
. °

N91-23973

Measuring the Effects of Distributed Database Models

On Transaction Availability Measures

Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.
email: mukka@cs.odu.edu

Abstract

Data distribution, data replication, and system reliability are key fac-

tors in determining the availability measures for transactions in distributed

database systems. In order to simplify the evaluation of these measures,

database designers and researchers tend to make unrealistic assumptions

about these factors. In this paper, we investigate the effect of such assump-

tions on the computational comple.,dty and accuracy of such evaluations. We

represent a database system with five parameters related to the above fac-

tors. Probabilistic analysis is employed to evaluate the availability of read-

only and read-write transactions. We consider both the read-one/write-all

and the majority-read/majority-write replication control policies. We con-

clude that transaction availability is more sensitive to variations in degrees

of replication, less sensitive to data distribution, and insensitive to reliabil-

ity variations in a heterogeneous system. The computational complexity of

the evaluations is found to be mainly determined by the chosen distributed

database model, while the accuracy of the results are not so much dependent
on the models.

Keywords and phrases: Availability, Database models, Distributed

Systems, Distributed Database Systems, Performance Evaluation, Proba-

bilistic Analysis, Reliability, Transaction Availability

Measuring the Effects of Distributed Database Models

On Transaction Availability Measures

1 Introduction

A distributed database system is a collection of cooperating nodes each

containing a set of data objects 1 A user transaction can enter such a

system at any of these nodes. The receiving node, some times referred to

as the coordinating or initiating node, undertakes the task of locating the

nodes that contain the data objects required by a transaction.

When we consider systems that require high guarantees for successful

execution of transactions (especially for read-only transactions), it is impor-

tant to consider transaction availability. Even though there are a number

of availability (and reliability) metrics defined for computer systems [2,9],

in this paper we choose two metrics: Start availability (TSA) and finish

availability (TFA).

Transaction start availability (TSA) defines the probability with which

a transaction can successfully start its execution. By our definition, a trans-

action is said to have a successful start when it can access all the required 2

copies of the data objects that it needs for its execution. For simplicity, we

consider a data copy at a node to be available for access when that node

is up and it is accessible from the node that is currently coordinating the

execution of the transaction. A transaction can start its execution as soon

as all the required data object copies are available.

Transaction finish availability (TFA) defines the probability with which a

transaction cart complete its execution, given that it has started its execution

successfully. If execution times for transactions are negligible (as compared

to the mean-time-to-fail of the components), then this reliability will be

close to 1. However, since transactions take a finite but significant amount

of time to execute, it is quite possible that the nodes that are involved in

the execution of a transaction (and available at the start of execution) may

tin this paper, the basic unit of access in a database is referred to as a data object.
2The number of copies of an object that are required to be accessed by a transaction

depends on the operation (read or write) and the replica copy control (e.g. read-one/write-

all, majority)[3,18].

fail during its execution.In this case,thetransactionis saidto beaborted.
In suchcases,theexecutionneedsto be restarted.

Formaldefinitionsandevaluationof thesetwo metrics(TSA and TFA)
dependonseveralfactorssuchasthefaultmodelof thesystem(includingthe
reliabilitiesof thesystemcomponents),thetransactionexecutionpolicy,the
datadistribution policy,the degreeof datareplication,theconcurrencyand
commitprotocols,andthecharacteristicsof thegiventransaction[4,7,9].In
addition,TFA dependson the executiontimesof transactions.

Eventhoughit is theoreticallypossibleto formulateequationsexpressing
thetwo metricsin termsof the abovementionedfactors,theevaluationof
theseequationsis extremelycumbersomeand requiresunreasonablyhigh
computationtimes. The evaluationof theexactvaluesfor thesemeasures
generallyinvolvesboth analysisandsimulation.Evaluationtoolswith such
largeexecutiontimesarecertainlynot acceptableto a databasedesigner
who needsto evaluatea numberof suchpossibledatabaseconfigurations
beforearrivingat a final design.

To overcometheseproblems,designersand researchersgenerallyresort
to approximationtechniques[7,8,16].Thesetechniquesreducethe compu-
tation time by makingsimplifyingassumptionsregardingdatadistribution,
data repfication,and transactionexecution.The time comple._ityof these
techniquesprimarily dependson theunderlyingmodelaswellastheevalu-
ation technique.

The effectof data distributionand replicationmodelson evaluationof
transactionresponsetime hasbeenmeasuredin earlierstudies[13]. These
studiesindicatethat the computational complezity of a selected database

model does not necessarily reflect the accuracy of the resulting performance

evaluations. In fact, a model requiring computational time of 30(n2) has

yielded results very close to those from a complex model with O(n '_) corn-

plenty.

In this paper, we study the effect of data distribution, data replication,

and fault models on the accuracy of transaction availability evaluations. We

employ probabilistic analysis to arrive at the estimates for the desired values

for six typical models.

The balance of this paper is outlined as follows. Section 2 formally

aHere, n denotes the number of nodes in a distributed system.

defines the problem under consideration. In Section 3, we describe a clas-

sification scheme for data distribution and replication policies. Section 4

illustrates the advantages of probabilistic analysis over simulation, and em-

ploys this technique to evaluate the measures for two different models. In

Section 5, we compare the analysis methods for six models based on com-

putational comple,,dty, space comple.,dty, and the accuracy of the measures.

Finally, in Section 6, we summarize the obtained results, and suggest a

general approach for design and analysis of these systems.

2 Problem Description

In this paper, a read-only transaction is characterized by the average number

of data objects that it reads (i.e., its read-set size). Similarly, a read-write

transaction is characterized by the number of data objects that it reads

(read-set size), and the number of data objects that it updates (write-set

size).

The problem of estimating the availability of a read-only transaction

may be formulated as:

Given the following parameters, estimate TSA, and TFA_ for a read-

only transaction that requires s data objects for read access.

• n, the number of nodes in the database 4

• N, the index set for the nodes in the database; N = {1,2 , n}

• d, the number of data objects in the database

• D, the index set for the data objects in the database; D =

{1,2,...,d}

• GD, the global data directory that contains the location of each of

the d data objects; the GD matrix contains d rows and n columns,

each of which is either a 0 or a 1; i.e., GDij = 0 or 1, Vi E

D and Vj e N

• the reliability of the nodes in the network.

The problem of estimating the metrics for a read-write transaction can

be similarly defined.

4Table 1 summarizes the notation used in this paper

Symbol Description
ai

c

Cl

d

di

g
k

n

ni

P

q

T

ri

8

A1,A2

B1, B2

C1,C2

D1, D_

Ex, E2

D

GA

GD

N

TSA_

x

Y

The number of data objects accessed from the ith group

The average number of copies of a data object

The number of copies of a data object in the I th class

The number of data objects in the database

The number of data objects in the ith class

The number of data object groups

Number of live nodes

Number of nodes

The number of nodes in the ith class

The number of copy classes

The number of reliability classes

The average node reliability

The reliability of a node in the ith class

The size of the read-set

Policies representing the data grouping

Policies representing limits on the data objects per node

Policies representing the degree of replication

Policies representing the copy distribution

Policies representing the component reliability

The index set for the data objects in the database

Group access vector representing the number of objects accessed

from each class or group

Global data directory (or dictionary)

The index set for the nodes in the database

Transaction start availability of a read-only transaction with

read-set size 8 (read-one/write-all policy)

Transaction start availability of a read-write transaction with

read-set size z + y and write-set size y (read-one/write-all policy)

Transaction start availabifity of a transaction with

read-set size s (read-majority/write-majority policy)

The size of the read-only object set

The size of the read-write object set

Table 1: Notation

3 Model Description

As stated in the introduction, the primary objective of this paper is to in-

vestigate the effect of data distribution, replication, and fault models on

availability estimations and the computational complexity of these evalua-

tions.

To describe a data distribution, replication, and fault model, we charac-

terize it with five orthogonal parameters:

A - Object grouping (or clustering)

B - Limits on the number of data objects per node

C - Degree of object replication (or the number of copies)

D - Constraints on distribution of object copies

E - Constraints on component reliability

We now discuss each of these parameters in detail.

Some distributed database systems allocate individual data objects [5,

10]. We categorize this strategy as A1. In other systems, data objects

are first partitioned into disjoint groups, and then the resulting groups are

allocated [12,16,17]. Thus, the copies of all the data objects in a given group

are allocated to the same set of nodes. We refer to this strategy as A2.

Some database designers place no explicit limit on the number of data

objects that may be placed at a node [7]. This strategy is named as B1.

Others restrict the number of data objects that may be placed at a _ven

node. This may be attributed to storage limitations or for security reasons

[11]. We refer to this strategy as B2.

For simplicity, several analysis techniques assume that each data object

has the same number of copies (or degree of replication) in the database

system [6,16]. Some other techniques characterize the degree of replication

of a database by the average degree of replication of data objects in that

database [7]. In this paper, both these categories are referred to as C1.

Others treat the degree of replication of each data object independently.

We refer to this as strategy C_.

Some database designers and analysts assume that each data object (or

group) copy is randomly distributed among the nodes in the distributed

system [7]. We refer to this as D1. Others assume some specific allocation

schemes for data object (or group) copies [11]. Assuming complete knowl-

edge of data copy distribution (GD) is one such assumption. Depending

on the type of allocation, such assumptions may simplify the performance

analysis [13]. This category is referred to as D2.

Again for simplicity, some database designers and analysts assume that

all components (nodes and links) in a distributed system have the same

reliability factor [1]. In this paper, we only consider node failures and node

repairs s. We let Ez denote a policy where all nodes are assumed to have

the same reliability characteristics, and E_ denote a policy where nodes are

classified based on their reliability characteristics.

Using this Classification, any known data distribution, replication, and

reliability policies may be categorized by these five parameters. For example,

< A2, B1, C1, D2, E1 > represents a policy where

1. Data objects are first grouped and then allocated.

2. There is no ezplicit limit placed on the number of data objects (or

groups) allocated to any node.

3. Each group has the same average degree of replication.

4. The copies of a group are distributed in some systematic manner

among the nodes in the system.

5. All nodes in the system have identical reliability characteristics.

With these five parameters, we can describe thirty two basic policies.

Several variations of these basic schemes are possible due to variations in

systematic distributions (D2), variations on the limits of data objects per

node (B2), and the types of grouping (A2). Due to space limitations, in this

paper we chose to present the results for six of these policies. Interested

reader may refer to [14] for an analysis of other policies.

5That is, the underlying network structure almost always facilitates communication

among live nodes.

Wechosethefollowingsix policiesto studytheeffectof the abovemen-
tionedparametersonavailabilitycomputations:

Model1: < A1,B1,C1,D1,E1 >

Model 2: < A2,B1,C1,D1,E1 >

Model 3: < A1,B2,C1,D1,E1 >

Model 4: < A1,B1,C2,DI,E1 >

Model 5: < A1,BI,C1,D2, E_ >

Model 6: < A1,BI,C1,Dx,E2 >

Among these, Model 1 represents a simple system that is computation-

ally attractive (as shown in Table 2). Model 2 reflects the effect of data

grouping on the evaluation. Similarly, Model 3 reflects the effect of placing

limits on number of data objects. Model 4 represents the effect of varia-

tions in number of copies of data objects on availability evaluation. Model

5 shows the effect of biased or non-random distributions of data objects

on the evaluation. Finally, Model 6 reflects the effect of non-homogeneous

environment (i.e., different node reliability characteristics) on transaction

availability evaluation.

In the following section, we derive closed-form expressions for the average

transaction availabilities for Models 1 and 2.

4 Probabilistic Computation of the Availabilities

There are several approaches for computing the availability of a given trans-

action in a database. These computations assume a given data distribution,

data replication, and fault models. We now look at two such methods:

simulation and probabilistic analysis.

Using simulation, one can generate the data distribution matrix (GD)

based on the data distribution and replication model. One can also generate

the reliabilities for each of the nodes in the system 6. Similarly, one can gen-

erate all possible transactions (with different read-sets and write-sets) that

6Here, we ignore the possibility of network partitioning, and thereby ignore link relia-

bility factor.

canbereceivedat eachof thenodesin thenetwork.Foreachsuchtransac-
tion receivedby the system,the datadistribution matrix canbesearched,
andits ability to accessall the requireddataobjectsmay be verified. In

addition to generating transactions, we should also generate node failures

and node repairs in the time domain. Thus, some transactions may not be

successful due to the inaccessibility of one or more data objects that they re-

quire (due to node failures). With such statistics (of successful/unsuccessful

transactions) in hand, we can obtain the average availability of a transaction

of a given size. This average corresponds to a single distribution matrix. The

generation and evaluation process may have to be repeated sufficient times

to get the required confidence in the final result. Since there are d data ob-

jects, there are (_) possible transactions with read-set 7 size s, and there are

n nodes where each of these may be received. Given a transaction, and the

node where it is received, determining the state (successful/unsuccessful) of

a transaction takes at least O(nd) computations (i.e., to scan the columns of

the GD matrix corresponding to available nodes). If the distribution matrix

is generated k times, then the evaluation of the desired average set size for a

transaction of size s takes O(kn2d(_)) time. In general, k is a function of the

number of copies, the number of data objects, the number of nodes, and the

data distribution model, and it could be very high. Suppose d = i00, s = I0,

and n = 10, then this method requires approximately 10irk computations.

Even for reasonable values of k, this is an unreasonably high computation

time.

To avoid this large evaluation time, we adopt probabilistic analysis. In

this analysis, we essentially study the given data distribution and reliability

model and arrive at an expression for the average transaction availability

for a given read-set (or write-set) size. With probabilistic analysis, some

data distribution models (e.g., Models 1 and 3) may require insignificant

amounts of computation. Some may need moderate computation times (e.g.,

Models 2 and 6), whereas others may need large computation times (e.g.,

Models 4 and 5). Regardless of the model, all these need considerably less

computation time (with more accuracy of results) than the corresponding

simulation methods.

We now illustrate the probabilistic method of analysis by applying it for

7The corresponding term for write-sets of update transactions may be easily written.

Models 1 and 2. Expressions for other models may be derived in a similar

manner. Interested reader may find the details of these derivations in [14].

4.1 Derivation of Reliability Metrics for Model 1

Model 1, designated as < A1,BI,C1,D1, E1 > assumes the following about

the data distribution and replication:

[R1] The data objects are allocated individually (i.e. not grouped) to the
nodes.

JR2] There are no limits placed on the number of data objects that may be

placed at each node.

[R3] The average degree of replication (c) of a data object is given.

JR4] The copies of a data object are allocated randomly.

[R5] Each node in the system has identical reliability (= r).

Further, to simplify the illustration of the current analysis, we make the

following assumptions regarding the distribution of groups, and the partici-

pating node set determination:

[R6] Each transaction is equally likely to access any data object.

[RT] The transactions that enter the distributed system are coordinated

by a set of reliable servers that search the distributed database system

(i.e., the availability of nodes and their dictionaries) for the availability

of the required data objects.

Due to Rule RT, we will not distinguish transactions that are received

at different locations in the system. Thus, we will disregard the originating

node as a parameter in this analysis s.

8The analysis can easily be extended to a situation where transactions received at an

unavailable node are automatically considered as unsuccessful.

4.1.1 Derivation of Availability for Read-only Transactions

Let us consider a read-only transaction T1 with s objects in its read-set and

received at one of the servers. Let us also assume that the copy control

algorithm follows a read-one/write-all policy. Thus Tl needs to access any

one of the c copies of a data object that it requires.

Given that exactly k of the n nodes are available (i.e., up), the probability

that at least one copy of a given data object is available is given by:

(1)
Pk,1 = 1--C)

By definition of the read-one/write-all policy, Pk.1 represents the probability

that a data object is available for read access in the system. Since each data

object is allocated independently to the nodes in the system (by Rules R1

and R2), the probability that all s data objects required by Tl are available

for read access within these k nodes can then be expressed as:

Pk,s = P ,l =
(2)

Assuming the reliability of any given node to be r (from Rule R5), the

probability that TI has successfully started is:

k=l

(3)_-___ rk(l --r) n-k 1
k=l

Given that /'1 has successfully started, we will now compute the prob-

ability with which it can be successfully completed. Let us assume that n,

nodes are involved in the execution of T1, and that it has an execution time

of t units. Now, in order for T1 to be successful, all these n, nodes have to

be available for at least t units of time, given that they were available at the

staxt of execution. Assuming an exponential distribution for time between

node failures with a failure rate of A, the probability that a node which is

available at time zero is available throughout time t is given by:

A, = e-t_ (4)

10

From here, the probability that none of the ns nodes have failed during time

t is given by:

TFA, = A'_"

= e -'_'t'_ (5)

Estimating n, for transaction T1 is a complex problem. This problem has

been well investigated and the details of the solutions may be found in [15].

In this paper, we assume that n_ for T1 has been obtained a priori for a

given data distribution and fault model.

4.1.2 Derivation of Availability for Read-write Transactions

Let us now consider a read-write transaction T2 with s objects in its read-

set and y objects in its write-set. Let us assume that for a given read-write

transaction write-setC_read-set [3,7]. Thus, among the s data objects, y

objects are both read and written, while x = s - y data objects are only

read. (Note that the intersection of the read-only and the read-write sets of

the data objects is empty.) Since the replication control algorithm follows a

read-one/write-all policy, T2 needs to access all c copies of the y data objects

and any one copy of the x data objects.

Given that exactly k of the n nodes are available (i.e., up), the probability

that all c copies of a given data object are available is given by:

= (:-7 (63

Since each data object is allocated independently to the nodes in the system

(by Rules R1 and R2), the probability that all y data objects required by

T2 are accessible for update is expressed as:

P_,_ = (7)
L(c)J

Similarly, the probability that all x data objects are available for read access

may be computed as:

Pk,, = 1- (:) (8)

11

From here, the probability that T2 is successfully started may be computed

as:

TSA_,y = rk(1 - r) rk,yrk,_
k=l

The finish availabilities for T_ may be similarly computed using Equa-

tions (4) and (5) where n, is now replaced by n_,_ I14].

4.1.3 Derivation of Availability for Transactions with Majority

Consensus

In the above two sections, we dealt with read-one/write-all replication con-

trol policy. The majority consensus protocols [18] which require the acces-

sibility of at least a majority of the total copies of a data object for both

read and write operations are very attractive in a failure prone environment.

Since both read and write operations require the same number of copies of

a data object, in this analysis we do not distinguish between read-only and

update transactions. Here, we simply refer to Tl as a transaction.

Let m = [¢+_.A] represent the majority of copies. Then the expression for

start availability for T1 is given as:

TSA 7 = rk(1-r) "-k (:) (10)
km rn

Similarly, the expression for the finish availability for T1 may be expressed

as:

TFA, = A'_'

= e -'_''_ (11)

where ns now represents the average number of nodes accessed for executing

T1 with the majority consensus protocol [15].

12

4.2 Derivation of Transaction Availability for Model 2

Model 2, designated as < A2,Bt,C1, D1, E1 > is similar to Model 1, except

that the data objects are now grouped, and the groups are then allocated

to nodes in the system. This may be described as:

[R9]

[R10]

The data objects are first grouped and the groups are then allocated,

to the nodes. Let the d data objects be partitioned into t distinct

groups. Let dk represent the number of data objects in group k. Thus,

d, = d.

There are no limits placed on the number of groups that may be placed

at each node.

[a11]

[R12]

IRma]

The degree of replication is the same for each group (c).

The copies of a group are allocated randomly.

Each node in the system has identical reliability (r).

Again, to simplify analysis, we make the following assumptions:

[R14] Each transaction is equally likely to access any data object.

[R15] The transactions that enter the distributed system are coordinated

by a set of reliable servers that search the distributed database system

(i.e., the availability of nodes and their dictionaries) for the availability

of required data objects.

4.2.1 Derivation of Availability for Read-only Transactions

Once again let us consider transaction T1 executing under a read-one/write-

all policy. Given that k of the n nodes are available (i.e., up), the probability

that at least one copy of group k is available is given by:

1- (12)
(:)

If the vector GA =< al,a2,...,at > represents the number of data objects

accessed by T1 from each of the t groups, then the probability that T1 is

13

successfullystartedmaybecomputedas:

GA /=1

o,,
Pr(GA) = (ds)

1 if ak > 0f(k) = 0 otherwise

GA = < al,a2,...,ae >,
t

1-I i
k:, C)

f(k)

(13)

(14)

(i5)

0
(17)

ak = s and Vk 1 < k < t 0 <: ak < dk (16)
k=l

When data objects are equally distributed among the groups (i.e., dl = d_ =

... = dt = d), then this expression may be further simplified as:

TSAs = _ rl(1- r) '_-/ 1 (:)
1=1 k=l

The expression for TFA, is the same as in Equation (5).

4.2.2 Derivation of Availability for Read-write Update Transac-

tions

Let us consider transaction T2 which requires x objects for read-only oper-

ations and y data objects for read and write operations (s = x + y). Thus

we need to define two GA vectors for read-only and read-write data object

sets:

GA'

GA"

_ ! I

<_ al_a2,..._at

t

y_a_=z and Vkl<k<tO<_a'<_dk
k=l

II II It

= <: al,a2_...,at >

t

___a'_=y and Vk l <_k<_tO<_a" <__dk-a'k
k=!

14

In computingTSA'_ we should recall that if a data object is write

accessible under a given node availability conditions, it is also read accessible.

However the reverse is not true. These two facts are made use of in deriving

the following expression for TSA'_:

GA' GA" /=1

1_ 1 (c) J lr_ k(,:.) j (18)
k=l k=l

Pr(GA') =

°7 _-°'2o_'_)' o:' '
Pr(GA") =

(_-/)

" OA '
1 if a k = a k > 0

f'(k) = 0 otherwise

{
1 if a_ > 0

f"(k) = 0 otherwise

As before, when data objects are equally distributed among the groups

(i.e. dl d2 dt d= = ... = = -/-), this expression may be simplified as:

_ (_) (_-_)

(19)

The finish availability TFAz,y may be computed using Equation (5)

where n, is now replaced by nr,_ which is assumed to be known a priori in

this paper.

15

4.2.3 Derivation of Availability for Transactions with Majority
Consensus

As describedin Section4.1.3,underthe majority consensusprotocolboth
theread-setandread-writesetaretreatedin thesamewayfor accessprob-
ability computations.Thus, weonly considera read-onlytransactionwith
a read-setsizeof s. Theexpressionfor TSA_ can now be written as:

GA /=1 k=l P=m

(21)
ILl

where Pr(GA) and f(k) are as defined in Equations (14) and (15).

Once again, when data objects are equMly distributed among the groups
d

(i.e. dl = de = dt = T), this expression may be written as:

TSA_-= _-2L (?)rt(1-r'n-l(tk) (t,)(c-tl)_=.,k=_ L t,=._ (:)

"_"{"_)(/,) (_-.) T)
1- _ (2) (ds) (22)

/1 =m

5 Comparison of the Availabilities for the Six

Models

As mentioned in the introduction, the main objective of this paper is to

determine the effect of data distribution, replication, and fault models on

the estimation of transaction availability. To achieve this, we evaluate the

desired measure using six different models. The comparison of these evalua-

tions is based on computational time, storage requirement, and the average

values obtained.

Due to space limitations, we cannot present the detailed derivations for

the average values for Models 3-6. The final expressions, however, axe sum-

maxized in the appendix.

16

5.1 Computational Complexity

We now analyze each of the evaluation methods (for Models 1-6) for their

computational complexity.

• Let us refer to Model 1. From Equations (3) and (9), it is clear

that computation of TS.4, and TSA_,v take O(cn 2) time 9 Simi-

laxly, from Equation (10), it is clear that the computation of TSA"

requires O(c2n 2) time.

• We now derive this complexity term for Model 2. Let us first look

at the computation of TSAr. From Equation (14), we derive that

the computation of Pr(GA) requires O(s) time. The number of GAs

generated is approximately O(s t) where t represents the number of

data object groups. Given a GA vector and Pr(G.4), computation of

TSA, requires O(nct+n 2) arithmetic operations (from Equation (18)).

Thus the evaluation of TSA, requires O(s t (nct + n 2 + s)) time. Sim-

ilarly, we can conclude that TSA'_ requires O(ztyt(nct + n 2 + s))

time (Equation (19)), and TSA'; requires O(st(nc_t + n 2 + s)) time

(Equation (20)).

• For Model 3, the computational complexity for TSA_ is O(n2+n(s+c))

(Equation (23)). Similarly, TSA'u and TSA' s' require O(n2 + n(c + s))

and O(n 2 + n(c 2 + s)) respectively (Equations (24) and (25)).

• The computational complexity for Model 4 depends on the number

of copy categories. Assuming that s < dk for k = 1,2,...p, we can

generate approximately st' different CA vectors. Thus the computation

of TSAs requires O(sP(n2+ npc+ s)) time. To compute TSA', we need

to compute the number of possible CA' and CA" vectors. There are

approximately z p CA _ vectors and yP CA j' vectors. Thus, TSA'_.u

requires O(zPyP(npc + n 2 + s)) time. Similarly, we can conclude that

TSA_ requires O(sP(npc 2 + n 2 + s)).

* In Model 5, we assume that the entire data dictionary information

is available to us. Given a GD matrix and a node status vector S,

9Here, we are assuming that the evaluation of the terms (qP) and pq takes O(q) and

O(1) time respectively.

17

computationof f(S), f'(S), and J'(E) require O(nd) time to search

the matrix. Given n, there are 2" possible S vectors. Thus the com-

putations of TSA, TSA', and TSA" require O(2'_(nd + s)) time.

In Model 6, the number of NA vectors generated is (nl + 1)(n2 +

1)...(nq+l). Forsimlification, we approximate it as (_ + 1) q. Given

a NA vector, the computation ofTSA, TSA', and TSA" require O(s+

c+q), O(a+c+q) and O(sc+c2+qc) time respectively. Thus the three

metric evaluations require O((_ + 1)q(s + c + q)), O((_ + 1) q(s + c + q)),

and O((_ + 1)q(cs + c2 + cq)) time respectively.

These complexities are summarized in Table 2. From this table it may be

observed that models 1 and 2 are computationally very attractive. The

complexity of evaluations with models 2,4, and 6 depend on the number of

groups, the number of copy variations, and the number of reliability vari-

ations respectively. For systems with a large number of nodes, evaluations

with model 5 are very expensive.

5.2 Space Complexity

We now discuss the space complexity for the six models:

• Models 1 and 3 just require the values of d,c,s,r and n. Thus the

storage requirement is O(1)

Since Model 2 requires that the di values be stored, and that the GA

vectors be generated, it requires O(t) storage, where t is the number

of data groups.

• Model 4 requires O(p) storage to contain the p copy classes.

• Model 5 requires O(nd) storage for the GD matrix.

• Model 6 requires O(q) storage to contain the node reliability class

information.

Thus, Model 5 has the largest storage requirement. These complexities are

summarized in Table 3.

18

Model ComputationalComple.,dty
"Read-only Read-write Majority

1
2
3
4
5
6

Table2:

o(c_ 2)
o(_'(,_ct + ,_2+ _))
O(n _ + nc + ns)

o(_p(np_ + ,_ + _))
O(2n(nd + s))

o((_ + _)_(_+_+ q))

o(_ 2)
o(:_'y'(,_a + ,_ + _))
O(n 2 + nc + ns)

o(z,'yp(,_p_+ ,_2+ _))
O(2'_(nd + s))

o((_ + _)_(_+ _+ q))

O(c_,__)
o(_,(,_c2t+ ,_2+ _))
O(n 2 + nc 2 + ns)

O(g(npc 2 + n 2 + s))

O(2'_(nd + s))

o((_ + 1)q(_ + _2+ _q))

Computational Comple.,dties for the Evaluation of Availabilities

Model Space

Complexity

o(_)
o(t)
o(_)
o(p)
O(,,d)
O(q)

Table 3: Space Complexities for the Evaluation of Availabilities

19

5.3 Comparison of the Availabilities

In orderto comparetheeffectivenessof eachof thesemodels,wehaveevalu-
atedavailabilitiesfor a widerangeof parameters.Dueto spacelimitations,
in this paper,weonly presenta smallsubsetof theseresults. Similarly,
sinceTFAs, TFA,,_, and TFA_ are found to be insensitive to variations

in models, we are not presenting these results here. We only present the

results for the transaction start availabilities. These results are summarized

in Figures 1-7.

Figures 1-3 compare the availabilities obtained from the six models. The

following assumptions are made for models 1-6:

.

o

In Model 2, we assume that the d data objects are grouped into n

data groups each containing d/n data objects. This is similar to the

assumptions in [13].

In Model 3, we assume that each of the n nodes in the system is

allocated ezactly the same number of data objects (equal to dc/n).

. In Model 4, we assume that d/2 data objects have c copies, d/4 data

objects have c + 1 copies, and the rest have c- 1 copies. This keeps

the average copies the same (i.e., c) but brings a copy variation factor

into consideration.

o

o

In Model 5, we assume that the d data objects are allocated system-

atically so that the copies of the i th data object are allocated, in a

circular manner, to the nodes starting from (i • n) + 1.

In Model 6, we assume that n/3 nodes have reliability r 0.1, n/3

have reliability r + 0.1 and the rest have a reliability r. 10

Figure 1 summarizes the results for read-only transactions with read-one/write-

all policy. Figure 2 presents these results for transactions (read-only or

read-write) with majority-read/majority-write protocol. Finally, Figure 3

summarizes the results for read-write transactions with rea_l-one/write-aU

policy. From these results, we make the following observations:

1°When r = 0.95, we assume that _/3 nodes have reliability r-0.5, n/3 have reliability

r + 0.05 and the rest have a reliability r.

2O

• For

(i)

read-only transactions (with read-one/write-M1 policy),

Evaluations with models 1 and 3 are close over the entire range

of s and r.

(ii) Evaluations with models 2 and 5 are also close over the entire

range of s and r. This may be explained by the fact that the

number of groups g = n = i0 for model 2 and the systematic

distribution for model 5 implicitly results in 10 groups. However,

they do differ in the manner in which these groups are distributed.

(iii) For r > 0.95, evaluations with all models, excepting model 4, are

quite close.

(iv) Evaluations with model 4 appear to significantly deviate from

all other models for r > 0.75. This implies that modeling of

the degree of replication is a very important task in availability

evaluations.

• For transactions with majority-read/majority-write policy,

(v) Evaluations with models 1 and 3 appear to be close. Similarly,

evaluations with models 2 and 5 are close. In addition, evalua-

tions with model 6 are close to evaluations with models 1 and

3.

(vi) For s > 25, the availabilities appear to be independent of the

read-set size. This implies that computations for s > 25 are

redundant.

(vii) The evaluations with models 2 and 5 seem to differ at higher

values of n. The evaluations with the other four models are close

for n = 20. This is an interesting observation.

(viii) Once again, the variations in degree of replication of individual

data objects appears to have a dominating effect on availability

evaluations.

• For read-write transactions with read-one/write-all policy,

(ix) The availabilities for s > 5 are significant only when r > 0.99.

21

(x) Sincethe availabilitiesaregenerallylow, the effectof the differ-
encesin themodelsseemto beinsignificant.At highreliabilities
(i.e. r _> 0.99), the evaluations with model 4 seem to deviate

from the evaluations with the other models.

We will now study the effect of the individual model parameters.

• Models 1 and 3 are very simple, and need no further investigation.

Evaluations with model 2 represent the effect of data object group-

ing on availability (Figure 4). As the number of groups is increased,

the availability seems to be decreasing. This effect seems to dimin-

ish for g _> 25. This effect is insignificant for read-write transactions.

Similarly, this effect seems to vanish at high node reliabilities.

Evaluations with model 4 represent the effect of variations in degrees

of replication of data objects (Figure 5). The effect of these varia-

tions seem to be insignificant on read-write transactions. The effect

of copy variations seem to be more apparent at high node reliabilities.

Similarly, this effect seems to be more pronounced on read-only trans-

actions (with read-one/write-all policy) than the other two classes.

Model 5 represents tile effect of data distribution on the availability

evaluations. From Figure 6, it may be observed that the distribution

effect is only evident at s >_ 10. In addition, the effects are more

significant for read-only transactions than the other two classes. The

effect is less evident at high node reliabilities.

Model 6 represents the effect of node reliability variations on avail-

abilities. From Figure 7, it may be observed that the variations have

almost no effect on availability evaluations.

6 Conclusions

The current investigations on measuring the effect of data distribution, repli-

cation, and fault models on transaction availability evaluation have resulted

in some very interesting observations. As part of this study, we chose six

22

modelsrepresentingsix differentparametricassumptionsthat researchers
and designersgenerallytend to makein their analysis. Usingprobabilis-
tic analysis,we derivedexpressionsfor transactionavailabilityfor three
classesof transactions:read-only(read-one/write-allpolicy), transactions
with majority-read/majority-writepolicy,andread-writetransactions(with
read-one/write-allpolicy). Theeffectof thesix parametersis measuredby
evaluatingavailabilities(for differentread-setsizes).Fromhere,weconclude
that:

By choosinga properdistributeddatabasemodel,the computational
comple.,dtyof transactionavailabilityevaluationscanbesignificantly
reduced.

• Forvaluesof s _<10,all modelsresuItin almostthesametransaction
evaluation.

• It is not necessaryto evaluatetransactionavailabilitiesfor valuesof
s>25.

Evaluationsfor the read-onlytransactions(with read-one/write-all
policy) aremoresensitiveto databasemodelingthan the other two
classesof transactions.

Thedegreeof replicationof individual(or group)dataobjectsseems
to havea significanteffecton transactionavailabilities.Thus,when
differentdata objectshavedifferentcopies,adoptingaveragedegree
of replicationto representant objectin a system,maynot resultin
accurateavailabilityevaluations.

The actualdistributionof dataobject copieshassome,if not signifi-
cant, impact on availability evaluation.

In a heterogeneous environment where different nodes may have dif-

ferent reliabilities, it is sufficient to represent each node by the average

node reliability, without affecting the availability evaluations.

Data object grouping (logical or physical) does not seem to effect the

accuracy of availability evaluations as long as the number of groups is

not too small (e.g. When d = 1000, g _>25 is sufficient).

23

Distributed database designers and researchers can utilize these results in

choosing appropriate parameters that would result in reduced computational

requirements without sacrificing the resulting accuracy of the design and

analysis of these systems.

24

Appendix

Model 3 < A1,B2,C1,D1,E1 >:

Here, we assume that each node has exactly the same number of data objects

Xk

k_-, (_/

TSA'_,y = _ (;)r k(1-r) '_-k (9;)(_k2_) (24)

__-m 0
TFA, = e -n'c\ (26)

= e-n*,_ *" (27)TFA_,y ' x

TFA_' = e-n''t'_ (28)

(___)
C

: dl (:)

k(;)J
(_)(_-_): dZ

Model 4 < A1,B1,C2, D1,E1 >:

Here, each data object may have its own degree of replication specified.

For an efficient computation, we classify the data objects into p categories

(i < p < n) based its degree of replication, dt denoted the number of data

objects in the l th category where each object has c_ (1 _< ct _< n) copies.

f [n-k " a_

TSA, = _Pr(CA)_ rk(1- r) '_-krI 1 (_)
CA k=l l=l

(29)

25

TSA_

CA

C\4'

CA tt

Pr(CA)

Pr(CA')

Pr(CA")

rn t

The expressions for TFA,, TFA'_,y,

tions (26)- (28).

CA ' CA" k= 1

t!

l-I 1 (_ _ (ao),=, ,=,L(£)J

= _Pr(CA) rk(1 - r) "-k I-[(q-")

p

= <al,a2,...,ap> , Eak=s,Vkl<k<pO<_ak<_d_
k=l

P

= < al,a2,...,ap >, _ a_ = x, Vk I < k <_pO < ak < dk
k-----I

P

" " _-_ a_= < a'(,a2,... ,ap >. _..., -= y, Vk i_< k <p 0 < a__< d_-a_.
k=,

(_o:)(?_)...¢o;)

¢oi)¢o;)..•(_o,:)

((e,-o',_ - ' ... r,e,,-.;,,j

d-x

TFA_ are the same as in Equa-

(31)

Model 5 < Ax,B1,C1,D2,E1 >:

Here, we assume that the entire data distribution is available as a dictionary,

GD.

TSA_ = E P_(S)(_cjl) (32)
(_)

= _ P_(S) C_I) (II_2-_) (33)

26

(1,,(s))
TSA_ = _ P,(S)" •

s (d)
pr(S) = ,._'"(sl (1 - _) -" ,,

where

(34)

S - Node status vector; Sj = 1 => Node j is up; Sj = 0 => Node j is down.

f(S) - The number of data objects available for read with the given node

status vector (S). This is computed by scanning the columns of the GD

matrix corresponding to the live nodes (as given by S).

if(S) - The number of data objects available for update (i.e. all c copies

of these data objects are available at the live nodes) with the given node

status vector (S). This is also computed by scanning the columns of the GD

matrix corresponding to the live nodes (as given by S).

f"(S) - The number of data objects available with a majority of copies

among the available nodes. As before this is computed by scanning the

columns of the GD matrix corresponding to the live nodes (as given by S).

f'"(S) - The number of nodes available (or up) as indicated by the vector

S.

Model 6 < A1,B1,C1,D1,E2 >:

Here each node may have its own reliability. For computational purpose, we

categorize the nodes based on their reliability. We assume that there are q

(1 _< q _< n) such categories. We let ni to represent the number of nodes

with reliability ri, and ai to represent the number of currently active (or up)

nodes with this reliability.

TSA, = _ Pr(NA) 1_A (:)

TSA:,_, = NA_-_Pr(NA) F(Eq'g'_')']U [L¢'{-_ 1 ("-Z;=,

[() ,Hq nkak r;"(1--rk)nk-a_:
k=l

(E,_, _,), -Z,., o,1
TSA:' = _ Pr(NA) _ ¢-_

rk (1 - ,k)_*-_)
k=l ak

(:) _')]_

(36)

27

Pr(NA)

NA

q

_71 i _- n

i=1

-I. ak r k
k=l

(21)(:_)-'.(:;)
(z::,o,/

< al,a2,...,aq >, Vi= 1,2,...,qO_< ai<_ ni

(37)

28

References

[1]

[2]

[3]

[4]

[s]

[6]

[7]

[81

[9]

M. Ahamad and M.H. Ammar, "Performance characterization of

quorum-consensus algorithms for replicated data, ;' Tech. Report, GIT-

ICS-86/123, Georgia Institute of Technology, 1986.

M.D. Beaudry, "Performance-related reliability measures for computing

systems," IEEE Trans. Computers, Vol. C-27, pp. 540-547, June 1978.

P.A. Bernstein and N. Goodman, "Concurrency control in distributed

database systems," ACM Computing Surveys, Vol. 13, pp. 1S5-221,

June 1981.

B. Bhargava and L. Lilien, "A review of concurrency and reliability is-

sues in distributed database systems," Concurrency Control and Relia-

bility Issues in Distributed Systems, B. Bhargava (Ed.), Van Nostrand

Reinhold Co, pp. 1-84, 1987.

S. Ceri, G. Martella, and G. Pelagatti, "Optimal file allocation for a

distributed database on a network of minicomputers," Proc. Interna-

tional Conference on Data Bases, University of Aberdeen, pp. 216-237,

July 1980.

E.G. Coffman, E. Gelenbe, and B. Plateau, "Optimization of number

of copies in a distributed database," IEEE Transactions on Software

Engineering, Vol. SE-7, No. 1, pp. 78-84, 1981.

S.B. Davidson, "Analyzing partition failure protocols," Technical Re-

port, MS-CIS-86-05, Dept. of Computer Science, University of Pennsyl-

vania, January 1986.

H. Garcia-Molina, "Performance evaluation of the update algorithms

for replicated data in a distributed database," Ph.D. Dissertation, Com-

puter Science Department, Stanford University, June 1979.

H. Garcia-Molina and J. Kent, "Performance evaluation of reliable dis-

tributed systems," Concurrency Control and Reliability in Distributed

Systems, B.K. Bhargava (Ed.), pp. 454-488, 1987.

29

[10] B. Garish and H. Pirkul, "Computerand databaselocation in dis-
tributed computersystems,"IEEE Transactions on Computers, Vol.

C-35, No. 7, pp. 583-590, July 1986.

[11] R. Mukkamala, "Design of partially replicated distributed database sys-

tems," Technical Report,, TR 87-04, Department of Computer Science,

University of Iowa, July 1987.

[12] R. Mukkamala, S.C. Bruell, and R.K. Shultz, "Design of partially repli-

cated distributed database systems: an integrated approach," Proc.

ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, pp. 187-196, May 1988.

[13] R. Mukkamala, "Measuring the effect of data distribution and replica-

tion policies on performance evaluation of distributed database sys-

tems," Proe. Fifth International Conference on Data Engineering,

February 1989.

[14] R. Mukkamala, "Measuring the effect of data replication and fault mod-

els on transaction availabifity analysis," Technical Report, TR 89-35,

Department of Computer Science, Old Dominion University, May 1989.

[15] R. Mukkamala, "Performance evaluation of distributed database sys-

tems," Technical Report, TR 89-43, Department of Computer Science,

Old Dominion University, June 1989.

[16] K.C. Sevcik, "Comparison of concurrency control methods using ana-

lytic methods," Proc. Information Processing 83, R.E.A. Mason (Ed.),

North-Holland, September 1983.

[17] L.E. Stanfel, "Applications of clustering to information system design,"

Information processing and Management, Vol. 19, No. 1, pp. 37-50,

1983.

[18] R.B. Thomas, "A majority consensus approach to concurrency control

for multiple copy databases," A CM Transactions on Database Systems,

Vol. 4, No. 2, pp. 180-209, June 1979.

3O

0.900

0.800

I 0.700
0.600

TSA,
0.500

0.400

0.300

0.200

0.100

Figure la. n=10, d=1000, c=3, r=-0.4

x Model 1

• Model 2

+ Model 3

• Model 4

• Model 5

• Model 6

Figure lb. n=10, d=1000, c=3, r=0.75

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0
21 41 61 81 101 21 41 61 81

Read-set size (s) _ Read-set size (s)

101

0.990

0.970

l 0.9500.9:30

TSA,
0.910

0.890

0.870

0,85

Figure lc. n=10, d=1000, c=3, r=0.90

v

21 41 61 81 101 21 41 61 81 101

Read-set size (s) _ Read-set size (s)

Figure ld. n=10, d=10000, c=3, r=0.75

0.800

0.700

0.600

0500

0.400

0.300

0.200

0.100

0

Figure 1. Transaction Start Availabilities for Read--Only Transactions (with Read-one/Write-all policy)

TSA,

0.9900

0.9800

09700

0.9600

0.9500

0.9400

0.9300

0.9200

0.9100

0.90

Figure le. n=10, d=1000, c=5, r=0.75

x Model 1

• Model 2

+ Model 3

• Model 4

• Model 5

• Model 6

21 41 61 81

Read-set size (s)

101

0.900

0.800

0700

T!A 0.6000.500

0.4OO

0.300

0.200

0.100

0

Figure If. n=20, d=1000, c=3, r=0.75

21 41 61 81

Read-set size (s)

101

0.990

0.960

0.930

0 900

0.870

0.840

0.81o

0.780

0.75

Figure lg. n=10, d=1000, c=3, r=0.95

21 41 61 81 101

Read-set size (s)

Figure 1 (Continued). Transacdon Start Availabilities for Read-only Transactions (Read--one/Write-all Policy)

0.400

0.360

0,320

I 0.280
O.240

73A_' 0.2o0

o.16o

0.120

0.080

0.040

0

Figure 2a. n=10, d=1000, c=3, r=0.4

x Model 1

• Model 2

+ Model 3

* Model 4

• Model 5

• Model 6

6 11 16 21 26

Read-set size (s)

0900

0.800

I 0.7000.600

TSA_ 0.500

0.400

0.300

0.200

0.I00

Figure 2b. n=10, d=1000, c=3, r=-0.75

m

21 41 61 81 101

Read--set size (s)

0.900

0.800

l 0.700
0,600

TSAr" 0.500

O.4O0

0.300

0.200 [
0.100

0
1

Figure 2c. n=10, d=1000, c=3, r=0.90

0900

0800

0.700

T!A 0.600.. 0.500

• 0,400

0.300

0.200

0.100

0

Figure 2d. n=10, d=10000, c=3, r=0.75

21 41 61 81 101 21 41 61 81 101

Read-set size (s) _ Read-set size (s)

m

Figure 2. Transaction Start Availabilities with Read-Majority/Write-Majority Protocol

Figure2e.n=10,d=1000,c=5,r=0.75

0.900

0.800

T! 0.700

0.600

- 0.500
s

0.400

0.300

0.200

0.100

0
21 41 61 81 101

Read-set size (s)

0.900

0.800

I 0.7000.600

TSA;" 0.5oo

0.400

o.3oo

0.200

0.100

0

Figure 2f. n=20, d=1000, c=3, r=0.75

x Model 1

• Model 2

+ Model 3

• Model 4

" Model 5

. • Model 6

J

i

11

21 41 61 81 101

Read-set size (s)

Figure 2g. n=10, d=1000, c=3, r=0.95

0.900 _,r

0.800

I 0.7000.600

TSA ;' 0.500

0.4O0

0.3O0

0.200

o.Ioo

0
21 41 61 81 1oi

Read-set size (s)

Figure 2 (Contd.). Transaction Start Availabilities with Read-Majority/Write-Majority Protocol

0.450

0.400

0.350

0.300

0.250

0.200

O.150

0.1o0

0.05o

Figure 3a. n=10, d=l(X)O, c=3, r=0.75

x Model 1

A Model 2

+ Model 3

• Model 4

• Model 5

• Model 6

y = s/3,x = s-y

01720

0,640

0.560

,_! 0.480
TSA o 400

0.320

0.240

0.160

0,080

Figure 3b. n=10, d=1000, c=3, r=0.90

23 43 63 63 103 3 23 43 63 83 103

Read-set size (s) _ Read-set size (s)

0.970

0.950

0.930

0.910

0.890

0.870

0.85

Figure 3c. n=10, d=1000, c=3, r=0.99
0.750

0.700

0.650

0.600

0 550

0.500

0.450

0.400

0.350

0.30
3

Figure 3d. n=10, d=10000, c=3, r=0.90

3 23 43 63 83 103 23 43 63 83 103

Read-set size (s) _ Read-set size (s)

Figure 3. Transaction Start Availabilities for Read-write Transactions (with Read-one/Write-all Policy)

0.600

0.570

0.540

0.510

0.480

0.450

0.420

0.390

0.360

Figure 3e. n=10, d=1000, c=5, r=-0.90

0.720

0.640

0560

_! 0.480
TSA o400

0.320

0.240

0.160

Figure 3f. n=20, d=1000, c=3, r=-0.90

E

0.330 - 0.080

7 o
0.30 3 23 43 63 83 103 23 43 63 83 103

Read-set size (s) _ Read-set size (s)

'11

Figure 3 (Contd.). Transaction Start Availabilities for Read-write Transactions (with Read-one/Write-all Policy)

0,900

0,800

O.700

I 0.600

0.500
TSA,

0.400

0.300

0,200

0.100

0

0.900

0.800

0.700

T!A 0.600
.. 0.500

0.400

0300

0.200

0.100

0

0.500

0.450 I

0,400

_ 0.250

0.2017

0.15(1

0.100

0.050

0
3

Figure 4a. n=10, d=1000, c=3, r=0.50

v

x Groups=5

A Groups=10

+ Groups=25

* Groups=50

Read-only (Read-one/write-all)

21 41 61 81 101

Figure 4c. n=]O, d=lO00, c=3, r=0.75

Majority-read/Major ity-write

21 41 61 81 101

TSA;'

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

0.950

0.900

0.850

0.800

0.750

0.700

0.650

0.600

0.550

0.5

Figure 4b. n=10, d=1000, c=3, r=0.75

,$

Read-only (Read-one/write-all)

21 41 61 81 101

Figure 4d. n=]O, d=lO00, c=3, r=0.95

Majority-read/Majority-write

21 41 61 81 101

Figure 4f. n=lO, d=lO00, c=3, r=0.95

Read-write (Read--one/write-all)

Figure 4e. n=10, d=1000, c=3, r=0.75

Read-write 0Read-one/write-all)

y = s/3,x = s- y

T

0.900

0.860

0.820

O.780

TS! 0.740• O.700

a 0.660

0.620

0.580

o._o

0.5
323 43 63 83 103 23 43 63 83

Read-set size (s) _ Read-set size (s)

103

Figure 4. Illustration of the Effects of the Number of Groups on Availability Metrics (Model 2)

0.9O0

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

Figure 5a. n=10, d=1000, c=3, r=0.5

x dl= 1000, ct=3

• dt=3OO, cl=2, dz=400, c2=

d3 = 300, c3 = 4

+ dl =300, cl = 1,d2=400, c2=

_. d3=300, c3=5

, dl=d2=d3=d4=d_=200,

c_=i,i= 1,2 5

21 41 61 81 101

0.900

0,800

0.700

T!A 0600
, 0.5130

0400

0.300

0.200

0.100

Figure 5b. n=10, d=1000, c=3, r=0.75

ne/write-all)

21 41 61 81 101

Figure 5d. n=10, d=1000, c=3, r=0.950.900

0.800

0.700

I 0,600
0.500

TSA;"
0.400

0.300

0.200

0.100

0

Figure 5c. n=10, d=1000, c=3, r=0.75

i Majority-read/Majority-write

21 41 61 81 101

Figure 5e. n=10, d=1000, c=3, r=-0.75

Read-write (read-one/write-all)

0.900 _,)"

0.800

l 0.700 t
0.600

0.500
rSA;'

0.400

0.300

0.200

0.100
Majority--read/Majority-write

o
21 41 61 81 101

0.900

0.800

I 0.700

0.600

TSA_ 0.500

0.400

0.300

0.200

0.100

0
21 41 61 81 101

Read-set size (s)

0900

0.800

I 0.7000.600

TSA_ 0.500

0.400

0.300

0.200

0.100

0

Figure 5f. n=10, d=1000, c=3, r=0.95

21 41 61 81

Read-set size (s)

101

Figure 5. Illustration of the Effect of Copy variations on Availability (Model 4)

t
TSA,

t
TSAr"

t
TSA',_

0900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

Figure 6a. n=10, d=1000, c=3, r=0.50

Read-only (Read-one/write-all)

21 41 61 81 101

Figure 6c. n=10, d=1000, c=3, r=0.75

Majority-read_lajority-write

i

21 41 61 81 101

Figure 6c. n=10, d=1000, c=3, r=0.75

Read-write (read-one/write-all)

x Systematic distribution

• Arbitrary distribution

t
TSA,

t

J
21 41 61 81 101

Read-set size (s)

0.900

0.800

O,700

0.600

0.500

0.400

0.300

0.200

0.100

0

Figure 6b. n=10, d=1000, c=3, r=0.75

Read-only (Read--one/write-all)

21 41 61 81 101

Figure 6d. n=10, d=1000, c=3, r=0.95

0.950 X

all0.900

0.850

0.800

0.750

0.700

0.650

0.600

0.550

0.5

0.950

0.900

t 0.850

0.800

TSA;j o.750

0.700

0.650

0.6l)0

0.550

0.5

Majority--read/Majority-write

21 41 61 81 101

Figure 6d. n=10, d=1000, c=3, r=0.95

Read-write (read--one/write--all)

21 41 61 81

Read-set size (s)...-.---l_

Figure 6. Illustration of the effect of Systematic Distribution on Availability (Model 5)

101

TSA,

Figure 7a. n=10, d=1000, c=3, avg. r=0.50

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0,200

0.100

0

x nt = 10,rt = 0.5

• nt = 3,rt = 0.3, n2 = 4,rz = 0.5,

n3 = 3, r3 = 0.70

+ n_=n2=n3=n4=ns=2
rl = O.l.r2 = 0.3,r3 = 0.5,
r, = 0.7, r_ = 0.9

0 20 40 60 80 100

Figure 7b. n=10, d=1000, c=3, avg. r=0.75

0.400

0.300

0.200

0.100

0

0.900

0.800

0.700

0.600

0.500 x nt = 10,r,=075.

• /'It = 3,rx = 0.5001,nz = 4,rz = 0.7_

n3 = 3, r3 = 0.9999
+ nl=n2=n3=n,=ns=2

rx = 0.55, rz = 0.65, r3 = 0.75,
r4 = 0.85, r5 = 0.95

Read--only (Read-one/wrlte-all)

0 20 40 60 80 100

t
VSA;

0.900 1

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

Fi

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0

igure 7c. n=10, d=1000, c=3, avg. r=0.75

:/1, = 10,r,= 0.75 t

nx = 3,rl = 0.5001,n2 = 4,r2 = 0.75

n3= 3, r3 = 0.9999
.4- /11=/12=/13=/14=/15=2

rl = 0.55, r2 = 0.65, r3 = 0.75,

.95

-][

Majority-read/majority-write

TSA;

21 41 61 81 101

ure 7e. n=10, d=1000, c=3, avg. r=-0.75
x

4-

nl = 10,rl = 0.75

nl = 3,rx = 0.5001,/12 = 4,r2 = 0.75
n_ = 3, r3 = 0.9999
nl =/12 = n3 = n, =/15 = 2
rl = 0.55, r2 = 0.65, r3 = 0.75,
r, = 0.85,rs = 0.95

Read--write (Read-one/write--all)

Flag,re 7d. n=10, d=1000,

0.950 _
0.900

0 850

0.800 x

0.750 •

0.700

0.650

0.600

0.550

0.5

c=3, avg. r=0.95

/11= 10, rt = 0.95

nx = 3, rt = 0.90,/1z = 4, r, = 0.95,

n3 = 3, r3 = 0.9999

Majority-read/majority-write

0 20 40 6O 8O 100

Fi_=10, d=l?, c=3, avg. r=0.950.950

0.900 _ !4,

0.650

n_ = 10, rt = 0.95

• /It = 3, rt = 0.90,/12 = 4, r2 = 0.95,
n3 = 3, r3 = 0.9999

Read-write (Read-one/write-all)

0,800

0.750

0.700

0.650

0.600

0.550

0.5
21 41 61 81 101 0 20 40 60 80 100

Read-set size (s) _ Read-set size (s)

Figure 7. Illustration of the Effect of Reliability Variations on Availability (Model 6)

b

IEEE PROCEEDINGS OF THE

UTH TCON '91

Volume2

91CH2998-3
NI_A

