N91-23973

Measuring the Effects of Distributed Database Models
On Transaction Availability Measures

Ravi Mukkamala

Department of Computer Science
Old Dominion University
Norfolk, Virginia 23529.
email: mukka@cs.odu.edu

Abstract

Data distribution, data replication, and system reliability are key fac-
tors in determining the availability measures for transactions in distributed
database systems. In order to simplify the evaluation of these measures, .
database designers and researchers tend to make unrealistic assumptions
about these factors. In this paper, we investigate the effect of such assump-
tions on the computational complexity and accuracy of such evaluations. We
represent a database system with five parameters related to the above fac-
tors. Probabilistic analysis is employed to evaluate the availability of read-
only and read-write transactions. We consider both the read-one/write-all
and the majority-read/majority-write replication control policies. We con-
clude that transaction availability is more sensitive to variations in degrees
of replication, less sensitive to data distribution, and insensitive to reliabil-
ity variations in a heterogeneous system. The computational complexity of
the evaluations is found to be mainly determined by the chosen distributed
database model, while the accuracy of the results are not so much dependent
on the models.

Keywords and phrases: Availability, Database models, Distributed
Systems, Distributed Database Systems, Performance Evaluation, Proba-
bilistic Analysis, Reliability, Transaction Availability

Measuring the Effects of Distributed Database Models
On Transaction Availability Measures

1 Introduction

A distributed database system is a collection of cooperating nodes each
containing a set of data objects 1 A user transaction can enter such a
system at any of these nodes. The receiving node, some times referred to
as the coordinating or initiating node, undertakes the task of locating the
nodes that contain the data objects required by a transaction.

When we consider systems that require high guarantees for successful
execution of transactions (especially for read-only transactions), it is impor-
tant to consider transaction availability. Even though there are a number
of availability (and reliability) metrics defined for computer systems [2,9],
in this paper we choose two metrics: Start availability (TSA) and finish
availability (TFA).

Transaction start availability (TSA) defines the probability with which
a transaction can successfully start its execution. By our definition, a trans-
action is said to have a successful start when it can access all the required?
copies of the data objects that it needs for its execution. For simplicity, we
consider a data copy at a node to be available for access when that node
is up and it is accessible from the node that is currently coordinating the
execution of the transaction. A transaction can start its execution as soon
as all the required data object copies are available.

Transaction finish availability (TFA) defines the probability with which a
transaction can complete its execution, given that it has started its execution
successfully. If execution times for transactions are negligible (as compared
to the mean-time-to-fail of the components), then this reliability will be
close to 1. However, since transactions take a finite but significant amount
of time to execute, it is quite possible that the nodes that are involved in
the execution of a transaction (and available at the start of execution) may

'In this paper, the basic unit of access in a database is referred to as a data object.

2The number of copies of an object that are required to be accessed by a transaction
depends on the operation (read or write) and the replica copy control (e.g. read-one/write-
all, majority) (3,18).

fail during its execution. In this case, the transaction is said to be aborted.
In such cases, the execution needs to be restarted.

Formal definitions and evaluation of these two metrics (TSA and TFA)
depend on several factors such as the fault model of the system (including the
reliabilities of the system components), the transaction execution policy, the
data distribution policy, the degree of data replication, the concurrency and
commit protocols, and the characteristics of the given transaction [4,7,9]. In
addition, TFA depends on the execution times of transactions.

Even though it is theoretically possible to formulate equations expressing
the two metrics in terms of the above mentioned factors, the evaluation of
these equations is extremely cumbersome and requires unreasonably high
computation times. The evaluation of the exact values for these measures
generally involves both analysis and simulation. Evaluation tools with such
large execution times are certainly not acceptable to a database designer
who needs to evaluate a number of such possible database configurations
before arriving at a final design.

To overcome these problems, designers and researchers generally resort
to approximation techniques {7,3,16]. These techniques reduce the compu-
tation time by making simplifying assumptions regarding data distribution,
data replication, and transaction execution. The time complexity of these
techniques primarily depends on the underlying model as well as the evalu-
ation technique.

The effect of data distribution and replication models on evaluation of
transaction response time has been measured in earlier studies [13]. These
studies indicate that the computational complezity of a selected database
model does not necessarily reflect the accuracy of the resulting performance
evaluations. In fact, a model requiring computational time of 3 O(n?) has
yielded results very close to those from a complex model with O(n™) com-
plexity.

In this paper, we study the effect of data distribution, data replication,
and fault models on the accuracy of transaction availability evaluations. We
employ probabilistic analysis to arrive at the estimates for the desired values
for six typical models.

The balance of this paper is outlined as follows. Section 2 formally

3Here, n denotes the number of nodes in a distributed system.

defines the problem under consideration. In Section 3, we describe a clas-
sification scheme for data distribution and replication policies. Section 4
illustrates the advantages of probabilistic analysis over simulation, and em-
ploys this technique to evaluate the measures for two different models. In
Section 5, we compare the analysis methods for six models based on com-
putational complexity, space complexity, and the accuracy of the measures.
Finally, in Section 6, we summarize the obtained results, and suggest a
general approach for design and analysis of these systems.

2 Problem Description

In this paper, a read-only transaction is characterized by the average number
of data objects that it reads (i.e., its read-set size). Similarly, a read-write
transaction is characterized by the number of data objects that it reads
(read-set size), and the number of data objects that it updates (write-set
size).

The problem of estimating the availability of a read-only transaction

may be formulated as:

Given the following parameters, estimate TS A, and TF A, for a read-
only transaction that requires s data objects for read access.

e 71, the number of nodes in the database!

e N, the index set for the nodes in the database; NV = {1,2,...,n}

e d, the number of data objects in the database

o D, the index set for the data objects in the database; D =
{1,2,...,d}

e GD, the global data directory that contains the location of each of
the d data objects; the GD matrix contains d rows and n columns,
each of which is either a 0 or a 1; i.e,, GD;; = 0 or 1, Vi €
DandVjeN

o the reliability of the nodes in the network.

The problem of estimating the metrics for a read-write transaction can

be similarly defined.

4Table 1 summarizes the notation used in this paper

Symbol

Description

T

A, Ag
By, B,
C1,C
Dy, D,
E\, E,
GA
GD
TSA,
TSAL,

TSA"

The number of data objects accessed from the i group
The average number of copies of a data ob ject

The number of copies of a data object in the IR class

The number of data objects in the database

The number of data objects in the i class

The number of data object groups

Number of live nodes

Number of nodes

The number of nodes in the i** class

The number of copy classes

The number of reliability classes

The average node reliability

The reliability of a node in the it* class

The size of the read-set

Policies representing the data grouping

Policies representing limits on the data ob jects per node
Policies representing the degree of replication

Policies representing the copy distribution

Policies representing the component reliability

The index set for the data objects in the database

Group access vector representing the number of objects accessed
from each class or group

Global data directory (or dictionary)

The index set for the nodes in the database

Transaction start availability of a read-only transaction with
read-set size s (read-one/write-all policy)

Transaction start availability of a read-write transaction with
read-set size z + y and write-set size y (read-one/write-all policy)
Transaction start availability of a transaction with

read-set size s (read-majority/write-majority policy)

The size of the read-only ob ject set

The size of the read-write object set

Table 1: Notation

4

3 Model Description

As stated in the introduction, the primary objective of this paper is to in-
vestigate the effect of data distribution, replication, and fault models on
availability estimations and the computational complexity of these evalua-
tions.

To describe a data distribution, replication, and fault model, we charac-
terize it with five orthogonal parameters:

A - Object grouping (or clustering)

B - Limits on the number of data objects per node

C - Degree of object replication (or the number of copies)
D - Constraints on distribution of object copies
E - Constraints on component reliability

We now discuss each of these parameters in detail.

Some distributed database systems allocate individual data objects (3,
10]. We categorize this strategy as A;. In other systems, data objects
are first partitioned into disjoint groups, and then the resulting groups are
allocated [12,16,17]. Thus, the copies of all the data objects in a given group
are allocated to the same set of nodes. We refer to this strategy as A,.

Some database designers place no explicit limit on the number of data
objects that may be placed at a node [7]. This strategy is named as B.
Others restrict the number of data objects that may be placed at a given
node. This may be attributed to storage limitations or for security reasons
[11]. We refer to this strategy as Bs.

For simplicity, several analysis techniques assume that each data object
has the same number of copies (or degree of replication) in the database
system [6,16]. Some other techniques characterize the degree of replication
of a database by the average degree of replication of data objects in that
database [7]. In this paper, both these categories are referred to as Ci.
Others treat the degree of replication of each data object independently.
We refer to this as strategy Cs.

Some database designers and analysts assume that each data object (or
group) copy is randomly distributed among the nodes in the distributed
system [7]. We refer to this as D;. Others assume some specific allocation
schemes for data object (or group) copies [11]. Assuming complete knowl-
edge of data copy distribution (GD) is one such assumption. Depending
on the type of allocation, such assumptions may simplify the performance
analysis [13]. This category is referred to as Dj.

Again for simplicity, some database designers and analysts assume that
all components (nodes and links) in a distributed system have the same
reliability factor [1]. In this paper, we only consider node failures and node
repairs®. We let E; denote a policy where all nodes are assumed to have
the same reliability characteristics, and E; denote a pol_icy where nodes are
classified based on their reliability characteristics.

Using this classification, any known data distribution, replication. and
reliability policies may be categorized by these five parameters. For example,
< Aq, B1,C1, D2, Ey > represents a policy where

1. Data objects are first grouped and then allocated.

2. There is no ezplicit limit placed on the number of data objects (or
groups) allocated to any node.

3. Each group has the same average degree of replication.

4. The copies of a group are distributed in some systematic manner
among the nodes in the system.

5. All nodes in the system have identical reliability characteristics.

With these five parameters, we can describe thirty two basic policies.
Several variations of these basic schemes are possible due to variations in
systematic distributions (D;), variations on the limits of data objects per
node (B;), and the types of grouping (Az). Due to space limitations, in this
paper we chose to present the results for six of these policies. Interested
reader may refer to [14] for an analysis of other policies.

SThat is, the underlying network structure almost always facilitates communication

among live nodes.

We chose the following six policies to study the effect of the above men-
tioned parameters on availability computations:

Model 1: < Ay, By,C1, Dy, Ey >
Model 2: < Aq, By,Cy, D1, E1 >
Model 3: < 4;, B9, Cy, Dy, E7 >
Model 4: < Ay, B1,C2, D1, E1 >
Model 5: < A, B, C1, D2, Er >
Model 6: < 4;, B;,Ci, D1, Eq >

Among these, Model 1 represents a simple system that is computation-
ally attractive (as shown in Table 2). Model 2 reflects the effect of data
grouping on the evaluation. Similarly, Model 3 reflects the effect of placing
limits on number of data objects. Model 4 represents the effect of varia-
tions in number of copies of data objects on availability evaluation. Model
5 shows the effect of biased or non-random distributions of data objects
on the evaluation. Finally, Model 6 reflects the effect of non-homogeneous
environment (i.e., different node reliability characteristics) on transaction
availability evaluation.

In the following section, we derive closed-form expressions for the average
transaction availabilities for Models 1 and 2.

4 Probabilistic Computation of the Availabilities

There are several approaches for computing the availability of a given trans-
action in a database. These computations assume a given data distribution,
data replication, and fault models. We now look at two such methods:
simulation and probabilistic analysis.

Using simulation, one can generate the data distribution matrix (GD)
based on the data distribution and replication model. One can also generate
the reliabilities for each of the nodes in the system ©. Similarly, one can gen-
erate all possible transactions (with different read-sets and write-sets) that

%Here, we ignore the possibility of network partitioning, and thereby ignore link relia-

bility factor.

can be received at each of the nodes in the network. For each such transac-
tion received by the system, the data distribution matrix can be searched,
and its ability to access all the required data objects may be verified. In
addition to generating transactions, we should also generate node failures
and node repairs in the time domain. Thus, some transactions may not be
successful due to the inaccessibility of one or more data objects that they re-
quire (due to node failures). With such statistics (of successful/unsuccessful
transactions) in hand, we can obtain the average availability of a transaction
of a given size. This average corresponds to a single distribution matrix. The
generation and evaluation process may have to be repeated sufficient times
to get the required confidence in the final result. Since there are d data ob-
jects, there are (;“) possible transactions with read-set 7 size s, and there are
n nodes where each of these may be received. Given a transaction, and the
node where it is received, determining the state (successful/unsuccessful) of
a transaction takes at least O(nd) computations (i.e., to scan the columns of
the G D matrix corresponding to available nodes). If the distribution matrix
is generated k times, then the evaluation of the desired average set size for a
transaction of size s takes O(knzd(f)) time. In general, k is a function of the
number of copies, the number of data ob jects, the number of nodes, and the
data distribution model, and it could be very high. Suppose d = 100, s = 10,
and n = 10, then this method requires approximately 101"k computations.
Even for reasonable values of k, this is an unreasonably high computation
time.

To avoid this large evaluation time, we adopt probabilistic analysis. In
this analysis, we essentially study the given data distribution and reliability
model and arrive at an expression for the average transaction availability
for a given read-set (or write-set) size. With probabilistic analysis, some
data distribution models (e.g., Models 1 and 3) may require insignificant
amounts of computation. Some may need moderate computation times (e.g.,
Models 2 and 6), whereas others may need large computation times (e-g.,
Models 4 and 5). Regardless of the model, all these need considerably less
computation time (with more accuracy of results) than the corresponding
simulation methods.

We now illustrate the probabilistic method of analysis by applying it for

"The corresponding term for write-sets of update transactions may be easily written.

Models 1 and 2. Expressions for other models may be derived in a similar
manner. Interested reader may find the details of these derivations in [14].

4.1 Derivation of Reliability Metrics for Model 1

Model 1, designated as < Ay, By, C1, D1, Ey > assumes the following about
the data distribution and replication:

[R1] The data objects are allocated individually (i.e. not grouped) to the
nodes.

[R2] There are no limits placed on the number of data objects that may be

placed at each node.
[R3] The average degree of replication (c) of a data object is given.
[R4] The copies of a data object are allocated randomly.
[R5] Each node in the system has identical reliability (= r).

Further, to simplify the illustration of the current analysis, we make the
following assumptions regarding the distribution of groups, and the partici-
pating node set determination:

[R6] Each transaction is equally likely to access any data object.

[R7] The transactions that enter the distributed system are coordinated
by a set of reliable servers that search the distributed database system
(i.e., the availability of nodes and their dictionaries) for the availability
of the required data objects.

Due to Rule R7, we will not distinguish transactions that are received
at different locations in the system. Thus, we will disregard the originating
node as a parameter in this analysis®.

8The analysis can easily be extended to a situation where transactions received at an
unavailable node are automatically considered as unsuccessful.

4.1.1 Derivation of Availability for Read-only Transactions

Let us consider a read-only transaction Ty with s objects in its read-set and
received at one of the servers. Let us also assume that the copy control
algorithm follows a read-one/write-all policy. Thus Ty needs to access any
one of the c copies of a data object that it requires.

Given that exactly k of the n nodes are available (i.e., up), the probability
that at least one copy of a given data object is available is given by:

-k
("2
(2)
By definition of the read-one/write-all policy, Pk, represents the probability
that a data object is available for read access in the system. Since each data
object is allocated independently to the nodes in the system (by Rules R1

and R2), the probability that all s data objects required by T are available
for read access within these k nodes can then be expressed as:

(1)

Pk,l = 1~

e (n;k) s

Peo=Pey = |1 - —my (2)
W

Assuming the reliability of any given node to be r (from Rule R5), the

probability that 7} has successfully started is:

(Z) (1=)R P
n
k

n—kyl?
()rk(l —)k [1 - %] (3)

Given that T, has successfully started, we will now compute the prob-
ability with which it can be successfully completed. Let us assume that n,
nodes are involved in the execution of T}, and that it has an execution time
of t units. Now, in order for T} to be successful, all these n, nodes have to
be available for at least ¢ units of time, given that they were available at the
start of execution. Assuming an exponential distribution for time between
node failures with a failure rate of A, the probability that a node which is
available at time zero is available throughout time t is given by:

A = e (4)

TSA, =

n
>
k=1

n
2
k=1

10

From here, the probability that none of the n, nodes have failed during time

t is given by:

TF4, = A¥

— e—n,t,\ (5)

Estimating n, for transaction Ty is a complex problem. This problem has
been well investigated and the details of the solutions may be found in [15].
In this paper, we assume that n, for T, has been obtained a priori for a
given data distribution and fault model.

4.1.2 Derivation of Availability for Read-write Transactions

Let us now consider a read-write transaction T, with s objects in its read-
set and y objects in its write-set. Let us assume that for a given read-write
transaction write-setCread-set [3,7). Thus, among the s data objects. y
objects are both read and written, while z = s — y data objects are only
read. (Note that the intersection of the read-only and the read-write sets of
the data objects is empty.) Since the replication control algorithm follows a
read-one/write-all policy, T, needs to access all ¢ copies of the y data objects
and any one copy of the z data objects.

Given that exactly k of the n nodes are available (i.e., up), the probability
that all ¢ copies of a given data object are available is given by:
A

Pk,l (v;.)
Since each data object is allocated independently to the nodes in the system
(by Rules R1 and R2), the probability that all y data objects required by
T, are accessible for update is expressed as:

k\1¥
r, = |9)

Similarly, the probability that all z data objects are available for read access
may be computed as:

(6)

n-ky1%
Pi: = [1-(—(#} (8)

11

From here, the probability that T is successfully started may be computed

as:
n n o
TSAL, = Y, (J rf(1 =)" * P, Prs

: ky1Y n—kyj*
I

The finish availabilities fO["Tg may be similarly computed using Equa-
tions (4) and (5) where n, is now replaced by ng, (14].

4.1.3 Derivation of Availability for Transactions with Majority

Consensus

In the above two sections, we dealt with read-one/write-all replication con-
trol policy. The majority consensus protocols [18] which require the acces-
sibility of at least a majority of the total copies of a data object for both
read and write operations are very attractive in a failure prone environment,
Since both read and write operations require the same number of copies of
a data object, in this analysis we do not distinguish between read-only and
update transactions. Here, we simply refer to T as a transaction.

Let m = [£X1] represent the majority of copies. Then the expression for

2
start availability for T is given as:

/7 = ny k n-—k . (‘;) (T;:f))

TSA) = Y rE(L =) Y (10)
k=m k l=m (C)

Similarly, the expression for the finish availability for 71 may be expressed

as:

TFA, = AM
= et (11)

where n, now represents the average number of nodes accessed for executing
T, with the majority consensus protocol [15].

12

4.2 Derivation of Transaction Availability for Model 2

Model 2, designated as < A2, Bi,C1, Dy, Er > is similar to Model 1, except
that the data objects are now grouped, and the groups are then allocated
to nodes in the system. This may be described as:

R9| The data objects are first grouped and the groups are then allocated,
g g

to the nodes. Let the d data objects be partitioned into ¢ distinct

groups. Let dj represent the number of data objects in group k. Thus,

[R10] There are no limits placed on the number of groups that may be placed

at each node.
[R11] The degree of replication is the same for each group (c¢).
[R12] The copies of a group are allocated randomly.
[R13] Each node in the system has identical reliability (r).
Again, to simplify analysis, we make the following assumptions:
[R14] Each transaction is equally likely to access any data object.

[R15] The transactions that enter the distributed system are coordinated
by a set of reliable servers that search the distributed database system
(i.e., the availability of nodes and their dictionaries) for the availability
of required data ob jects.

4.2.1 Derivation of Availability for Read-only Transactions

Once again let us consider transaction T} executing under a read-one/write-
all policy. Given that k of the n nodes are available (i.e., up), the probability
that at least one copy of group k is available is given by:

)

1 - —5—= (12)
W)

If the vector GA =< aj,dz,...,a; > represents the number of data objects

accessed by Ti from each of the t groups, then the probability that T is

13

successfully started may be computed as:

n t (n—l) f(k)
TS4, = Y Pr(GA)Y, (") F-n"] [1 -2] (13)
GA l k=1 (C)

=1
d1y (da de
Pr(GA) = —————(“‘)(“’)d' - (14)
(3)
1 ifay >0
k) = 15
f(k) { 0 otherwise (15)
GA = <aj,a,...,a; >,
t
Sar=s and Vk1<k<t0< ap <k (16)
k=1

When data objects are equally distributed among the groups (i.e., dy = dz =
c.=dy = %), then this expression may be further simplified as:

dk

n ot a1k r/n_h1t—k
TSA, = ny _,n—r<1)[_(§)] [(g)] (5
A =1 kgl <l> (1) k : (c) (c) (lj
(1

)

-1~

)

The expression for TF A, is the same as in Equation (5).
4.2.2 Derivation of Availability for Read-write Update Transac-
tions

Let us consider transaction T> which requires z objects for read-only oper-
ations and y data objects for read and write operations (s = z + y). Thus
we need to define two GA vectors for read-only and read-write data ob ject
sets:

GA' = <aj,d),...,a; >
Sai=z and Vk1<k<t0<a <dy
GA" = <af,a},...,a) >

t
Za'k'zy and Vklgkgto_ga”sdk_a;c

14

In computing TSA,, we should recall that if a data object is write
accessible under a given node availability conditions, it is also read accessible.
However the reverse is not true. These two facts are made use of in deriving
the following expression for TSA ,

TSAL, = Y) Pr(GA)Pr(GA”)Z () il

GA'GA"
t ~ (n:l)} fi(k) ¢ [(C) } f”(k)
mi-% Ol (19

Pr(GA") GG ()d))

— ! —
el Iy

PT(GA") = —
flk) = 1 ifal=0Aa; >0
B 0 otherwise

1 ifal >0
1! k —
f1(k) { 0 otherwise

As before, when data objects are equally distributed among the groups

(ie. dy=dy=...=d; = %), this expression may be simplified as:
n k
R)]
=1 =1 k=0 kl k2 (2)

[1 _C+ (J]“’ [(";‘)}‘*"*’ (3 (=)
® © D

(19)

The finish availability TF A, , may be computed using Equation (3)
where n, is now replaced by n,, which is assumed to be known a priori in
this paper.

4.2.3 Derivation of Availability for Transactions with Ma jority

Consensus

As described in Section 4.1.3, under the majority consensus protocol both
the read-set and read-write set are treated in the same way for access prob-
ability computations. Thus, we only consider a read-only transaction with
a read-set size of s. The expression for TSA/ can now be written as:

. "\ gy [OED]
TSA! ST Pr(GA)Y = 11 Z—(n)—— (20)

GA =1 k=1 LI'=m

m = [*2'1] (21)

where Pr(GA) and f(k) are as defined in Equations (14) and (15).
Once again, when data ob jects are equally distributed among the groups

(ie.dy=dp=...=dy = %), this expression may be written as:
n t min{l,c) (ly/n-I k
t (i,)
TS " — n 1 _ n-l 11 C—l;
SEPP> (:) SV PP

(22)

M= e
i ©

5 Comparison of the Availabilities for the Six
Models

As mentioned in the introduction, the main objective of this paper is to
determine the effect of data distribution, replication, and fault models on
the estimation of transaction availability. To achieve this, we evaluate the
desired measure using six different models. The comparison of these evalua-
tions is based on computational time, storage requirement, and the average
values obtained.

Due to space limitations, we cannot present the detailed derivations for
the average values for Models 3-6. The final expressions, however, are sum-
marized in the appendix.

16

5.1 Computational Complexity

We now analyze each of the evaluation methods (for Models 1-6) for their
computational complexity.

e Let us refer to Model 1. From Equations (3) and (9), it is clear
that computation of TS4, and TSA., take O(cn?) time °.
larly, from Equation (10), it is clear that the computation of TSAY

Simi-

requires O(¢2n?) time.

e We now derive this complexity term for Model 2. Let us first look
at the computation of TSA,. From Equation (14), we derive that
the computation of Pr(GA) requires O(s) time. The number of G As
generated is approximately O(st) where t represents the number of
data object groups. Given a GA vector and Pr(G4), computation of
TS A, requires O(nct+n?) arithmetic operations (from Equation (18)).
Thus the evaluation of TS A, requires O(s* (nct + n? + s)) time. Sim-
ilarly, we can conclude that TSA’r_y requires O(z'y!(nct + n? + s))

time (Equation (19)), and TSA{ requires O(st(nc’t + n* + s)) time

(Equation (20)).

e For Model 3, the computational complexity for TS A, is O(nt+n(s+c))
(Equation (23)). Similarly, TSA; , and T SA{ require O(n?+n(c+s))
and O(n? + n(c? + s)) respectively (Equations (24) and (25)).

e The computational complexity for Model 4 depends on the number
of copy categories. Assuming that s < di for k = 1,2,...p, we can
generate approximately s? different C'A vectors. Thus the computation
of TS A, requires O(s?(n? +npc+s)) time. To compute T'SA’, we need
to compute the number of possible CA’ and C A" vectors. There are
approximately z? CA’ vectors and y? CA" vectors. Thus, TSA,
requires O(zPy?(npc + n? + s)) time. Similarly, we can conclude that
TSA" requires O(sP(npc® + n? + s)).

e In Model 5, we assume that the entire data dictionary information
is available to us. Given a GD matrix and a node status vector S,

%Here, we are assuming that the evaluation of the terms (2) and p? takes O(g) and

O(1) time respectively.

17

computation of f(S), f'(S), and f”(S) require O(nd) time to search
the matrix. Given n, there are 2" possible S vectors. Thus the com-
putations of TSA, TSA’, and TSA” require O(2"(nd + s)) time.

In Model 6, the number of NA vectors generated is (n; + 1)(n2 +
1)...(ng+1). For simlification, we approximateit as {7 +1) . Given
a N A vector, the computation of TSA, TSA’, and TSA” require O(s+
c+q), O(s+c+q) and O(sc+c?+qc) time respectively. Thus the three
metric evaluations require O((Z +1)*(s+c+ 7)), O((% + 1)?(s+c+4q)),
and O((Iq‘- + 1)%(cs + ¢ + ¢q)) time respectively.

These complexities are summarized in Table 2. From this table it may be
observed that models 1 and 2 are computationally very attractive. The
complexity of evaluations with models 2,4, and 6 depend on the number of
groups, the number of copy variations, and the number of reliability vari-

ations respectively. For systems with a large number of nodes, evaluations

with model 5 are very expensive.

5.2

Space Complexity

We now discuss the space complexity for the six models:

Models 1 and 3 just require the values of d,¢,s,r and n. Thus the
storage requirement is O(1)

Since Model 2 requires that the d; values be stored, and that the GA
vectors be generated, it requires O(t) storage, where ¢ is the number
of data groups.

Model 4 requires O(p) storage to contain the p copy classes.
Model 5 requires O(nd) storage for the G D matrix.

Model 6 requires O(q) storage to contain the node reliability class
information.

Thus, Model 5 has the largest storage requirement. These complexities are

summarized in Table 3.

18

Model Computational Complexity
Read-only Read-write Majority
1 O(cn?) O(en?) O(c*n?)
2 O(st(nct + n? + s)) O(z'yt(net +n® +s)) | O(s ‘(nc2t+n +8))
3 O(n? +nc+ns) O(n? + nc+ ns) O(n? + nc? +n<)
4 O(sP(npc + n? +s)) O(zPyP(npc + n? +35)) | O(s”(npc? + n? +8))
5 o(2" (nd+s) O(2™(nd + s)) O(2*(nd + s))
6 | O((2+1(s+ct+q) | 02 +1)(s+c+a) | OUE +1)(es + ¢ +cq))

Table 2: Computational Complexities for the Evaluation of Availabilities

Model

Space
Complexity

D U W N

0(1)
O(t)
O(1)
O(p)
O(nd)
O(q)

Table 3: Space Complexities for the Evaluation of Availabilities

19

5.3 Comparison of the Availabilities

In order to compare the effectiveness of each of these models, we have evalu-
ated availabilities for a wide range of parameters. Due to space limitations,
in this paper, we only present a small subset of these results. Similarly,
since TFA,, TFAL ,
in models, we are not presenting these results here. We only present the

and TFAY are found to be insensitive to variations

results for the transaction start availabilities. These results are summarized
in Figures 1-7.

Figures 1-3 compare the availabilities obtained from the six models. The
following assumptions are made for models 1-6:

1. In Model 2, we assume that the d data objects are grouped into n
data groups each containing d/n data objects. This is similar to the
assumptions in [13].

2. In Model 3, we assume that each of the n nodes in the system is
allocated ezactly the same number of data objects (equal to dc/n).

3. In Model 4, we assume that d/2 data objects have ¢ copies, d/4 data
objects have ¢ + 1 copies, and the rest have ¢ — 1 copies. This keeps
the average copies the same (i.e., ¢) but brings a copy variation factor
into consideration.

4. In Model 5, we assume that the d data objects are allocated system-
atically so that the copies of the ith data object are allocated, in a
circular manner, to the nodes starting from (i ®n) + 1.

5. In Model 6, we assume that n/3 nodes have reliability r — 0.1, n/3
have reliability 7 + 0.1 and the rest have a reliability r. 10

Figure 1 summarizes the results for read-only transactions with read-one/write-
all policy. Figure 2 presents these results for transactions (read-only or
read-write) with majority-read/majority-write protocol. Finally, Figure 3
summarizes the results for read-write transactions with read-one/write-all
policy. From these results, we make the following observations:

1When r = 0.95, we assume that n/3 nodes have reliability r —0.5, n/3 have reliability
r 4 0.05 and the rest have a reliability r.

20

o For read-only transactions (with read-one/write-all policy),

(i)

(ii)

(iii)

(iv)

Evaluations with models 1 and 3 are close over the entire range

of s and r.

Evaluations with models 2 and 5 are also close over the entire
range of s and r. This may be explained by the fact that the
number of groups ¢ = n = 10 for model 2 and the systematic
distribution for model 5 implicitly results in 10 groups. However,
they do differ in the manner in which these groups are distributed.

For r > 0.95, evaluations with all models, excepting model 4, are
quite close.

Evaluations with model 4 appear to significantly deviate from
all other models for r > 0.75. This implies that modeling of
the degree of replication is a very important task in availability

evaluations.

o For transactions with majority-read/majority-write policy,

(v)

(vi)

(vii)

(viii)

Evaluations with models 1 and 3 appear to be close. Similarly,
evaluations with models 2 and 5 are close. In addition, evalua-
tions with model 6 are close to evaluations with models 1 and
3.

For s > 25, the availabilities appear to be independent of the
read-set size. This implies that computations for s > 25 are
redundant.

The evaluations with models 2 and 5 seem to differ at higher
values of 7. The evaluations with the other four models are close
for n = 20. This is an interesting observation.

Once again, the variations in degree of replication of individual
data objects appears to have a dominating effect on availability

evaluations.

o For read-write transactions with read-one/write-all policy,

(ix)

The availabilities for s > 5 are significant only when r 2> 0.99.

21

6

(x) Since the availabilities are generally low, the effect of the differ-
ences in the models seem to be insignificant. At high reliabilities
(i.e. © > 0.99), the evaluations with model 4 seem to deviate
from the evaluations with the other models.

We will now study the effect of the individual model parameters.

Models 1 and 3 are very simple, and need no further investigation.

Evaluations with model 2 represent the effect of data object group-
ing on availability (Figure 4). As the number of groups is increased,
the availability seems to be decreasing. This effect seems to dimin-
ish for ¢ > 25. This effect is insignificant for read-write transactions.
Similarly, this effect seems to vanish at high node reliabilities.

Evaluations with model 4 represent the effect of variations in degrees
of replication of data objects (Figure 5). The effect of these varia-
tions seem to be insignificant on read-write transactions. The effect
of copy variations seem to be more apparent at high node reliabilities.
Similarly, this effect seems to be more pronounced on read-only trans-
actions (with read-one/write-all policy) than the other two classes.

Model 5 represents the effect of data distribution on the availability
evaluations. From Figure 6, it may be observed that the distribution
effect is only evident at s > 10. In addition, the effects are more
significant for read-only transactions than the other two classes. The
effect is less evident at high node reliabilities.

Model 6 represents the effect of node reliability variations on avail-
abilities. From Figure 7, it may be observed that the variations have
almost no effect on availability evaluations.

Conclusions

The current investigations on measuring the effect of data distribution, repli-
cation, and fault models on transaction availability evaluation have resulted
in some very interesting observations. As part of this study, we chose six

22

models representing six different parametric assumptions that researchers
and designers generally tend to make in their analysis. Using probabilis-
tic analysis, we derived expressions for transaction availability for three
classes of transactions: read-only (read-one/write-all policy), transactions
with majority-read/majority-write policy, and read-write transactions (with
read-one/write-all policy). The effect of the six parameters is measured by
evaluating availabilities (for different read-set sizes). From here, we conclude
that:

e By choosing a proper distributed database model, the computational
complexity of transaction availability evaluations can be significantly

reduced.

e For values of s < 10, all models result in almost the same transaction

evaluation.

e It is not necessary to evaluate transaction availabilities for values of
s > 25.

o Evaluations for the read-only transactions (with read-one/write-all
policy) are more sensitive to database modeling than the other two

classes of transactions.

e The degree of replication of individual (or group) data ob jects seems
to have a significant effect on transaction availabilities. Thus, when
different data objects have different copies, adopting average degree
of replication to represent ant object in a system, may not result in
accurate availability evaluations.

e The actual distribution of data object copies has some, if not signifi-
cant, impact on availability evaluation.

o In a heterogeneous environment where different nodes may have dif-
ferent reliabilities, it is sufficient to represent each node by the average
node reliability, without affecting the availability evaluations.

o Data object grouping (logical or physical) does not seem to effect the
accuracy of availability evaluations as long as the number of groups is
not too small (e.g. When d = 1000, g > 25 is sufficient).

23

Distributed database designers and researchers can utilize these results in
choosing appropriate parameters that would result in reduced computational
requirements without sacrificing the resulting accuracy of the design and
analysis of these systems. ‘

24

o

Appendix

Model 3 < Ay, B,, C, Dy, Ey >
Here, we assume that each node has exactly the same number ofdata objects

(= &2).

TSA, = Xn:(n)r"(l—r)"'k &) (23)
s - k d
k=1 (3)
n (yk) (z‘k—y)
TSAL, = (")r“(1_r)"-“ vl oz (24)
i kZ_-:l k @ (7
TSA! = zn: <n>rk(l—r)"'k 5 (25)
T k)
k=m s
TFA, = e ™t (26
TFA,, = et (27)
TFA! = e ™t (23)

. - _(“:k)}
¢ = d[l W)
k

ze = d

Model 4 < Ay, By,Cs, Dy, E, >:

Here, each data object may have its own degree of replication specified.
For an efficient computation, we classify the data objects into p categories
(1 € p £ n) based its degree of replication. d; denoted the number of data
objects in the /*} category where each object has ¢; (1 £ ¢; < n) copies.

n—k
TSA, ZPT(C’A)Z (> (1- r)"-"H [1 - ((°'))] (29)

25

TSA,, = ZPr C»l)ZPr (oFW (> k(1 —)k
cA' A” k=
&

TSA" P ~ (" ik HEh”
s = T(CA)Z k - H Z—T)'—' (31)

CA k=m I=1 [l'=my
P
CA = <aj,ag,...,05 >, Zakzs,\fklgkgpogakgdk_
k=1
cA’ = <a'l,a’2,...,a;, >, Z ay =z, ¥k 1<k <p0<Lap<d
k=1
P
CA" = <aj,dy,...;a)> > aj=y, Vk1<k <p0<ay<d—ay
k=1
dy\ (d2 d
Pr(CA) = _____—(“‘)(”)'“(“:)
‘ d
)
dyy (d2 dp
pricay = 6D
d
(%)
(d1-aly (d2—a} dp—ajp
pricry o EICED ()
o (77
v
]
m =
2

The expressions for TFA,, TFA; ,, and TF A’ are the same as in Equa-
tions (26) - (28).

Model 5 < 4y, By,Cy,D2, E; >
Here, we assume that the entire data distribution is available as a dictionary,
GD.

(%)

TSA, = ZPr o (32)
1(8)) (£(5)-y

TSA,, = ZP ((d))((dfy)) (33)

26

(flrss)) |
E Pr(S)—% (34)
5 ()

Pr(S) = rfm(sl(l—r)"'fm(s)

bﬂ
95
24

I

where

S - Node status vector; §; = 1 = Node jis up; 5; =0 = Node j is down.
f(S) - The number of data objects available for read with the given node
status vector (S). This is computed by scanning the columns of the GD
matrix corresponding to the live nodes (as given by 5).

f'(S) - The number of data objects available for update (i.e. all ¢ copies
of these data objects are available at the live nodes) with the given node
status vector (S). This is also computed by scanning the columns of the GD
matrix corresponding to the live nodes (as given by S).

f"(S) - The number of data objects available with a majority of copies
among the available nodes. As before this is computed by scanning the
columns of the GD matrix corresponding to the live nodes (as given by 5).
£(S) - The number of nodes available (or up) as indicated by the vector
S.

Model 6 < Al,Bl,Cl,Dl,Eg >:

Here each node may have its own reliability. For computational purpose, we
categorize the nodes based on their reliability. We assume that there are ¢
(1 € ¢ < n) such categories. We let n; to represent the number of nodes
with reliability r;, and a; to represent the number of currently active (or up)

nodes with this reliability.

TSA, = Y Pr(NA) 1_(,1_2;:1“. f[[() (1— &) “T’J%
NA L (c) k=1

TSA,, = S Pr(NA) E%‘_a_)] [l_gﬂ_tggﬂ}
NA)

()
k];Il [(ak) ax (1 -7)nk—ak]

c (Z?_l ; " L=t ‘)
TSA? = Y Pr(NA)| Y =
I (c)

k=m

27

(36)

28

References

[1]

[4]

[6]

(8]

(9]

M. Ahamad and M.H. Ammar, “Performance characterization of
quorum-consensus algorithms for replicated data,” Tech. Report, GIT-
ICS-86/123, Georgia Institute of Technology, 1986.

M.D. Beaudry, “Performance-related reliability measures for computing
systems,” IEEE Trans. Computers, Vol. C-27, pp. 540-547, June 1978.

P.A. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Computing Surveys, Vol. 13, pp. 185-221,
June 1981.

B. Bhargava and L. Lilien, “A review of concurrency and reliability is-
sues in distributed database systems,” Concurrency Control and Relia-
bility Issues in Distributed Systems, B. Bhargava (Ed.), Van Nostrand
Reinhold Co, pp. 1-84, 1987.

S. Ceri, G. Martella, and G. Pelagatti, “Optimal file allocation for a
distributed database on a network of minicomputers,” Proc. Interna-
tional Conference on Data Bases, University of Aberdeen, pp. 216-237,
July 1980.

E.G. Coffman, E. Gelenbe, and B. Plateau, “Optimization of number
of copies in a distributed database,” IEEE Transactions on Software
Engineering, Vol. SE-7, No. 1, pp. 78-84, 1981.

S.B. Davidson, “Analyzing partition failure protocols,” Technical Re-
port, MS-CIS-86-05, Dept. of Computer Science, University of Pennsyl-
vania, January 1986.

H. Garcia-Molina, “Performance evaluation of the update algorithms
for replicated datain a distributed database,” Ph.D. Dissertation, Com-
puter Science Department, Stanford University, June 1979.

H. Garcia-Molina and J. Kent, “Performance evaluation of reliable dis-
tributed systems,” Concurrency Control and Reliability in Distributed
Systems, B.K. Bhargava (Ed.), pp. 454-488, 1987.

29

(10]

[13]

[14]

(15]

[16]

[17]

(18]

B. Gavish and H. Pirkul, “Computer and database location in dis-
tributed computer systems,” IEEE Transactions on Computers, Vol.
C-35, No. 7, pp. 583-590, July 1986.

R. Mukkamala, “Design of partially replicated distributed database sys-
tems,” Technical Report,, TR 87-04, Department of Computer Science,
University of lIowa, July 1987.

R. Mukkamala, S.C. Bruell, and R.K. Shultz, “Design of partially repli-
cated distributed database systems: an integrated approach,” Proc.
ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pp. 187-196, May 1988.

R. Mukkamala, “Measuring the effect of data distribution and replica-
tion policies on performance evaluation of distributed database sys-
tems,” Proc. Fifth International Conference on Data Engineering,
February 1939.

R. Mukkamala, “Measuring the effect of data replication and fault mod-
els on transaction availability analysis,” Technical Report, TR 89-35,
Department of Computer Science, Old Dominion University, May 1989,

R. Mukkamala, “Performance evaluation of distributed database sys-
tems,” Technical Report, TR 89-43, Department of Computer Science,
Old Dominion University, June 1989,

K.C. Sevcik, “Comparison of concurrency control methods using ana-
lytic methods,” Proc. Information Processing 83, R.E.A. Mason (Ed.),
North-Holland, September 1983.

L.E. Stanfel, “Applications of clustering to information system design,”
Information processing and Management, Vol. 19, No. 1, pp. 37-50,
1983.

R.B. Thomas, “A majority consensus approach to concurrency control
for multiple copy databases,” ACM Transactions on Database Systems,
Vol. 4, No. 2, pp. 180-209, June 1979.

30

TSA,

TSA

Figure 1a. n=10, d=1000, c=3,r=0.4

x
Model 1
0.900
A Model 2
0.800 + Model 3
0.700 ¢ Model 4
® Model §
0.600 ® Model 6
0.500
0.400
0.300
‘
0.200
0.100
0 = |
1 21 41 61 81 101
Read-set size () —»
Figure 1c. n=10, d=1000, ¢=3,r=0.90
0.990 %® ‘
0.970
0.950
0.930
‘0910
0.890
0.870
0'851 21 41 61 81 101

Read-set size (s) —»

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100

Figure 1b. n=10, d=1000, ¢=3, r=0.75

. ,

21 41 61 81 101
Read-set size (s) ——

Figure 1d. n=10, d=10000, ¢=3, r=0.75

_

-

-

21 41 61 81 101
Read-set size () —3»

Figure 1. Transaction Start Availabilities for Read-Only Transactions (with Read—one/Write-all policy)

Figure le. n=10, d=1000, c=5, r=0.75 Figure 1f. n=20, d=1000, c=3, r=0.75

0.9900 3 J 0.900 .
0.9800 0.800
T 0.9700 0.700
754 0.9600 T 0.600
0.9500 Tsa 0500
x 1
0.9400 Model 1 0.400
A Model 2
09300 | 4+ Model 3 0300
09200 ¢ Modeld 0.200
¢ Model §
0.9100 8 Model 6 0.100
0.90 0
1 21 41 81 81 101 1 21 &1 61 81 101

Read-set size (s) = Read-set size (5) ——P»

Figure 1g. n=10, d=1000, c=3, r=0.95
0.960
0.930

0.900
0.870

TSA,

0.840

0.810

0.780

0.75
1 21 41 61 81 101

Read-set size (s) —»

Figure 1 (Continued). Transaction Start Availabilities for Read-only Transactions (Read—one/Write-all Policy)

TSA,

TSA!

0.400

Figure 2a. n=10, d=1000, ¢=3,r=0.4

0.360
0.320
0.280
0.240
0.200
0.160
0.120
0.080
0.040

4 & Model 2

X Model 1

+ Model 3

¢ Model 4

® Model 5
® Model 6

= W

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100

6 11 16 21 26
Read-set size (s) —»

Figure 2¢. n=10, d=1000, ¢=3, r=0.90

-]

—

21 41 61 81 101
Read-set size (s) —»

T

TSA

TSA,

-0.500
E]

Figure 2b. n=10, d=1000, c=3, r=0.75

0.900
0.800
0.70d
0.600

0.400 2
0.300

..
—

0.200
0.100

0 M 4
21 41 61 81 101
Read-set size (s) — 9

—_

Figure 2d. n=10, d=10000, c=3,1=0.75

0.900
0.800
0.700
0.600
0.500

0.400
0.300

0.200 ‘

0.100

21 41 81 81 101
Read-set size (s) —

—

Figure 2. Transaction Start Availabilities with Read-Majority/Write-Majority Protocol

Figure 2e. n=10, d=1000, ¢=5, r=0.75

0.900
0.800

0.700
T —

0.600
TSA,, 0.500
0.400
0.300
0.200

0.100

1 21 41 61 81 101
Read-sct size (s) —»

Figure 2g. n=10, d=1000, c=3, r=0.95

0.900 ‘

0.800

0.700
T 0.600 ¢ —a
TSA, 0.500
0.400

0.300
0.200
0.100

-

21 41 61 81 101
Read-set size (s) =

Figure 2f. n=20, d=1000, ¢=3, r=0.75

0.900 X Model 1
r'S
" Yoo
T 0.700 * Model 4
0.600 * Model 5
Tsar 0500 ® Model 6
0.400 —®
0.300]
0.200
0.100
0 -~ —;’
1 21 41 61 81 101

Read-set size (s) —»

Figure 2 (Contd.). Transaction Start Availabilities with Read-Majority/Write-Majority Protocol

TSAL,

TSAL,

0.450

Figure 3a. n=10, d=1000, c=3, r=0.

75

0.400
0.350
0.300
0.250
0.200
0.150
0.100

0.050

X Model 1
A Model 2
+ Model 3

* Model 4

® Model 5
8 Model 6

y=s/3,x=s5-y

1

0.970

0.950

0.930

0.910

0.890

0.870

0.85

23 43 63 83
Read-set size (s) —»

103

Figure 3¢. n=10, d=1000, ¢=3, r=0.99

3 23 43 63 83

Read-set size (s) —»

103

Figure 3b. n=10, d=1000, c=3, r=0.90

0.720
0.640
0.560
0.480
TSA,, 0.400
0.320
0.240
0.160

0.080

0

23 43 683 83
Read-set size (s) —»

103

Figure 3d. n=10, d=10000, ¢=3, r=0.90

0.750

3
0.700

0.650
0.600
0.550
TSA,, 0.500
0.450

0.400

0.350

0.30

h

23 43 63 83
Read-set size (s) —»

103

Figure 3. Transaction Start Availabilities for Read—write Transactions (with Read—one/Wrile-all Policy)

Figure 3e. n=10, d=1000, ¢=5, r=0.90

0.600
r

0.570

0.540

0.510

T 0.480
TSA,, 0.450
0.420

0.380

0.360
0.330

-

0.30
3

23 43 63 83 103
Read-set size (s) —W

TSA.,

0.720
0.640
0.560
0.480
0.400
0.320
0.240
0.160

0.080

Figure 3f. n=20, d=1000, ¢=3, r=0.90

3
]

3 23

43 63 83 103
Read-set size (s) —»

Figure 3 (Contd.) . Transaction Start Availabilities for Read-write Transactions (with Read—one/Write—all Policy)

Figure 4a. n=10, d=1000, ¢=3, r=0.50

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100

X Groups=3
A Groups=10
+ Groups=25
¢ Groups=50

7N

X

\ &

Read-only (Read—one/write-all)

1 21

41 61 81 101
Figure 4¢. n=10, d=1000, ¢=3, r=0.75

X
X
X

»

Majority-read/Majority-write

21 41 101

Figure 4e. n=10, d=1000, c=3, r=0.75

61 81

L,

Read-write (Read—one/write-all)

y=5/3,x=5-y

-
23 43 63 83 103
Read-set size (s} ——3»

TSA,

TSA,

TSA,,

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100

0

Figure 4b. n=10, d=1000, c=3, r=0.75

X |

N)
%
N
B
v —4
Read-only (Read—one/write-all)
1 21 41 61 a1 101

Figure 4d. n=10, d=1000, ¢=3, r=0.95

0.950
0.900
0.850
0.800
0.750
0.700
0.650
0.600
0.550

N
N

N
N

=

Majority-read/Majority—write

05
1

21 41 61 81 101

Figure 4f. n=10, d=1000, c=3, r=0.95

0.800
0.860
0.820
0.780
0.740
0.700
0.660
0.620
0.580
0.540

0.5

Read-write (Read-one/write-all)

I

23 43 63 83 103

Read-set size (s)

Figure 4. Illustration of the Effects of the Number of Groups on Availability Metrics (Model 2)

- Figure 5a. n=10, d=1000, c=3, r=0.5

0800 A = 1000.c, = 3
_ 080 E o 4, =300,c,=2.d,=400,c, =3
0.700 dy=300,c,=4
d, =300,c, = 1,d, = 400, ¢, = 3
+ 1 R s (42 L2
0.600 dy=300,c,= 5
- 0.500 o di=dy=dy=d,=d; =200,
TSA, C=ii=12,..5"
0.400 Read-only (read-one/write-all)
-— 0.300
0.200

0.100

s hd
1 21 41 61 81 101

Figure 5c. n=10, d=1000, c=3, r=0.75

0

- 0.900
0.800 Majority-read/Majority-write
—_ 0.700
T 0.600
,.0.500 ;
- TSA,
0.400

0.300

A

—

1 21 41 61 81 101

0.200

0.100

0

Figure Se. n=10, d=1000, c=3, r=0.75

0.900 Read-write (read—one/write-all)

0.800

— 0.700
T 0.600

TSA, 0.500

0.400

0.300

- 0.200
0.100

0 |

— 1 21 41 61 81 101
Read-set size (s) —P»

T84,

TSA,

0.800
0.800
0.700
0.600
TSA; 0.500
0.400
0.300
0.200
0.100

Figure Sb. n=10, d=1000, ¢=3, r=0.75

Read-only (read—one/write-all)

1 21 41 61 81 101
Figure 5d. n=10, d=1000, c=3, r=0.95

X

Majority-read/Majority-write
1 21 41 61 81 101

Figure 5f. n=10, d=1000Q, ¢=3, r=0.95

Read-write (read—one/write-all)

21 41 61 8t 101
Read-set size (s) ——3»

Figure 5. Illustration of the Effect of Copy variations on Availability (Model 4)

TSA,

0.900
0.800
0.700
0.600
TSA, 4500
0.400
0.300
0.200
0.100

0

0.900
0.800
0.700

T

. 0.
1s4;, >°%

0.500
0.400
0.300
0.200
0.100

1 21

Figure 6a. n=10, d=1000, c=3, r=0.50

Read-only (Read—one/write-all)

41 61 81 101

Figure 6¢c. n=10, d=1000, c=3, r=0.75

Majority—-read/Majority—write

b4

1

21 41 61 81 101
Figure 6¢. n=10, d=1000, c=3, r=0.75

Read-write (read-one/write-all)

x Systematic distribution
A Arbitrary distribution

X

21 41 81 81
Read-set size (s) ——»

101

TSA,

TSA!

TSA.,

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100

Figure 6b. n=10, d=1000, ¢=3, r=0.75

N 3
raY e

Read-only (Read—one/write-all)

0

1 21

41 61 81 101
Figure 6d. n=10, d=1000, c=3, r=0.95

0.950
0.800
0.850
0.800
0.750
0.700
0.650
0.600
0.550

0.5

3
7Y

A

N N
N Lal

Majority-read/Majority-write

0.950
0.900
0.850
0.800
0.750
0.700
0.650
0.600
0.550

0.5

21 81 101

Figure 6d. n=10, d=1000, c=3, r=0.95

41 61

Read-write (read—one/write-all)

1 21 41 61 81 101

Read-set size (s) —»

Figure 6. Illustration of the effect of Systematic Distribution on Availability (Model 5)

TSA,

TSA,

TSA.,

Figure 7a. n=10, d=1000, c=3, avg. r=0.50

0.900 x ﬂ1=10,f1=0.5
) A n=3r=03n=4r,=05,
0.800 ny = 3,"] =0.70
+ m=n=n=n=n=2
0.700 1 2 3]
rn= 0.1.72 = 0.3,73 = 05,
0.600 re=07,rs=09
0.500 Read-only (Read-one/write-all)
0.400
0.300
0.200
0.100
o]
0 20 40 60 80 100
Figure 7¢. n=10, d=1000, c=3, avg. r=0.75
0800 e = 10,7, = 0.75
0800} & p,=3,r,=0.5001,n,=4,r,=0.75
0.700 ny = 3,r3 = 0.9999
n1=nz=n3=n‘=n5=2
0.600 r =O.55,72=0.65,r3=0.75,
Ty = 0.85,"5 = 095
0.500
0.400
0.300
0.200 #
0.100 Majority-read/majority-write
0
1 21 41 61 81 101
Figure 7e. n=10, d=1000, c=3, avg. r=0.75
x n,=10,r, =075
08001 4 p, =3,r, =0.5001,n,=4,r, = 0.75
0.800 ny=3,r,=0.9999
R =Ry=Ny=ng=ng=2
0.700 ry=0.55,r, = 0.65,ry = 0.75,
0.600 Te = 0.85,"5 = 0.95
0500 || Read—write (Read—one/write-all)
0.400
0.300
0.200
0.100
0
1 21 41 61 81 101

Read-set size (s) —»

TSA,

TSA,

TSA,,

Figure 7b. n=10, d=1000, ¢=3, avg. r=0.75

0.900
0.800
0.700
0.600
0.500 | % m =10, =075
0.400 | & :;?—_ %,':;—: (())59(;09;. n,=4,r,=075
0300 |+ m=m=m=n=ns=2
0.100 | Read-only (Read-one/write-all)
0 0 20 40 60 80 100
Figure 7d. n=10, d=1000, c=3, avg. r=0.95
0.950
0.900 o
0.850
0.800 x n, =10,r,=0.95
07504 m=3,r,=09,n,=4,r,=0095,
0.700 ny=3,ry=0.9999
0.650
0.600
0.550 Majority-read/majority-write
03 0 20 40 60 80 100
Figure 7. n=10, d=1000, c=3, avg. r=0.95
0.950
0.900 —A

0.850
0.800 [x n= 10, n= 0.95
0750 M= 3,fl = 0.90,)12 = 4,r2 = 095,

6.700 ny=3,ry=0.9999

0.650

0.600

osso| Read-write (Read-one/write-all)
0S5

0 20 40 60 80 100
Read-set size (s) —P

Figure 7. Illustration of the Effect of Reliability Variations on Availability (Model 6)

IEEE PROCEEDINGS OF THE

- SOUTHEASTCON 91

Volume2

 91CH2998-3 NNASN

