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Abstract 

In this paper we are concerned with efficient methods for calculat 
ing the success function of replacement policies used to manage very 
large fixed size caches. Such problems arise in studying the caching of 
files on disk. 

Wc roview earlier work by Coffman and Randell, and Mattson et al. 
Wc characterize a class of replacement policies for which it is possible 
to evaluate the success function for a single cache size in time 
O(n*log(s)), whore n is the number of memory references in the trace 
and s is the size of cache. We then construct an algorithm to evaluate 
the success function for the Least Recently Used replacement policy in 
time 0(n*log(8)), for cache sizes smaller than s. This algorithm runs 
in bounded memory, 0(s). We also show how to modify Bennett and 
Kruskal's algorithm to run in bounded space. The two algorithms have 
the same asymptotic running times (within a constant factor). Measured 
running times for the classic LRU algorithm, Bennett and Kruskal's alga 
rithm, and our new algorithm are compared. 

We considor the impact of variable size segments (files, rather than 
fixod size pages), and deletions on algorithms for calculating success 
functions. 
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1. Introduction 

1.1. File System Storage Hierarchy Management 
Wo wish to study policies which automatically manage the migration 

of data within storage hierarchies used to implement file systems. Wc 
shall use the term "virtual memory system" to denote a hierarchy of 
storage devices and a set of policies to manage the movement of informa • 
tion between the levels of the storage hierarchy 1. The effect of such 
a virtual memory system is to present the illusion of a single level, 
uniformly addressable memory. The user need not concern himself with 
the actual location of the information in the storage hierarchy. 

The topmost level of the storage hierarchy is comprised of fast, 
expensive storage devices, such as semiconductor random access memories 
(RAM). Lower levels are built from progressively slower, cheaper 
storage devicest magnetic disks and tape drives. 

Classical virtual memory studies have been concerned with the each 
ing of executing programs. 

We are interested in studying two types of caches used to implement 
file systems. One such cache keeps fixed size blocks (sometimes called 
pago3, typically 512 bytes to 4K bytes in size), which normally reside 
on disk, in a buffer pool in RAM. We will call this a disk cache. Some 
database management systems such as IMS use fairly large ones [Benn7S]. 
Another type of cache moves entire files between disk (the cache) and 
tape (the secondary store). We will call this a file cache [Smith79, 
Stritt77], On those occasions where we are indifferent to the nature of 
the cache, wo shall use the generic term segment to refer to page, 
block, or file. 

File caches are distinguished by the variable size unit of informa
tion moved between different levels of the storage hierarchy. Deletions 
of blocks from disk caches and files from file caches are commonplace, 
whereas deletions are nonexistent in most program caches. 

It has been observed that programs do not reference memory randomly. 
Instead programs exhibit locality of reference, i.e., they tend to 
reference memory locations which are "near" those referenced recently. 
If one keeps recently referenced information in the higher levels of the 
storage hierarchy, then it is possible to build a storage system whose 
average access time is close to that of the topmost (most expensive) 
level and yet whose average unit cost is close to that of the bottommost 
(cheapest) level. 

Below are definitions of some standard terms used in this area 
[Coff73]. Consider a two level hierarchy in which fixed size blocks 
(pages) are transferred between levels. If a page is referenced which 
is not in the top level (the cache) and the cache is full then a 
"replacement policy" decides which page already in the cache should be 
evicted ("pushed") to make room for the incoming ("pulled") page. If 
the page referenced was in the cache we say that a "hit" occurred. If 
the page was not in the cache we call the event a "miss". The hit ratio 
for a specific size cache, managed by a specific policy for a particular 

1 others have used this term to refer specifically to the storage 
system used to hold executing programs. We use it here in a generic 
sense. 
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sequence of memory references is simply the ratio of hits to the total 
number of memory references. The miss ratio is the ratio of the number 
of misses to the total number of memory references. The success func
tion is simply the hit ratio as a function of cache size. 

We would like to investigate how well various policies for managing 
the file system caches work and how big a cache is needed to obtain a 
specified hit ratio. To answer these questions we would like to have 
efficient methods of calculating the success functions of replacement 
policies. The traces of memory references (address traces) which we 
will use to evaluate various replacement policies are typically several 
hundred thousand references long2. Evidence to date suggest that the 
traces in question will exhibit poor locality, i.e., that very large 
caches are necessary to obtain high hit ratios3. Earlier work studying 
caches for holding executing programs typically dealt with cache sizes 
of a few dozen pages. Since the running time of the classic methods of 
computing success functions depends on the locality of reference in the 
address traces the efficiency of the calculations was not as pressing a 
problem in the earlier work. 

For the problems we wish to address, both the running time and 
storage requirements of the evaluation algorithms are important. 

In this paper we begin by reviewing a taxonomy of replacement poli
cies, characterized according to the computational complexity of the 
algorithms used to evaluate their success functions, we then report a 
new algorithm for evaluating the success function of the Least Recently 
Used (LRU) policy. The proper treatment of deletions of files from a 
cache, and of references (updates) which alter the size of files in a 
cache is explained. Finally we present performance measurements of 
various algorithms for calculating LRU success functions. 

1.2. Machine Model for Complexity Results 
In the next sections, we will examine the running time and storage 

requirements of several algorithms both theoretically and empirically. 
The theoretical results on computational complexity of the evalua

tion algorithms will be presented in terms of a machine with a fixed 
size random access memory. We shall assume that the usual computer 
instructions can be performed on single word operands in constant time, 
that the algorithms execute on a word machine, and that the words are of 
sufficient size to hold the variables we are interested int the segment 
name and the reference time. Memory requirements are stated in words. 
These are conventional assumptions in complexity theory. 

2These traces are obtained by processing System Management Facility 
traces of file system activities on IBM mainframes. in this paper we 
use only synthetic traces to assess the efficloncy of various methods of 
calculating success functions. 

3[Benn75] is concerned with evaluating caches containing several 
hundred pages and [Stritt77] and [Smith79] are concerned with file 
caches containing thousands of files. 
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2. Stack Policies 
In 1970 Mattson, et al. [Matt70] characterized a class of replace

ment policies, called "stack policies", for which it is possible to 
evaluate the success lunction for all cache sizes in one pass across the 
address trace. All stack policies also have monotone nondecreasing hit 
ratios as a function of increasing cache size [Matt70]. 

A stack policy specifies, each time a page is referenced, a total 
ordering on all pages which have been referenced up to the present. This 
ordering is called a priority list4. For a given cache size, the stack 
policy will always replace (push out of the cache) the page with the 
lowest priority. Mattson et al. showed that this is equivalent to the 
requirement that such policies satisfy an inclusion property. The 
inclusion property holds if, for all address traces, a given size cache 
always includes all of the pages in smaller caches at the same point in 
the address trace5. 

As a consequence it is possible to represent the contents of all 
size caches (at a specific point in time) by a single stack equal to the 
the size of the largest cache. The top n cells of the stack contain the 
names of the pages in a cache of size n at a time t in the address 
trace. The location of a page in the stack (measured from the top of 
the stack) is the minimum memory capacity (MMC) of a cache which would 
contain the page referenced. Because of the inclusion property all 
larger caches would also contain this page. The hit ratio for a cache 
of size S is the fraction of references whose MMC is less than or equal 
to S. Hence to evaluate the success function for all cache sizes one 
calculates the MMC for each reference, tabulates the the frequencies of 
MMC's, normalizes by the total number of references to give a probabil
ity distribution, and then integrates to yield the cumulative distribu
tion function of the MMC's (i.e., the success function). 

To calculate the MMC's one must update the stack at each memory 
reference to reflect the new cache contents. For example, consider the 
stack shown in figure 1 and suppose that the next page referenced is 
page 3 located fifth from the top in the stack. In this example, small 
numbers designate high priorities. Assume that the priority number for 
DAtsh pa«r» net b«cn generated by BOHM policy (not LRU) and that it does 

*Por example one might order the pages according to the time since 
each was last referenced, with least recently used pages having the 
lowest priority. 

5The first-in-first-out (FIFO) replacement policy does not satisfy 
the inclusion property and hence is not a stack policy. 
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Stack 
Position 

1) 
2) 
3) 
4) 
5) 
6) 
7) 

Stack before 
reference 

Page 
6 
4 
5 
7 
3 
8 
9 

Priority 
4 
1 
6 
3 
9 
2 
5 

Page 
Pushed 

6 
6 
5 
5 

none 
none 
none 

Stack after 
reference 

Page 
3 
4 
t_ 

.' 
5 
8 
9 

Priority 
0 
1 
4 
3 
6 
2 
5 

Figure it Stack before and after reference to page 3, 
at st«o'<. position 5. Note that 0 - highest priority. 
For fc_..plicity we have assumed that the priorities of 
nonreferenced pages remain unchanged. 

Clearly the first element: of the stack, page 6, must be pushed (from 
the cache of size l) to make room for the newly referenced page. The 
newly referenced page 3 will be placed in stack position 1. The page 
pushed from the cache of size two will either be the page pushed from 
the cache of size one, page 6, or the page which was in the cache of 
size two but not size one (i.e., page 4 at stack position 2). Page 6 
has priority 4, while page 4 has priority 1. Since lower numbers desig
nate higher priorities in this example, page 4 has higher priority. 
Hence the lower priority of these two pages, page 6, is pushed out of 
the cache of sizo 2, while the higher priority page, page 4, remains (at 
stack location 2). Similarly the page pushed from the cache of size 3 
will either be the page pushed from the cache of nts« 2 (page 6), or the 
page (page 5 at position 3 in the stack) which was in the cache of size 
three but not the cache of size two. Again the lower priority page (page 
5) will be pushed, while the higher priority page (page 6) is kept in 
the cache of size three (at stack location 3). The fourth stack posi
tion holds the page which would be contained in cache of oJze four, but 
not size three. Here one must either pusn page 5 (priority 6) which was 
pushed out the cache of size three, or page 7 (priority 3) at stack 
location 4 which was the page missing from a c*cht of slue three but 
contained in a cache of size four. Page 5, having the lowar priority, 
is pushed from the cache of size four, while page 7 rem* \t stack 
location 4. The fifth stack location contains the page > \ is con
tained In a stack of size five, but not a cache of size 4. .-.«» is page 
3, the page being referenced. It is now placed at the top of the stack. 
The page pushed from the cache of size four, page 5, is placed in stack 
location 5. A hit is recorded for MMC 5. 

Updating the stack for a memory reference thus amounts to a single 
pass of a bubble sort down the stack until one reaches the currently 
referenced page [Coff73]. The stack may be implemented either as an 
array or as a linked list. Assuming that one can determine the priority 
of a page in constant time this gives a running time of 0(n*d), where n 
is the number of memory references in the trace and d is average dis
tance from the cop of the stack of the pages referenced. 
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2.1. Characterization of stack Policies 
In the remainder of the paper we characterize various classes of 

stack policies in terms of the computational complexity of algorithms 
for computing their hit ratios for various size caches, section 3 con
cerns policies which can be processed in space proportional to the larg
est cache size considered, section 4 concerns policies which are amen
able to multi-pass hit ratio evaluation algorithms for problems too 
large to fit in memory, section 5 is about policies for which the hit 
ratio can be efficiently calculated for a single cache size. Section 6 
concerns a very small class of policies (containing only the Least 
Recently Used policy) for which one can efficiently calculate the hit 
ratio for all size caches. 

3. Bounded Cache Sizes 
suppose that, given an trace of segment references, one only wants 

to evaluate the success function for a stack policy for cache sizes less 
than some constant C. One would hope that this could be done in space 
0(C). 

If the policy does not use any information concerning the history of 
the segment prior to its most recent reference, there is no difficulty. 
Pages pushed from the cache of size c are simply discarded. Pages not 
found in the stack are recorded as misses. 

But suppose that the policy does use the prior history of the seg
ment to compute its priority, e.g. the Least Frequently Used (LFU) pol
icy. Then pushing segments out of the stack of size C renders their 
history inaccessible when they are next referenced. This problem can be 
dealt with by preprocessing the trace in the manner described below. 

Suppose that the replacement policy calculates the priority of a 
segment from only a small fixed set of statistics which summarize the 
previous history of the segment, and that, as new references occur, 
these statistics can be updated in constant time without recourse to any 
other information concerning the history of the segment. For example, 
the LFU policy would record the time since creation of the segment and 
the total number of references to the segment. All practical replace
ment policies can be so characterized. 

Then one can preprocess the trace as follows. Split the trace by 
segment name into sufficient subtraces that the summary statistics for 
each subset of segments can be kept in main memory, retaining the chro
nological ordering within each subtrace. If the segment names are not 
contiguous the splitting can be done by calculating a hash function on 
the segment name. If the segment references do not already include 
timestamps, append timestamps to each segment reference. 

Each subtrace is then processed separately as follows. Read through 
the subtrace updating a table of summary history statistics for each 
segment. Whenever a segment is referenced write out the segment refer
ence along with the summary statistics calculated at the previous refer
ence to the segment. 

Finally merge all the subtraces of timestamped references (including 
the appended summary statistics) back together in chronological order. 
We can then process the trace using a stack algorithm for a bounded 
cache sj te, employing the preprocessed summary statistics whenever we 
reference a segment we have pushed out of the stack. 



6 

The computational complexity of the preprocessing is 0(n*log(s/R)), 
where n is the length of the trace, S is the number of distinct segments 
referenced (maximum stack size), R is the number of segment histories 
which will fit into main memory6. 

A similar technique can be used to evaluate the OPT policy. This 
policy has been shown to be optimal if we count all segment faults 
equally and ignore the cost of pushing dirty (modified) segments out the 
cache [Bela65],[Matt70]. It consists of pushing the segment which will 
be referenced furthest in the future. The technique described above can 
be applied here by reading the trace in reverse order. This can be done 
readily if the trace is stored on disk. otherwise one might have to 
sort the trace twice. 

4. Multi-pass Stack Algorithms 
4.1. The Extension Problem 

Now suppose that we want to construct a multi-pass evaluation algo
rithm which will evaluate the success function for cache sizes too large 
to fit the stack in memory. For those segments not found in the stack 
on the first pass, we pass the segment being pushed from the stack (with 
its history), and the segment being pulled to a second pass. In the 
second pass we simply continue with our bubble sort, adding the size of 
the stack in the first pass to the MMC's we calculate. 

This solution to the construction of multi-pass evaluation algo
rithms was given by Coffman and Randell [Coff7l], They called it the 
"extension problem". He was concerned with finding the hit ratio for 
cache sizes greater than C, given information only on the occasions of 
faults (misses) from the cache of size C. This information (a "reduced 
trace" of the faulted segments) is generally much shorter than the ori
ginal address trace. Furthermore, in a real system, a segment fault 
causes a trap to the operating system. Thus, acquiring a reduced trace 
is much easier than collecting a full trace. 

Because the reduced trace is generally much smaller than the origi
nal trace, the combined space-time product of a two pass evaluation 
algorithm may be much better than a one pass algorithm7. (The stack for 
the second pass need only be kept around for a time proportional to the 
length of the reduced trace. ) 

Smith [Smith77] has advocated the use of reduced traces to obtain 
approximate results for paging policies where the policy under investi
gation in the second pass is not the same as in the first (reducing) 

S/R is the number of subtraces we split the original trace into, 
so that the tables required to preprocess each subtrace will fit into 
memory. If we are constrained (by memory requirements for file buffers) 
to split files at most k ways on each pass, then log. (S/R) passes may be 
required to completely split the trace, i.e., the height of a merge tree 
whose fan-out is k and which lias S/R leaves. Hence the splitting would 
require time 0(n*log(S/R)). The preprocessing for all of the subtraces 
can be don« in time 0(n). Merging the subtraces back together will re
quire time 0(n*log(S/R)). 

The apace-time product of a computation is the integral of instan
taneous uemory usage over the course of the computation. 
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pass. 
4.2. Separable Priorities 

In order for multi-pass algorithms to be practical one must bound 
the amount of information which must be passed to the second pass at 
each segment fault from the first pass cache. For most policies, such 
as LRU or LFU, thi3 is not a problem. The segment priorities in the 
second pass can be calculated from a fixed set of history statistics 
passed along with the segment when it was pushed by the first pass. 

But suppose that the priority of the segment does not depend solely 
on its own history, but also that of other segments ("precursor seg
ments"). Then one might have to pass a new priority li3t out with every 
segment pushed from the first pass. This could grow to enormous size. 

In order to obtain practical multi-pass algorithms we will therefore 
restrict consideration to policies which have separable priorities, 
i.e., priorities which are solely the function of a (small) fixed set of 
statistics summarizing the previous history of the segment. 
5. Time Invariant Relative (TIR) Priority Policies 

we will now consider a class of stack policies for which one can 
efficiently calculate the hit ratio for a single large cache size. This 
is the same problem as managing a fixed size cache. Hence these poli
cies arc practical candidates for managing very large fixed size caches. 
Also, by constructing multi-pass evaluation algorithms for these poli
cies one can evaluate the success function at a small number of points 
efficiently. For example one might be constrained to purchase memory 
for the cache in fixed size increments (each disk drive might hold 
several hundred megabytes). Alternatively, one might use a single size 
evaluation algorithm as the first pass in solving the extension problem. 

To calculate the hit ratio for a specific size cache one simply 
simulates the management of the cache. For each memory reference, one 
muit determine whether it is in the cache. If it is, one merely updates 
its history statistics (which are used in calculating its priority). If 
the segment is not in the cache then one must find the lowest priority 
segment in the cache and push it out. 

Now suppose that the relative priorities are "time invariant", i.e., 
that the relative priorities of two segments do not change unless one is 
referenced8. Any policy in which the priority of a segment is a func
tion solely of the segment's history up to the last reference plus a 
constant (identical for all segments) times the time since last refer
ence to the segment is a "time invariant" policy, e.g., LRU. Thus at 
each reference the only change in the priority list is the position of 
the currently referenced segment. Hence one can represent the priority 
list as a heap9. In a heap one can find the minimum priority segment 
and delete it in time o(log C), where c is the number of segments in the 
cache. Thus the total computation time would be 0(n*log(C)). 

"Time invariant priority functions have been used in the context of 
processor scheduling by Ruschitzka and Fabry [Rusch77], 

9If the relative priorities were not time invariant one would have 
to rebuild the heap at each reference, instead of just deleting and 
reinserting as single element. 
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This notion can be extended (as described below) to form a larger 
class of replacement policies at a modest increase in the computational 
complexity. 

One could divide the segments into k classes, with time invariant 
relative priorities within each class. The priority of a segment could 
thus be a function of the history up to the last reference plus one of k 
constants times the time since last reference, e.g. a generalized LRU 
with different aging rates for different types of segments. To calcu
late a hit ratio one now must calculate the minimum of the k minima of 
each heap. Thus the running time will be bounded by 
0(n»k)+0(n*log(C)).10 

Another possibility would be to construct a composite piecewise time 
invariant relative priority function, by switching between several time 
invariant relative priority functions a finite number (k) of times as 
the time since last reference to a segment grows. This would allow the 
priority of a segment to be an arbitrary function of the segment history 
up to the last reference plus a piecewise linear function of the time 
since last reference. A hit ratio calculation for such a policy has 
running time bounded by 0(n*k) + 0(n*k*log(C)), but the average running 
time will depend on the distribution of inter-reference intervals.11 

Among the class of functions which generate time invariant relative 
(TIR) priorities are priority functions of the form p(i,t )-a*t+b( i), 
where p(i,t) is the priority of segment i at time t, a is constant for 
all segment and b(i) is an arbitrary number unique to each segment and 
invariant between successive references to the file (e.g., it could be a 
function of the segment's history up to the time of last reference). In 
particular if one let t - time since last reference to the segment, 
then p(l,t-t )-a«(t-t )+b(i) generates time invariant relative 
priorities. Thus any linear function of the time since last reference 
will generate TIR priorities. Futhermore any monotone transformation of 
the linear priority function will generate TIR priorities. In particu
lar 

(a«(t-t )+b(i )+c) (a*(t-t )+c) 
P<i,t-tref) - e re* - g(i)*e r e £ 

1 0 The linear term n»k may be insignificant, in terms of the average 
running time, because one need only compute the minimum of the k minima 
of each heap when a segment fault occurs. For large cache sizes this 
should not occur very often. 

1 1 The distribution of inter-reference intervals determines the 
number of times the segment priority will have to be recalculated 
between successive references. Note that the priority of the segment 
must be recalculated, and the segment deleted from one heap and inserted 
in another each time one switches priority functions. In the example 
of a piecewise linear priority function of time since last reference one 
"switches" TIR priority functions whenever the time since last reference 
grows beyond the domain of a single linear segment of the piecewise 
linear priority function, i.e., at each of the kinks in the priority 
function. This accounts for the 0(n*k*log(C)) term in the bound on the 
running time. However, the minimum of the k minima of each heap need 
only be calculated when a segment fault occurs. This accounts for the 
0(n*k) term in the bound on the running time. 
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will generate TIR priorities. Then for k-class or piecewise TIR prior
ity policies one can choose different constants g(i),a,c for each class. 

For example, suppose that our replacement policy ranks segments 
according to the hazard rate of each segment's inter-reference time dis
tribution, i.e., according to the probability that the segment will be 
referenced in the next instant. Then one could employ multiple classes 
and piecewise TIR priority functions to attempt to fit the empirically 
estimated hazard rates for various types of segments12. in particular, 
the exponential priority function, p( i,t )«g( i )*e r e , represents 
a very strict notion of a proportional risk model, wherein g(i) 
represents the relative risk. Similar sorts of models have been widely 
used in biomedical research and there are techniques for fitting these 
models from censored data13. 

6. Least Recently Used Policy 

6.1. Time Invariant Stack Positions 
Now suppose that the relative ordering of two pages in the stack is 

time invariant (i.e., does not change except when one of the pages is 
reference; ». For what class of stack policies is this the case? It is 
true for only one policy, Least Recently Used. To see this, observe 
that for LRU (and only for LRU [Coff73]), the priority ordering and the 
stack ordering are identical. Consider any policy for which this is not 
true, then the possibility arises that two pages at stack positions I 
and l+l would be out of priority order. Thus any reference to a page 
further down in the stack would result in a reordering of the stack, but 
this violates time invariance of relative stack position. 

6.2. Tree Representations 
If the ordering of pages in the stack is time invariant, then one 

can effectively represent the «itack as a binary tree14. Each node of 
the tree represents a page and the tree is ordered according to the last 
reference time for each page. The ordering used is "morder" as defined 
by [Wirth761, i.e., a chronological ordering of the nodes in ascending 
time of last reference corresponds to visiting the nodes in the order of 
left, root, right. 

When a page is referenced one finds it in the tree,15 determines its 
position in the stack (as described below), deletes it from the tree, 

12For example, one might distinguish segments by whether or not they 
were directory segments or file segments, whether the last reference was 
a read or a write, etc. 

13Censored data on inter-reference times arises in file migration 
studies, because one can only observe the file system for a finite 
period of time. Thus there will be many inter-reference intervals which 
must be truncated when one ceases recording references. 

14If the ordering of the pages on the stack was not time invariant 
then one would have to reconstruct the tree after each reference instead 
of simply deleting and reinserting the referenced page. 

150ne can find it in constant time by constructing a hash table on 
the page ID'S with pointers into the tree. 
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and then reinserts it in the tree at the top of stack, i.e., as the 
rightmost child. 

Since the top of stack position is always at one side of the tree, 
one would generate a very unbalanced tree unless some effort is made to 
rebalance the tree occasionally. We implemented a generalized AVL tree 
([Fost73] and [Knuth73]), but other types of balanced trees would also 
work. AVL trees guarantee that the height of the tree (the longest dis
tance of any node to the root) is 0(log(C)), where C is the number of 
nodes in the tree (equal to the number of pages in the largest cache 
size considered). Furthermore any node can be inserted or deleted and 
the tree xbalance maintained in time 0(log(C)) in the worst case. One 
can calculate the position of a page in the stack, delete it, and rein
sert it in the tree, all in time 0(log(C)). 

To facilitate the determination of the position of a page in the 
stack, one stores in each node the number of pages in the subtree rooted 
at that node16. The tree is ordered on the time of last reference, so 
that all pages in the righthand subtree of a page have been referenced 
more recently than it. Then the set of pages which have been refer
enced more recently than page p are those which lie in the righthand 
subtree of p, contain p in their lefthand subtree, or lie in the right-
hand subtree of a page which contains p in its lefthand subtree. The 
position of a page p in the stack can thus be found by traversing a path 
from the page in question to the root of the tree17. Whenever one 
reaches a node (page) which includes p in its lefthand subtree (i.e., 
has been referenced more recently than p) we add the size of that node's 
righthand subtree, plus 1 (for the node itself). Finally, one adds the 
size of p's righthand subtree. This sum is the position of page p in 
the stack. Thus the stack position can be calculated in time 0(log(C)) 
if the tree height is so bounded18. Furthermore, it is clear that 
recalculating the subtree sizes does not increase the complexity of 
insertions and deletions of an AVL tree except by a constant factor. 

6.3. Bennett and Kruskal's Algorithm 
In 1975 Bennett and Kruskal [Benn75] described an algorithm for cal

culating LRU hit ratios. This algorithm was built around the observa
tion that the LRU minimum memory capacities (MMC's)19 are simply the 
number of distinct pages referenced since the last reference to the page 
currently referenced. 

They construct a bit vector as long as the address trace. Initially 
all the bits are set to 0. As each memory reference occurs at time t, 
bit b[t] is set to 1, and the bit, b[t ], corresponding to the time 

16 The algorithm for calculating the position of a page in the 
linear ordering represented by a the tree is taken from [Knuth73]. 

17Recall that we obtained a pointer to the node containing the last 
reference to page p in constant time (on average) via a hash table. 

18If one wished to dispense with the father pointers one could 
search the tree from the root to the page in question, using the page's 
last reference time (obtained via the hash table) as a key. 

19i.e., the LRU hit depths (see section 2). 
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of last reference to the currently referenced page is cleared20. Thus 
at any point t in processing the trace, all the bits are o except those 
corresponding to the most rec-ant references of each page. We can calcu
late the MMC of a reference by counting the number of 1 bits in the 
interval between the current time and the last reference to the page. 

Bennett and Kruskal contrive to do this counting in time 
Oflog(inter-reference time)). They do so by constructing a fixed struc
ture m-aty tree atop the bit vector21. The leaves of the tree are the 
elements of the bit vector. Each internal node contains the sum of the 
counts stored in its children, i.e., the count of number of l's in the 
leaves of the subtree (cf. the partial sum tree in Figure 2). 

One can calculate the position of a page in the stack by first look
ing up the most recent previous reference time (t ) of the page (in 
the table one maintains) and then traversing aprpath from the leaf 
*>[t _v] to the closest common ancestor in the tree of b[t ] and 
*>[tj . At each node which contains b[t ] in its lefthan^^ubtree, 
we add the size of the righthand subtree, updating the counts can be 
done by traversing the same path. One need not ascend higher than the 
closest common ancestor, at height 0(log(inter-reference time)), because 
at that point the increase in subtree caused by setting b[t], and the 
decrease occasioned by clearing the bit corresponding to the previous 
reference cancel. Note that this does not occur on initial references 
to a page, when one must go all the way to the root of the tree. An 
example is shown in Figures 2,3 and 4. 

2 0 A table is maintained containing the most recent reference time 
for each page (t ). 

21 prev 
That is, a tree with an arbitrary m way fan out at each node. 

2 2 Assume one clock tick per reference. 
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Stackt 
Page Time last Depth in 

referenced stack 

6 
8 
1 
7 
4 
5 
2 

11 
10 
9 
8 
7 
2 
1 

1 
2 
3 
4 
5 
6 
7 

Partial sum tree 

+++++++++++++++++++++++++++++++++ 
+++++++++++++++++ +++++++++++++++++ 

+++++++++ 
1 1 

+++++ +++++ 
0 1 1 0 

+++++++++ 
0 1 

+++++ +++++ 
0 0 0 1 

+++++++++ 
2 2 

+++++ +++++ 
1 1 1 1 

+++++++++ 
0 0 

+++++ +++++ 
0 0 0 0 

last reference to page 2 

Figure 2t Stack and partial sum tree at time 11 prior to re
ferencing page 2 at time 12. Location of last reference to 
page 2 is found via a hash table. The leftmost reference oc
curred at time zero. 
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Stack t 
Page Time last Depth in 

referenced stack 

6 
8 
1 
7 
4 
5 

11 
10 
9 
C 
7 
2 

1 
2 
3 
4 
5 
6 

Partial sum tree 

+++++++++++++++++++++++++++++++++ 

+++++++++++++++++ ++++++++■!•++++++1+ 

+++++++++ 
0 1 

+++++ +++++ 
0 0 1 0 

+++++++++ 
0 1 

+++++ +++++ 
0 0 0 1 

+++4+++++ 
2 2 

+++++ +++++ 
1 1 1 1 

+++++++++ 
0 0 

+++++ +++++ 
0 0 0 0 

Figure 3: Stack and partial sum tree after page 2 is pulled at 
time 12. A hit is recorded with MMC  7. The leftmost refer
ence occurred at time zero. 
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Stack: 
Page Time last Depth in 

referenced stack 

2 
6 
8 
1 
7 
4 
5 

12 
1 1 
1 0 

9 
8 
7 
2 

Par t i a l sum t r ee 

1 
2 
3 
4 
5 
6 
7 

i 

444444444444444444444444444 4444+4 
2 

+ V44444444444 44-1-4 
1 

+++++++++ 
0 1 

44444 +++++ 
0 0 1 0 

1 
4++++++++ 
0 

44444 
0 C 

1 
44444 
0 1 

5 
44444444444444444 
4 1 

4 f4444444 444444441-

2 2 1 0 
44444 ;4444 44444 •♦•4444 
1 1 1 1 1 0 0 0 

most recent reference to page 2 

Figure 4t Stack and partial sum tree after page 2 is pushed 
onto stack at time 12. Hash table entry for page 2 is updated 
to point to the new most recent reference. The leftmost 
reference occurred at time zero. 

As described by Bennett and Kruskal the algorithm does not run in 
bounded memory for a finite size cache and an arbitrarily long trace. 
Suppose one is only interested in caches smaller than C pages. On each 
fault from a full cache, clear the bit corresponding to the last refer
ence to the pushed page and adjust the tree accordingly. Every C refer
ences, compress the bit string so that it is contiguous and rebuild the 
tree so that it begins with the earliest t 23

. The algorithm now 
runs in bounded upace 0(C). To compress the Til? string and recalculate 
the tree requires time 0(C), but the event only occurs every C refer
ences, hence the complexity introduced by periodic compression is only 
0(n). The height of the tree is now bounded by 0(log(C)). The time for 
each reference is thus min[0(log(C)), 0(log(interreference time))]. 
The total running time is thus bounded by Q(n*log(C)), the same result 
we got for the AVL tree algorithm. 

2 3 The table which used to contain the most recent reference times 
for each page (assuming 1 clock tick per reference), which was used to 
index into Bennett and Kruskal's bit vector, now simply contains 
pointers into the bit vector (not true reference times). 
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The similarity in running times is not surprising since both algo
rithms build similar trees. Bennett and Kruskal's algorithm builds a 
fixed structure sparse tree, which is periodically recompressed, whereas 
the AVL algorithm maintains a compact tree which is continuously rebal
anced. 

6.4. TMO-level Linked List Algorithm 
In section 2 a linked list algorithm for implementing stack policy 

hit ratio calculations was discussed, with running time 0(n*d), where d 
is the average stack depth of referenced segments. The linked list 
algorithm can be be used to evaluate LRU, a stack policy. 

The linked list algorithm can be modified to improve its performance 
by exploiting the time invariant relative stack positions generated by 
the LRU policy. The modified algorithm is known as Franta's [Fran77] 
Two-Level linked list algorithm for maintaining simulation event sets (a 
linear ordering with insertions, deletions). This algorithm uses a 
second linked list as an index into the primary linked list (hence the 
name). If the number of nodes in the index is the square root of the 
number of nodes in the primary list, and the index entries are uniformly 
spaced over the primary list, then at most sqrt(C) nodes in the index 
and sqrt(C) nodes in th* primary list must be visited to find, rank, 
insert or delete a node in the primary list (where C - number of primary 
nodes, i.e., segments in the stack). Hence the running time for pro
cessing a trace of n references, with a stack size bounded by C segments 
is bounded by 0(n»sqrt(C)). 

This algorithm has been used by Ozalp Babaoglu [Babaso]. It offers 
intermediate complexity and performance. It could also be used to 
evaluate the hit ratio for a single cache size of a time invariant rela
tive priority policy (other than LRU). 

6.5. Deletions and Variable Segment Sizes 
Thus far we have limited the discussion to memory hierarchies in 

which one moves fixed-size blocks of information (pages) between various 
levels. Furthermore we have ignored the question of how to treat dele
tions. 

The file system replacement policies we wish to investigate move 
entire files (segments) of various sizes between levels of the storage 
hierarchy. External fragmentation of storage (disks) is not an issue 
s;nce most file systems can store files on noncontiguous disk pages. 

All of the LRU algorithms discussed can be extended to accommodate 
variable size segments. If the size of a given segment never decreases 
and segments are never deleted then we merely sum the sizes of the seg
ments instead of counting pages. 

Suppose one were to delete a segment from the stack. Then the MMC's 
of all segments further down the stack would decrease, because one cal
culates the MMC's by summing the sizes of segments higher on the stack. 
But this is impossible, because under a demand fetch policy a segment 
never moves back into a smaller size cache unless it is referenced. To 
be accurate one would have to record the maximum depth in the stack a 
segment ever attained since the last reference. Similar problems arise 
if one allows segment ttizes to decrease when segments are referenced 
(e.g., a file is overwritten by a newer smaller version). 
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Greenberg [Green74] discussed deletions but did not implement a 
correct algorithm. Instead he estimated the error introduced by his 
approximate algorithm. Smith 2 4 suggasted a method of dealing with 
deletions which we have incorporated into these LRU algorithms. When
ever a segment is pulled from the stack (either due to a reference or 
deletion) one records a gap at the location in the stack where the file 
was. This gap is the same size as the pulled file. Whenever a file is 
pushed onto the stack one starts at the top of the stack to squeeze out 
as much gap space as the size of the file pushed. Finally whenever one 
wishes to calculate the depth of a segment in the stack one sums the 
sizes of the segments and gaps above the target segment in the stack. 

This modification to the LRU algorithms increases the space require
ments of each algorithm by at most a constant factor (<2), since one can 
collapse adjoining gaps so that we have at most one gap per segment in 
the stack. Whereas before one only had to keep track of the space occu
pied by files on the stack, one now must maintain parallel records of 
the gaps adjoining each file. In the linked list algorithm one simply 
stores the size of the gap (if any) prefixing each segment as an entry 
in the corresponding segment descriptor. In both the AVL trees and Ben
nett and Kruskal partial sum hierarchies each node now contains one 
entry for the total space occupied by the files in the subtree and one 
entry for the total gap space within the subtree. The parallel data 
structures for gap space and occupied space were suggested by the the 
work reported in [EggersSO]. 

For each pull or deletion one must create (or increase) one gap. 
For each push, one squeezes the topmost gaps until che total space 
squeezed equals the size of the pushed segment. The average number of 
gaps which must be squeezed for each push thus depends on the the dis
tribution of sizes of pushed segments and the distribution of the sizes 
of the gaps (generated by pulls or deletions). If all segment are the 
same size (pages), or if segments never change size nor are deleted then 
the number of gaps squeezed on a push is one (zero if no gaps exist). 
if all segment references (pushes, pulls, and deletions) are drawn from 
stationary distributions of segment sizes (typically the same distribu
tion) then one can construct a bound on the average number of gaps 
squeezed per push which independent of both the stack size, and the 
length of the trace. 

Hence impact of deletions on the running time of the LRU algorithms 
hinges on the effort required to find and modify each gap. For the AVL 
tree and Bennett and Kruskal's algorithms one can incorporate the gaps 
into the same data structures and treat them similarly to the file 
sizes. In each the time to access or modify the gaps is bounded by 
O(log S), where S is the size (i.e., cardinality) of the stack. For the 
AVL algorithm this represents no change in running time. But Bennett 
and Kruskal'8 algorithm has now slowed down to within a constant factor 
of the AVI, algorithm. 

One could proceed in the same fashion for the linked list algo
rithm25, storing the size of the preceding gap (if any) with each seg
ment node on the linked list representing the stack. However, the aver
age time to perform a push would then be proportional to the average 

Private communication. 
See sections 2 and 6.4. 
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stack depth of the topmost gaps. Potentially this could be much worse 
behaved than the average stack depth of referenced segments since gaps 
are generated by deletions as well as references. While most deletions 
in a file system are temporary files (found near the top of the stack) 
others are old relics near the bottom of the stack. Furthermore, refer
ences to temporary files will mostly be be deleted from compressed 
traces used for studying long term file migration. Installations (such 
as Lawrence Livermore Lab) which have adopted file system caches have 
experienced growing file systems, i.e., users do not bother to delete 
old files but treat them as archival backups. In such contexts one 
finds more file creations (pushes) than deletions. Hence one would 
expect more gaps to be consumed than produced. Such chronic gap defi
cits mean that deep gaps produced by deleting relics will become topmost 
gaps. If such gaps r»re large, they may be squeezed repeatedly before 
they are entirely consumed. Finding and squeezing such deep gaps may 
consume inordinate amounts of time. 

We have therefore incorporated a second linked list for the gaps, 
threaded through those segment descriptor nodes which have prefixed 
gaps. This makes finding the topmost gap (at the head of the gap list) 
to squeeze out during a push trivial, i.e., a constant time operation. 
However, now one must arrange to insert all new gaps into this gap list 
(i.e., for every pull or deletion). While traversing the linked list of 
segment descriptors constituting the stack to find the position of a 
pulled segment, one can record the location of the previous gap, if any. 
Inserting the new gap occasioned by the pull can then be done in con
stant time. Thus the running time of the linked list algorithm 
increases (for pushes and pulls) by at most a constant factor (to accom
modate the search for the previous gap during a pull). 

Deletions could be treated as pulls (searching the segment list from 
the top). However, determining the depth of a deleted segment in the 
stack is not necessary, since delations do not produce cache misses. 
Thus instead of searching the segment linked list constituting the stack 
from the top to determine the depth of the deleted segment (as one would 
for an ordinary pull) one could access the segment node to be deleted 
via a hash table index. The hash table access can be done in constant 
time, versus time proportional to stack depth for searching the linked 
list. If a new gap is created by the deletion (rather than merely 
enlarging an adjacent gap) then one must insert the new gap into the gap 
list. The appropriate location for the insertion can be found by noting 
the last reference time recorded in each segment node inspected while 
searching the gap list. The gap list will undoubtedly be much smaller 
than the segment list in realistic file cache studies (it may even be 
em^■./), 

6.6. LRU Model Reference Generators 
The tree algorithms described above can be used to generate syn

thetic reference strings from an LRU model. Instead of climbing a tree 
to its root to calculate the position of a page in stack, one searches 
the tree from the root to find the page at the specified position in the 
stack. This target stack distance is generated by a pseudorandom number 
generator with a specified distribution. The search algorithms are sim
ple analogues of the distance calculation algorithms. The trees are 
maintained in the same manner as for the LRU success function calcula
tions. Thus the running times for reference generation are Identical to 
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those for calculating success functions to within a constant factor. 
6.7. Performance Measurements 

We have implemented and timed the three algorithms discussed above 
for calculating LRU success functions: the classic linked list algorithm 
(LI.), the AVL tree algorithm (AVL), and the modified Bennett and Kruskal 
algorithm (MBK). 

All of the algorithms were coded by the author in Pascal and run on 
a DEC VAX 11/780 under the VMS operating system. The only differences 
between the programs was the code for maintaining the stack data struc
tures. in particular all three programs employ an identical hash table 
to check for the presence of the segment in the stack (so that misses 
need not search the entire stack)26. 

All of the codes are capable of handling variable size segments, 
deletions and multi-pass operation. However, in these timing experi
ments only single pass operation of the algorithms was measured27. 
Furthermore all segment sizes were set to one. 

The timing measurements record the time required to calculate the 
success function for various synthetic reference strings (traces) gen
erated from an LRU model. Before timing for each traces commenced, a 
warm start was performed by loading the cache with pages in random 
order. All three algorithms were timed on identical sets of traces. 

Since the theory predicts that the performance of the linked list 
algorithm will depend solely on the mean stack depth of accessed seg
ments, while the performance of the other two algorithms should be a 
function primarily of the stack size, we employed synthetic reference 
strings generated from an LRU model to control these parameters 
separately. 

No deletions were generated. However, the code to implement dele
tions (i.e., to create and squeeze out gaps) is exercised by the normal 
push-pull sequences. (Deletions for the linked list code were treated 
similarly to pulls rather than only searching the gap list.) Further
more, except for the warm start (omitted from the timing statistics), 
all of the references generated were to previously referenced pages, 
i.e., there were no complete misses (references to new pages) generated. 

"The hash table is also used to provide an index into the trees 
maintained by the AVL tree and Bennett and Kruskal algorithms. We use 
linear hashing with chained overflow. The chained overflow was adopted 
to facilitate deletions from the hash table (required whenever a segment 
is pushed out from the stack). The access time to find an entry in the 
hash table depends on its position in the overflow chain. Hence the 
average access time depends on the average overflow chain length, i.e., 
the loading density of the hash table. The size of the hash table was 
chosen for each of the timing runs so as to preserve the same loading 
density of hash table on all runs, i.e., 1.0 entries/bucket. 

2 7 Multi-pass operation would produce similar results except that 
the linked list algorithm would have better performance, since the hash 
table index avoids the need to search the linked list for missing seg
ments and deletion? from the linked list are faster than from the AVL or 
Bennett and Kruskal trees. 
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The LRU stack distance distributions chosen were discrete analogues 
of beta distributions. This family of distributions was chosen, both 
because it can generate plausibly shaped distributions (i.e., positive, 
highly skewed toward zero)28 and because we could easily generate 
pseudo-random variates. The synthetic stack distances were chosen by 
generating a standard beta variate x distributed as B(p,q) on the unit 
interval (0,l)29. This variate was then multiplied by the stack size, 
truncated, and then added to 1 (i.e., scaled to generate integers 
between l and the stack size). 

The pseudo-random uniform random number generator used is a Pascal 
implementation of the standard IMSL multiplicative congruentlal random 
number generator, GGUBS. 

The parameters p,q of the beta distribution were chosen in conjunc
tion with the stack sizes in an attempt to generate an orthogonal exper
imental design of stack size versus mean stack depth of accessed seg
ments. such a design facilitates regression studies. For oach stack 
size (100,200,400,800,1600) strings were generated from the beta distri
butions B(l,l), B(3,l), B(7,l), B(15,l), B(3l,l). This generates the 
following approximate moan stack depths. 

Table of Approximate Mean stack Depths 

Parameters of Beta Distribution 
Stack size 

100 
200 
400 
800 

1600 

B(l,l) 
50 
100 
200 
400 
800 

B(3,l) 

25 
50 

100 
200 
400 

B( 7»D 
12 
25 
50 
100 
200 

B(15,l) 

6 
12 
25 
50 
100 

B(31,l) 

3 
6 
12 
25 
50 

For each design point (stack size, mean stack depth) 4821 refer
ences were processed after the warm start. The number of references was 
chosen to correspond approximately to an integral number of compactions 
for the modified Bennett and Kruskal algorithm employing a buffer twice 
the size of the stack. Thus for a stack size of 1600 entries, compac
tion would occur after 3200 references and 4800 references. Hence the 
timings correspond to the long run average for very long reference 
strings with many compactions. The number of references was also a 
tradeoff between available computer time and minimizing the variance of 
the results. Each such experiment was repeated a second time. 

For each experiment we tabulated the following measurementst 
(1) E(t) - the mean processing time per reference (in microseconds). 

"LRU stack distance distributions have commonly been observed to be 
highly skewed with most references occurring to recently referenced seg
ments (i.e., small stack distances). 

2 9 See [John70]. 



(2) E(s) - the average stack size. 
(3) E(log2(s)) - the average of the log of the stack size. 
(4) E(d) - the average stack depth of hits. 
(5) E(log2(d)) - the average of the log of the stack depth of hits. 

Regression studies were then conducted to estimate the parameters of 
models to predict the mean processing time per reference, a'he results 
are given below. 
(1) For the linked list algorithm, the following model accounted for 

99.8% of the variance: 
E(t) - 2.28 X E(d) 4 356 

(2) For Bennett and Kruskal's algorithm, the following model accounted 
for 98.5% of the variance: 

E(t) - 71.7 X E( jlog2(s)l) 4 525 
(3) For the AVL tree algorithm with a balance factor of 1 (i.e., height 

imbalances of adjacent nodes are constrained to 2 or less) the fol
lowing model accounted for 83% of the variance: 

E(t) - 39.0 X E( Ilog2(s)l) 4 429 
The poorer fit of the model compared to the Bennett and Kruskal or 
linked list algorithms is presumably due to the fact that the stack 
size is an imperfect predictor of the depth in the tree at which a 
file node will be found. Also differently shaped LRU stack depth 
distributions may affect somewhat the amount of rebalancing 
required. Neither factor is an issue with the Bennett and Kruskal 
or linked list algorithms. 

(4) For the AVL tree algorithm with a balance factor of 2 (i.e., height 
imbalances of adjacent nodes are constrained to 2 or less) the fol
lowing model accounted for 93% of the variance: 

E(t) - 32.4 X E( llog2(S)l) 4 505 
Again the poorer fit of the model is presumably due to the fact that 
the stack size is an imperfect predictor of the depth in the tree at 
which a file node will be found. Also differently shaped LRU stack 
depth distributions may affect the amount of rebalancing required 
(to lesser extent than above because of the relaxed balance con
straints). 
The reader will note that the AVL tree algorithm outperforms the 

modified Bennett and Kruskal algorithm. However, the difference is suf
ficiently small that it might be reversed by clever coding of the modi
fied Bennett and Kruskal algorithm. Also interesting is the fact that 
permitting greater imbalance in the AVL tree produces faster running 
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times for large stacks. 

6.8. Summary of LRU Algorithms 

Comparison of LRU algorithms 
Coding 

Algorithm Time Space Difficulty 
Linked list 0(n*d) 0(s) easy 
B 4 K O(n*log(i)) 0(n) medium 
modified B4K O(n»log(s)) 0(s) medium 
AVL tree 0(n*log(s)) 0(s) hard 

Notes: B4K is Bennett and Kruskal's algorithm. 
n - length of address trace, 
d - average stack depth of references, 
s - largest stack size considered (number of entries), 
log(i) - average of log of inter-reference time. 

6.9. Efficiency in a Virtual Memory Environment 
Thus far we have been concerned with the efficiency of computations 

executing with real memory. In this section we will consider algorithms 
appropriate to running in a virtual memory environment (or explicitly 
referencing secondary storage). 

We will assume that the operating system will replace the least 
recently used page in the computation (leaving aside questions of how 
many pages are allocated to the computation). 

None of the algorithms as implemented made any attempt to keep logi
cally contiguous nodes physically contiguous (to enhance locality). 

For the Bennett and Kruskal algorithm the tree linearization func
tion could be modified to map a node and its closest descendants onto a 
contiguous page of memory. Unfortunately the compression phase would 
still flush the working set from real memory. 

In virtual memory one would replace the linked list algorithm with a 
two-level algorithm, where the top level consisted of an linked list 
index to pages of nodes. Adjacent half-empty pages would be combined 
upon detection. Presumably the index would be small enough to stay in 
real memory. 

The analogue of AVL trees on secondary storage is a B-tree 
[Comer79], B-trees provide access and updating times which are propor
tional to the log of the tree size, where the radix is the number of 
nodes which will fit on a page. Within each page we would probably use 
an AVL tree. The resulting code, although somewhat complex, should pro
vide excellent performance. 

Actual 
Performance 
poor 

good 
best 
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7. Conclusions 
In this paper we have given a new algorithm 'AVL) for calculating 

LRU success functions efficiently in bounded space. We have shown how 
to treat deletions of segments in calculating LRU success functions, we 
have also shown how to modify Bennett and Xruskal's algorithm for calcu
lating LRU success functions to run in bounded space while preserving 
its efficiency. Empirically both algorithms perform well. 
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