk-day 0 12473 373 K 33 12880
Ave. files scratched/wkend-day o] 5949 207 -3 7 8163
Ave. opens/wk-day 441 21412 11735 3174. 5261 38848
Ave. opens/wkend-day 317 10059 7230 1342 3335 20941
Ave. reads/wk-day ‘ 524687 800864 384676 235407 198777 : 1888004
Ave. reads/wkend-day 384978 816373 178183 79462 97407 1276851
Ave. writes/wk-day 557625 1285246 186829 52808 = 50491 2069992
Ave. writes/wkend-day 707284 , 730911 80212 11613 5918 1534305

mng of the trace and that were not scratched w1thm the span of the trace

appear as being created at the time when. they are flrst referenced

_Another pomt that requires clarification is what we mean by read-write

files. Files can be opened in one of five modes:

(1
()
(3)

(4)

(5)

CREATE: the file is opened in this mode when it is being created.

INPUT: the file is opened in read-only mode.

UPDATE: the (existing non-sequential) file can be read and/or modified.

APPEND: the existing sequential file is extended with new information.

OVERWRITE: the existing sequential file is erased and overwritten with

new information.

By read-write files we mean files that have been opened at least once in

either APPEND, OVERWRITE or UPDATE mode.

UPDATE mode does not imply that the file is going to be modified.

Note that opening a file in

2

27

The wolume of files was computed as the sum of sizes in megabytes of

all the: observed files. Since many files, especially tern;iorziry files, are

deleted during the span of the trace, the full reported volume of files was .

never present in the system. It is rather the amount of space requested

from the system during thé tracing period.

The figure for the number of writes to the files has the same problems

as that of the read-write files above. Again, we are counting as writes all of

"the 1/0 operations that occurred during any open in APPEND, OVERWRITE or

UPDATE mode. Since many of the opens in question are UPDATE mode opens
and a fraction of the 1/0 operations in UPDAT_E mode are reads, the actual

number of writes could actually be smaller than reported here.

What- fraction of the system activity is generated by shared files? Only
7% of the permanent files are shared, and shared files only account for 15% of
the volume of permanent files. However, shared files are quite heavily used.
They are responsible for 277% of‘all opens to permanent files, for 64% of all
reads and for 31% of all writes. In other words, shared files are an important
subset of the permanent files as far as system activity is concerned. As a
first approximation (distributions will be shown later) shared files also tend
to be larger and to be opened more frequently in read-only mode than other
permanent files |

One important aspect of file shariiag is the number of users that share a
particular file, both for readiﬁg and for writing. Table Il shows the distribu-
tions for these variables.

The table has been cut after twenty users but it still covers 98% of the
values ob‘servedA‘ The maximum observed for the number of users is 55, the

mean is 3.7 and the median and the mode are both 2 users. Another impor-

=8

Table 1II. .thber of users per shared file. SLAC trace.

Number Al Readers’ . Writers

of Users Freq ‘Cum Freq ' Cum Freq Cum
.0 0.0 0.0 016 018 0.37 0.37
1 0.0 0.0 0.10 0.28 0.33 S 0.70
2 0.59 058 040 0.66 0.19 0.89
3 015 0.74 0.12 0.78 0.041 0.904

4 0.080 0.82 0.055 . 0.835 0.018 0.622
5 0.041 0.881 . 0.040 - 0.875 0.0 0.922
6 0.021 0.882 0.012 0.887 ° -0.0083 0.6313
7 0.021 0.903 0.020 ~ 0.907 0.0031 0.9344
'8 0.017 0.920 0.0093 0.0163 0.010 0.9444
9 0.010 0.830 0.010 0.9263 0.0015 0.8459
10 0.010 0.940 0.010 0.9363 0.0 0.9459
11 0.0077 . 0.9477 0.0062 0.9425 0.0015 0.9474
12 0.0077 0.9554 0.0082 0.9487 0.0015 0.9489
13 0.0046 0.9600 0.0031 0.8518 0.0031 0.9520
14 0.0031 0.9631 0.0031 0.9549 0.0 0.9520
15 0.0015 0.9646 0.0015 0.9564 00 0.9520
16 0.0048 0.9692 0.0046 0.9610 0.0 0.9520
17 . 0.0 0.9692 0.0 0.9610 0.0 0.9520
18 0.0031 0.9723 0.0031 0.9841 00 - 0.9520
19 = - 0.0015 0.9738 0.0031 0.9672 0.0 ©0.9520
20 0.0031 0.9769 0.0015 0.9687 0.0 0.9520

tant characteristic, from the Writers columns, is that 70% of shared files are
‘only written by one or less users (creation of the file is not counted as a write

operation).

. 2.2.2. Activity Over Time

The number of permanent files opéned per unit of time is a good indica-

tor of system activity. In F‘_ig. 2.1, the unit of time chosen is 4 hours. The
plot of the number of opens per four-hour period shows quite conclusively
that the system’s activify cannot be considered stationary:” The data has no
obvious trend, either in average br in maximum values. Howe\;fer. there is a
very stroﬁg seasonality with the hour of day and day of Week. The same com-

ments apply to the shared files.

~

L33

=

29

Number of Opens

SOOOPIT.TII1|] I1T| | l“ LI I] ll‘]Tj‘llll]ll_ E
=]
E ermanent Files 3 g
- F hared Files 3
M 4000F , 3
3 - 3
S : , 3
T S W 1
3000 — g
<t - H 3
C 3 H
- -
& 2 3
2000 3
n. C 3
= C]
2 H ‘ . 3
o : . s u . R -
© 1000 , A‘ |l A E
'- l‘lllll’lllll’l L}JLLJIJJ’J]IJ’;’II[[1.1 l:

O\ 50 100 150 200 250 300 350

Saturday 11:00 pm

Time in Hours

Fig 2.1. Number of opens per 4 hour period. Slac trace. Weekends can be
seen clearly. Activity is about half that of week days. The peaks of
activity are centered around noon.

Files can be opened basically in two modes: read-only mode and read—
write mode. The distinction between read-only and read-write usage of files
is important to us because it affects the consistency of replicated data. Fig
2.2 shows the number of 10 operations in read-only mode for permanent and '
shared files. There is.no visible trend in the activity from one day to the next

but there are wide changes of activity during the day. We also note that read

30

operations from shared files are a big fraction of the total number of reads.

When files are opened ./in read-write mode, our traces do not show
whether the 10 operations performed on the file are readé br writes. We have
to lump them together and Vassume that they are pdtential writés. Y'I.;“ig. 2.3
shows that the number of 10 operations in read-write mode is abogt half that

of reads. The fraction of writes to shared files is smaller than that of the.

I/Os in Read-Only Mode

150000I.l1l]‘1!llv[71vlllTlfl_‘|lllllTllIlllll4 o
- o . 2
K) " Permanent Files] E
7] N]
4 » : -3
5 : 1 i
© 100000+ - - .
L i { 8
' 1 |] $ -
- i h 8
- i : 1 =
| : :
- pudf - ::gi ".: _1
w 50000 A -
o - 213 RIED I
N L , 4
L] A : . 5-. -
‘..: '\ -
¥ ."‘ 1 ‘:_.. , L HI -J. -
0"nn;11111;111L1f1fﬁf111L11111111111-

O\ 50 100 150 200 250 300 350
s ,

aturday 11:00 pm
Time in Hours
Fig 2.2. Number of read operations per 4 hour period. (Slac trace). Shared

files are a big fraction of the total activity. Peak values for per-
manent and shared files do not show any visible trend.

31

Eat ™

reads from them. Within the limitations of our data, we have to conclude
that shared files are accessed in read-only mode more often than the general
population of permanent files. This should encourage the use of multiple

copies of the files.

A
(, 1/0s in Read—Write Mode
75000 rvVid] TV T] T T T4 l T T I TTT7T l 1T 11 I R L I-‘ a
- . . . B
[ermanent Files . E
i 1 bared Files .
0 - 1 4
M Z R :
= f] §
S 500001 1 3
< -) :
o I (, .
co=d - é =i
w 25000(| A3
0 T l.\..l 1..':1 1"‘1":1 Jidy LJJ .Lj' gy “‘n’; 1L g]
30

50 100 150 200

~.
aturday 11:00 pm

350
Time in Hours

Fig 2.3. Number of 10 operations in read-write mode per 4 hdur period.
(Slac trace). .

32

~ 2.2.3. File Usage Characteristics

File size is an important parameter when working with files. It has been
shown that it is a géo_d predictor of file usage [SmiBla]. Fig. 2.4 shows that
~ files on disk tend to be smaller than files on tape.‘ Let us- peint out that at
Slac huge amounts of data from physics experiments are stored on tapes to
be analyzed later on. Likewise, the shared files tend to be larger than the
permanent files as a class. Most disk files have sizes between 10 kilobytes

and 10 megabytes. The exact distribution can be seen on Fig. 2.4.

It was pointed oﬁt in [SmiBla] that most files are used (opened) a small
number of times. If we look at Fig. 2.5 we see indeed thai 607% of‘all péf-
manent files are used only once or twice. However, shafed files, and spe-
cially shared files on disk, are used many more times. Abtually 95% of these

files are opened more than twice [Cof73].

A measure that is relevant to the study of file migration is the amount of
IO activity per open. As can be seen in Fig. 2.6, files on disk have fewer 10's
per 6pen than files on tape. In particular, 40% of the opens (for permanent

files on disk) result in less than three 10 operations being performed.

For pblicies that try to minimize the communications tréfﬁc. a very
irnportanf measurement of activity is the amount of information that is actu-
ally accessed during an open. A good way to measure this amount of infor-
mation is. as a fraction of the size of the file. For the permanent files on disk
and for the shared files on disk, only a small number of the opens result in an
access to the whole file .” One of the reasons for this is t.he large number of
shared files that are partitioned data sets {libraries) and concatenated data
sets. In both cases, only a small fraction of the total amount of information -

is needed at each open. In 20% of the opens, the file is accessed repeatedly

e

Frequency

'llllITTI<Illll]ll]l1lj1l

fo—y
o O
[

Size of' Files

r
_‘—4
l
‘ / rr
Permanent on Disk . |’
Permanent on Tape |
4
Shared on Disk |
-
o
Shared on Tape - N
|
! Z
|
- 5 A
|J :.4' o
) 3
(). A
l.o ! JJ
r‘ r" I"
£~
"'.J r'_'-l
I j F'_‘.l--
e j- o

10° 10' 10%® 10° 10

Size in Kilobytes

[-
R
i -
i —
]
4
e -
s .
- N
|
! _
f i
A
~ .
! i
i
]
i
i
]
—
-1
J
.
10° 10°

33

RUN 884847807 800818 SLAC TWO VEEK

Fig 2.4. File size distributions for permanent and shared files. Statistics for
these distributions are shown in Table 2.4. SLAC trace.

[

Table 2.4. Size of Files in Kilobytes (SLAC)

Type of File

Min Max Mean Median

td. Deviation

Perm. on Disk
Perm. on Tape
Shared on Disk
Shared on Tape

0. §4000. 549, 80.

0. 338000. 41500. 2700.
32 15025. 1200. 240.

0. 338000. 56900. 25000.

2290.
81400.
2150.
15200.

34

Number of Opens per File

l T LRI I ¥]vl?_}—-""'d"""" I' Ty 1] ~Y ¥ '_-_.4_],1.1-6-
.
é

IS s - 27

i 1 B
8 J i
I~ - o
o i] ¢
3) i 1 $
a 61 1
0 i 7
g. I 1 B
o 4 q
<] I 7
.2; I ~
o !r -
I r'-l_J]
+ [__ ﬂ

o J | gnlnnl 1 1!leul i [R

st
(@)
o

10 10* 10
Number of Opens

Fig 2.56. Distribution of the number of opens per file. The parameters for
‘ ' the distributions are shown in Table 2.5. SLAC trace.

Table 2.5. Number of Opens per File (SLAC)

Type of File Min Max Mean Median - Std. Deviation
Perm..on Disk 0 2661. 12 2. . 66.
Perm. on Tape 1. 88. 2.8 1. 4.7
Shared on Disk . 2. 2681. 78 22. 11,
Shared on Tape 2. 86. 10. 5. 11,

35

1/0's per Open

P 1 i L L l]ll"‘ T 11 Il“ll i T3 'Il‘l: {_g._b--r 1 HIL E
- v r:.a -
_ T - 3
v - I.J’ ,E - a
8 :- = - -j - -
- ‘_,J _4 g
> i 1 3
O 6 _
5 i 1 3
1 N } .
g‘ i Permaneat on Disk] E
W) B Permanent c; Tape B
[N 4 — S]
[z - Shared on Disk e
- Shared on Tape -
2 —
rabond :
'&:..—! ‘ ’ -
0- i n;lnnl 1 llllllll 1 |nluul l»l]llllll 1 “lmI

10° 10! 102 10° 10* 10°
Number of 1/0 Operations

Fﬁg 2.8. Distributions of the number of 10 operations per open. SLAC trace.
Statistics for these distributions are presented in Table 2.6.

Table 2.6. Number of 10's per Open (SLAC)

Type of File Min Max Mean Median Std. Deviation
Q‘- . ,V .
Perm. on Disk 0. 30156 77. 5. 388.
. Perm. on Tape - 0. 70012, 2630. 280. 5400.
e ' . Shared on Disk 0. 27300. 88. 9. 437.
Shared on Tape 0. 21100. 1640. '+ 28B0. _ 2900.

(as in a multiple-pass algorithm) and the total amount transferred is hence

larger than the size of the file itself. Fig. 2.7 shows the measured distribu-

36

tion.

There are quite a few measurement problems associated with determin-
ing the amouht of information accessed per open as well as the size of cer-
" tain files. The number of bytes transfe;rred during an open is determined by

rﬁultiplying the block size of the file by ‘the number of 1/0's associated with:
the open. Thebproblem here is that the number of I/O’s as counte_d by SMF
can differ from the number of 1/0 recdrds actually transferred (sometimes
SMF counts the I/0 operalions required to open and close the filé; sométimes ‘

the block size is not reported).

A serious problem in determining the size of files is created by the
existence of concatenated data sets. Concatenated data sets are obtained by
concatef;ating a number of files and assigning them a new name (this pro-
cedure is often used for subroutine libraries during linking of programs).
SMF reports only the name of the first file in the cohcatenated data set and |
yet‘the' size is thaﬁ ‘of the whole data set. This make very difficult to keep
track of the size of fiies that only appeaf as members of concatenated data

sets.

For the shared files, we wanted to know whether the size of the file is a
good indicator of the fraction that is accessed at each open. We divided the

files in five classes according to size.

Fig. 2.8 shows the distribution of the percentage of file accessed per
open for the five classes of files. If we ‘disregard the very small files (< 10

Kbytes), the fr:action of file transferred per open is smaller for larger files.

Our last set of measurements is concerned with the frequency of usage
of the files as shown by the distribution of the interopen time, i.e., the time

between a file being opened and it being opened again. As indicated above,

37

. ' Fraction Accessed per Open
-7 1 LELALE LALL R Tﬂﬂl’ 1=
LY L) -
8 -
B X]
- s
st ~
o A]
Fxy i]
- 4
- -
L2 -
oot SRR 1
O .Jv l""’Jllllll lel llellJ 1 id Illlll 1 1 Il.lllﬁ
10° 10! - 10° 10° 10*
Percentage of file accessed
Fig 2.7. Distributions of the percentage 6f the file size accessed per open.
SLAC trace. Statistics of these distributions are shown in Table 2.7.
Table 2.7. Percentage of File Accessed per Open (SLAC)
R Type of File Min Max Mean Median Std. Deviation
) Perm. on Disk .- 0. 72500. 98 . 21 693.
o Perm. on Tape 0 100. 80. 100. . 38.
' Shared on Disk 0. 441227 113, 29. 620.
Shared on Tape 0

100. 69. 100. 42,

BUN £24047807 800018 SLAC YWO VESK,

38

Fraction Accessed per Open (Shared)

1 LR 1 l lilll L] I-J’RTIIII g
i i 3 1
L § g H g - . E ¥y »
- ‘ M _ r) “ |
8- L L\:m Size < 10K ': g
=] . -
| * H - 10K - 100K g
> { : ; 100K - 1M : , g
9 B , d1 5
e N M - 10M] 3
QO - -
) i > 108 i E
o . -
8 A+ —
e i]
2 -
b._- -
o- s | 11 ‘lllll A 11 llllll L 11 l.ll’lllv L il 1111-
10° 10! 102, 10° 10*
- Percentage of File Accessed
Fig 2.8. Distributions of the percentage of file size accessed per open for
the five size classes. SLAC trace. More statistics in Table 2.8
Table 2.8. Percentage of File Accessed per Open (SLAC)
File Size ' Min Max Mean Median Std. Deviation .
< 10 KBytes 0. 200. 55. 18 55. .
10 - 100 KBytes 0. 8720. 79. 50. 204. -
100 - 1000 KBytes 0. 44122, 1534 22. 858. -
1 - 10 MBytes 0. 4778. 63. 12 172. . ~
> 10 MBytes 0. 59. 9.4 1. 14.

-

we have not considered the time after the last close of the file. Various solu-

tions to the right 'cehsoring problem can be found in [SmiB1b]. Fig. 2.9

39

shows the distribution of interopen times for the permanent files at Slac.
Again we note the fact that 'tape files have larger interopen times than disk
- files. Interopen times for tape files ére two to three orders of magnitude
larger than those for the disk files. More than 80% of the interopen times for

the disk files are under one hour. .

It has been noted in [SmiBla] that the distribution of interbpen times

varies with the size of the file. Fig. .10 shows these distributions for the five

File Interopen Times

1 T lllllﬂ] LAl L A

. .8+ Permanent on Disk [-:
s : .4
:5» s i
e 61 B
o 5 q
o i -
o) N -
8. ‘4_.]
Ex i i
L -

0 |

102 10™ 10° 10' 10® 10° 10* 10°

4

) - Time in Seconds

Fig 2.9. Distributions of interopen times for the SLAC trace. More informa-
tion about the distributions is given in Table 2.9.

RUN 224847807 800812 SLAC TWO WEEK,

40

Table 2.9. Interopen Times in Seconds (SLAC)

-
Type of File Min Max Mean Median Std. Deviation
Perm. on Disk 0. 967000. 8350, 50. 44300, .
Perm. on Tape 0.25 949000. . 50200. 20000. 114000.
Shared on Disk 0. 862000. 8030. - 360:) 36000.

Shared on Tape 0.70 848000. 45800. 70000. 95800.

size classes that we used in Fig. 2.8.

 File Interopen Times (Shared)

4 .
: (T 4
; el
T : ——
B rue s < 10k ’ L 7] %
i I i
- Ple Size 10K - 100K gl . :
1L ey -
‘ :(>)\ 6':- Flle Size 100K - xu\‘;‘ ji 'rf' h §
- i Fie Size 1N - 10M S i 3
g X o \Eﬂ, f': - =
d
o i o 1
> 4 —
2 : :
= .
R §
LF -
: | :
0‘-:;: -7 it ancherd-44 ...-
10 107" 10° 10' 10* 10°® 10* 10°

" Time in Seconds ;

Fig 2.10. Distributions of interopen times for shared files for the SLAC trace.
More statistics for the distributions are presented in Table 2.:0.

41

Table 2.10. Interopen Times in Seconds (SLAC)

File Size Min Max Mean Median Std. Deviaﬁon_

< 10 KBytes 5. 521000. 37000. 5100. 75000.
10 - 100 KBytes 0. 862000. 8131. 500. 33900.
100 - 1000 KBytes 0. 850000. 7650. "170. 38000.
1- 10 MBytes 0. 886000. 7510. 450. 30000.
> 10 MBytes 0.5 338000. 19800 1800. 52000.

F_‘rbm figure 2.10, if we disregard tﬁe case of the very small files (< 10
Kilobyﬁe). it can be seen that smaller files have shorter interopen times. In
particular, interopen times of less than two minutes are almo'st nonexistent
for files larger 'than one ,fn.egabyte. ‘We‘ have observed some very long
sequences of repeated opens to the same file. These opens are very close to
one dnother (typically within one secoﬂd) and they are partly responsible for
the large proportion of short interopen times. We suspect that this is the
result of some non-standard usage of the file system. However, ‘this pe'c;gl_iar-;
ity vdoes not affect much our experiments since »n‘ong of our algorithms take

decisions in such short periods of time.

A similar analysis of the data is now presented on the trace data ori-

ginated at the Hughes Aircraft computer center.

2.3. The Hughes Installation

The Hughes Aircraft computer c’ente'xC is in many respects similar to the
SLAC center. For examplé. the hardware and the basic file éystem are
almost identical. On\the other hand, the interface fo thg_usér is quite dif-
ferent because the Hughes installation uses a standard IBIHVI product, TSO, to

support its time-sharing users.

This fact has two important consequenées in our study of the file sys-

tem.’ The first is that files created under TSO are easy to recognize because

42

the installation ﬁses a convention for naming files. The second is that, since
"TSO runs as a single job step for each user, the open time of ihe files
accessed under TSO is reported by SMF as being the starting time of the TSO
step. This produces some errors in the evaluétion of interopen times, for

example.

2!3.1. Basic Nurﬁbers ’

The trace spans a period of 9 days (191 hours), starting Monday, the
19tl'{ of September, 1977, at 0:00 am. During this period of time, 1637 ﬁséfs
‘submitted 25,039 jobs. B54 of these users were involved in accessing shared
fileé. This installa»tioﬁ has three times more users than SLAC but the number
of jdbs ekecut_ed per week day is about the same. The weekend activity is
much lower, though. On weekends, SLAC runs roughly half the number of
jobs that it runs on week days. The activity at Hughes on weekends is ‘below
20% that of ré’gular week days. Table IV contains more information about

jobs and accounts at 'Hughes. '

The trace for the Hughes system shows that 170,000 files were accessed

during the 9 days during which the system was observed. When compared to

the SLAC system (150,000 files in 13 days), it appears that the Hughes system

has a higher level of 1/0 activity. Table V also shows that the number of 1/0

Table IV. Basic Job Counts. Hughes Trace.

Number of hours 191
Number of wk-days 7
Number of wkend-days 2
Number of jobs 16815
Number of jobs/wk-day 2R73
Number of jobs/wkend-day 450
Number of accounts 1637

Accounts sharing files B854

43

operations (reads + writes) on week days at Hughes is twice the number at
SLAC. Of the 170,000 files, 18,343 are permanent and 2,301 are shared files.

This again represents from three to four times the number of files at SLAC.

All the comments that were made about the contents of Table II hold for
Table V. In pafticular, we note that the number of writes is particularly high
compared to the number of reads. This is due, as explained earlier, to the
failure by SMF to indicate the real type of 170 opergtion that is performed on

files.

' The shared files also in this system are responsible for a large fraction
of file activity. Foi‘ty percent of the opens and forty percent of the IO

activity of permanent files comes from shared files.

The number of users per shared file has a distribution very similar to
that of the SLAC syétem. Table VI shows the distributi‘ons for these variables.
In this case, we ha\;e cut the table after 10 users because that covers 99% of

the observed cases. The maximum observed is 109 users per file, the mean

Table V. Basic File Counts. Hughes Trace.

TAPE TEMP PERM SHARED SYR TOTAL
Number of files 5020 133797 18343 2301 14485 171645
Number of files initially 318 0 7992 1149 1507 - 9815
Number of files at end 5020 0 8831 1813 4153 18004
Number of read-write files 4044 - 14117 2001 13338 31500
Volume of files (MBytes) 43448 34107 4897 462 9135 = 91387
Ave. files created /wk-day 588 17480 2507 323 . 1802 - 22378
Ave. files created/wkend-day 452 5718 386 21 . 9357 - 7501
Ave. files scratched /wk-day 0 17482 1224 59 1241 19846
Ave. files scratched /wkend-dey 0 5713 473 39 823 7009
Ave. opens/wk-day 1096 37186 15983 7485 16684 70948
Ave. opens/wkend-day 798 14422 1448 472 - 5473 22142
Ave. reads/wk-day 869770 528670 280716 126255 1253803 2942059
Ave. reads/wkend-day 852920 368797 107609 12051 713455 204278]
Ave. writes/wk-day : 743056 2136479 248226 83785 1899712 5027473

. Ave. writes/wkend-day © 1077515 1275317 133746 12043 675122 3161699

Table V1. Number of users per shared file. Hu"ghes trace.

Number All Readers 'Writers

of Users Freq Cum Freq Cum Freq ‘Cum
0 0.0 0.0 0.11 0.1 0.13 0.13
1 0.0 0.0 -0.22 033 037 0.50
2 0.89 0.89 '0.45 0.78 0.40 0.90
3 0.19 088 0.14 0.92 0.072 0.972
4 0.065 0.945 0.042 0.862 0.013 0.985
5 0.014 0.959 0.011 0.973 0.0056 0.9906
6 - 0.0082 0.9672 0.0073 0.9803 0.00086 0.9915
7 0.0043 0.8715 - 0.0039 0.9842 0.0 0.99815
8 0.0021 0.9738 0.0017 0.9859 0.00043 0.9919 .
9 0.0013 0.9749 0.00086° 0.9868 0.0 0.8919
10 0.00086 0.9876 0.0 0.9919

0.8758

0.00086

44

is 2.6 users/file and the median and the mode are both 2 users. An impor-

tant c_haracteristic. from the Writers columns, is that 50% of shared files are

only written by one or less users (creation of the file is not considered a

write operation).

2.3.2. Activity Ov_et Time

The number of files opened pei' unit of time is a good indicator of system

activity. In Fig. 2.11, the unit of time chosen is 4 hours. The plotA of the

number of _ope'ns per four hours shows quite conclusively that the system

- activity cannot be considered stationary. The data has no obvious trend, nei-

ther in average nor in maximum values. This figure can be compared with the

corresponding figure from SLAC. In this case the activity on weekends is

actually very low.

2.3.3. File Usage Characteristics

Most characteristics of the SLAC files can be found in the files of the

Hughes system. Fig. 2.14 shows a difference in size between tape and disk

B(H)o 111!!]![111'l]ll'l]llllll!lll1llllllll

Opens in 4 Hours

4000

45

v

Number of’ Opens

>ermanent Files
hared Files

6000

1‘l1ll|(l'llflllll1l1l]lll|l1

;

TTTTTTT T

2000

4
i
[

llJlllJllllllllllllllllllllllllIIIJJJ

0 {111 1"‘;4‘ L) 1:]"7?1'1 1 ..‘l-’:'l il 1]1 i }‘-.r'l--t:-.l 1." ;1 i1 11
Q\ 50 100 150 200
onday 00:00 am

Time in Hours

Fig 2.11. Number of opens per 4 hour period (Hughes trace). Weekends can

be seen clearly. The number of opens is almost zero during the

weekend. The peaks of activity are centered around noon.

~

RUN 820163413 800813 NUCHES 8 WEEK,

46

I/0s in Read-Only Mode
‘2(”)0(”)]']1‘]‘l']{iil‘lII'lll'll'T1l]||‘I1l"T

Permanent Files
hared Files

150000
100000

50000

[/0s in 4 Hours

177T171]llllillll'llllll1l1l{ll11lll

[AESESERNESUNEEESNRE IR EENE NI SUNERRRET!

N

7 IR N R
0 f1a 3 b lL'l'I:'Jllf"[lJll'J

Q 50 100 150 200

Monday 00:00 am

Time in Hours

Fig 2.12. Number of read operations per 4 hour period. {(Hughes trace).
Shared files are a good fraction of the total activity. Peak values
for permanent and shared files do not show any visible trend.

RUN 220168413 800013 HUCHES § WRIK

47

'1/0s in Read-Write Mode

150000

0

[TT T T T TT T[T f1'11111|1111111111111111711 E
: | ~ .
C ermanent Files -] -
- hared Files 3
C - [
n 120000F = E
| o E -
- - 3 g
(o] - E s
o 5] = 3
90000F 3 %
C 3)
) : L
d - E .:.
-~ 60000 =
: -3
/)] E 3
° : :
| s 3
— 30000 | 3
EL WL U /N REE
:l 141 l‘.")"LJ_L;[‘.i LLI:"L":llj ;’f[14 1!1,1.11 L ey L1
0

50 100 150 2

Monday 00:00 am

0

=)

Time 'in‘ Hours

Fig 2.13. Number of 10 operations in read-write mode per 4 hour period.
(Hughes trace). :

¥

files of two orders of magnitude. Two comments about the disk files:

(1) There is very little difference (if any) between the shared files and the

general population of permanent files.

() There is a large proportion of permanent files (almost 40%) that have
exactly the same size: 12 kilobytes. This is probably a consequence of

the way TSO files are allocated.

48

Size of_ Files

L E
i ..!": -
- oud -
5 ,.:'" o
i :] &
8- 1 3
| i 1
> , 13
Q 6F +4 3
8 . = &
] v
= [] E
g N i
P i i .
.4
L- S N -
L : &]
- - - -3
v _ . I i
R e . -
B ,.I"',":'.‘ i -
0!

10 10° 10' 10% 10° 10* 10° 10°

| ‘Size' in Kilobytes

Fig 2.14. File size distributions for permanent and shared files. Hughes
trace. More information about files sizes can’be found in Table 2.14.

Table 2.14. Size of Files in Kilobytes (Hughes)

- Type of File Mm T Max Mean Median Std. Deviation
Perm. on Disk 0. 73700, 350. 18. 1840.
Perm. on Tape 0. 1310000. - '12700. 700. 39000.
Shared on Disk 4. 40000. 215. 24, 1140.

Fig. 2.15 confirms that most permanent files are used only a few times.

However, shared files are used many more times on the average. Actually

49

90% of the shared files are opened more than twice.

Number of Opens per File

1 | | ;;.]Jl,l.ll- __._.-—0——-?"!"‘—! IYIJ
8_ srmansnt on Disk]
- Permansat oa 75.90 -
- ; 4
(>;' L J"_/,,Aw oa Disk -
6" - - L. -
o 8 | ‘
v L i 1
o : @ :
| 2 . 4+ r| ') —
I - 2 =
- -
’ - r‘ R
r i 1
2 .]
r '--l .
i l 1
0 P 1‘111411 111 lJLlll i 111111 :
: 3
10° 10! 10° 10

Number of Opens

Fig 2.15. Distributions of the number of opens per file. Hughes trace. Mo-
ments for these distributions can be found in Table 2.15.

RUN 220168418 800813 HUCHES 8 VEEK

Table 2.15. Number of Opens per File (Hughes)

’I&pe of File Min Max Mean Median Std. Deviation
Perm.onDisk - * 0. '1048. 5.9 2. * 26.
Perm. on Tape 1. 45 1.8 1. 1.9

Shared on Disk 3. 1046. 23. 9. 81.. -

50

'Figure 2.16 shows again how similar are the shared files in this installa-

tion to the rest of the permanent files. It is also remarkable how similar is

this distribution to that of Figure 2.6, the corresponding distribution for

SLAC.

Fig. 2.17 contains the distribution of the fraction of file accessed per

open in the Hughes system. Fig: 2.18 shows the same distribution broken

_Frequéncy'

Fig 2.16. Distributions of the number of 10 operations per open for the
' Hughes trace. Moments for the distributions are shown in Table

2.16.

1/0's per Open

o2
lll]TTll]lll‘I7Tll]]l11

T T l |’11u|

LI ll!ll
1
LT
.’
H
-t
H
P
ol
:
P
e
H
.t
e?
:
ol

Permanent on Disk

i
Py

..?'h\l’munt on Tape

—Shared on Disk

T A d ™7 I'ITTn_"..—-r ™
4

JJIlJllJI]llllllL‘lllllll

O A1 lllljj] L ljllllll ,L’l lllllll 1 llllllll' 1 llll
10° 10° 10° 10° 10* 10%

Number of I1/0 Operatié‘ns,

RUN 880158413 600013 NUGNES 8 VEEK

”

Ffequency

‘Table 2.16. Number of 1/0's per Open (Hughes)

Type of File Min Max Mean Median Std. Deviation
Perm. on Disk 0. 30000. 39. 2. 270.
Perm. on Tape 0. 123000. 1830. 200. 5080.
Shared on Disk 0. 8500. 29. 2. 170.

Fraction Accessed per Open

‘IVIIllll].ll.ll]lll]]lll‘

LI l]lllll LR l1l|l§l’|

02
i
—--.’f&"’—-—‘.‘ -
,..;;)
0)- 1 llllljll 1 l‘lllJllI 1 Jlllllll 1 lllllll
10°

10! 102 10° 10

"Percent_age of file accessed

Fig 2.17. Distributions of the percentage of the file size accessed per open.
Hughes trace. Moments for these distributions are shown in Table

2.17.

3

. RUW 880188413 $00013 NUGHES B WEIK.

.

52

Table 2.17. Percentage of File Accessed per Open (Hughes)

Type of File "Min Max Mean Median Std. Deviation
Perm. on Disk 0. 83700. 57. 25. 320.
Perm. on Tape 0. 100. 88.5 100. 29.
Shared on Disk 0. 33000. = 53. 25. 270.

i

down by size classes.

Fraction Accessed _pei‘ Open (Shared)

1 T—l.l]ll”' i T.Illlll

LY
1
[
j

. RUN 230168419 900813 JMUGCHES 8 VERK

-

T 17T

.8 : File Size < 10K
:
- T T———Fle Sizo 10K - 100K
- H
o= File Size 100K - IM

e Size IM - 10M

Flle Size > 10M

]'llTll

Frequéncy

-
-
—
-
-
-
-
—
-
-
-
-
—
-
-
-
—
—

4

.2 =—'--" ’

VO_ .l 1 lllllll 1 1 lllllll 1 1jllllll . | 1 lllll:
10° 10! 10° 10°. 10*

Percentage of File Accessed

Fig 2.18. Distributions of the percentage of file size accessed per open for
the five size classes. Hughes trace. See Table 2.18 for the moments
of the distributions.

Table 2.8. Percentage of File Accessed per Open (Hughes)

File Size Min Max Mean Median Std. Deviation
< 10 KBytes 0. 370. 28 15. 40.
10 - 100 KBytes 0. 33900. 53 35, 198.
100 - 1000 KBytes 0. 14000. 58 2. 444.
1- 10 MBytes 0. 3500. 47. 1. 174.
> 10 MBytes 0. 170. 11. 1. 37.

53

Our last set of measurements is concerned with the frequency of usage

of the files as shown by the distribution of the interopen times. Fig. 2.19

shows the distribution of interopen times for the permanent files at Hughes.

Fig. 2.20 is again. the distribution of the interopen times when the files are

put in classes according to their size. The classes are the same that are used

in Fig. 2.18.

2.4. Conclusion

In this chapter, we have conducted an exploratory analysis of two large

scientific cornputer installations: SLAC and Hughes Aircraft. The analysis has

revealed many characteristics of the two systems. However, we would like to

comment explicitly on three points:

(1) The file parameters from both syst‘ems are in tlje same order of magni-

tude. This is particularly true of the distributions of such measures as

the number of opens per file, the size of the files, the fraction of the file

accessed per open and the interopen times. Table VII gives a com-

parison of the means and medians of these distributions.

(2) The permanent files used by more than one user (shared files) are

responsible for an important fraction of the system activity, (see Table

VIII) and it is very likely that this will still be true in a distributed

environment.

J

Frequency

54

File Interopen Times

L .

.-

- 1

- 4

8 ,J‘
. ’ .

- -

o -

o -

- ‘-

6 -
.

= .

= -

L <

ad —

4+ -
.

- -

L <

L A

- -

2+ -
.

p— -

o -

= -

» -

107® 107" 10° ‘10" 10% 10° 10* 10°

Time in Seconds

Fig 2.19. Distribution of interopen times for the Hughes' trace. More informa-

tion about the interopen times can be found in Table 2.19.

RUN 220168418 000813 AUGCHES 8 WEIK

Table 2.19. File Interopen Times in Seconds (Hughes)

Type of File Min Max Mean Median Std. Deviation .
Perm. on Disk 0.. 887000. 13200. 130. . 52300.
Perm. on Tape 0. 652000. 35600. 1050. 83500.

Shared on Disk 0. 867000. 11900.. 140, 46000.

Ve

55

File Interopen Times (Shared) |

1 n
8 _J.-"‘" E
o __r‘_ ‘_.!_'if -
8 Tile Sise < 10K lffp = i
I Stse 10K - 100K “ é‘r] 3
| i Tie Stse 10K - 1 \}-II] i
> L File Sise 100K - IM - - s
O B ~ i — i
8 [Tue Size 1M - 10M B §
3 i Fie Size > 10M] 5
o [o B
& 4t ~
= i i
2f) .
i F_:fl -]
o EEmmTa Tl Tl]
10 107" 10° 10" 10® 10® 10* 10°

Time in Seconds

Fig 2.20. Distributions of interopen times for shared files. Hughes trace. Mo-
ments for the distributions are given in Table 2.20.

Table 2.20. File Interopen Times in Seconds (Hughes)

File Size Min - Max Mean Median Std. Deviation
< 10 KBytes 0. 480000. 33300. 580. . 76400.
10 - 100 KBytes 0. 867000. 11800. 130. 46500,
100 - 1000 KBytes 0. 777000. 12500. 205. 47000.
1-10 MBy{es\ 0. 853000. 7880. 210. 40800.
> 10 MBytes 2. 524000. 15100. 55. 70300,

56

Table VII. Comparison of Means and Medians

SLAC ~ Hughes

i

Mean Median -‘Mean Median

Size of Files in Kilobytes 1200 240 215 24 : : ~
Opens per File 78 22 23 9

1/0's per Open , 88 9. 29 2

% accessed per Open 113 . 28 53 257

Interopen Time in Sec. 8030 360 11800 140

Table VII. Fraction of Permanent File Activity due to Shared Files

. SLAC ' Hughes
Number of Opens 0.27 0.20
Number of Reads . 0.85 v 0.43
Number of Writes 0.32- i 0.38

(3) The distribution of the number of users per file is similar in both sys-
tems and it shows that the most Comrhpn case of file sharing, by far, is
when a file is shared by two users. This may simplify the problem of file

migration in a distributed system.

&

i+

'CHAPTER 3

PARTITIONING OF CENTRALIZED COMPUTER SYSTEMS

Summary

This chapter presents heuristic methods for paftitioning centralized
computer systems (the resulting distributed systems will be used in later
chapters). The heuristics are based on certain aspects of the systems work-
load such as file referencing, file sharing arnohg users and requests for pro-

cessor and 1/0 resources.

We tgst'varibus partitioning h_euriStics on two real centralized systems
(SLAC and Hughes) Using trace-driven simulations. We conclude that a parti-
tion based on the number of user inversions (changes in the active user of a
file) achieves the lowest overall traffic in the communications network of the
resulting distributed system. The synthetic distributed computer system -
ot;tained by this procedure is used in the next: two chapters to test .file

migration policies.

Introduction

In the last two ‘chapters of this dissertation, trace-driven simulations are
ulsed to compare the performanée of various algorithms for placing and -
migrating files in distributed systems. Traces of activity from real distri-
buted systems are not available at the present time. Hence, it becomes
necessary to create synthetic distributed systems with data collected from

non-distributed, real computer installations. This is possible because the

traces of activity available from centralized computer systems are traces of

[@}]
~?

58

logical actions, and it can be argued that user behavior does not substan-
_ tially depend on whether the system is centralized or distributed as long as
performance remains acce‘ptabl.e. All. that hé’s to be done to obtain a syn-
thetic distributed system is to partition the set of users of a centralized sys-

tem and to assign the resulting groups of hsers to the nodes of the distri-

buted system. In this chapter, a procedure to partition the users of a com- -

puter installation will be presented and the procedure will be applied to two

real systems.

Section 3.1 introduces the distribution problem. Various heuristics to

solve this problem are then présen’ted in section 3.2. Section. 33 is a

detailed description of the partitioning procedure. In section 3.4, we
describe the simulations used to evaluate the synthetic systems and the

results obtained.

3.1. The Distribution Problem

- 'Ir; the last few years, many computer installations have gone through a

process of system partitioning. For example, the Computer Center at the .

University of California at Berkeley was operating, in the academic year
1976-1977, a large. machine (a CDC 6400) that supported most of the
research and the instructional workloads. By the end of the 1981-1982
academic year, the CDC machine will no longer be in opg'ratioh and the Com-
puter Center wili,be ober’atihg, insiead. almost twenty machines of differen‘t
makes and models. Conceptually, the transition from the situation in 1977 to

the preéent system can be described as the partitioning of the user com-

munity of the old CDC machine into a number of sub-communities and the

assignment of the sub-communities to the new smaller machines. The actual

procédure has been much more complicated because the glroba‘d user

&

fy

59

community has grown extraordinarily in the last five years and because the
Computer Center has introduced its new machines at different times during
this period. Also, the partitioning has not always been legislated from above

but rather prompted by the needs of users.

In distributing its users, the Computer Center must consider basic
aspects of capacity planning like the number of terminals, the processing
power. and the storage capacity of each individual machine. The university
environment puts additional l‘co'nstraints on the assignment of users to
machines. For example, the members of a class are usually assigned to the
same machine for reasons of basic fairness (same down times, same
throu,ghp.ut)'._ Another constraint is that some researchers must be assigned
to particular machines in order to use spécific hardware of‘ software capabil-
ities. F‘iﬁally, the machines operated by the Compﬁter'Center are for the
I;noment linked by a network of extremely low bandwidth and they must beﬁ
consideped as independent for most purposes. This irﬁplies phaﬁ ﬁsers n_eed-.
ing access to each other’s files must reside on t‘he same machine. The
methods used by the Computer Center for as‘signing’ USefs to machines have
been ad hoc and based on past experience and power struggles among the "

sectors of the user commumty

System pa.nrtitionihgx may be needed for other purposes. In our case, we
want to partition some real centralized sy_stgrns to obtain synthetic distri-
buted systems. We need thé distributed systems to run trace-dfiven simula-
tions of migrati/on algorithms. We will assume that we do not have édfninis-

trative constraints of the type that the Computer Center has to deal with.

This will enable us to use a more systematic approach to s'ystem partitioning.

60

© 3.1.1. Statement of the Problem

We can now state the distribution problem. Let C be a centralized com-

puter syétem defined by the set U of its users and by a trace of its activity

~during the time p_erv'iod.[O,T]. The traée contains a record for each job execu-
tion and for each file creation, deletion, open and close during [0,T].

Let D be a distributed system built around a fully connected communi-
cations subsystem. ' The distribution problem consists of finding a partition
of the user comthy o vsuch that, when its subsets (clas_seé) are assigned
to the nodes of D, the aggregate volurhe of traffic in the communications

network of the systemis minimized.

.Wfthout additional conétraints. ‘the problein is not well defined. I'n.t.he
first place, we must specify how 'we‘ are goiné to rn:anage the files in the Sys-
tem. This is im'portariE in thét it will déterrm‘ne what is the agg'regatel traffic
in the éystem. Our approach will be to use two dif'ferevr'lt policies (to' be
defined laﬁer) and to optimize the partitibn with respect to both policies.
This w1ll give us some assurance that the partitioning procedure does no“t
depend ona bariiculaLr file maﬁagement policy.

As stated, the distribution vpr‘oblem has the degenerate and trivial solu-
tion of 'assigniﬁg all the users to the safne node of the znetwork. This has the
effect of reducing the traffic to zero. In order to obtaih ﬁbn—trrivial soluiions,
we will require that the partition have a given number of nodes and that each

node contain at least one user. This way, we will be able to obtain distributed

computer systems with any number of nodes.

In a real distribution case like the one involving the UCB Computer
Center, the computing power and the storage capacity of the machines at

the nodes of the distributed system are given. In our case, there is no clear

61

indication about how to choose these values. A canonical assumption is that
all the machines at the nodes of the distributed system have similar charac-
teristics. We will make this assumption and therefore require that the CPU
and .IO requirements of the groups of users be as homogeneous as possible.

This will achieve a long-term load Balancin,g in the system.

3.2. Solution of the Distribution Problem

We now present a procedure for partltlomng a centrahzed system. We
recall from our discussion of the File Assignment Problem in Chapter 1 that
we are mostly interested in the management of shared flles We argued that
» temporary files and permanent single-user files should be stored at the node
- where they are used and that system files should be replicated at every node
of the distributed systems. Under these conditions, oniy shared files will
generate internode traffic. Since we want to create distributed computer
‘systems that minimize this traffic, we would like to cluster together the
users that share roughly the same set of files. A parti‘tion of the set of users
that eliminates completely the traffic among components is not generally
achievable because of the overlap in the use of shared files by different
users. Thef‘efore, we must resort to a clustering procedure based on the sta-

tistical properties of the users and of the shared files.

We use a heuristic procedure based on the clustering of users according
to the way in which they ehare files. We do not use an optimal procedure for

two reasons:

(1) Sensitivity to the migration policy. In order to use an optimal pro-
cedure, we would have to define a cost function. In our case, the cost
function would be some combination of traffic, delay and storage costs.

Unfortunately, the amounts of traffic, delay and storage needed by any

()

62

given partition d‘epend on the choice of migration policy for the system.
A partition that would optimize such a cost function would be explicitly
linked to a particular migration policy. On the other hand, our purpose

for partitioning systems is to study the performance of migration poli-

cies. It would be very difficult to cbmpare migration policies on the

bases of a partition that is optimal for one of the policies to start with.

Computational complexity. In the first place, if there are N users and

we want to partition the system K ways, the number of different parti-

tions is on the order of k7. In addition, computing the cost of one of the

partitiohs involves running a.trace driven simulation. No matter how
efficient is the searchihg procedure for the optimum, it is obvious that

the whole process will be very expensive.

Our heuristic procedure is much less expensive in terms of computation

and it can be carried out independently of any particular migration policy,

even though some migration policies are used to determine the goodness of

the partition.

(1)

The procedure has three logical steps:

Define a number of measures of proximity F;; for each pair of users

(i.7) & UxU. Each one of the measures must reflect how much two dif-
ferent users access the files that they shafe. Users that share many
files or that access heavily the files that they share should have high
proximities. Based on each measure, obtain a partition of U 'by some
standard clustering algorithm, and create the synthetic distributed sys-
tem by assigning partition classes to nodes. The numbér of nodes is
given in eaéh case and the assighment will try to balance the processing

and 1/0 requirements of the users in each node (a precise algorithm will

g

St

e

(3)

3.3.

(1
(2)

(3)

63

be described later).

Measure the goodness of the partitions. This is done by running a
trace-driven simulation of each of the systems (two, four, eight, sixteen -
nodes) using two different migration algorithims and collecting measures

of the induced traffic.

Choose the proximity measure (and therefore the partition) that results

in the lowest traffic.

The first of these steps, the partitioning procedure, is described below.

The Partitioning Procedure

The partitioning procedure is best described in three steps:

Various measures of proximity between users are defined.

The set of users is partitioned according to their proximities, using a

standard clustering algorithm. The result is a set of components.

One or more of the resulting components are assigned to each node of |

the synthetic distributed system.

Each step is now described in more detail.

3.3.1. Definition of Proximity

In this section we define seven measures of proximity F; between users

of a computer system. All measures are defined for a period of time [0,T].

For a given computer system, proximities can be arranged as a symmetric

matrix of size nxn, where n is the cardinality of U.

3.3.1.1. Random

A random par't'itioning of the system can be obtained by defining a ran-

dom measure of proximity between each pair of users. One way of achieving

64

this is to assign to each pair of users a number between 0 and 1, drawn from
a standard uniform distribution.

: Py ~ U(0,1) _
A random partition of the system cannot be expected to produce very good

results in terms of reducing traffic. Indeed, we will use this partition as a

yardstick to measure how much the other algorithms can reduce the traffic

below what is obtained with a totally random partition.

3.3.1.2. User Group

In many computer installations, users are assigned to user groups. User
groups usually follow the structure of the organization so that users- in ‘ghe
same group bélong to the same ﬁroject. the same class or the same; adrﬁiﬁis—
trative unit. In many cases, ﬁsefs in vthe same group share data files and
libraries of procedures that have been developed for their particular needs.
Belonginé to the éame user group is an indirect measure of th‘e degree of
sharing of the files. This particular measure can only be used with the SLAC
data because the Hughes installation does not maintain an.assignment of

users to groups. Since users belong to exactly one user group. the user

groups generate a total partition of the set of users that can be obtained

-

A | .
directly from a list of the users and their user groups. However, in order to
make this partitioning method more similar to the others that we will intro-
duce, we define a proximity FP; as follows:

1 if users i and j belong to the same User Group

P,;J' =
0 otherwise

65

3.3.1.3. Number of Sharéd Files

This measure of proximity is based on the number of files shared by

each pair of users during the interval [0,T].

Let H; = {h,h? - - - ,h*} be the set of files accessed by user i belonging
to the set of all shared files in the system. Let H; = (T R ,h;fi be the
set of files accessed by user j from the set of all shared files in the system.

Furthermore, let ny = |5 N Hj|. The proximity measure is:
Py =mny
3.3.1.4. Shared Space

This measure of proximity, closely related to the previous one, takes
into account the size of the files involved. Let us define the function s{h) as
the function which returns the size of file h in bytes. In addition, let
Hyj = H; N H; = thlhE - --.h.?‘ff be the set of the files shared by users 1
and j and ny; = | Hy| the cardinality of £h1s set. We defin’e F; as follows:

Py = % s (h§)
. , b ok=1

This measure should perform better than the previous one when used
with migration policies that move entire files in the event of remote accesses
since it takes into consideration not only the number of.files shared but also

their sizes.

3.3.1.5. Shared Transfer

This proximity measure is based on the amount of information accessed
in the shared files, i.e., the. sum of all the bytes transferred to and from a file
by all the jobs run by a user. This measure of proximity, under a slightly dif-°

ferent form, is proposed in [Buc79]. In essence, we consider the amount of

66

~information transferred to and from a file that two users have in common.
Let a¥ be the amount of information in file k accessed by user i during the
time interval [0,T]. Let us define:
Py = 3 [min(at.af)]
k=1
The reason for using the min function as opposed, say, to the average or the

sum of the transfers is that we expect the migration algorithms to be able to

detect the best position for the .ﬁle.(in this case the user with the highest

access rate). If this is indeed achieved, it is the amount transferred by the

other user (the min of the two transfers) that actually originates traffic.

3.3.1.6. Number of Inversions

S

Let h be a shared file. h undergoes an inversion when it is openéd suc-
ceésively by twb different users. It is easy to see that, if A is shared by m
users during the time in\terval [0,T] and is opened n times, then A undergoes
at least m — 1 inversions and no more than n — 1 inversions. Let Iij(h) be
the number of times that & is opened first by user i and then by user j with
no intervening opens. The measure of proximity based on the number of

inversions is;

Fij =:21Uv;j (hE) + I (R)]
This measure of proximity is specially useful when the migration policy

moves the entire file from one user to the next. In that case, it tends to keep

together users that would cause a large number of transfers of the file.

3.3.1.7. Inversions Space

This measure is very similar to the previous one except for the fact that

inversions are weighted by the size of the file.

67

 Py= s (ht) x [(RE) + L (hE)]

_ k=1
3.3.2. Clustering Algorithm

At this point, we could use any of the 'rriany existing clustering algo-
rithms [Har75] to partition the set of users according to any of the proximity

measures. We have chosen the one described by Zadeh in [Zad71] because it

allows to. change easily the target number of components of the partition.

This clustering method, based on the similarity matrix is fully described
in [Zad71] and we describe here the main steps of the algorithm only for

completeness.

The first étep is to turn the proximity matrix, made of all the proximi-
ties among users, into a éimilarity métrix. vThe reasbﬁ for doing this is that a
proximity measure (or relation) is not transitive and therefore is not an
equivalence relation. However, it is eééy to der‘:i've a similarity relation from
a p_roximity relation by célcuiating the transitive closure of the proximiiy
matrix. A similarity relation is an equivalence relation (it is reflexive, éym—
metrical and transitive) and hence is vsuitableﬁto.'effect a partition on a set, in

this case the set of users.

A similarity matriﬁ(actually defines a family of partitions. To obtain a
» member of the family of partitiOﬁé.“ we need t;> specify one more parameter:
a similarity threshold. If the similarity between two users is greater than the
threshold, then they belong to the sarﬁe component of the partition. Other-
wise they belong to different components.” The method works as follows.

(1) Pick any value from the matrix. The cﬁoice of this value determines the

number of components in the partition. A small value will produce a -

few, large components. A large values will yield many small com-

68

ponents.

(2) Use this value as a critical value, and set all elements less than it to zero

and all greater than or equal to it to one.

(3) Interpret the matrix as the connectivity matrix of a graph. The cliques

of the graph are the partitions (similarity classes) of the set of users.

At the end of this procedure, we might have obtained more componénts
than there are nodes in the distributed system. Next, one has to assign com-

ponents of the partition to nodes of the distributed system.

A
3.3.3. Assignment of Components to Nodes

The goal of this procedure is to assign user subsets to the N nodes of
the distributed system in such a way that fhe totél.processmg power and 1/0
bandwidth of all nodes be approximately the same fraction of the total pro-
cessing and 1/0 requirernents R. In practice, for the two real .systems that
we havé partitioned, vit turns out that avésigning nodes basked.on'the process-
ing needs results in systems that are al.so reasonably well balanced in the I/0
requirements. . To achieve this goal, we use the following strategby:
(1) By choosing the appropriate critical value, obtain a partition with a
- larger number of components than the number of nodes of the system,
such that no single partition has requirements exceeding % Obtaining
this value is an iterative process. An initial critical values is chosen

arbitrarily. The partition is obtained, the processing and 1/0 require-

ments are computed, and the results sorted. If any of the component

requirements exceeds % a new (higher) critical value is picked and the
procedure is repeated. If the requirements of the larger component are

not within the order of magnitude of the target, a smaller critical value

69

is chosen and the procedure is repeated. A binary search of the space

of critical values eventually yields an adequate partition.

(2) Assume that a good partition has been obtained. The components of the
partition are then sorted by processing and 1/0 requirements and the
top N components ai'e chosen as seeds for the assignments. The
remaining components are assigned, in decreasing order of resource

requirements, to the node that can accommodate them without getting

more than -]%of the total system resources. In practice, the procedure

has "Worked_ vefy well. It must be noted that the partitioning procedure
usually produces scores of very small components and these are very
useful towards the end of the assignment procedure to even out the pro-

cessing and 1/0 requirements of the nodes.

The assignment ef\componen’ts to nodes is a problem that couid be for-
mulated as an integer program and hencé could be sol.ved by standard
mat.hematical programming methods. Siece the solution of the integer pro-
gram can be ‘computationally expensive and the assignment is not a crucial

part of -our study, we have used the heuristic'plrocedure described above.

3.4. Choice of a Partitioning Strategy

The next step in our choice of a partitioning strategy is to determine
which one of the seven proximity measures yields the system with the lowest
average communication traffic. As was mentioned earlier, we determine that
by running trace-driven simulations of the synthetic distributed systems. We
perform two sets of expexjiments,' using two different file migratioﬁ policies.
The first policy maintains a static assignmeﬁt of files to nodes. The second

one dynamically assigns the file to the node of the current user (these poli-

70

cies are more precisely defined in the next section).

Conceptually, each partitioning strategy could have been tested using
more than two policies. Unfortunately, this would require a number of exper-
iments that is beyond our capabilities. Therefore, we have choseh two
single-cbpy policies that are easy to implement and different enough so that
a .partitioning stra’ﬁegy performing well under both policies can be con-

sidered a good strategy independeritly of the migratiori policy. .

3.4.1. The Migration Algorithms

The first of the two algorithms is R/O (Remote I/ O)]éIO is a sﬁatic algo-

rithm and it can be described by the two following rules:

(1) A file is placed at the node where it is created. If the trace does not
contain the creation record for the file, then the file is pléced at the

node where it is first used during the span of the trace.

(2) Whenever a reference is made to the file from a remote node, the
required records are tranéferr‘ed to or from the remote node. The

records are not cached at the remote node.

3 .

The second algorithm is MRU (Most Recently Used). MRU maintains a
single copy of the file at the node where it has been most recently used.
When using MRU; users located at different nodes are not allowed to access

simultaneously a file.

The next section presents the results of the simulations using these
migration policies.
3.4.2. Experimental Results

The partitioning procedure that we have described in the two previous

sections have been performed on the SLAC and the Hughes Aircraft systems.

71

For the SLAC trace, all the experiments have been repeated twice. The first

time, the entire trace has been used to determine the system partition.
| L

Then the whole trace has been used to run the trace-driven simulations and

to measure the traffic. The second time, only the first half of the trace has

been used to determine the partition. Then the second half has served as
input to the simﬁlation. Our objective in berforming this second experiment
is to see whethef t‘he proximity measures that we héd chosen would be able
to predict the utilization of the files in the future. The experimental results
show that there is little difference in the ranking of proximity measureé in

both cases.

3.4.2.1. SLAC Trace

We look first at the results obtained by running the RIO migration algo-
rithm (Figs 3.1, 3.2, 3.3, 3.4).

All partitioning strategies tested perform better than random partition-
ing in terms of average tfaffic. For all the strategies, the traffic function has
a decreasing slop'e as the number of nodés increases. The partitioning based
on the user group is the best, followed by the ones based on the inversion

space and the number of inversions.

When the experiment is repeated on the second half. of the trace (Fig
3.2), the results change very little. The average traffic is actually lower. This
is not d.‘ue to the partitioning procedure, but rather to the different charac-
teristics of the data in the second half of the trace. The User Group proxim-
ity becomes even better than the other policies ana the Shared Space policy
now ranks in third place‘. indicating that it is a very robust measure of prox-

imity.

7R

Average Traffic vs.
Number of Nodes

10— T —T T T3 1
- : Shared Files E
'8 1 2
o = ~
o) 8:] -
8 - = a
= -t ~
wn - 3
6E ERNE
S - =
(+}] - 3
(o C 3
0 - 3
Q 4: 3
- - m
o - -
..8 o p
= 2k =
e - -
| : 5
o) TV ERU WU BRI AU BT
' 1

Number of Nodes

- Fig 3.1. Average traffic as a function of the number of nodes in the system
(SLAC trace). This traffic is generated by the RIO (Record 1/0) mi-
) gration algorithm, which keeps a single copy of the file at the crea-

tion node. Both partitioning and simulation use the entire trace.

73

Average Traffic vs.
Number of Nodes

10 _— T IR g

- Shared Files o ©

o S 7 2

@ F 3 ~

o - 8 . Inversions 3 -]

O o = &

Q - . ~

wn C Shared Xfer n o

‘. 6 E— Shared Space ~: a'
) - 1-Space 3
~ : -
(8 4 :_ User Group —]
ES : E
) :
§ 2 =
| 2 -
ob— L v 1 o111,]
1

o
N
S
(2]
e ¢}
—
o

Number of Nodes

Fig 3.2. The same experlment of Fig 3.1, but partitioning is done on the first
- half of the data and it is tested on the second half.

Average values are useful to determine which partitioning procedure
generates the leést total traffic in a particular time period. Howe'v-er, worst
case desig'n rules are often used. In this case, we ére interested in peak
traffic values as generated by the various synthetic systems. Fig 3.3 shows
peak hourly traffic for the intervai [O,T].-'when the full trace is used for parti-
tioning and tesfing. ‘Thé ranking of the policies is almost the same. I-Space

is better that the user group proximity, indicating a smoother demand on

74

Peak Hourly Traffic vs.
60 Number of Nodes

L | L DL L LB g
- E £
C Shared Files | 3
g ;: Shared Xfer : :
o - - - 3
(@] - Inversions - 1~
O _ Shared Space | ~
n 50 4 o
r User Group | a
et = -
O - .
Q. - .
7 N 1
8 8 1-Space]
S 401 .
0 B 4
O - -
oy = -~
op-d L -
o L R
: a
3 0 [A [d 1 1 | 1 | Il | A
0 2 4 6 8 10 12

Number of Nodes

Fig 3.3. The maximum hourly traffic generated by RIO (Record 1/0) for the
SLAC, two week trace. The full trace is used in the experiment.

the communications system. The same measurements of Figure 3.3 are
shown in Figure 3.4 when the first half of the trace is used for partitioning

and the other half for testing.

To make sure that the results are not too sensitive to the migration -

algorithm used so far (RIO), we repeat most of the experiments using MRU to

A :
manage the files in the system. The experiments, again, are conducted both

for the full trace(Figure 3.5) and for the second half only (Figure 3.6). Figure

75

Peak Hourly Traffic vs.

- e - Number of Nodes

P ’ - 60— Shared| Files g
b . - -
- X Shared Spece | E
& [Inversions - ~
o - 1 g
o : tsmes 1 J
n 50 User Group —| °
- T] 4

) [-

a0 i

n C]

8 of —

5 40 -

0 [4

S) 5 4

— - -

30] P

10 12

- Q

- Number of Nodes

Fig 3.4, The same experiment of Fig. 3.3 using half of the trace for partl- :
tioning and the other half for testlng :

76

Average Traffic vs.

: Number of Nodes
10 =7 T T I T | T T T T T

o = E
. - o -
o - Rando i 2
g BE 3 ~
=] =)
: :]
v :] o
6 - 4 3
' - e Shared Files - %
Q) E f"‘:;.::i'; X .
Q. - //, T Shared Xfer
- 7/ -
0 4 E_ /,/," . i Shared Space
3 : 3
- -
~ o 3
g :
= 2 =
E z ;
0 - A i 1 l i B | 1] 1 J 1 :
0 2 4 6 8 10 12

Number of Nbdes

Fig 3.5. Average traffic versus space time when using the MRU (Most Re-
cently Used) migration policy. Both partitioning and testing done on
the full SLAC trace.

k4

-
| | Average Traffic vs.
oo - | ‘Number of Nodes
10 | T T T T T T T % 1 T g
- B i
o . Rendom 3 2
e o 94 >
o B i 2
o o] 2
% - 3 ~
® - E <
6 4 4
| o Shared Files =]
o - 3
(o] [javersions =
< - Shared Xter
n 4:_ Shared Space]
| B E 1-Space E
—Z‘ - _ User Group E‘
= 2F 3
i - =
ob 1 L1 1 3
0 2 4 6 8 10 12
Number of Nodes
Fig 3.6. MRU policy on half of the SLAC trace.
3.7 shows the peak hourly traffic when usingvtheMRU ;;olicy and the whole
trace both in partitioning the systerm and to run the simulation.
i These results confirm that User Group and Inversion Space are the two
J best criteria for partitioning the SLAC user comrhunity.

3.4.2.2. Hughes Aircraft Trace

The partitioning procedure has been repeated for the Hughes trace.

There are a few differences in the results:

78

Peak Hourly Traffic vs.
Number of Nodes

60 T T T T 71 T | T T] 2
- 1 &
o] 8 Random 7 E
- N ‘ 1~
o P~ -1 >
o C]
n 50 4D
: 1 3
‘&' - .. Shared Fues]
(o Y A Inversions N
[~ - Stiared Xfer -
- ‘- User Group -
n L 4
B . Shared Spece |
5 401 p
) [1.
o - =
ot - -1
g - 1-Space -
30 A PN EEE U
0 10 12

Number of Nodes

Fig 3.7. Maximum hourly traffic vs. number of nodes for the MRU migration
policy on the full SLAC trace. '

(1) The experiments bqéed on partitioning on the first half of the trace and '

testing on the second half have not been done.

(%) The characteristics of the Hughes systems are such that most of the

proximity measures achieve excellent partitions.

(3) The User Group measure has not been used because it is not possible to

extract this information from the trace.

79

~ - - - - - - ' . v

Figure 3.8 and Figure 3.9 correspond to the simulations using RIO. As we
mentioned before, the Hughes systems can be very easily partitioned. Figure
3.B shows the average traffic and Figure 3.9 the hourly peak traffic. In both

cases, the entire trace is used to obtain the partition and to measure the

traffic.
Average Traffic vs.
, Number of Nodes
ST T T T T T T T] %
C 1 &
o Z Random : E
o 4} — ~
. /] s
LY [] ~
m - 1 2
3+ — y
b - Shared Files - =
B B Shared Xfer
Q. 5 Shared Spacs
n n .
) _r]
e)
>§ - -
s - F e
— 1+ —
= g]
0'- i i l 1 B
0 10 12

Number of Nodes

Fig 3.8. Average traffic as a function of the number of nodes in the system
(Hughes trace). This traffic is generated by the RIO (Record 1/0)
migration algorithm, which keeps a single copy of the file at the
creation node. Both partitioning and simulation use the entire
trace.

80

Peak Hourly Traffic vs.
Number of Nodes

25 C T T 7 T 1 T T T I T] g
- ') - 5 .
o : Random] E :
o) N] ~
-0 . =0 L A °
d) - | =
o | B ~
n v , Shared Files g
- A Shared Space] &
l 5 — I’ '/ — ?
5 = /'/' - =
o u S/ + Shared Xter]
Q L /N . N
= /;{/‘ // p
8 1 0 = /f;‘/ d -
g : :
~ - Y, i
L | 4 Inversions
2 5 N I-Space :
oot
s []
0 i 1 3 | 1]
0 10 12

Number | of Noaes

Fig 3.9. The max'uhum hourly traffic generated by RIO: (Record 1/0) for the
Hughes, two week trace. The full trace is used in the experiment.

Figure 3.10 shows the traffic generated when the MRU policy is used with‘

the Hughes trace.

3.5. Conclusion

In this chapter, we have developed a heuristic method for distributirig
centralized systems. The procedure begins by defining a measure of proxim-

ity between each pair of users. Using this proximity measure, the system is

@

SO

81

Average Traffic vs.
Number of Nodes

10 [T T LY AR | T T 7] !
- - -
o] | Rendom 7] 3
=] 81 7 ~
o} B —_ o
_ 8 R Shared Files .. -
0 L Shared Xfer N g
- - '
; or 1 2
8_‘ - Shared Spece | -
B -
n 4 :_ 7]
m N ——
e -
- - -
L ™ Inversions B
(o) - 1-Space -
— 2 = —
i 8 .
0 [1 l 1. | 1] 1 | i 1 A]
0 2 4 6 8 10 12

Number of Nodes

Fig 3.10. Avérage traffic versus space time when using the MRU (Most Re-
cently Used) migration policy. Both partitioning and testing done on
the full Hughes trace.

partitione_d and the resulting classes of users are assigned to the nodes of a
synthetic distributed system. The goodness of the distribution is then tested
by running t.race-driven simulations of the distributed system. Two sets of
simulations have been performed, using two different file management poli-

cies. The results have been consistent.

82

We have pefforrned the distribution ‘procedure 6n two systems: SLAC and
Hughes. The partitioning of the S'LAC user corﬁmunity has produced subseté
with a great amount of overlapping among them. We have also observed that
the partition based on the user group of each user yields a very good parti-
tion in terms of generated traffic. Of the proximity matrices based on meas-
urements of the data, the best two are the one based bn number of inver-
sions and the one based on inversion space. Because it is somewhat simpler

to obtain and it does not rely on the size of the files proﬁded by the trace, we

choose the proximity measure based on the number of inversions for obtain-

ing the distributed systems to be used in later chapters.

When we have applied the same méthods to the user community of the
Hughes system, we have obtained partitions that generate much less traffic
among components. This is probably due to the fact that the user_cominun—
ity is itself strongly partitioned into projects so that little sharing exists
between projects. In any case, the proximity measure based on the numbebr

on inversions is again the one performing best and we choose it for obtaining

the synthetic distributed computer systems that we need for the simulations

-

of the next two chapters.

@ Vg

CHAPTER 4

SINGLE-COPY MIGRATION POLICIES

Summary

In this chapter we present a number of policies for migrating files in dis-
tributed computer systems. We only consider policies that maintain a single

copy of each file in the system.

Based on a simple model of file sharing, we develop a migration policy
that is optimal in the sense of minimizing the global network traffic. This
policy is then compared to a number of heuristic algorithms using trace-

driven simulations.

Introduction

Both centralized and distributed computer systems z;llow users to share
information. In centralized systems, sharing is usually based on the access
to sorﬁe common storagé area. This common area can be in rﬁain memory or
on a secondary storage device. Access to shared memory can be inexpensive
because the information need not be copied, in principle, from bne user's
space to the other user’'s space. A remapping of the physical storage r-'egiovn

is all that is needed.

When dealing with distributed systems, sharing information always
meéns transferring it from one system to another (we consider remote 1/0's
as transfers of data). Sincé transferring data can be an expeﬁéive operétion '
and it can be done_ in many different ways, a number of décisions need to be

made in order to implement sharing of information ina distributed system.

83

B4

Let us assume that two users located at different nodes of a computer net-

work want to share the information contained in a file. Should the file be
permanently placed with one of the users? If so, with which one? What if
there are more than two users? Should the file be moved back and forth
between nodes as it is accessed? Should copies of the file be made and dis-
tributed to all users of the file? In this case, what should be done with the
copies when one of the users updates the contents of the file? Or should the
- users be moved between systems? The decisions made about placement and
transmission of sﬁared files may have quite an impact on fhe overall perfor-
mance of a dis_'tributed system. How to make these decisions is the subject

of the remaining chapters of this thesis.

“We will start by cohsidering algorithms that manage only one copy of
each file. These so-called single-copy policies are easier to implement and
easier to model than the pollcles that create multiple coples of files. As we
will show, single-copy pohmes do not provide, in general, the best results in
terms of system performance However, they are worth studvmg for a
number of reasons: they can be implemented with existing file handhng
mechamsms they are easier to optimize and they can outperform the
multiple- copy poheles under certain conditions, eg. heavy updatmg or expen-

sive storage.

Section 1 is a brief review of the mechanisms that can be used for- - -

accessing remote files. Section 2 prese‘nts a simplified model of reference
for shared files. Tﬁe model is powerful enough to evaluate the class of poli-
cies that we consider in this chapter. | Seotion 3 uses the model developed in
the previous section to find en optimallpolicy for file migration under some

rather general cost functions. Section 4 introduces sub-optimal policies for

&5

85

migration of shared files and uses the model of section 2 to predict their
cost. Finally, section 5 uses trace-driven simulation to compare the behavior
of all the policies in the synthetic distributed systems generated in the previ-

ous chapter.

4.1, Access to.Remote Information

There are basically two ways for a user to'at_:cess remote information:
(1) Runataskon the. machine where the data 1s
(2) Transfer the data to the ﬁser's local ﬁacMne.

The first alternative can be implemented as remote login of remote exe- -
cution. Remote login [Dav77, Day80, TanB1] provides interactive access to a
remote machine. The user can run his progrsrns in the rémote machine and
has access to all the data stored in that machine, This arraﬁgement can
result in'low transmission requirements, especially if the result of{the com-
putation is a small arﬂédnt of data that can be displayed on a terminal or

priiited on a hardc.o'py device. If the amount of data generated by the execu-

tion of the prdgram is not so small or if the necessary data is actually

resident in more than one machine, then remote login is not powerful

enough. Some networks also provide remote execution [HwaB0]. This is a

-less interactive mechanism, that triggers execution of a task in the remote

computer. It is gsually combined with sof_ne transfer of data, as with remote
mail programs. The topic of remote execution is an interesting one but
beyond the scope of this research. It involves the study of load balancing
[Bok79, ChuB0, Mit79] and we believe that the issues of file slacement and
migration can be studied indépend_éhtly of process migration. Also, procéss
migration is a less general approach, ‘u'sually limited to homogenesus net;

works, while file transfer has been used in héterogeneous networks for quite

86

some time.

From now on, we will assume that users have been assigned by a system

administrator to specific machines and that all their tasks must run on their

local machine. When a user needs to access a remote file, two mechanisms

can be used:

(1) Transmit the records needed by the user, leaving the file-at its current

location.
() Move the entire file to the user's location.

The first method of access is known as remote file access or remote
open. It has been implemented in a number of s.ystems‘. Some of these sys-
tems have machines with almost no storage and all the files are located in a
file server. The Cambridge Ring [DioB0] is a good example of such a systein:
In other cases, remote file access is the mechanism of choice for the access
of remote infofmation because it eliminates the problems of updating direc-
tories that refer to the files being moved [PecB1, CoaBl]. As far as perfor-
ménce is cbncerned. remote file access has pros and cons. On the plus side,
* it does not generated unwanted traffic in that the only information that is
transmitted has been explicitly requested by a user. Since the file is not
moved, there is no need to update ditectory information. It has potential for

optimization: In the frequent case of sequential access, special protocols can

be used that do not require one request message per file record. Finally,

records can be cached at the local machine, so that repeated accesses to the
same record do not require extra transmissions. On the negative side,
transmission can be inefficient if the records are ioo small. In the worst
case, multiple messages may be needed for each file record that is to be

transmitted, increasing the delay involved in remote access. Finally, remote

87

access disregards the locality of user reference that may exist .in a system.
This can generate repeated remote opens from the same user to the same"

file, generating unneeded traffic.

The other way of moving the data to the user is to move the file per-
manently to the node where it is needed. This action is called a file transfer.

File transfer protocols are available in most computer networks [Gie78,

,' HuiB1, HwaBO]. The automatic transfer of files can be a rather involved
~ operation depending on the way that network directories are organized. On

‘the other hand, file transfer is a potentially efficient mechanism for various

reasons. First, only one message from the requesting site is needed to
transmit the entire file. This is in contrast with remote file access, where -
one message may be needed for each file record. Secondly, transfers ‘of

large amounts of information tend to use the available bandwidth more effi-

~ ciently, by elirninating packet fragmientation, for exér'nple. Finally, if the

user is going to access the file repeatedly, only one file transfer is neéded, as

~ opposed to multiple remote accesses.

In the remaihixig sections of this chapter, we will investigate how the

mechanisms of remote 'opén and file transfer can be combined in order to

optimize the o‘perating cost of a distributed system.

"~ 4.2. Model of File Sharing

A real, genuine ﬁodel of file sharing would be very complex and would
include many parameters, like relations among files, relations among users,
characteristics of the individual files (size, life, orjganization). A more rea-
sonable description of the general model, oriented towards our studies of file

migration algorithms, could include the following items:

88

(1) The order in which different users access a file.
() The distribution of the interreference times. '
(38) The distribution of the fraction of the file accessed pei‘ open.

(4) The probability that an open results in the file being updated.

(5) The correléﬁbns between the pfevious'parameters. For example, inAter-‘

reference tirhes ma&' be shorter when the same user opens é_ﬁl»e twice in

a row. | |
(8) .L.The re}ationshipé between different files.

Even this desc’riptip_n is.too complex and the models considered will be
limited in certain ways. For example, we will not consider relationships
amoﬁg di_ffereht‘ files even though, in most systems, files are .ofteri used in
g‘roups. F‘urthermore. We are making the assumption @hat, in a single-copy
environment, the cost of a remote write is the same as the cost of a remote
read. This is true in terms of volume of data transmitted since a single copy
has t‘o‘ be update. It is only an approximation in Eerms of delay because
remote reads have to incur a round trip n‘e.twork_vdelay (pre-fetching can help
réducing- this delay) while remote writes can be‘implemented so that the
issuing program does not have to wa1t at all As a result, the sharing process

can be modeled by considering only two aspects the order of reference by

users. and the fraction of file accessed per open. Such a model_cg_n beru:sed'_

to estimate the cost of all the policies that we consider in this chapter. ‘This
applies to the costs related to traffic and delay. The storage costs in the
single-copy case are constant if the unit storage costs are the same on all

the nodes.

89

4.2.1. Full Markov Model , .

Figure 4.1 shows a typical pattern of access to a file that is shared by
twelve users. Each line represents one user and each horizontal dash a four-
hour time interval. Digits stand for the number of tﬁnes that the file was
opened during that one hour period (a dash means zero opens). Two charac-

teristics of the access pattern are worth noting:

resd '--l---, seccssnce

N 4 . i
resd esalSbenee}ile]lT732-=T22«+=43721194112=2=62~2111 21 2211263000
resd LT Y 3 SSeccscnnnnsns ves g
resd eslencnvcccscssnacs 1 vesnn - {Seee
reed ---f-------s---llz----llZZ---lI1-2-l-l---l----?!---i--l-----------l'-l---l--!---
read wavecsajjesi]j]jseaiec]a] =11 ll!--!tl--lz--ll-l*-;;Ol;l!----
uoposq eenmcacalecnceconcnncncancacssondiencerenncccs 2 soscssccse
resd 4---------341-9:1f-----a;---------zz-s--s13---:;2 deco@dnece]jocne
resd ermscnsenocesnlince]derccorscanannnnssinnns .o
resd ----------oz---ll---iil12--l!21-0--~---°------6---27l!---!l----!l-f--°2-°'$--°-'
read --9-------3----lf-----------o-13--3l---l--l------°-------5!219-lll---!-'l--"'°'
read seccnvccovenavosssscrnssjsnenchrrcsusnnounnnace e 22evea
rasd esccaveccencon meccscnecncnn secsssccsjesscnicadescann]|reca] 11 s

Fig 4.1. Pattern of access to a typical shared file. Each row corresponds to
one user. In arow, each dash stands for a period of four hours dur-
ing which the file was not opened by the user. Digits indicate the
number of opens during a given period.

90

(1) When a file is opened by a given user, it is very likely that the same user

will be the next to open the ﬁle.

(2) In many of the observed cases, one single user accounts for a large per-’

centage of all accesses to the file. It is not uncormmon for this user to
be the only one that updates the file. We will call this user the owner or

the high frequency user of the file.

In trying to model the observeci behavior of shared files, én LRU model
[Rau77] would correctly capture éspect (1). Actually, a full LRU model may
be an overkill, because the system does not seem to have any memory of the
order in which users access the file besides the current user. A simpler
model, with a single parameter a, could be used. This model would assume
that the probability of a user opening a file twice in a row is «. The probabil-
ity 6f any other user opening the file instead is 1 — a. Both the LRUM and
this one-parameter model keep track of the order in which the file is being
opened by its users. However, they do not keep track of tﬁe names of the
users. Consequehﬁly, these mociels cannot accommodate characteristic (2).

In order to do that, the model has to remember who is the owner of the file.

‘A Markov Chain model can handle both requirements by remembering in
its states both the name of the high frequenéy user and the current user of
the file. This is the model that we have adoptéd. Some extra care is needed

in the assignment of users to nodes, though. ™

In the first place, we consider the network nodes, rather than individual
users, as states of the model. For the purpose of this optimization, refer-
ences to a file ofigi.nating from a cluster of users are equivalent; that is, it
does not matter which user makes the reference because the open is local or

remote regardless of who is the originator within the node.

I

a

L A

91

A second consideration is the assignment of nodes to the states of the
Markov Chain. Our initial goal was to assign all the owners (highest frequency
users) to state 1, the second highest frequency Lisers to state 2, and so on.‘
This would require two passes over the trace: one to compute the frequency
of access in order to assign the users to the states of the chain and a second
pass to estimate the parameters of the chain. Fortunately, we have observed-
that in more than 90% of the cases (this figure was obtained by sarﬁpling 50
files at random), the first user that accesses the file is also the highest fre-
quency user. There are two poséible explanations for this experimental evi-
dence, First, if the first access to the file cofresponds to iﬁs creation, the:n
the user is the real owner of the file.and, as we mentioned before, this tends
to be a high. frequency user. Second, whether or not the first access is the
file creation, the probability of observing a high frequency user is obviously
higher than that of observing a user that seldom references the file. In the
rest of this chapter, we will use interchangeably the concepts of owner of the

file, first user and user assigned to state 1 of the Markov chain.

'

" From the previous observations, we have decided on the following assign-

ment of users to state: for each file, the first node that references the file is

'mapped into‘siate 1 of ‘the chain, the second node into state 2, and so on.

One last decision to be made is how to estimate the parameters of the
Markov model. This could be doné independently for each file, for some
groups of files or for the whole file population. Estimating the parameters
for independent files is made difﬁcult by the sméll number of references to
each file. Files could be aggregated by file type, file size, or by the number

of users of each file.

92

We have estimated the parameters of the model by aggregating all
shared files in the system. Figure 4.2 shows the state diagram of the Markov
chain for the synthetic distributed system with four nodes obtained from the

'SLAC trace.

The model of file reference is not complete if we do not specify the frac-

tion of file referenced per open. For this, we choose a very simple model. We

make the assumption that the fraction of the file used is independent of the

Fig 42. An aggregate model of file sharing for the 4-node svctem obtained
from the SLAC trace.

93

,,liser'that is accessing the file. Furthermore, we assume that thé fraction of

file used per open is independent of the file or any of its characteristics, like
size or age (these two assumptions are made for model.ing convenience). The
distribution of the fraction of file used per open can be estimated directly
from the data as an empirical distribution. As a matter of fact, only the first

moment of this distribution is needed for our optimization model.

To conclude this section, we review the main aépects of our model of file

reference.
(1) Al files are assumed independent and belonging to a single population.

() The order in which users reference files is modeled as a Markov chain
where each state corresponds to a node in the computer network. The
states are assigned to the nodes so that state 1 corresponds" to the node

that creates the file or references it in the first place.

(8) The fraction of the file that is accessed dur'mg each open is considered
independent of the other characteristics of the file (size, age), of the
user (node) referencing the ‘fiAle and of the fraction of the file accessed

during previous opens.

4.2.2. Reduced Model

The full Markov ‘model that we just iﬁfroéuced is useful for a number of
pui*'posesq. like predicting the cost of certain migration élgorithms. The prob-
lem with»this model is that it has O(N?) parameters, where N is the number
of nodes. Beyond four or five nodes, the number of parameters becomes too
big.

E_ven. if the parameters couldvbe. estimated, the problem of finding the

optimal one-copy policy becomes intractable because it requires -solving a

94

" system of 2 N? linear equations in 2 N? variables. Doing this symbolically is

e

impossible except for the smallest values of N.

This prompted us to look more carefully at the model of Figure 4.2. Fig-
ure 4.3 shows again the same model obtained from the same data. However,
this time, the edges are not labeled with the transition probabilities as it is
customary in Markov chains. Rather, they arev labeled with the stationary
transition probabilities. that is, the product of the transition probabilities by
the state siationary probabilities. Thése numbers indicate the long-term

probability that the transitions represented by the edges occur.

It is clear from Iookii_lg at the figure that state 1is in a class by itself. In
the first place, the probability of reentering state 1 is extreineiy high, com-
pared to the other trénsitions in the model. In the second placex the proba-
bilities of the transitions from state 1 to the other states are also higher than
the probabilities of the transitions among ‘the other states. This suggests
that a rnodei with only two statés. one state equivalenf to state 1 and one
state equivalent to the remaining siates, would capture most of the proper-
ties of the full model at a smaller cost. Thi's(r_'educed model should yield the
same stationary probabilities than the full model and the same probability of
reentry into state 1. The pairarhbters of thewreduced model can be derived, if
needed, from those of the full Markov model. - The redubed model has only

two states and hence two parameters no matter what the number of nodes is.

Let N be the number of states of the full model. Let py; be the transi-
tion probabilities of the full model and p'y; those of the reduced n‘i‘odel (P12
and p'z, are the two parameters of the quei). Likewise, let m; be the sta-
tionary state probabilities of the full model and n'; those of the reduced

model. The two conditions to be satisfied are then:

95

049 ’ 016

Fig 4.3. Stationary transition probabilities. Same data as Figure 4.2.

= m - (4.1a)
and
. v . Pn=pn v : (4.1b) ,
» : v . The first parameter, p'y2, is obtained from eq. (4.1b):
Phriz=l-pnu=1-pn (4.2)

- To derive the second parameter, p'j;, we first recall that, for a 2-state

Markov chain, the stationary probabilities can be obtained in closed form:.

96

. P'21

™ = o T 4.3
YU patpe _(2)
o P . (4..3b)

ﬂ. - L] 1
2T petPa
From (4.3a) we obtain:

, ﬂ"l , -
Pa= 1__"7‘,_1? 12
By using (4.1a) and (4.2) we get to the final result:

L
Par= 1

e {1-pu)

4.3 Optimal Long Term Solution

Given the reduced model of file sharing présented in section 4.2, we can_

now derive an optimal policy for the placement and migration of a file in a

distributed systen.l,' A policy is a mapping between the state of a system and

Fig 4.4. Transition probabilities of the reduced model. p;; and py, are ob-
tained from the full model.

97

a set of actions. The state is not an intrinsic property of real systems. It is,
rather, a modeling decision. In th\e first place, the numbef of state vhriab_les
can vary widely, depending on the required degree of accuracy. Secondly,
the state of a system may involve only a few current variables or the whole
history (past, present and future) of the system. For the model of file shar-
ing, the state consists exclusively of the name of the current user, or, more

precisely, of the node where the current user resides.

Actions are decisibns that (probabilistically) may alter the state of the
system. In the 'framework. of tﬁe Markov model, this means that when the
system enters a state, the probabilities governing departure from the state '
are not fixed, but rather may be selected from a set of alternatives, depend-
ing on the action taken. If there are costs involved in the change of state,

these costs may also depend on the action taken.

We now turn to the specific problem of finding the optimal migration pol-

icy for the model of file sharirig that we described in section 4.2. We start by

" defining the states of our model. The state of a file is determined by its

current user (vt.he users that has opened the file most recently) and b}% its
current location. Iﬁ our reduced model, the current users may be the
“owner’' (state 1) or any other user (state 2). Independently of who the
current user is, the file may be physically stored in the owner's node or in
one of the other nodes. In other words, a user can i;ead and wﬁte either
from a local copy or from a remote. copy.v The model remembers both the

current user arid the current location of the file. The set of states is

S = {S.,Sg,Sg'S‘;]. Figure 4.5 shows the expanded model.

In each of these states, two actions can be taken: ¥ (Move the file in the

event of a remote open) and D (Do not move the file and perform a remote

98

Fig 4.5.

Markov model of reference and storage for shared files. The Markov
chain results from choosing the "Move" action in all states.
State 1: file at node 1, current user is 1.

‘State R: file at node 2, current useris 1.

State 3: file at node 1, current user is 2.

State 4: file at node 2, current user is 2.

The labels on the state transitions are the probability of the transi-
tion and the cost of making that transition.

Akl

99

-t oay
o0 @ v 0e o #9P0

pi2 -/ X' ' pas 7 (- v pas /x|
?

pez - @

—

Fig 4.6. Markov model of reference and storage for shared files. The Markov
chain results from choosing the "Do Not Move"” action in all states.

access). Let A = {M.DJ be the set of actions. M is the action than uses a

transfer protocol to move the file to the location of the user that needs it.

The cost of this action may be zero if the file is local or it may be non-zero

and proportional to the size of the file, if the file is not local. D is the action

that does not move the file. The cost of accessing the file is zero if the file
and the user are in the same node, and the cost is proportional to the

amount of information needed from the file if it is in a remote location.

100

- v'We will also consider the cost of storing the file. This cost is propor-
 tional to the size of the file and to the average length of time that the file

remains in a particular node. More épecifically. the costs are as follows:
S: Average cost §f transferring the file between nodes one and two.

- X: Average cost of a remote open (amount transfef during an open).
S,: Storage cost per unit of storége per unit of time at node 1.

Ss: Storage cost per unit of storage per unit of time aLt nbde 2.

7: Average interopen time.

The model and the optimization procedure can handle different storage
costs for the two nodes and different average césts for remote opens. ‘Even
though we cérry' these 'diffgr‘ent costs through the whole optimization pro-
cédure. We do not'_use them in our simulations. In the simulations we_‘assume
~ a common storagé unit price and a single average cost for the remote'opens.

It should be noted that the optimization procedure only requires that the

costs associated with the transitions be stationar'y:-

A Markov model where the assignment of probabilities depends on a set
of actions is called a Markou Decision Process [Ber76, Ros70]. Such a pro-

cess can be defined as a series of transition matrices, T°, and cost matrices,

C°’, one for each element of A4, the set of actions. Upon entering a state, an

action is chosen (maybe according to a pre-defined strategy) and the selec-
tion of this action impaéts the probabﬂities for leaving the state and the
costs of the various alternatives. In our case, we have two actions, M and D

and hence two sets of matrices T¥, C¥ and T2, C2.

> The first set corresponds to the Move action. It describes the transition’

probabilities and the costs if the action Move is chosen in all states.

101

[Pu 00pe
P11 00 py2
P21 0 O pg

21 0 0 ppe

%)
oo oo
ococoo
ooy

These two matrices correspond to the diagram of Figure 4.5.

‘The second set of matrices correspond to the Do Not Move action: -

[Py O Pz O
_ 0 pu 0 piz
" |Pay O pzz O
0 par 0 p2

TP

0 0 XOoOf
0XO00
00XO
10X 00

These two matrices correspond to the diagram of Figure 4.6.

c? =

The elements of C* are the costs incurred in making transitions between
states ie. at the time of opening the file. In addition, files incur a cost S;.7
when they are stored at node 1 between opens and a cost Sz.7 when they are

stored at node 2.

Given the transition probabilities and the costs for each alternative, we
want to find an optimal policy (a set of actions) that minimizes the average
cdst of operating the system over an infinite horizon. The techniques for
finding this optimal policy are well known [How60, How71]. It can be shown.
that the optimal policy is a stationary bolicy under very general conditions.
With the help of an algebraic manipulation program f, we have been able to

derive the optimal stationary policies for this problem in closed form. The

102

method used has been the policy iteration algorithm described in [How80].

A policy is a vector of actions, one for each state of the model. In this

" case, the optimal policy is stationary. Therefore, it is a vector of actions that
do not depend on the time. Since the policy iteration has been performed in

closed form, we are able to derive parzimetric optimal policies, based on the

parameters of the prpblem (transif.idn probabihties and costs). In the case

at hand, we obtain three different policies:v P!, P2 and P° dependiﬁg on the

relationships among X, S.Piz Pa1. S1. S and 7. For eéch optimal policy P,

the policy iteration method also yields G, the average cost of operation over

the inﬁnit_e horizon.

l
P1=M if X>2:Sp21+(52'—51)7
M

Gl = 2S5 PizPar P12Sz + PaiS,
(Pr1z+Pal) T P2+ Pay

The first policy, P!, tells us to always move the file in case of a remote
open. Intuitively, we see that P! is optimal when the average amount

transferred per open, X, is relatively large, compared to the size of the file.

D
PZ;__ M if _X;$23p21+(52_51)7
D P21 > P12
M
X P2
Gz —m———+ S
(P12 + P21) T !

The second optimal policy applies when pz; > pjo. i.e., when the file has a
pr'obability of being in state 1 (of the reduced model) greater than that of

being in state 2. This is true for the systems that we have observed. In this

t Vaxima, a descendant of Macsyma.

-

103

case, P? is optimal if the amount transferred per open is relatively small.
The policy tells us to move the file away from state 2 (non owner) in case of a
remote open, but to keep the file in state 1 (owner), even in the case of a
remote open. Therefore, if the file starts in node 1 (as can be expected), the

optimal policy in this case is to store it permanently there.

‘ Iy
. D " {Xs25p12+(51—52)'r
it Pz1 <Pz
D
X pay]
(P12+P21)T 2

P® applies when Pz, < P12 and it is the symmetrical of P2,

The migration'algorithm that chooses and ifnplernents the éptknél pol-
icy will be called AVOPT. It is not a realizable algorithm because it requires
~ the knowledge of the averages of the file sizes and file transfers o§er an infin-
ite period. A reahzable version of AVOPT would use running estlmates of all
the parameters and it would recompute the optimal policy at each remote.
open. This adaptive policy is only optirnal during the periods where the
parameters remain more or less constant. We will call this policy DYNOPT

and we will test it, together with AVOPT, using trace-driven simulations.

4.4. Suboptimal Policies
The previous section has'left open the problem of estimating the param- -
eters of the model. We will go back to this in the last section of the chapter

But first, we will present three non-optimal policies that do not require the

estimation of parameters in order to work.

- 104

4.4.1. Remote1/0

'The first of the three policies is Remote [/0 or KIO for short. ThlS is'a -
simple policy that stores the file permanently with the user that created it.
All accesses from remote users are handled through remote file access and_

the file is never moved. The policy can be defined in the full Markov model as

- PRIO =

SESESES)

It must be noted that all the actions besides the one for state 1 are
irrelevant. Since the file is placed, upon creation, in state 1 and the action
for state 1 is Do Not Move, nbne of the other states will ever be visited, and

the 'actior_ls will not be used.

“In the calculation of the costs for the policies and iﬁ the trace-driven
simulations that we conduct in the next section, we will assume that the
storage costs are identical at all nodes and equal to S,. The average cost of

the policy., éalculated from the full model, is

grio = (L=M). —Tﬂl)X + 5,

.Substituting 7y from (4.3a), we get:

Xp
GRIO =z ——~ = 4+ S
P12+ pa1) T !

So GPI? js equal to G? This comes to no surprise because PF/9 is actually the

same policy as P? when the model is started in state 1.

4.4.2. Optimal Remote 170

RIO has the assumption built in it that most of the accesses to the file .
will come from users located at the node of iﬁs owner. It would be interesting

to see how good an assumption this is. One way of conducting the test is to

105

implement a non-realizable policy, that actually places each file at the node

of greatest activity. We call this policy Optimal Remate I/0, OPRIO for short.

One other reason for introducing this pblicy and measuring its behavior
is that OPRIO is the pdlicy that is irnpliéitly used in many of the papers that
solve the file assignment problem by mathematical programming methods.
Using this policy in simulations will allow us to compare the best one-copy
policy attainable by a fixed assignment of files to some of our more dynamic

policies.

In terms of actions, this policy is

POPRIO =

SESHESRS]

The difference with P?? is, of course, in the initial locationv of the file.
Conceptually, ‘two passes over the data are needed in order to implement
this policy: one to find the heaviest user for each file and one to measure the
cost of the policy. OPRIO could be approximated by using an exponential
weighting estimator of the frequencies ‘and by moving the file to the ndde

with the highest frequency of use.

4.4.3. Most Recently Used

This policy moves the file to the node of the current user at every open.
It is called the Most Recently Used (MRU) policy, because the file is always
located at the node where it has been most recently opened. .In terms of

actions, it can be defined as:

1086

u
V]
H
H

PHRU =

The cost obtained from the full Markov model is:

4.5. Simulation Results

Trace-driven simulations have been run in order to compare the perfor-
mances of the policies that we have introduced. We measure their perfor-

‘mance based on two variables:
(1) The number of remote opens originated.

() The average traffic generated.

Before we show the results obtained in the simulations, we must explain

certain implementation details for some of the policies. In the definition of
RIO, for example. we stated that the file IS placed with the user that creates
it. In the simulation, however, we do not see the creation of all the files and
in some caseé it is not possible to determine the owner of the file. In these
cases, we have placed' the file with the user that has first opened the file in

the span of the trace.

Some explanatiori is needed for AVOPT. ‘the average optimal policy and
DYNOPT, its addptive version. Let us recall that the optimal policy was
derived from the two-state, reduced model of file reference. The reduced

model doss not contain any transitions between two non-owner users. Conse-

quently, the optimal policy does not provide an action for such a transition.

In our implementation of AVOPT and DYNOPT. in the event of a transition

-

&

107

between non-owners, we transfer the file. It is very'vlikely that the next tran-

sition will be to the same user or to the owner of the file. In that case, the .

‘ optlmal pollcy can be applied agaln 'I'he transmons between non-owners

could be handled in several other ways. For example, we could do what the-
optimal policy say{s when there is a transition between non-owner and owner.
Alternatively, we could do'what the policy specifies whenever there is a tran-

sition between non-owner and owner.

Finally, in the case of DYNOPT, we must describe how the.pararnveters of
the model are estimated. The model has three types of parameters, the
transition probabilities, the file .sizes Aaénd the amount of information
accessed per open. For each one of these parameters we have chosen a’ dif-

ferent estimation procedure.

The transition probabilities are estimated as an um’a}eighted aVérage of
the last five tranéitions out of a particulér state for ‘e'a.ch file (only two
parameters, p;; and pj, need to be estimated). The exploratory data
analysis shows that 70% of the shared files are opéhed more than te.n times.
In the period of time beforék the estimates can be obtained, the files are

managed using MRU.

We 1k1se- the current size of the file as the estimate fo.r' the 1ong. term
average. This réqﬁires some explanation.' It has béen observéd in the trace .
that the size rof a file rarély changes duririg its entire life. Furthermore,
most of ﬁhe changes in size are increases. Undef these cifcufnstances. it

makes sense to forget past information about the size of the files. 7

The amount of information accessed per open shows much more varia-
bility that the size of the file. Our estimate is an unweighted average of the

observed values since the last change in file size.

108

Finally, we must say what are the costs that we consider in obtaining the
optimal policies AVOPT and DYNOPT. One assumption that we make in all the
cases is that the storage costs afe the same at all the nodes of the computer
nétwork. This in turn means that storage costs for all single-copy policies
are the same and they can be disregarded in the optimization procedure.
The only cost left is the cost of transmission. Both in the file transfers and in
the remote accesses, we have made the assumption that the transmission
costs are proportional to the amount of information (bytes) that is transmit-

ted.

Based on all these assumptions, we have run trace-driven simulations for
the five policies (R10, OPRIO, AVOPT, MRU, DYNOPT) and have measured both
the number of remote opens and the average traffic generated by each one

~ of the policies.

4.5.1. SLAC Trace
The first set of figures corresponds to the SLAC trace.

It is not surprising that MRU is the policy which generates the smallest_.
number of remote opens. After all, the Markov model of file sharing shows a
very strong user locality in the referencing process and MRU is the policy
that adapts the fastest to the changes in localiiy. As for the amount of
| traffic generated, it is nofmal that the optimal policies come ahead of MRU,
since the optimization was done in terms of average traffic. We should also
explain why the two opt'uﬁal policies produce such close results and why in
some cases the adapti\}e policy is e\;en better than AVOPT, even though it is
not backed ﬁp by the theoretical optimality re‘sul't. The main reason is that
AVOPT usesvpavrameters for the Markov model that are estimated over the

entire population of files, while DYNOPT uses estimates of the parameters on

109

“ - Numbser <1)f l('{:emote Opens for
- ~ Single

. 15000 g ° OPY Pcl>11c1e]s g
4 | I - E
p -
=t . i g
g I , 1‘ :
£ P 3 I

& toooor | i}

- |]

© i r -

,, i | ﬁ

s - | 'P) . .

'g 5000~ & ! I A

z ' S

z, I I

\ L e b e

0 1 | | | i

RIO OPRIO AVOPT MRU DYNOPT

Policy

Fig 4.7. A comparison of the number of remote opens for the one-copy poli-
cies in three different synthet1c distributed systems with 2, 4 and 8
nodes. SLAC trace. s

110

- Average Traffic for
Slngle Copy Policies

S T T T 3
(7%
g - f [
o 4 B a
o o~
3 o
§ r | |
| £ A A T
n 2] ! —
L !
£ I L
8 ‘ A S
= 1- e : ‘ -
o e 2
0 1 1 | 1] 1
RIO OPRIO AVOPT MRU DYNOPT
Policy

Fig 4.8. A comparison of the traffic generated by the five one-copy policies
in three different synthetic distributed systems with 2, 4 and B
nodes. SLAC trace.

a per file basis. This implies that the decisions made by DYNOPT are closer

to the behavior of each particular file.

4.5.2. Hughes Aircraft Trace

When the Hughes system was partitioned in chapter 3 we made the
remark that the components were almost completely disconnected in terms

of the files that they share. Therefore, the number of remote opens and the

[ad

111

traffic generated by the shared files should be very low.. This is actually the
case. Figure 4.9 shows the number of remote opens generated by the five
policies that we study. The number of remote opens is about half of that gen-

erated by the SLAC installation even though the Hughes system hés a higher

number of opens per hour. As was the case in the SLAC simulation, the smal-

lest number of remfote opens is generated by MRU.

3

Number of Remote Opens for
Single Copy Policies
T

6000 T T I T P
- F | - 1 g
S 1
= p p [=1}
2 - o P 1~
) [' i i H
8 4000 | ‘ 1%
@) T | : —: o
- ' i —
Qg ~ | l -
o : i i]
L | | -
T . -
L | 8]
E 2000 I Y I B
= - t : ' i ' r
{ - | i -
“ L]
. W ooos]
: ° 2]
ol— 1 | 1 1 |

RIO OPRIO AVOPT MRU DYNOPT

Policy

Fig 49. A comparison of the number of remote opens for the one-copy poli-
_cies in three different synthetic distributed systems with 2, 4 and 8
" nodes. Hughes trace. :

112

i

Average Traffic for | .
Smgle Copy Policies
3r T I T n I
- - (Y
n]
o C p] a
c) o b ~
o) . 1
o - 1k
o . J %
wn 2r 1 =
b -]
2, -]
n : 8 !]
Q) c = { -
ES 1= | .
C .]
2 C ' : -
2 : P B 2 8 .
Z - ' | .
C ! i : i
- F . ' i ‘ 1~
0 | P o | P]

RIO OPRIO AVOPT MRU DYNOPT
Policy

Fig 4.10. A comparison of the traffic generated by the five one-copy policies
in three different synthetic distributed systems with 2, 4 and 8
nodes. Hughes trace.

The measurement of -traffic (Figure 4.10) produces some surprising -
resuits in the traffic generated by MRU. After closer examination, it appears
that a few very large files that are used by more of one node are responsible
for the traffic. The performance of RIO, for example, is better because the
large files are not moved. Again, the main reason for these results is that -

there are very few remote opens and the relative performance of the policies

113

)

are dominated by the large sizes of a few files.

4.6. Conclusions

In this 'chaptefr. we have developed'a model of file sharing and from this
model, we have derived an optimal one-copy policy (AVOPT) for the migration
of files in distributed systems. Improvemenps in the order of 50% in gen-

‘erated transmission traffic ‘with respect to the most static policy are
achieved with an adaptive, implernentéble policy (DYNOPT). The cost model
fofﬁhis policy is very flexible. Our optimizations and simulations have been
focused on average traffic but any other stationary cost measures could be
handled. For example, it would be as easy to introduce costs related to the
delay in 6btaining reinote daté or a composite of traffic, delay and storage
svp‘aCe. |

One policy that has perfo.rmed better than expected is OPRIO, the
optimal static assignment of files. An adﬁptive version of OPRIO, that keepé

the file in the most active node over a period of time, would be'_ worth investi-

gating.

\

CHAPTER 5

MULTIPLE-COPY MIGRATION POLICIES

This chapter presents a simplified mode of operation for a distributed |

computer system that maintains multipie copies of files. Based on this mode
of opération, we introduc_e a family of file migration policies: the Space-Time
Update-Rate Working Set policies.

‘Tr‘race-driven simulations are used to evaluate the perfdrrhance of these

policies. _‘The simulations suggest that the best policies (in terms of network

- traffic generated) are those that penalize copies that are not belng locally

referenced but are belng updated through the network in order to rnamtam

their consistency.

Introduction

In Chapter 4 we presented various single.-copy policies for placing and
migrating files in distributed systems. Some of the policies allocated files to
nodes of the network using very simple heuristics. Others were much more
comphcated and used a dynamic a551gnment based on adaptive estimation of
various parameters One of the main conclusmns of that study is that the
most complex policies achieve, at best, a fifty percent reduction in network

traffic over the simplest policy.

Further inspection of the patterns of access presented in chapter 4 .

reveals the existence of extended localities. Extended localities occur when

a {(generally small) number of users access a file over a short period of time

e
[
s

L 2

115

in a random order. This situation 'vgen.erates unavoidable traffic as users:
N

located at different nodes access the file almost concurrently. Still, the

existence of some locality should be exploited. One way of doing so is to pr‘b-

vide each active member of the extended locality with a copy of the file.

Keeping multiple copies of files in a system can be an expensive mode of
operation. First of all, copies také up physical storage space. Secondly, the
structure of the directories becomes more complex and looking for files may
be slower, increasing user delay. Finéily. maintaining the copies of the file'in
a consistent state may require a fair amount of update traffic if the file is
updated frequently. .Our goal in this chapter is fo see whether the decrease

in the number of file transfers can offset these costs.

‘In Section I we will propose a mode of operation for file systems main-

" taining multiple copies of files. The placement and migration pblicies are

introduced in Section II. Finally, Section Il contains the results of the

trace-driven simulations that have been conducted to evaluate the policies.
\

5.1. Management of Multiple “Copies of Files =

It is not the goal of this reéearch to devise new concurrency control
algorithms for distributed file systems. There is a large body of literature on
the subject [Min79, Bad78, Lin79, Sto78, Tho79] and two recent surveys
[BerB1, KolB1], have covered thoroughly this area of research. However, it
must be pointed out that most of the effort has been directed to the mode of
operation of DDBMS's (Distributed DataBase Management'Systems)_. not dis-
tributed file systems. The distinction is important because the concern with
concurrency control and with crésh_ récovery in DDBMS's has produced
updating algorithms that are very expensive in terms of overhead [BadB:,

Rie79, Gar79]. This overhead is so big under general assumptions that some

116

researchers have concluded that it is not worth replicating data in distri-
buted data{)aées unless availability is an overriding factor [GarBi]. We
believe that the operating requirements of distributed file systems are sub-
stantia.lly different from those of DDBMS'S and that the question of file repli-

cation should be investigated.

It must be noted, before we make any more Stateméhts about distfi~
buted file systems, that we Kare not talking about transaction-ofiented sys-
tems like DF'S [StuB0] or the Cambridge‘. File Server [Dio80] but rather about
the distributed versions of "classical” file systems provided by operating sys-
. teﬁs like IBM/0OS or UNIX. These file sjrstems basically provide a read opef‘a-
tion, a write operation and some primitive internal locking mechanism to
preserve the internal consistency of the file and the associated directories.
Under these conditions, we can describe the reasons why the operation of

this type of file system is considerably simpler than that of a DDBMS.

In the first place, crash recovery is usually not handled directly by the
file ‘syste‘r‘h. File systems and device malfunctions are usually corrected by
restoring information from i)eriodiéAdumps. In any' case, the update algo-
rithms do not have to be concerned with possible crashes. Secondly, con-
t‘;urren.cy control in file systems is in a rﬁuch more primitive state than in
database management systems (many operating systems do not providelany
concurrency control at all). Usually, it is not a feature of file systems to pro;_

vide synchronization primitives as a side-effect of the read and write opera-

tions. Rather, applications programs use other Interprocess Communication

(IPC) mechanisms to control concurrency.

We conclude from these remarks that a very simple ‘mechanism with -

write-locks is sufficient in most cases to maintain consistent copies of files in

117

a computer network. We will now describe this mode of operation in more

detail.

5.1.1. Mode of Operation

The main purpose of this section is to present a plausible mode of opera-
tion in order to estimate the costs involved in the management of multiple
copies of files. An actual implementation would have to take into account
many- more details, including race conditions and deadlock detection and
avoidance. We will not discuss these details nor the directory mechanisms
necessary to search files and copies of files in a network. We first describe
the data structures needed and then ﬁré:sent the way in which the major file

access operations work.

5.1.1.1. Master Copy

For each file, there is at least one copy, the master copy, in the system
at all times. This copy may be statically assigned to a node of the network or
it may logically move from node to node. In our implementation, the master

copy is the most recently accessed copy. The master copy is never deleted.

5.1.1.2. Write Lock

The m_aster"‘copy has a write-lock associated with'it. In order to write’to
the file, a user rﬁust ‘obtain the write lock ffém the master copy. If it
sﬁcéeeds, it owns the lock and the local copy becomes the ‘cur.rent‘vma'ster |
copy. If the master copy is being updat.ed. the lock cannot be obtaine‘d and

the user has to wait until the master copy is closed and the lock released.

118

5.1.1.3. Read Locks

All copies of the file have read locks. The read lock of a copy is set only
when updates that have taken place at a remote master copy are being
transmitted to the copy. This is the only time when copies are locked for

reading.

56.1.1.4. Reading the File

When a user wants to read the file énd there is a copy at the local node,
this copy is used, as long as it not read-locked. If it is read-locked, meaning

that the copy is being brought up‘-_tp-date with thé master copy, the user

must wait. Since the length of time that the copy is read-locked is short V

(updates are sent in one batch) we make users. wait instead of allowing
remote access to a non-read-locked copy. If there is not a copy at the local
node, a fresh copy is brought over the network from any copy that is not

read-locked. This is done even if the file as a whole is write-locked.

5.1.1.5. Updating the File

When a uéer wants to update the file, he must make éure that the file is
not being updated by another user. This is done by checking whether the
master copy is write-locked. If it is, the user has to wait until the lock is
released. If it is not, the user obtains the lock, and the user procéedé with
updating the file. If there isv no l’ocal':cAopy. one is broughf in from another
node. This transfer can be avoided if the user is overwriting the file rather
than updating it. When the updates are done and the copy is closed, the
write lock is released and the updatesAare distributed to the other copies n‘3f

the file.

=4
y

119

5.1.1.6. Distributing the Updates

When the master copy has been updated, the remaining copies have to
be brought up to date. This is done by read-locking all the other copies (this
'is the only time that the read locks are used) and transmitting all updates in
a batch. In order to read-lock a copy, it must not be opened. If it is, the

updating has to wait until the copy is not being referenced.

The mode of operétion that we have juét described ensures that copies
of the file are always available for read;ng except during the periods when
updates are being distributed. In particular, users can read their (slightly
outdated) local copies when the master copy is being actively updated.
Furthermore, 6pening a file for feading does f;ot ii‘nvol;re' any ne:tw'c')rk-opera-
tion if there is a local copy of the file. This is. important' because more than
eighty percent of all opens are read-only opens and because the policies that
we are going td define achieve hit ratios on the order of 0.9 and higher.
Therefore, we want to make reads to local copies inexpensive even if that

increases the cost of writing into the file when there is no local copy (writing

to the master copy does not involve any communications either).

If an application is sensitive to the on-going updating of a file at a dif-
ferent node, then a high level inter-process communication protocol should

" be used for synchroniiation purposes.

One last aspect of our mode of operation is that all the copies of the file
are maintained ub-to-date between opens. This is in contrast with the updat-
ing algorithm used in WFS [Gif79]. In WFS, there are stale copies of the file in
thg system. The file system uses a weighted voting mechanism and file ver-
sion numbers to decide what are the copies that cbntain current infofma-

tion. Since we are more concerned with the performance aspects of thé

120

' algorithms than with the reliability issues, we will not consider maintaining
‘stale copies of the files in the system. Stale copies are costly in terms of
storage and users incur extra delay because of the voting when they need to

use the file.

5.1.2. Cost Model

In our cost model we will be makingrmost of the assumptions that v‘*e
made in the study of single-copy policies about étorage and transmission
costs. Namely, storage and transmission costs will be’ considered propor-
tional fo fhe size of the file.

| We will consider three main costs in the opération of the file s_vsterri:
(1) G- Cost of éreating a héw éopy and transferriﬁg ittoa nod_e.
(R) Cs: Storage cost.
(l8)v C.: Cost of maintaining a copy ﬁp4t'o-date when th¢ file is being updated
at remote nodes. v

The cost of creating a new copy of the file is, for our purposes, equal to
the cost of transferring the file from the node having the master copy, let us
say, to the node that needs the new copy. This is a traffic cost and is equal

to:

G =5 xcy
where - -
S: Size of the ‘file.
c;: Communication cost per unit of information.

The storage cost will be considered to be proportional to the size of the

file and also to the l_éngth of time the copy spends at the node:

121

Co=Sxcg %t

where

S: Size of the file.

cs Cost of storing one unit of storage per unit time.
t Time during which the file is stored at the node.

To calculat_e the update cost, we make the assuﬁption that the traffic
generated by the locking messages is neghgible; These messages are only
needed at open and close time and have a small, constant size. Furfher-_-
_ rnofe, only fifteen percent of all opens (for shared files) are update opens
and these are the only opens requiring locking rmessages. Consequently, the
cost of updating copies of files is the traffic cost of transmitting the changes
to the remote copies. As we mentioned before, these updatés can be

transmitted all at once when the active copy is closed after updating.

As we described in section 5.1.1, every time that the master copy is
updated, all the other copies are updéted. Lets U, be the average rate of
information (bytes per second) written to-a file (or to its master copy, since
there may not be concurrent updates to other copies) by all its users. The
updates to the master copy are free in terms of network traffic or delay
because the master copy is local to the user updating the file. Eventually,
the updates have to be transmitted to all the existing copies of the file. Over
the long fun. each copy will incur a cost.:

Cu = Up Xy Xt

where:
U;: Average rate of update.

cw: Unit cost of update traffic. This cost can be equal to ¢; in many cases.

 We make the distinction, though, because this traffic can be considered

122

as low priority traffic and could possibly benefit from lower communica-

tion rates.

t:. Time that the copy remains at the node.

5.2. The Migration Policies

The mode of operation that we have outlined in the last section some-
what constraints the type of policies that are available to us. All the policies

that we will study have the following characteristics:
(1) They are demand pp_licie's.

(2) They use file transfer as opposed to remote 170. This constraint could
be relaxed in later studies. In particular, a combination of the optimal
.policies of Chapter 4 and of multiple‘-'copyv policies should be investi-

gated.,
(3) They are variable space policies.
(4) They treat files independently. -

" We are limiting this study to demand policies. In this environment, a
demand policy is one that transfers files only when a user wants to open a file
and there is no local copy available. In particular, we do not consider moving
files when other related files are being moved. Related files are files that are
frequently u»sed together by a same program, for example. Policies that ini-
tiate the transfer of files bef&e tl-ley are éccesséd t;yhthe useré called pre-..
fetching policies. This type of policy incurs two types of transmission traffic:
demand traffic and pre-fetching traffic. It is usually gxpected that some of
the pre-fetching t\raffic will offset some of the demand traffic and a substan-

tialApart of the delay costs.

1
g

123

Our policies do not generate pre-fetching traffic but they create update
traffic in addition of the demand traffic. As a matter of fact, we will present
results showing that a considerable amount of traffic can be generated by

updates being transmitted to all the copies of a file in the system.

There are at least two ways of maintaim’ng,:the méster copy of each file
in the system. One way isv to assign the master copy statically to a node in
the network. Another way would bé to make thé most recently used copy
play the role of the master copy. For our simulation studies, 'we have

selected the second approach.

Our migration pohciés are an extension of the Space-Time Working Set
policy [Den78, SmiBib]. Space-Time Working Set (STWS) removes any file for

which the space-time product is greater than a certain parameter C:

Sxtxcg>C

Note that this policy has only cne parameter: cithat can be interpreted as
g

the ratio of fetching cost to storage cost and that the fetching cost is con-
sidered constant (independent of the size of the file). This is in accordance
with the characteristics of many secondary and tertiary storage devices, for
which the time necessary to access a file is mostly spent in the movement of
mechanical parts. The actual transfer times of the files constitute such a

small portion of the whole process that it is usually disregarded.

Our policies are Space-Time Update-Rate Working Set (STURWS) policies.
They remove any copy for which:

Sxtxe, + Urxtxe,>C v 2.1
The implicit assumption is that the file that has accumulated the largest
retention cost is likely to incur the largest retention cost to the next refer-

ence and hence removed. STURWS policies have two parameters:

124

(1) —C-C— a ratio of fetching cost to storage cost.
s

e
(R) —E"— a ratio of update communications cost to storage cost. -
s A

In our case, unlike in the classical STWS policy, we will consider the fetching

cost proportional to the size of the file, as we said in section 5.1.2.
This general policy generates two subcrlass_es.ovf policies, depending on
how U, is computed. | |
(1) U, can be computed as an long term averége of the update activity.
() _ U, can be measured since the last reference.

Of all the possible policies that can be derived from the general STURWS,
we have chosen four in order to run the trace-driven simulations. We now

describe each one of these policies.

5.2.1. Mean Update Rate (MUR)

This policy uses an overall average of the update rate (including future
activity) as an estimate of U, in equation (5.1). Conseduently. it is not a real-
izable policy. We test this policy anyway in order to compare it to the poli-
cies that actually measure the amount of update trainsmission received by

the copy since the last reference.

5.2.2. Working Set (WS)
This policy is obtained by setting ¢, = 0 in {5.1). The rule for removing

copies becomes:

Sxtxcg>C

and if we assume that C is proportional to the size of the file, we obtain:

Sxt xeg > xS

125

where S is the size of the file, ¢, is the cost of storing one unit of storage per
unit time, ¢; is the communication cost per unit of information and ¢ is the
time since the last reference. Therefore, this policy removes any file that.

has gone unreferenced for a time ¢ such that:

c
t>_i_

Cs

c ' '
Since ——is a constant for all files, this policy is Working Set (WS). By further

Cs

C .
" varying the ratio ?:t— we can obtain working set policies operating at dif-

8
ferent transfer rates and with different storage requirements. At one end,.

for & - 0, the working set policy behaves 1‘1ke'MRU:' the single-copy policy

Cs

, : _ : c :
~ presented in the last chapter. At the other end, for CL= e, the working set

§

policy degenerates into a policy ﬁhat maintains all the copies of the files ever -

created in the system in a consistent state.

5.2.3. Space-Time Update Working Set (STUWS)
This policy uses a real measurement of U x ¢ since the last reference

rather than an average of U,. As was mentioned earlier, our policies have

Cy [. . .
two parameters, C—-and EL TFor our simulations we have chosen the two
. s _ s ‘

parameteré such that ¢, = ¢;. One interpretation of this equality is that we
are using the same priority (hence the same cost) to transfer files on

demand and to distribute updates from the master copy.

5.2.4. Delete On Update (DOU)

A conceptually different pvolicy can be obtained by setting ¢, = = in eq.

(5.1). This policy will remove ahy copyb ‘.(other than the master copy) that is

126

about to receive any updates. In the absence of updates, the policy behaves

. c
like a pure Working Set policy. In the limit, when c—‘—no, the policy keeps

8

read-only copies indefinitely but flushes them as soon as they have to be

updated.

Before showing the results of the trace-driven simulations that have
been run to test the four policies that we have described in the last four sub-

sections, we shall make a comment about the small effect that the size of the

files seems to have on these policies. This méy seem surpfising to the reader

who is familiar with the generalizations of the working set policy to variable
size objects. For example, in the classical case of file migration between disk
and tape, the size of the file plays an important role. This is bec‘ause, while

the cost of storage is always considered proportional to the size, the cost of

transferring the file from tape to disk is usually considered a constant, due

to the large delay involved. This explains why Space-Time Working Set poli-
cies tend to eliminate lérge files from active storage while retaining the
smaller ones. In our case, both the storage cost and the transfer costs are
proportional to the size of the file and hence, the_ size of the file becomes an
irrelevant factor in determining which copies must remaiﬁ and which must

be deleted.

5.3. Experimental Results

In order to compare the policies that we have defined, trace-driven
simulations have been conducted on the same synthetic systems that were
used to test the single-copy policies in Chapter 4. For each policy we have
measured the average storage space needed and the average traffic gen-

erated. In order to estimate the average delay experienced by the users in

187

accessing their files, we have measured the number of opens that result in a
file .transfer and the amount of information transmitted during these

transfers. From these measurements and the characteristics of thé ne_twork»";
(network delay; network bandwidth, operating system overhead), a measure

of delay can be obtained.

5.3.1. SLAC

The first measure used to compare the policies is the number of remote
opens that they generate. As a first approximation, the delay experienced by
the users of the file system can be considered to be proportional to the
number of remote opens. Figure 5.1 shows the performance of all the poli-
cies when used in three synthetic systems, with two, four, and eight nodes.
For comparison, the performance point of MRU (Most Recehtly Used, single-
copy policy) is plotted for each system. All the policies behave very similarly
to pure Working set as far as the: number of remote opens is concerned.
Table 1 shows that, for the WS policy, almost a thirty percer;t reduction in
demand traffic can be obtéined by maintaining copies of files alive for one
- hour after they have beén referenced. The penalty in storage space for doing
this is almost :n'egligible (under two percent). By retaining the copies 4 hours
after the last reference, we can achieve a fifty percent reduction in the
demand tr;ffic. The rate of réturn in reduction of demand traffic and
number of remote opens deéreases substantially after the twenty four hour
mark. From then on large increases in storage space have a small payoff in
remote opens saved and finally, when all the copies are kept for periods of
time in the order'of weeks, the demand traffic is one order of magnitude less

‘than the traffic incurred by the single copy policy MRU.

Number of Opens

Fig 5.1.

128

Py

Number of Remote Opens vs.
Average System Space’

3000l]TTl-tllu|1|11111—11|1vlv|11|xu ’
- E ‘ 3
_____ 8 5 $
L
—.—. STUWS .
MUR !
— pou

MRU

2000

1000

R
Kz TST: 4 Nodes
Nodes

AN I IS Y S T B U B B U0 N W S B A
200 300 " 400 500

TT]'l']'1]"“'7"j]‘lj1]||j
Cy gt gt taa b e ey e b e ey

Megabytes

Number of remote opens vs. average system space for the SLAC
trace. Each curve corresponds to one value of the update traffic

~ cost. The points on the curve are obtained by varying the demand

traffic cost with respect to the storage cost.

-+

129

Table 1. Retention Times for the Working Set Policy (SLAC)

Retention Avrg. System Space Avrg. Total Traffic ~ Avrg. Demand Traffic

Time (Hours) (Megabytes) ~ (Kbytes/Sec.) " (Kbytes/Sec.)
0. 216.7) 3.25 | 3.25
1. 220.6 2.64 2.31
2. 225.1 2.43 1.87
4. 229.1 2.27 1.83
8. 232.8 2.25 1.51
8. 246.1 2.40 1.28

18. 269.7 2.34 1.00
32. 288.5 2.23 . 0.724
84. 302.5 2.22 0.648
128. 345.2 2.29 0.500
256. 895.1 2.41 0.386
512. - 432.8 2.52 0.338

Figure 5.2 shows the demand traffic generated by the transfer of remote
files at open time. The_ demandi traffic follows very closely the number of
remote o'pens that are incurred by the system. Again, the differences
between policies that handle update traffic in different ways is very small. It
must be noted, though, that the policies that do not charge copies for their
update traffi_c ‘perform slightly better, in terms of demand tfaffic. 'f'his is not
surprising since copies are kept alive longer, in the average, when the cost of

updating them is disregarded.

Figure 5.3 shows the average total tréffic generated by thé operation of
the migration policies. Here the pollicies that take into account the update:
traffic are clearly superior to the ones that do not. A good point of reference
in Figure 5.3 is the curve for the case where the cost of updates is considered
inﬁnit'e. This has the effect of deleting any copy that is going to be updated.
This policy is called "delete on update” in thé Figure 5.3. Since this policy
incurs no update traffic, its total traffic is equal to the demand traffic gen-
erated and hence is identical to the corresponding curve in Figure 5.2. Coﬁn-

pared to this policy, the policy that makes the costs of demand and update

130

Demand Traffic vs.
Average System Space .

3 ll;lfT1Y11TTllllllTT]llYT‘lll]llIIIIIIII

Lf

WS
—— STUWS
........ < MUR
— Dpov
MRU

- Twe Vosls

lll’lll‘lYl]l‘l1ll1T

Kilobyte per second

. 4 Nodes

llllllll]llllJllJllllllllI]ll.

T T T T T T T 1Y

B < YT NN AN NN

00 275 350 425 500

Megabytes

Fig 5.2. Demand traffic vs. average system space for the SLAC trace. Each
- curve corresponds to one value of the update traffic cost. The
points on the curve are obtained by varying the demand traffic cost
with respect to the storage cost. This in turn determines the max-
imum time that a copy remains alive after its last reference.

131

Total Traffic wvs.
Average System Space

4 IIITIIIYI[‘YTI-IIIII‘]IIIIIIII

—— ws
— STUWS
........ IUR
— . Dbou

4 - MRU

)
<, 2 /
ey, B
‘~/\~ “ﬁ;...,_--,-uuv

Slas - Ywe Veskr»

oy

P
-

lljjlll'lljllllll_lljll]lllJJlll

Kilobyte per Second
[4V)
lllI"""lIII|TIIT1"""’l'l"ll]'T

K‘{/\z Nodes

lllJJllJlllllJJlllJlllll‘Jl'lll

00 300 400

o 10 L1183

(o))

0

Megabytes

Fig 5.3. Total traffic vs. average system space for the SLAC trace. Each
curve corresponds to one value of the update traffic cost. The
points onthe curve are obtained by varying the demand traffic cost
with respect to the storage cost. This in turn determines the max-
imum time that a copy remains alive after its last reference,

traffic equal performs almosf identically. The performance of the policies
that either do not éonsider the update traffic or only consider its mean value
is much worse. Basically, the update traffic increases almost linearly with
the time the copy is kept alive, and this generates very large amounts of
traffic. The ciifference turns out to be really small between policies that

assign different costs to update traffic. Making a decision about the type of

13R

policy that éhould be chosén still depends on the reiaﬁvé éosts of update and
demand traffic. In séveral distributed systems, the total bandwidth of the
system is much larger than the demand .traffic‘ aﬂd yet the delay is still too
high (this is particulariy true of satellite netwbrks). In these cases, it may be

advantageous to Su_stain large volumes of update traffic in order to redu‘ce. |
delay by twenty or thirty percent. The operating point on the curves of
update traffic vs. demand traffic is ultimately chosen by the user according

to his performance goals.

5.3.2. Hughes Aircraft

The same experiments have been conducted for the Hughes trace. Fig-
‘ures 5.4 and 5.5 show the demand traffic and the total traffic generated by
the policies. Table Il gives the retention times for thé WS policy. The resuits

are essentially identical to those obtained for the SLAC system.

5.4. Conclusions

This chapter has presented a simplified but realistic mode of operation

for a distributed file system that handles replicated data. Basedvon this

Table II. Retention Times for the Working Set Policy (Hughes)

Retention Avrg. System Space Avrg. Total Traffic =~ Avrg. Demand Traffic

Time (Hours) .- (Megabytes) (Kbytes/Sec.) (Koytes/Sec.)
0. 276.8 2.58 ‘ 2.58
1. 279.3 2.08 _ 2.01
2. 282.4 1.98 1.48
4. 297.8 SR 1.84 0.97
8. 320.1 - 1.75 0.72
6. 334.7 1.83 0.62
32 " 3785 1.87 0.48
84. 392.2 1.89 0.41
128. 404.1 1.90 : 0.37

256. 430.8 1.2 " . 0.32

[y

Kilobyte pér second

Fig 5.4.

Demand Traffic vs.
Average System Space

1]1IIIT1IITY1'IIIIYIIIIljl"1

1]11]]]!71'j11lllll

ljl]llllllllLJllll]

8 Nodes

Il Ty

' N B B S ,
850 300 350 400 4

..-,'-" .
(
z i
o .
[- 9 I
1] $ 5
w §
£
Iy
'.
/
!
!
!
[
[
A
U‘ N O e |

Megabytes

RUN 280162413 800813 HUCHES 2 WEIK

133

Demand traffic vs. average system space for the Hughes trace.
Each curve corresponds to one value of the update traffic cost. The
points on the curve are obtained by varying the demand traffic cost
with respect to the storage cost. remains alive after its last refer-

ence.

134

Total Traffic vs.
Average System Space

4 o T 7 T T] A T 1 R ‘ ¥ 1 t T, 1 A] || T L { . s
- . . ¢
: 's : []
" uws]]
o - - ST = 5
c . MUR . 2
0 - DoU 4 2
(@) 3[: ;
Q - a MRU B .
n : s : 3 3
9 - : 1. &
- ~
2. 2r 4 &
) . :
- C 3
S :
] 1 : —
— = _]
> pud - :' - . -
< - : < == 3
u p ‘ 4 Nodes -
C “\ S]
ST U T U U U0 YU I S NS UEAY SN U S NN T 1 N
QSO -~ -300 350 400 . 450

Megabytes

Fig 5.5. Total traffic vs. average system space for the Hughes trace. Each
curve corresponds to one value of the update traffic cost. The

points on the curve are obtained by varymg the demand trafflc cost
w1th respect to the storage cost.

~

mode of operation, the costs vof operjating the file system have been shown.
Our policies are Space-Time Upaate—Rate Working Set policies. That meaﬁs
that copies that exceed a retention cost based on storage costs and update
traffic costs are removed. Using trace-driven simulations, we have shown the
operating curves of four distinct policies. Most of the policies achieve a

reduction of an order of magnitude in demand traffic and number of remote

opens compared to the single-copy policies.

135

CHAPTER 6

CONCLUSION

6.1. Summary

The management of global (shared) files can have a big impact on the
performance of distributed computer syste‘i'ns. In this dissertation, we have

devoted most of our effort to the study of the file referencing process and to

the development of algorithms to place and migrate files in distributed com-

puter systems.

The topic of assigning files to the nodes of computer networks has

received considerable attentioh in the past. Unfortunately, most of the work

in this area has concentrated on the optimization of distributed file systems'

based on extremely simple models of the workload. Our study is based on
traces of activity collected from a number of real systems. This allowed us

to analyze the workload and to adapt our algorithms to it.

In Chépter 3 we obtained synthetic distributed systems -from the real
centralized systems that generated the traces. In particular, we u§ed the
SLAC and the Hughes systems. This partitioning of the users of a large cen-
tralized computer syétem into a number of smaller uéer communities was
based on their utilization of shared files. We found that the SLAC system pro-
duced user subsets with a higher degree of overlapping (in terms of shared

files) than the Hughes Aircraft installation.

Chapters 4 and 5 introduced the file migration policies. First the single

copy policies were presented. In.this context, we developed a migration pol-

136

v/

137

icy that is optimal in _the sense of minimizing the average network traffic.
The existence of extended localities in the use of shared files sug‘gested the .
use of multiple-copy policies in -order to rt_aduce the network traffic even
further. We studied a number of policies based ‘on the Working Set model. ”
The best performing policies iﬁ terms of generatéd traffic are those that
closely monitor the update traffic and that react to it by deletirig the copies

that are too expensive to maintain up to date.

6.1. Directions for Future Research

In this final section of the dissertation, we present a list.of topics for

research that have been suggested by our work.

6.1.1. Extension to.Other Systems

The research we have described in tbis dissertation can be extended in
many directions. One obvious direction is to study of the performance of.our
algorithms in different environments. In particular, the two .systé.rns that we
have analsrzedv can be described as scientific centers cbontaining essentially
the same hardware and thé same file system. It wsiuld be interestin,g to see
wheither our results carry over to other types of workloads and to other
types of operating 'systéms. especially those that encourage sharing of files

more than deoes IBM/0S.

The type of systemn on which this study should be repeated, thbugh;'.is a
real distributed system. Back in 1977, when the tracés that we héve uéed
were obtained, there were not many distribuied systems in operation and
those that existed were too new to be traceable. Today, there are thousands
of distributed computer systems in operation, and some of them have sophis-

ticated measurement tools. It would be interesting to see what sorts of work-

138

loads are supported by these systems and how our -migration algorithms

would fare in this environment.

6.1.2. Database Management Systems

There is a great deal of interest in Distributed Database Management
Systems. Our results cannot be extended a priori to DDBMS s for two main

reasons:

(1) The workload of a DBMS is intrinsically dlfferent from that of a file sys-
tem: The total volume of information is very large and yet users typl-

cally access a small fraction of the whole database.

(2) The mode of operation in many DDBMS's is based on the paradigm of

transacf.ions. In order to preserve the consistency of the transaction
and the integrity of the database, intricate rcontrols and locking
mechanisms are used. The result, in a distributed environment, is that
a considerable amount of control traffic is needed tolrﬁaintain the
operation of the system. This traffic is such a large portion of the total
communications activity that most of our assumptions wqeld' have to be

revised.

It would be interesting to repeat our experiments based on traces of

database activity and under a more appropriate mode of operation, including
a two-phase commit protocol and taking into consideration the traffic gen-

erated by the locks.

6.1.3. Related Files

Our study has not considered any relations between files. Yet, it is
rather intuitive that in any computer installation files are not used indepen-

dently but rather in well defined groups. This knowledge should be used to

v

139

improve the performance of distributed file systems. In particular, the delay

‘experienced by the users of one of these groups of files could be drastically

reduced by migrating the entire group when one of the members of the

group has to be migrated. This hypothesis has to be tested experimentellyf ‘

6.1.4. Const.ralned Des1gn Problem

Our approach to the problern of the essxgnment of files to the nodes of a
computer network has been to assume that there are no, constralnts in
storage space or communications bandmdth and to measure the needs for
these resources in an environment without queuemg delays. In some situa-
tions, the resources are allocated based on other considerations. It would be
1nterest1ng to see how our algorlthms work in an enwronment where big

bursts of traffic cannot be accommodated.

6. 1.5. ‘M}llt.iple-copy Polieies

_In the realm of single-copy policies. the optimal static assignments
should be investigated further. - o | o

Our coirerage of the variable space, m.ultiple'-eepy policies has been
rather incomplete. In particular, we have not investigated policies that use
estimahes of interreference times in order to cAalcula‘te the times copies
should be allowed to stay at a given node. Given the positive results obtained
by Smith [SmiB1b] in his study of hierarchical file migration, such a study

should be undertaken. '

[Alc76]

[ArtBia]

[ArtBlb.]

[Bad78]

[Bad81]

" [Bel76]

BIBLIOGRAPHY

A. Alcouffe and G. Muratet, "'Optimum Location of Plants,’” Manage-
ment Science 23(3) pp. 267-274 (Nov. 1976).

E. Arthurs and B. W. Stuck, "'A Theoretical Performance Analysis of
Polling and Carrier Sense Collisicn Detection Communication Sys-
tems,” Computerv Communication Review 11(4) pp. 156-162 (Oct.
1981). Proc. Seventh Data Cém. Symp. |

H. Pat Artis, Predicting the Behavior of Secondary Storage Manage-
ment Systems for IBM Computer Systems, Bell Laboratories, Pisca—
taway, New Jersey (1981).

D. Z. Badal and G. J. Popek, A Proposal for Distributed Con-
currency Control for Partially Reaundant Distributed Data Bases
Systems," Pr.‘oc.b 3rd Berkeley Workshop on Distr. Data Management

and Comp. Networks, pp. 273-288 (August 1978).

D.Z. Badal, "Concurren?_:y Control Overhead or Closer Look at Bloc-

kin vs. Nonblocking Concurrency Control Mechanisms,” Proc. 5th

Berkeley Workshop on Distr. Data Management and Comp. Nel-

works, pp. B5-104 (February 1981).

Geneva G. Belford, '‘Optimization problems in Distributed Data

. Management,”" Proc. Thirdblnternational Conference on Computer

[Ber81]

Communication, pp. 297-301 (3-6 August 1976).

Philip A. Bernstein and Nathan Goodman, ''Concurrency Control in
Distributed Database Systems," Comptng. Surveys 13(2) pp. 185-
222 (June 1981). '

-~

> ok
-

[Ber76]

[Bog]

[Bok79]

[Buc79]

[BuxB1]

[Cas'72]

[Cas73]
{Cha77]

| [Cha76]

[Chu78]

141
Dimitri P. Bertsekas, Dynamic Programming and Stochastic Con-

trol, Academic Press, Inc., New York (1976).

David R. Boggs, John F. Shoch, Edward A Taft, and Rbbert M.

- Metcalfe, Pup: An Internetwork Architecture.

S. H. Bokhari, "‘Dual Processor Scheduling with Dyhamic Reassign-

‘ment,” JEEE Trans. Soft. Eng. SE-5(4) pp. 341-348 (July 1979).

B. P. Buckles and D. M. Hardin, "'Partitioning and Allocation of Logi-

‘cal Resources in a Dist.ributed Computing Environment,’ pp. 247-

276 in Distributed System Design, ed. D. F. Palmer, (Oct. 1979).

W. Bux, "Local-Area Subnetworks: A Performance Comparison,” .

| [EEE Trans. Comm. COM-29(10) pp. 1465-1473 (October 1981).

R. G. Casey, "Allocaﬁon of copies of a file in an inférméﬁon net-
work,"” Proc. Spﬁng Joint Comptr. Conf., pp. 6\17-625‘ AFIPS Press
(1972). | . |

R.. G. Casey. "Design of Tree Net%drké for Distribd’ted Data,” Proc.

AFIPS, (1973).

G. A. Champine, ''Six Approaéhes to Distributed Data Bases,'' Data-

mation, (May 1977).

K. M. Chandy and J. E. Hewes, ''Optimal file allocatibn in Distributed

Systems,"” Proc. Int. Symp. Cémpqtter Performance fdodeliﬁg Meas-

 urement and Bualuation, pp. 10-13 (March 1976).

VVQesley W. Chu, ''Performance of File Directory Systems for Data
Bases in Star and Distributed Networks,”” Proc. NCC, AFIPS Press
(1976). ’

[ChuB0]-

[CoaB1]

142

Wesley W. Chu, Leslie J. Holloway, Min-Tsung Lan, and Kemal Efe,
“Task VAllocation_ in Distributed Data Processing,’”” Computer

13(11) pp. 57-69 (November 1980).

K. E. Coates, D. L. Dvorak, and R. M. Watts, ““An Overview of BLN: A

Bell Laboratories Computing Network,” Computer Communication

Review 11(4) pp. 224-229 (Oct. 1981). Proc. Seventh Data Com.

[Cof73]

[CofB0a]

[CofBOb]

. [CofB1]

Symp.

\

E. G. Coffman and P.J. Denning, Operating Sy;tems Theory,
Prentice-Hall, Enlewood‘ CLiff, New Jersey (1973).

E. G. Coffman, Jr., Erol Gelenbe, and Roger C. Wood, "'Optimal Repli-
cation of Parallel-Read, Sequential-Write Systems,” Performance
Eval. }i’ev.. 9(2) pp. 209-216 (Summer 1980). Proceedings of Perfor-
mance 80 |

E. G befrnan, Jr., Erol Gelenbe, and B: Plateau, "Optimizatic;n of
the Number of Copies in a Distributed Data Base,”” Performance
Eval. Rev. 9(2) pp. 257-263 (Summer 1980). Proceedings of Perfor-

mance 80

E.G. Coffman, Jr., HO. Pollak, E. Gelenbe, and R.C. Wood, '"‘An

analysis .of Parallel-Read Sequential-Write Systems,” Performance

‘ Evaluation 1{1) pp. 62-69 (January 1981).

[Co083]

[CooB4] .

L. Cooper, “Lo‘catibn-Allocation Problems,"” Operations KResearch

11{3) pp. 331-343 (1963).

L._. Cooper, ‘'Heuristic Models for Location-Allocation Problems,"

SIAM Rev. 6(1)(1964).

[Dav?7]

[Dav?9]

[Day80]}

[Den78]

[DioBO] -

‘ [Dur78]

[Esw74]

[Eth81]

[Faj73]

143

J. Davidson, W. Hathaway, J. Postel, N. Mimno, R. Thomas, and D.
Walden, ''The Arpanet Telnet Protocol: Its Purposes, Principles,
Implementation, and Impact on Host Operating System Design,”

Proc. 5th Data Comm. Symp., (1977).

D. W Davies. D. Barber, W.> L. Price, and C. M. Solomonides, Com-

puter Networks and Their Protocols, John Wiley, New York (1979).

John D. Day, “'Terminal Protocols,”" IEEE Trans. Commun. 28(4) pp.
565-593 (April 1980). |

Peter J. Denning and Donald R. Slutz, "'Generalized Working Sets for
Segment Reference Strings,”” Comm. ACHM 21(9) pp. 750-759 (Sep-

tember 1978).

Jeremy ‘Dion, '‘The Cambridge File Server,” Operating Syst. Rev:
14{4) pp. R6-35 (Oct. 1980).

Gary Durbin, Todd Kinney, Peter Lamasney, Edward Newman, and

Edward Syrett, "Guideline on Major Job Accounting Systems: The

System Managevment Facilities (SMF) for IBM Systems under
0OS/MVT,” NBS Speciai Publication 500-40, U.S. Department of Com-

merce (October 1'978).

K. P. Eswaran, '‘Placement of records in a file and file allocation in a

Computer network,”” Proc. IFIPS, pp. 304-307 (1974).

The Ethernet, "'The Ethernet. A Local Area Network. Data Link
Layer and Physical Layer Specifications,” Computer Communica-

tion Review 11(3) pp. 20-66 (July 1981).

Roger Fajman and John Borgeit, "WYLBUR: An Interactive Text Edit-

ing and Remote Data Entry System," Comm. ACM 16(5) pp. 3:4-322

[Fis80]

[FolB0]

[For62]

[Gar79]

[GarB1]

144

(May 1973).

Marshall L. Fisher and Dorit S. Hochbauin. “Database Location in

Computer Networks," J. ACH 27(4) pp. 718-735 (October 1980).

H. C. F'olts; “Procedures for Circuit-Switched Service in'SyVnchro-

nous Public Data Networks,’ /EEE Trans. Comm. COM-28(4) pp.-

489-496 (April 1980).

L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton':

University Press, Princeton, N. J. (1962).

Hector Garcia-Molina, Performance of Update Algorithms for Kepli-
cated Data in o Distributed Database, Dept. of Computer Science,

Stanford University (June 1979). Ph.D. Dissertation

Hector Garcia-Molina, "'The Cost of Data Replication,” Computer

- Communication Review 11(4) pp. 193-188 (Oct. 1981). Proc.

[Gie78]

Seventh Data Com. Symp.

M. Gien, “A File Transfer Protocol (FTP)," Computer Networks 2 pp.
312-319 (Spt. 1978).

[Gif?Q_] David K Gifford, ''‘Weighted Voting for Réplicated Data,"" Proc.

~ [GopB1]

‘Packet-Switching Networks,” JEEE Trans. Comput. C-30{i2) pp.

[;Gra'??] .

Seventh suh:.posium on Operating Systems Principles, pp. 150-162

(Dec. 1979).

Gita Gopal and J. W. Wong, “Delay Analysis of Broadcast Routing in

915-922 (Dec. 1981).

Enrique Grapa and Geneva G. Belford, "'Some Theorems to Aid in
Solving thé File Allocation Problem,’ Comm. ACM 20{11){November
1977). '

'}

-

o

[GreBO]

145

P. E. Green, ""An Introduction to Network Architectures and Proto-

_cols,” IEEE Trans. Commun. 28(4) pp. 413-424 (April 1980).

| [Har75]

[HayB1]
[Hob80]
[Hol73]
[How§O] |

[How71]}

[Hui81]

[HwaB80]

[1BM73]

[1BM78]

[Kol81]

John A. Hartigan, austeri'rig Algori,th.ins. John Wiley & Sons, Inc.,
New York (1975).

Jeremiah'F‘. Hayes, "Local Distribution in Computer Communica-
tions," IEEE Communication Mag. 19(2) pp. 6-15 (March 1981).
Verlin L. Hoberecht, ""SNA Function Management,”' JEEE Trans.
Commun. 28(4) pp. 594-603 (April 1980)..

E. Hollef. “Files in Computer Networks," Pirst Furopean Workshop
on Computer Networks, pp. 381-396 (April 1973). -

Ronald A. Howard, Dynamic Programming and Markov Processes,
Technology Press and John Wiley & Sons, Inc., New York (1980).
Ronald .A. Howard, Dynamic Provbabilisiivc Systems. Volume [I:
Semi-Markou and Decision Processes, John Wiley & ‘Sons, Inc., New
York (1971). | |

C. Huitema and 1. Valet, ""An Experiment on High Speed File
Transfer Using Satellite Links," Computer Communication Review
11(4) pp. 254-257 (Oct. 1981). Proc. Seventh Data Com. Symp.

K. Hwang, B. W. Wah, and F. A. Briggs, A Hardwired Network of UNIX

Computer Systems. Oct. 25, 1980.

IBM, "'0S SMF," GCRB-6712-7, IBM (April 1973). Eigth Edition

IBM, "0S/VS2 MVS System Programming Library: System Manage-
mént Facilities (SMF),"" GN28-2903, IBM (May 5, 19?8)

Walter H. Kolher, A Survey of Techniques for Synchr'onizatioﬁ aﬁd

Recovery in Decentralized Computer Systems,” Comptng. Surveys

146

13(2) pp. 149-184 (June 1981).

[LamB1a]

Simori S. Lam and Y. Luke Lien, 'Modeling and Analysis of Flow Con- .

trolled Packet Switching Networks," Computer Communication
Review 11(4) pp. 98-107 (Oct. 1981). Proc. Seventh Data Com.
Symp. '

[Lam81b] |
S.S. Lam and Y. C. L. Lien, "Congéstion Control of Packet Communi-
cation Networks by Input Buffer Limits - A Simulation Study.” /EEE

Trans. on Comp.. C-30(10) pp. 733-742 (October 1981).

[Lee?7] Robert P. Lee and Richard R. Muntz, "'On the Task Assignmnet Prob-
lem for Computer Networks,” Proc. Tenth Hawaii International
e
Conference on System Sciences, (1977).

‘[Lev?8] K. Dan Leﬁn and Howard Lee Morgan, "A Dynamic Opt_irnization
: Modell for Distributed Databases,’ Operations Research V26(5) PP
B24-835 (Sept.-Oct. 1978). * |
[Lin79] Wt K. Lin, "Concurrency Control in a Multiple Copy Distributed Data-
base System," Proc. 4th Berkeley Workshop on Distr. Data Manage-
ment and Comp. Networks, pp. 207-220 (August 1979). | ‘
[LudBi] G. W. Luderer, H. Che, J. Pl. Haggerty, P. A Kirslis, and W. T.
Marshall, "'A Distributed UNIX System Based on a Virtual Circuit
Switch,”” Operating Syst. Rev. 15(5)pp. 160-168 (Dec. 198:).
Proceedings Eight Symposium on Operating Systems Principles
(Lun77] Allen W. Luniewski, File Alocation in a Distributed System, M.].'f.

Laboratory for Computer Science (December 19, 1977).

T

[Lun78]

[Mah76]

147

Allen W. Luniewski, Some Results on File Alocation in a Local Net-

work, M.1.T. Laboratory for Computer Science (March 22, 1978).

Samy Mahmoud and J. S. Riordon "‘Optimal Allocation of Resources

* in Distributed Information Networks,'" ACM T‘rans Database Systs

[Mar81]

1(1) pp. 86-78 (March 76)

Madhav Marathe and Sujit Kumar, "Analytical Models for: an

Ethernet-Like Local Area Network Link," Performance Evaluation

 Review 10(3) pp. 205-215 (Fall 1981).

[McQ74]

[McQ77]

[McQ78]

[Met78]

[Min79]

[Mit79]

J. M. McQuillan, ‘‘Adaptive Routing Algotithms for Distributed Com-
puter Networks,’” BBN Report No. 2831 (May 1974). (Ph. D. Thesis,

Harvard University).

J. M. McQuillan and D. C. Walden, 'The ARPA network Design Deci-

sions,” Computer Networks 1 pp. 243-289 (Aug. 1977).

J. M. McQuillan and Vinton G. Cerf, A Practical View of Computer
Communioations Protocols, The Institute of Elect;rical and Electron-

ics Engineers, Inc. (1978). Library of Congress No. 78-61492

R. M. Metcalfe and D. R. Boggs. “Ethernet Distributed Packet
Switching for Local Computer Networks Comm ACHM 19 pp. 395-
404 (July 1976).

T. Minoura, "'A New Concurrency Control Algorithm for Distributed

Database System ' Proc. 4th Berkeley Workshop on Distr. Data

Management and Comp. Networks, pp.221-236 (August 1979).
1. Mitrani and K.C. Sevcik, “Evaluat'mg'the Trade-off Between Cen-

tralized and Distributed Computing,'' Systems, pp. 520-528

Huntsville, Alabama(Oct. 1979).

[Mor77]

[PecB1]
[Ram79]

- »[Ra&?g]'

[Rau77]

148

Howard L. Morgan and K. Dan Levin; "'Optimal Program and Data
Locations in Computer Networks,” Comm. ACM 20(5) pp. 315-322
(May 1977). - ' |

Michael A. Pechura, “'Microcomputers as Remote Nodes of a Distri—

buted System,"” Comm. ACH 24(11) pp. 734-738 (Nov. 1981). .

C.V. Ramamoorthy and B. W. Wah, "'Data Management in Distributed

Data Bases,'’' Proc. NCC, pp. 1011-1024 AFIPS Press (1979).

G'ururaj S. Rao, Harold S. Stone, and T. C. Hu, "“Assignment of Tasks
in ‘a Distributed Processor System with Limited Merhory"' IEEE
Trans. Comptrs. C-2B(4)(April 1979).

Ramakrishna Rau, ''Properties and Applications of the Least-

Recently-Used Stack Mddel," Technical Report No. 139, Digital Sys-

[Raz80]

[Ric80]

[Rie79]

| [Ros73]

tems Laboratory, Stanford University, Stanford (May 1977).

Rami R. Razouk and Gerald Estrin, "Modeling and Verification of
Communication Protocols in SARA: The X.21 Interface,"” [E’EE Trans.

Comptrs: C-29(12) pp. 1038-1051 (December 1980).

James Richardson, Creating and Using Reduced Tapes. August 19,
1980.

David R. Ries, The Effects of Concurrency Control on’ Database

Management System Performance, Computer Science DeptA.'

University of Californi, Berkeley (April 1979). Ph.D. Dissertation

Lawrence L. Rose and Malcolm H. Gotterer, "'A Theory of Dynamic
File Management in a Multilevel Store,” International Journal of

Computer and Information Sciences 2(4) pp. R49-256 (1973).

"=

LA

%

‘>'(')

[Ros75]

[Ro_s’?O]

) [Seg76]

149

Lawrence L. Rose and Malcolm H. Gotterer, "An Analysis of File
Movement under Dynamic File Management Strategies,’' B/7, pp.
304-313 (1975).

S. M. Ross, Applied Probability Models with Optimization Applica-
tions, Holden-Day, San Francisco (1970).

A. Segall, "'Dynamic File Assignment in a'Computer Network,"” JEEE

Trans. Automatic Control AC-21(2)(April 1978).

[Seg79] A: Segall, 'Dynamic File Assignment in a Computer Network-Part II.

[ShoBO]

Decentralized Control,” JEEE Trans. Automatic Control AC-

24(5){October 1979).

John R. Shoch and Jon A. Hupp, “Measured Performance of an Eth-

~ernet Local Network,” Comm. ACM 23(1R) pp. 711-721 (December

1980).

[SmiBia] Alan Jay Smith, "'Analysis of Long Term File Reference Patterns for

Application to File Migration Algorithms,' J/EEE Trans. Soft. EFng.

7(4) pp. 403-417 (July 1981).

[SmiB1b]Alan Jay Smith, "Long Term File Migration . Development and

[Stov8]

[str77]

Stuso]

Evaluation of Algorithrns." CACM 24(B) pp. 512-532 (August 1981).

Michael Stonebraker, “*Concurrency Control of Multiple Copies of
Data in Distributed INGRES," Proc. 3rd Berkeley Workshop on Distr.

Data Management and Comp. Networks, pp. 235-258 (August 1978).
Edward P. Stritter, *File Migration,” STAN-CS-77-594 (January,
1977). Ph. D. Dissertation

H. Sturgis, J. Mitchell, and J. Israel, 'Issues in the Design and Use of

a Distributed File System,” Operating Syst. Rev. 14{3) pp. 55-79

[Tané 1]

[TenB1]

[Tho79]

[Thu79]

[Tob78]

[TriB0]

[UnsB1]

[VinBO]

[Wah79]

150

(July, 1980).
Andrew S. Tanenbaum, Computer Networks, Prentice Hall.‘Inc.,

Englewood Cliffs, N.J. (1981).

Richard L. Tenney, Gilbert Falk, and Douglas H. Hunt, "'Impact of
Satellite Technolbgy on Transport Flow Control," Computer Com-
munication Review 11(4) pp. 24B-253 (Oct. 1981). Proc. Seventh
Data Com. Symp. | ‘

R. Thomas, ‘'A Solution to the Concurrency Control Problem for Mul-

tiple Copy Databases,' ACM TODS 4(2)(June 1979).

Kenneth J. Thurber and Harvey A. Freeman, ''A Bibliography of

Local_Computer Network Architeéture‘s," Computer Architecture

News 7(5) pp. 22-27 (February 1979).

Fouad A. Tobagi, Mario Gerla, Richard W. Peebles, and Eric G. Man-_

- ning, 'Modeling and Measurement Techniques in Packet Communi-

cations Networks,' Proc. JEEE 66(11) pp. 1423-1445 (Nov. 1978).

Kishor 'S. Trivedi, Robert A. Wagner, and Timothy M. Sigmon,

“Optimal Selection of CPU Speed. Device Capabilities, and File

Assignments,” J. ACM 27(3) pp. 457-473 (July 1980).

Mehmet S. Unsoy and Theresa A. Shahahan, “X.75]nternetﬁ*orking ‘

of Datapac and Telenet,” Computer Communication KReview

11(4) pp. 232-239 (Oct. 1981). Proc. Seventh Data Com. Symp.

Iise Vinsin, Calvin Ross, and Ed Russell, ASP User Guide, SLAC Com-
puting Services (SCS), Menlo Park, California (24 March 1980).

B. W. Wah, Data Management in Distributed Data Bases, University

of California, Berkeley (1979). Ph.D. Dissertation

A

e

w
N4

i

[WecB0]

[Whi70]

[WilBo]

[Won78]

[Zad71]

[Zim80]

! 151

Stu Wecker, "DNA: the Digital Network Architecture,” /EEE Trans.
Commun. COM-28(4) pp. 510-526 (April 1980).

Kevin M. Whitney, Optimal design of message processing and com-
munication systems, The University of Michigan ‘(1970). Ph. D.
Dissertation | -

Maurice V. Wilkes and Roger M. Needham, ''The Cambridge Model
Distributed System," Operating Syst. .Ii’ev. 14(1).pp. 21-29 (January
1980). |

J. W. Wong, ''Queueing Network Modeling of Computer Communica-

~tion Networks,”” Comptng. Suruveys 10(3) pp. 343-352 (September

1978).
L. A. Zadeh, '‘Similarity Relations and Fuzzy Orderings." Informa-
tion Sciences, (3) pp. 177-200 (1971).

H. Zimmermann, ''OSI Reference Model - The ISO Model of Architec-
ture : for Open Systems Interconnection,’ /EEE Trans. Commun.

2B(4) pp. 425-432 (April 1980).

wA

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
-UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

o

{Tm
R

.

