PERFORMANCE
EVALUATION

An International
Journal

ELSEVIER Performance Evaluation 22 (1995) 3-21

DSPNexpress: a software package for the efficient solution
of deterministic and stochastic Petri nets *

Christoph Lindemann

GMD Institute for Computer Architecture and Software Technology (GMD-FIRST), Technical University of Berlin,
Rudower Chaussee 5, 12489 Berlin, Germany

Abstract

This paper describes the analysis tool DSPNexpress which has been developed at the Technische Universitat
Berlin since 1991. The development of DSPNexpress has been motivated by the lack of a powerful software package
for the numerical solution of deterministic and stochastic Petri nets (DSPNs) and the complexity requirements
imposed by evaluating memory consistency models for multicomputer systems. The development of DSPNexpress
has gained by the author’s experience with the version 1.4 of the software package GreatSPN. However, opposed to
GreatSPN, the software architecture of DSPNexpress 1s particularly tailored to the numerical evaluation of DSPNs.
Furthermore, DSPNexpress contains a graphical interface running under the X11 window system. To the best of the

author’s knowledge, DSPNexpress 1s the first software package which contains an efficient numerical algorithm for
computing steady-state solutions of DSPNs.

Keywords: Software packages for stochastic Petri nets; Numerical methods for transient analysis of Markov chains;
Performance and dependability modeling |

1. Introduction

During the last decade several classes of Petri net models in which transition firings are
augmented with time have been proposed in order to define a unified modeling technique for
both formal description and quantitative analysis of systems with concurrency. Such Petri nets
have been broadly accepted for modeling computer and communication systems due to the
availability of appropriate software packages which completely automate their solution process.
A variety of such analysis tools have been presented in the literature (e.g. GreatSPN [5,7],
SPNP [8], UltraSAN [10])).

Deterministic and stochastic Petri nets (DSPNs [2]) are particular well suited for modeling
computer systems and communication networks because this modeling tool incorporates both

" This work has been supported by the Federal Ministry for Research and Technology of Germany (BMFT) under
grant I'TR9003.

0166-5316 /95 /$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0166-5316(93)E0035-4

4 C. Lindemann / Performance Evaluation 22 (1995) 3-21

deterministic and stochastic delays. Under the restriction that in no marking of the DSPN two
or more deterministic transitions are concurrently enabled, Aymone Marsan and Chiola showed
how to the derive the steady-state solution of a DSPN by the method of the embedded Markov
chain (EMC). Previously, the applicability of DSPNs for modeling complex systems has been
severely hampered by the high computational effort of the numerical algorithm for computing
the transition probability matrix of the EMC implemented in the package GreatSPN1.4. In the
version 1.5 of GreatSPN the numerical solution component for DSPNs has been removed and a
software module for timed interactive simulation has been added [7].

The development of the analysis tool DSPNexpress has been motivated by the lack of a
software package for an efficient numerical analysis of DSPNs and the complexity requirements
imposed by evaluating memory consistency models for multicomputer systems [15]. The devel-
opment of DSPNexpress has gained by the author’s experience with the version 1.4 of the
software package GreatSPN [5], which has been available in source code. However, opposed to
GreatSPN1.4, the software architecture of DSPNexpress is particularly tailored to the numeri-
cal evaluation of DSPNs. During the generation of the reachability graph of a DSPN, the
Markov chains defined by exponential transitions competitively or concurrently enabled with a
deterministic transition are derived. These Markov chains are subsequently called subordinated
Markov chains (SMCs) of deterministic transitions. For each connected component of such a
SMC, the transient state probabilities and the mean sojourn times in their states are etficiently
calculated by the numerical algorithm introduced in [13]). The former values define the
transition probabilities of the EMC. The latter values are used to convert the steady-state
solution of the discrete-time EMC to the marking probability vector of the corresponding
DSPN with continuous-time stochastic behavior. Thus, these mean sojourn times have been
referred to as conversion factors in [2].

The separate transient evaluation of each connected component of a SMC is related to the
decomposition approach on the net level proposed by Ajmone Marsan et al. [3]. In their
decomposition approach, DSPN subnets with independent behavior have to be identified by
means of structural analysis on the net level. To obtain the transition probabilities of the EMC
of a DSPN this approach requires a proper combination of the transient quantities calculated
separately for each subnet. The algorithm implemented in DSPNexpress employs a depth-first-
search algorithm for deriving the generator matrices of connected components of each SMC
from the reachability graph of tangible markings of a DSPN. The transient analysis of a SMC
yields immediately the corresponding transition probabilities of the EMC underlying the
DSPN. The interaction between software modules of DSPNexpress is performed mostly by
interprocess communication by means of sockets. As a consequence, the system overhead
required by reading from or writing to files 1s substantially reduced. Moreover, this allows a
parallel execution of the transient analysis of SMCs on a cluster of workstations. Due to this
efficient numerical DSPN solution algorithm DSPNexpress 1s able to calculate steady-state
solutions of complex DSPNs with reasonable computational effort on a modern workstation. To
the best of the author’s knowledge DSPNexpress is the first software package with this feature.
Moreover, the package DSPNexpress has a graphical interface running under the release 5 of
the X11 window system [16].

The remainder of this paper is organized as follows. In Section 2 three related software
packages are described in order to motivate the development of DSPNexpress. Section 3

C. Lindemann / Performance Evaluation 22 (1995) 3-21 5

introduces the design of the software architecture and the numerical solution modules of
DSPNexpress. In Section 4 the features of the graphical interface of DSPNexpress are
described. To illustrate the applicability of DSPNexpress for solving complex DSPNs some
performance curves are presented in Section 5. Finally, concluding remarks are given.

2. Motivation for developing DSPNexpress

The following describes three software packages which are closely related to DSPNexpress.
Since 1986, Giovanni Chiola has been developing at the University of Torino the software
package Graphical Editor and Analyzer for Timed and Stochastic Petri Nets (GreatSPN
15,7D. In 1989 the version 1.4 of the software package GreatSPN has become available. One
major contribution of GreatSPN lies in its user-friendly graphical interface which allows to
interactively validate a model [5]. This feature clearly constitutes an asset in the modeling
process. Moreover, GreatSPN has been the only software package which has contained a
numerical solution algorithm for DSPNs. However, the version 1.4 of GreatSPN contained
rather inefficient numerical solution algorithm for calculating transient solutions of GSPNs and
the steady-state solution of DSPNs. In particular, the numerical DSPN solution component of
GreatSPN severely hampered their applicability for modeling complex systems. In a recent
paper the version 1.5 of GreatSPN has been introduced [7]. In this newest version of the
software package GreatSPN the numerical solution module for DSPNs has been removed and
a software module for interactive timed simulation has been added. The availability of this
component constitutes one of the major contributions of GreatSPN1.5. Moreover, several
“compiling techniques” [6] have been implemented which yield a reduction of run time and
memory space required for the reachability graph construction. However, the numerical
solution algorithm for calculating transient solutions of GSPN models is still based on an
adaptive matrix exponentiation method which has proven to be rather inefficient [12].

At Duke University, Kishor Trived: together with his former students Gianfranco Ciardo and
Jogesh Muppala have been developing the Stochastic Petri Net Package (SPNP [8]). The
version 2.0 of SPNP contains robust and orthogonal software modules for calculating the
steady-state solution of a GSPN. One of the main contributions of the development of SPNP is
the implementation of algorithms for an automated composition of large GSPNs and the
sensitivity analysis of GSPNs to model parameters. Moreover, SPNP can process very general
reward specifications which are useful for an integrated performance and dependability
evaluation of fault-tolerant systems. The version 3.0 of SPNP contains also an efficient software
module for transient analysis of GSPNs which i1s based on the randomization technique with
left-truncation. But SPNP3.0 does not contain a numerical solution algorithm for DSPNs. Users
of SPNP have to specify the GSPN to be evaluated via an alphanumerical interface in a
C-based specification language.

Recently, Willhlam Sanders together with a group of students introduced the software
package UltraSAN [10]. The package UltraSAN contains numerical solution components for
transient and steady-state analysis of stochastic activity networks (SANs) in which all timed
activities have exponentially distributed delays. SANs are similar to stochastic Petri nets which
include timed and immediate transitions (there called activities). UltraSAN contains also a

6 C. Lindemann / Performance Evaluation 22 (1995) 3-21

simulator for transient and steady-state analysis of SANs incorporating timed activities with
arbitrary distributed delays (e.g. deterministic). Furthermore, the package UltraSAN incorpo-
rates a software module for an automated generation of a reduced base model of a hierarchi-
cally-defined SAN [10]. The reduced base model is tailored to the computation of the particular
reward measures of the SAN and typically contains considerably fewer states than the SAN.
Moreover, UltraSAN contains a user-friendly graphical interface running under X11 windows.
These features are the main contributions of the package UltraSAN.

The lack of a powerful software package for an efficient numerical evaluation of determinis-
tic and stochastic Petri nets motivated the author to develop a new software package particu-
larly tailored for this purpose. This analysis tool has been called DSPNexpress. In the following
the main features of the software package DSPNexpress are outlined.

(1) DSPNexpress contains an efficient numerical algorithm for calculating the state transition
probabilities of the EMC of a DSPN and the corresponding conversion factors. A similar
algorithm 1s employed for calculating transient solutions of a GSPN. These numerical
algorithms are based on the randomization technique improved by a stable calculation of
Poisson probabilities and have been introduced in [13] and [12].

(2) The DSPN solution module of DSPNexpress corsiders each connected component of a
Markov chain subordinated to a deterministic transition of a DSPN, separately, for
calculating the corresponding transition probabilities of the EMC and the conversion
factors. This leads to a considerable reduction of the computational effort and the
memory requirements of the DSPN solution algorithm. Moreover, it allows invoking
multiple instances of the appropriate procedure which may run in parallel on a cluster of
workstations.

(3) A numerical solution approach for dealing with marking-dependent firing delays of
deterministic transitions is implemented in DSPNexpress. It has been shown in [14] how
the DSPN solution process introduced in [2] can be extended in order to cope with
marking-dependent firing delays of deterministic transitions. The basic idea is to scale
each row of the generator matrix of the SMC of this deterministic transition by the delay
specified for the corresponding marking. Thus, the general approach for dealing with
marking-dependent firing delays introduced in [1] has been tailored to the deterministic
case. This extension to the modeling power of DSPNs is useful for representing state-de-
pendent deterministic service times which occur in fault-tolerant systems with gracefully
degradable performance [14].

(4) The organization of DSPNexpress exploits the property that each GSPN can be consid-
ered as a DSPN without deterministic transitions. As a consequence, a unified solution
process for both DSPN and GSPN models is provided by DSPNexpress.

(5) The interaction between software modules of the DSPN solution process is mostly
performed by interprocess communication with sockets [11] rather than by employing
input / output files. This yields a substantial reduction of the system overhead required by
I/0 operations from and to the disk in case of evaluating complex DSPNs.

(6) In DSPNexpress, sparse implementations of the direct Gaussian elimination [17] and the
iterative successive overrelaxation (SOR) method with the improved adaptive computation
of the relaxation factor as proposed in [9,18] have been implemented. Depending on the
properties of the transition probability matrix of the EMC the appropriate numerical

C. Lindemann / Performance Evaluation 22 (1995) 3-21

[TX Iopun
guruuny doejIdul [edrydels

$19)00S JO sueowW AQ uoIedIu
-NUWWOI $$3201dI93Ul d[qRI[a]

V/N

V/N

V/N

[9[eted ur uni Aeur yorgm
Inpouw Uonnjos JuUIdIJJI

saniqeqold
uossiod Jo uone[nojed d[qels
B AQ paoueyu? uoIjeZiwopuelr

uoneuIwi[g ueisSnen) J03IIp
Jo uonejudwdw asieds

[SPIeS—gneD) 10 YOS
[ew}do Iedu JAIJRII)I

SuoIjIsueI) JIISIUIULIDIOP
10J sAe[op SuLilj ‘dap--jIlew

dIqe[IeAe SIsAjeue
[eInjonI)s I0J SaInjedj JwWos

[1X Iapun
uruunu aoejrdur [edsrydersd

Ioje[nuwirs pawr) ur paiojduwd
uonedunuuwod $s9201dIdjul
so[1J 3ndino/ndur

[eAIQ}UL
QUII) B UI SOINSBOW PIEMII
paje[NWNIOR JO UOIR[NI[BD

SNVS JO UOIONIISUO0D [dpour
aseq paonpal pajewoine

JOJeNUWIS JUIAI I3}3JOSIP

V/N

saniiqeqoid
uoSSIOd JO uole[no[ed qels
B AQ pP2oURyUD UOIRZIWOpURI

uoneurwiIfg ueissnen) 301Ip
Jo uonejudwaduw asieds
SurIOjIUOU OUIFIIAUOD
UM YOS ewndo reau

SpIemal
‘s9)1ed pue Sased

SMOPUIA\ U2d(Iapun
guruuna doejIdjul [earydess

10je[nuiIs pawr ur pasojdwo

uonedIUNWWOod $$2201dIdUl
saq1y Indino /ndul

V/N

V/N

uoIjepIfeA aAnejnuenb 10]
UOIJB[NWIS JAI)ORIIIUI pawul)
JO)e[nuIS JUIAQ 9)3I0SIP

V/N

uon
-enyuauodxa xijew aandepe

[OPIaS—¢NeD) JAIBII)I

V/N

d[qe[IBAR SISA[BUR [BINJONIIS
10J S9INJBIJ JAISUIIXD

dgdengdue]
paseq-)) e 3uisn doej
-I9)ul [edrrownueydje

saq1y Indino /ndur

uondiosqe 0] awI)
ueaw JO uone[nojed
SISAJeue

AJTIATIISUIS pojewioIne

uonisodwod NdSnH
pajewo)ne Jo jroddns

V/N

V/N

NOAYO)eISApedls
pue uoneosunil-1j9[Aq
paoueyuo uoneziwopuel

[PIS—gnes) 10 YOS
[ewndo Iedu dAI1RIII

SpIemal ‘suorn
-ounj urjqeu? ‘sanid
-ijnui dJe ‘dop--yIeul

sgunjrew urysiuea jo
uoneArdasaid oY) smoje

90BJIJIUI 138

SO[NPOW 9IBM]JOS
U99M12(UOI}dRIAU]

sanbruyo9)
plepue)s-uoN

uonisodwoddp 10
uonisoduwod [9poN

gurwn Areniqre

M SNJS jo uon
-R[NWUIS J1)SBYI0IS

SNdSd
I0J SIsAjeue 9)e)S

-Ape9]S [edlIouWnN

SNJSD) 10] SisA[eue
JUQISURI) [RILIQWINN]

SNdSD
10J SISAJeue 9je)s

-Apea]s [edLIdWINN

SUOISUIIXd NJS

S19U 931J-UOISNJUOD IO0J UOI SNVS I0J uoI $19U 93J1J-UO0ISNJUOD I0J UOI SNdSD I0J uornonijs
-1onnsuod ydeid Ajijiqeyoeal -3onIisuod ydeid Ajiqeyoedr -1onIjsuod ydeid Ajjiqeyoeal -u0d ydead Ajijiqeyoeal SISAJeue [eInjonng
¢ Issa1dxaNdSd 0"INVSEN[] SINdS3IEa1D) 0'€tdNdS

€ ISSa1dxaNdSd Pue 0'ZNVSeIN ‘S INSIE2ID ‘0°'cdNdS Jo uosuredwo)

I 2I9e.l

8 C. Lindemann / Performance Evaluation 22 (1995) 3-21

method for solving the linear system of its global balance equations is chosen. If an
iterative method is selected, the convergence will be monitored. In case of bad conver-

gence the algorithm retries the calculation of the state probability vector by the Gaussian
elimination method.

(7) All software modules of DSPNexpress are implemented in the programming language C to
ensure good portability of the package. DSPNexpress employs the UNIX™ tools lex,
yacc, csh, rsh, make, and several UNIX '™ system calls (e.g. clock and exec).

(8) The reachability graph construction is performed for confusion-free DSPNs by a software
component which 1s based on the method proposed in [4]. The coding structure of the
search tree 1s organized as proposed in [10]. The Markov chains subordinated to the
deterministic transitions are derived during the reachability graph construction.

(9) Checking for syntax errors in specifications of user-defined reward measures and
marking-dependent firing delays is performed at the beginning of the DSPN solution

process. Thus, syntax errors in specifications are detected before any useless computation
IS started.

(10) DSPNexpress has a user-friendly graphical interface running under the X11 window
system which 1s described in Section 4.

In Table 1 DSPNexpress is compared with the software packages SPNP, GreatSPN, and
UltraSAN according to their description in [7], [8], and [10], respectively. If a specific feature is
not available in one of the packages, the appropriate entry is labeled with N /A.

3. Organization of the software package DSPNexpress

Similar to the other analysis tools for stochastic Petri nets mentioned above the package
DSPNexpress 1s organized as several sets of software modules which are stored in separate
directories of a UNIX file system. We originally developed the package DSPNexpress for
Sun'™ workstations under SunOS.4.1, but the package has recently been ported to DEC™ and
HP "™ workstations under ULTRIX4.2 and HP-UXO9.0, respectively. All software modules of
DSPNexpress are implemented in the programming language C.

To exploit the power of the numerical DSPN solution algorithm of DSPNexpress for solving
complex DSPNs the package should run on machines with at least 16 MByte main memory.
DSPNexpress allows a multi-user mode by including a link to the global directory DSPNex-
pressl.3 in the path expression in each user’s shell profile. Only the model descriptions and the
user-defined settings for DSPNexpress are stored in a local directory at each user’s account.
Figure 1 shows the organization of the global part of DSPNexpress from which the solution
programs may be invoked by users. Each user of DSPNexpress has to include a link to
DSPNexpress 1n the path expression in the shell profile from which DSPNexpress is called. A
directory src consists of program components in source code and a makefile. A directory bin of
the same anchor directory contains the corresponding object code of these software modules.
The directory DSPNINTERFACE contains the software modules which implement the graphi-
cal interface of DSPNexpress1.3. The subdirectory include contains precompiler commands for
defining constants and including system files of the X11 programming library. The subdirectory
help contains text files of the help messages. The features of the graphical interface are

C. Lindemann / Performance Evaluation 22 (1995) 3-21 9

DSPNexpress1.3
UTILITIES

\
”l \\\
\ -

DSPNPRINT

1S
/ \\\
TR

DSPNINTERFACE DSPNSOLVE

e 7 N SJ -~ i v~
- V4 ~ h“ _'-Il' -~y
-

“ ~ . .
SIC include bin help SIC SCripts bin
o o A A » @ »

7 N\
,In\

\ 22 N\ y o
Il\ ,I‘\ V4 AR [Il\'\\\\ NN
, ~ ,I, 1 VS v 7 1 V'S,

\ ~
¢ 0N b e ’ \ / AR s 7 4 NS

:I'\\\ 7 \ 7 \ 7 7 \

Fig. 1. Organization of DSPNexpress at the master account.

described 1n Section 4. The directory DSPNSOLVE contains software modules which imple-
ment the numerical solution process of DSPNs. The subdirectory scripts consists of shell scripts
which call the executable programs of the subdirectory bin. The directory DSPNPRINT
contains a software module for generating LaTeX source or postscript files of the textual and
graphical description of a DSPN. The directory UTILITIES contains useful utility programs
such as a shell script INSTALL which performs the installation of the package by a single
command.

The local structure of DSPNexpress is depicted in Fig. 2. The directory Models contains the
specification files of DSPNs which have been inserted previously via the graphical interface of
DSPNexpress. The file .DSPNexpress contains user-defined settings for DSPNexpress such as
the error tolerance with which numerical solution shall be calculated and the names of
workstations which are used for the parallel execution of the transient analysis of the SMCs in
the DSPN solution process.

The software modules of the DSPN solution process and their interfaces are depicted in Fig.
3. The five software modules of the numerical solution component of DSPNexpress are drawn

<User>

Models .DSPNexpress

4', L\

V4 i \

/ \
7,1 { * N\

’ ’ \ S

Fig. 2. Local directory structure of DSPNexpress at each user’s account.

10 C. Lindemann / Performance Evaluation 22 (1995) 3-21

\/' <model>_MDF.c
process_NETDEF - <model>_RES.c
<model>.DEF t

<model>.STRUCT

) ()

<model>.RG
<model>.NET

<model>_MDF.c »| generate_subMCs

<model>.STRUCT

socket <K>

<model>.EMC00

ocket 0 '

derive EMC Y
(rvemve I

<model>.CONV00

1) [5)

ocket <K>

<model>.CONV<K>

<model>.EMCQ00

<model>.CONV00 '

solve LGS) (<model>.PMARK
<model> EMC<K>
@.CONV«:K}
<model> RES.c
' <model>.PTOK
<model>.RG derive_ RES

<model>.RES

Fig. 3. The software modules of the DSPN solution process of DSPNexpress.

<model>.PMARK

Wl

in rounded rectangles connected to their input and output data structures by directed arcs.
Data structures stored in files are drawn as ellipses, whereas data structures transferred via
UNIX sockets [11] are drawn as semi-ellipses. In each software module memory management
functions for data structures are implemented dynamically and exploit their sparsity.

The files {model).NET and {(model).DEF contain the internal description of a DSPN and
also the specifications of marking-dependent firing delays and user-defined steady-state reward
measures of a DSPN denoted by { model). In case this DSPN contains a timed transition with a
marking-dependent firing delay this delay definition is transformed into a C program stored 1n
the file {model) _MDF.c by a compiler program for the corresponding specification language
contained in the software module process NETDEF. This compiler program was generated by
employing the UNIX tools lex and yacc. If the model contains some user-defined reward
measure specifications, these are transformed in a similar way to a C program which is stored
in the file {model) _RES.c. Furthermore, the software module process NETDEF contains a

C. Lindemann / Performance Evaluation 22 (1995) 3-21 11

program component which performs some structural analysis of a DSPNs such as the computa-
tion of minimum-support-place-invariants and extended conflict sets of immediate transitions.
The results of the structural analysis are stored in the file { model).STRUCT. The generation of
the reduced reachability graph of a DSPN and the derivation of the SMCs is performed by the
software module generate _subMCs. In case the DSPN contains some marking-dependent firing
delays the executable program derived from the file { model) _MDF.c is compiled and linked at
run-time. Subsequently, the reduced reachability graph of the DSPN is constructed employing
the approach introduced in [17]. The reduced reachability graph is stored a sparse data
structure in the file (model).RG.

The software module derive EMC contains software implements the computation of the
transition probability matrix of the EMC and the matrix of conversion factors underlying a
DSPN. This software module consist of the two program components proc _Mexp and
proc _Mdet. The program component proc _Mexp calculates the rows of the transition probabil-
ity matrix of the EMC and the matrix of conversion factors corresponding to states in which
only exponential transitions are enabled. In case a DSPN contains K> 1 deterministic
transitions, the software component proc Mdet calculates the transient quantities of a SMC
according to the computational formulas introduced in [13]. The software component
proc _Mexp gets its input through the socket 0. The computed rows of the transition probability
matrix of the EMC and the matrix of conversion factors are written in the files (model). EMCO00
and (model). CONV00. The generator matrices of the kth SMC is transferred via the socket &
(1 <k <K) to an instance of the software component proc _Mdet. The corresponding probabil-
Ity matrix is also transferred via this socket to the same executable instance of proc _Mdet.
Since the numerical solution method of DSPNs requires that in no marking two or more
deterministic transitions are concurrently enabled, multiple instances of the software cCompo-
nent proc _Mdet may run quasi-parallel on a single workstation or may run 1n parallel on
different machines of a cluster of workstations.

The software module solve LGS computes the solution of the linear system of global
balance equations of the EMC underlying a DSPN. First, the transition probability matrix of
the EMC is put together by reading the files (model). EMCO00, {model).EMCOI, ...,
(model). EMC{K). The matrix of conversion factors is obtained by reading the files
(model). CONV00, {model).CONVOI, ..., {model).CONV (K). The linear system is solved by
either a direct or an iterative method depending on the size of the transition probability matrix.
The direct solver is a sparse implementation of the Gaussian elimination method introduced in
[17] which has been revised and reimplemented in the programming language C. The iterative
solver is an implementation of the SOR method for stochastic matrices as proposed in [18] with
some improvements in adapting the relaxation factor according to [9]. Subsequently, the
software module implements the transformation of the steady-state solution vector of the EMC
to the steady-state marking probability vector of the DSPN. This marking probability vector is
stored in the file { model).PMARK .

The software module derive RES computes the token probability distribution in each place
of the DSPN by summing up the appropriate marking probabilities. Furthermore, the mean
number of firings in unit time (also called throughput) is computed for each timed transitions.
It the model contains some specifications of non-standard reward measures, the C program
stored in the file (model) _RES.c is compiled and linked at run-time. The token probability

12 C. Lindemann / Performance Evaluation 22 (1995) 3-21

distribution in each place of a DSPN is stored in the file { model). PTOK. The throughput value

of each timed transition values of the computed results for user-defined reward measures are
stored in the file (model).RES.

4. The graphical user interface of DSPNexpress

The graphical interface of DSPNexpress runs under the release 5 of the X11 window system
and is implemented using athena widgets of the X11 programming library [16]. It allows a
user-friendly definition, modification, and quantitative analysis of DSPN models. Places (place),
immediate transitions (imT), exponential transitions (expT), deterministic transitions (detT),
and arcs (arc) of a graphical description of a DSPN are processed by selecting the correspond-
Ing object and one of the commands add, move, delete, or change with the mouse. For example,
In the setting depicted Fig. 4 deterministic transitions may be inserted and the grid option is
used to simplify the graphical editing. Marking parameters (marking), firing delays (delay), and
tags (tag) associated with places and transitions are processed in a similar way. For each setting
of the command line an online help 1s provided in the upper part of the graphical interface
explaining the actions currently available. The message displayed in Fig. 4 indicates that
clicking the left mouse button inserts a deterministic transition. In Fig. 4 a DSPN named
sequential of the directory VSM is displayed. Each place and each transition of this DSPN is
labeled with a tag (e.g. T'1, t2,..., etc). Each timed transition is also labeled with a parameter
specifying the mean value of its firing delay (e.g. write or d_locate _owner). The exponential
transitions 71, 74, and 716 are also labeled with inf.-serv. to specify their enabling policy as
infinite-server. This DSPN i1s used in Section 5 for illustrating the efficiency of the numerical
DSPN solution component of the package DSPNexpress. The design of the graphical interface
has been influenced by the interface of the version 1.4 of the package GreatSPN [5]. Opposed
to the graphical interface of GreatSPN special purpose editors are provided by DSPNexpress
for defining steady-state reward measures and marking-dependent firing delays. The editor for
specifying user-defined reward measures is shown in Fig. 5. The definitions of eight reward
measures (QueueReadMiss, QueueWriteMiss, etc.) of the DSPN sequential are displayed in the
middle part. The Backus—Naur form of the specification language for reward measures is
displayed 1n the lower part of this window by clicking the help button. To illustrate the
capabilities of DSPNexpress the DSPN solution popup is shown in Fig. 6. In case the
steady-state solution of a DSPN shall be computed the numerical method for solving the linear
system of the global balance equations of its EMC may be chosen by the user by clicking in one
of the toggles iterative or direct. Moreover, a user may specify whether the transient analysis of
the SMCs 1s performed sequentially on a single workstation (sequential) or in parallel on a
cluster of workstations (parallel) and whether verbose output of the solution process is
displayed and stored in a logfile. Transient solutions of GSPNs are computed by clicking in the
toggle transient and specifying an instant of time.

The popup for changing firing delays of timed transitions is shown in Fig. 7. In the current
setting the firing delay of the selected transition is changed to the value of the delay parameter
write with the default enabling policy single-server (single-serv.). Similar popups are provided

C. Lindemann / Performance Evaluation 22 (1995) 3-21 13

¢ DSPN I _— E]
DSPNexpresst.3 Technical University of Berlin 1994

| DSPN displayed: VSM/sequential

Left Button; Add a deterministic transition
<Ctrl> + Left Button: Select a subnet

Models File Edit (Print U (Measuresj Validate | (Solve) Options (Quit ‘)

COMMAND S , '
r acld

(_move)

delete)M =
change - I
—

Fig. 4. User interface of DSPNexpress.

for changing the type of a transition and for changing the multiplicity or the direction of an arc.
The graphical interface also provides popups for defining or modifying a delay or a marking
parameter, changing the string of a tag, etc.

The editor for defining marking-dependent firing delays is shown in Fig. 8. This text editor is
invoked by clicking in the button labeled with mark.-dep. in the popup for changing firing
delays. As in the reward measure editor the Backus—Naur form of the specification language
for marking-dependent firing delays is displayed in the lower part of this window by clicking the
help button.

The print popup of DSPNexpress is shown in Fig. 9. This popup allows the printing of the
DSPN currently being displayed in the main window of DSPNexpress and /or its stochastic
description such as delay and marking parameters and definitions and computed results of
user-defined reward measures. These description may be either directly printed on a laser

writer or stored in files named (model).graph and {model).text, respectively, by clicking the
appropriate toggles with the left mouse button.

14

C. Lindemann / Performance Evaluation 22 (1995) 3-21

®] Editor for defining r reward measures

s A, i Cha S R

(" Change j(Delete) Help)(Quit)

Enter new reward (<name> : <definition>), press 'Escape’ to end]

Defined reward measures : .—I

QueueReadMiss: E{#P4};
QueueWriteHit: E#P11};

QueueWriteMiss: E{#PG&}, |
PP: E{#P1} + E{#P2} + E{#P3};
Einv: E{#P1};

Eread: E{#P2};

@) BNF for specifying reward measures - E
(done)
' <reward_def> . <reward_name> "" <expression> ;"
. <reward _name> : <identifier>
<expression> : <real value> |

=" <expression> |
(" <expression>")" |
<@Xpression> <num_op> <expression>

<real value> | <real_constant> |
<real_parameter> |

Fig. 5. Reward measure editor.

Choose a solution method

| Selection of solution method steady state

for linear system of equations: (lteratwe)

(transient_)

Wy

Transient analysis of SMC:

Logfile of solution process:

..

Fig. 6. DSPN solution popup.

C. Lindemann / Performance Evaluation 22 (1995) 3-21 15

{[] Change the delay of the timed transition

R ReadRequest B
i mark:—de;-l_.—) single-serv. (inf.—serv.)

i done) (cancel)

Fig. 7. Popup for changing firing delays of timed transitions.

5. Performance measurements of the DSPN solution algorithm

To 1llustrate the power of DSPNexpress we consider a DSPN model with several determinis-
tic transitions and whose state space grows rather fast for increasing the number of tokens. The
considered DSPN is displayed in the main window of the graphical interface of DSPNexpress
shown in Fig. 2. This DSPN represents the behavior of a shared page in a multicomputer
system 1n which virtually shared memory is implemented by the sequential memory consistency
model and a write-invalidate protocol. The three main states of a shared page in the global
address space, namely INVALID, SHARED and EXCLUSIVE are represented in the DSPN
by places P1, P2, and P3, respectively. The marking parameter K of place P1 together with
the token in place P3 represent the number of nodes of the multicomputer system competing

E] Editor for defining marking-dependent firing delays '

(done J(help _)(can_c—eD

Insert definition:

IF #P18 = 1: service1
ELSE service2;

E| BNF for specifying marking-dependent delays or weights 7).
g{ done)
Ml <md_delay- . {"IF" <logic_cond> "" <expression> }

-LSE" <expression> ;" |
<expression> ;"

<eXpression> . <real_value> |
—" <gxpression> |

Fig. 8. Editor for defining marking-dependent firing delays.

16 C. Lindemann / Performance Evaluation 22 (1995) 3-21

[®] DSPN Print Popup

Choose the description file to be printed

graphical de :-cripﬂon textual description

Destnation (_Primter)

File format

graphical description: {geEieidgslg (Encaps. PostScript) |

35 textual descrlptlon PostScript (LaTeX sour?e)

Fig. 9. DSPN print popup.

for the access to the shared page. The token in place P15 represents the idle state of the server
this DSPN and a quantitative performance analysis of the sequential memory consistency
model was presented in [15]. For increasing marking parameter K the calculation of the
solution of this DSPN is severely hampered due to state space explosion. For example, in case
of K=19 the DSPN has 59101 tangible markings and its EMC consists of 6004 585 nonzero

state transitions. As shown in [13], DSPNs of this complexity could not be solved in practice
with the adaptive matrix exponentiation method implemented in GreatSPN1.4.

70

60

50

CPU tir_nc 40
In min.

30

20

10

0 10 20 30 40 50 60

Number of tangible markings in 1000

Fig. 10. CPU time versus model size.

C. Lindemann / Performance Evaluation 22 (1995) 3-21 17

The experiments have been performed on Sun'™ 4 /50 workstations with 64 MByte main
memory. For the performance curves of Fig. 10 the CPU time has been measured by the
UNIX ™ system call clock. The overall computation time plotted in Figs. 11 and 12 has been
measured with the UNIX system call time. An error tolerance of € = 107 is considered for the
iterative calculations. In all experiments the parameters of the DSPN are chosen as follows.
The firing rate of the exponential transition 7’1 which models the mean read request rate is
given by 0.01 time units. The firing delay of the deterministic transition 73 represent the delay
for processing a read miss which is given by 5.1 time units. The firing delays associated with the
deterministic transitions 76 and 79 represent the delay for finding the owner and transferring
a copy of a shared page have delays of 1.0, and 4.1 time units respectively. The two
deterministic transitions 711 and 7'13 represent the delay for invalidating copies of a shared
page and have both a firing delay of 0.4 time units. All immediate transitions have an equal
weight of 1. The firing priority of the immediate transitions #10 and ¢12 is 2, all other
immediate transitions have a firing priority of 1.

In a first experiment the mean write request rate is kept fixed to 0.1 time units and the
marking parameter K is varied from 4 to 19. In Fig. 10 the CPU time for deriving the EMC by
GreatSPN1.4 improved by the numerical algorithm introduced in [13] (labeled with G._) is

imp

compared with the CPU time required by a sequential execution of the software module
derive _"EMC of DSPNexpress (labeled with D,). Figure 10 shows that the newly designed
software architecture of DSPNexpress yields a further substantial reduction of the computa-
tional effort required for calculating the steady-state solution of this DSPN. This is due to the
separate execution of the transient analysis for the five SMCs of the deterministic transitions.

Users of a performance analysis tool are also interested in the overall computation time a
software package requires in order to solve a model. Thus, Figs. 11 and 12 show measurements
conducted on a cluster of Sun'™ 4 /50 workstations running exclusively DSPNexpress as

70
60

50

Overall solution 40
time 1n min.

30

20

10

0 10 20 30 40 50 60

Number of tangible markings in 1000

Fig. 11. Overall solution time versus model size.

18 C. Lindemann / Performance Evaluation 22 (1995) 3-21

60

50

40

Overall solution 30
time 1n min.

20

10

0.2 0.4 0.6 0.8 1

Write request rate
Fig. 12. Overall solution time versus stiffness index.

application. Figure 11 plots the overall computation time required by DSPNexpress for a
sequential and a parallel execution of the transient analysis of the five SMCs for increasing
model size. The curve corresponding to the computation time of the parallel execution is
labeled with D_, . Note, the overall computation time required by a sequential execution of the
transient analysis of the SMCs is only slightly higher than the corresponding CPU time plotted
in Fig. 10. This is due to the employment of interprocess communication with sockets rather
than the use of input / output files.

In a third experiment the overall solution time is related to the stiffness index of the SMCs.
The marking parameter K is kept fixed to 15 which result in 20976 tangible markings and
1451 893 nonzero state transitions in the EMC of the DSPN. The write request rate is taken as
stiffness index because it is contained in each SMC. In the considered DSPN, the SMCs of the
deterministic transition 73, 76, and 79 consist of substantially more state transitions than the
SMC:s of the transitions 711 and T13. Therefore, in case of sufficiently high stiffness index or
mode! size the parallel execution of the transient quantities of the SMCs on four or five
workstations reduces the overall computational effort required by DSPNexpress to one third of
the etfort required by a sequential execution on a single workstation of the same type. The
benefit of a parallel execution of the transient analysis of the SMCs would be even greater on a
multiprocessor system due to the lower communication overhead.

6. Conclusions

In this paper the software package DSPNexpress has been introduced for an efficient
numerical evaluation of DSPN models. DSPNs are noteworthy for performance modeling

because this modeling formalism allow the representation of both exponentially distributed and

C. Lindemann / Performance Evaluation 22 (1995) 3-21 19

deterministic timing. To the best of the author’s knowledge there is currently no other software
package available which is able to calculate steady-state solutions of complex DSPNs (e.g. with
60 000 tangible markings and several millions of state transitions) in reasonable computational
effort on a modern workstation.

The core of DSPNexpress constitutes the numerical DSPN solution modules in which the
numerical algorithm introduced in [13] has been implemented. Moreover, DSPNexpress consid-
ers each connected component of a SMC separately for calculating the corresponding the
transition probabilities of the EMC underlying the DSPN. The generator matrices of connected
components of each SMC are obtained during the generation of the reachability graph by a
depth-first-search algorithm. To reduce the system overhead caused by I /O operations with the
disk, the interaction between software modules is mostly performed by interprocess communi-
cation by means of UNIX sockets [11] rather than by reading from and writing to data files.
The separation of the transient analysis of SMCs and the employment of interprocess commus-
nication allow also a parallel execution of the transient analysis on different machines in a
cluster of workstations.

The separate transient analysis of each SMC is related to the decomposition approach on the
net level of Ayjmone Marsan et al. [3] who additionally proposed to search for identical
independent subnets. The identification of some identical subnets has the advantage that the
transient analysis of such subnets has to be conducted just once. However, there may exist
independent subnets of a DSPN with different topology which lead to the same transition
matrix of the underlying Markov chain (e.g. one place containing K tokens as input to a single
exponential transition with a mean firing delay 1/A and a series of K places connected by
exponential transitions each with a mean delay of 1 /A and the first place contains one token).
Theretore, checking SMCs for isomorphic connected components is more beneficial than
searching for identical independent subnets on the net level. Moreover, the separate transient
analysis of a SMC directly derives the corresponding transition probabilities of the EMC
underlying a DSPN. These features clearly constitutes an advantage over the separate transient
analysis of independent subnets proposed in [3] which may require a considerable effort in
order to determine the transition probabilities of the EMC from the transient analysis of the
independent subnets of the DSPN.

Furthermore, a regular structure of the transition matrix of the EMC underlying a DSPN
may be exploited. For example, in case of a E_ /D /1/K queue it is sufficient to calculate one
row of the transition matrix of the EMC with r(K — 1) entries by numerical transient analysis
of its SMC. As shown in [13] the entries of the remaining 7K rows of this transition matrix can
be derived from the calculated r(K — 1) entries by exploiting the regular structure of the SMC.
Currently, we are working on refining the DSPN solution algorithm of DSPNexpress in order to
exploit isomorphic connected components and special structures of SMCs.

Acknowledgments

The author is grateful to Tobias Bading, Enrik Baumann, Christian Lithe, Martin Miiller,
and Armin Zimmermann for their effort and dedication by implementing the software compo-
nents of the package DSPNexpress.

20 C. Lindemann / Performance Evaluation 22 (1995) 3-21

References

[1] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte and A. Cumani, The effect of execution policies
on the semantics of stochastic Petri nets, IEEE Trans. Softw. Engrg. 15 (1989) 832-846.
[2] M. Ajmone Marsan and G. Chiola, On Petri nets with deterministic and exponentially distributed firing times,

in: G. Rozenberg (Ed.), Advances in Petri Nets 1986, Lecture Notes in Computer Science 266 (Springer, Berlin,
1987) 132-145.

[3] M. Ajmone Marsan, G. Chiola and A. Fumagalli, Improving the efficiency of the analysis of DSPN models, in:
G. Rozenberg (Ed.), Advances in Petri Nets 1989, Lecture Notes in Computer Science 424 (Springer, Berlin,
1990) 30-50.

[4] G. Balbo, G. Chiola, G. Franceschinis and G. Molinar Roet, On the efficient construction of the tangible
reachability graph of generalized stochastic Petri nets, Proc. 2nd Int. Workshop on Petri Nets and Performance
Models, Madison, Wisc. (1987) 85-92.

[5] G. Chiola, A graphical Petri net tool for performance analysis, Proc. 3rd Int. Workshop on Modelling Techniques
and Performance Evaluation, Paris, France (1987) 323-333.

[6] G. Chiola, Compiling techniques for the analysis of stochastic Petri nets, Proc. 4th Int. Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation, Palma de Mallorca, Spain (1989) 11-24.

[7] G. Chiola, GreatSPN 1.5 software architecture, Proc. 5th Int. Conf. on Modelling Techniques and Tools for
Computer Performance Evaluation, Torino, Italy (1991) 117-132.

[8] G. Ciardo, J. Muppala and K.S. Trivedi, SPNP: stochastic Petri net package, Proc. 3rd Int. Workshop on Petri
Nets and Performance Models, Kyoto, Japan (1989) 142-151.

9] G. Ciardo, A. Blakemore, P.F. Chimento, J.K. Muppala and K.S. Trivedi, Automated generation of Markov
reward models using stochastic reward nets, in: C. Meyer and R.J. Plemmons (Eds.), Linear Algebra, Markou
Chains, and Queueing Models, IMA Volumes in Mathematics and its Applications 48 (Springer, Berlin, 1992).

[10] J. Couvillion, R. Freire, R. Johnson, W.D. Obal, M.A. Qureshi, M. Rai, W.H. Sanders and J.E. Twedt,
Performability modeling with UltraSAN, IEEE Software 8 (1991) 69-80.

[11] S.J. Leffler, M.K. McKusick, M.J. Karels and J.S. Quarterman, The Design and Implementation of the 4.3BSD
UNIX Operating System (Addison-Wesley, Reading, Mass. 1989).

[12] C. Lindemann, Employing the randomization technique for solving stochastic Petri net models, in: A. Lehmann
and F. Lehmann (Eds.), Proc. 6th GI/ITG Conf. on Modeling, Measurement and Evaluation of Computing
Systems, Munich, Germany (Springer, Berlin, 1991) 306-319.

[13] C. Lindemann, An improved numerical algorithm for calculating steady-state solutions of deterministic and
stochastic Petri net models, Performance Eval. 18 (1993) 79-95.

[14] C. Lindemann and R. German, Modeling discrete event systems with state-dependent deterministic service
times, Disc. Event Dynam. Syst. 3 (1993) 249-270.

[15] C. Lindemann and F. Schon, Evaluating sequential consistency in a virtually shared memory system with
deterministic and stochastic Petri nets, Proc. Int. Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, San Diego, Calif. (1993) 63-68.

[16] O’Reilly and Associates Inc., The Definition Guides to the X Window System Vol. 5, X Toolkit Intrinsics Reference
Manual (1990).

[17] A.H. Sherman, NSPIV, a FORTRAN subroutine for sparse Gaussian elimination with partial pivoting, ACM
Trans. Math. Softw. 4 (1978) 391-398.

[18] W. Stewart and A. Goyal, Matrix methods in large dependability models, Technical Report RC-11485, IBM
Watson Res. Center, Yorktown Heights, 1985.

C. Lindemann / Performance Evaluation 22 (1995) 3-21 21

Christoph Lindemann received the degree Diplom-Informatiker (M.S. in Computer Science)
from the University of Karlsruhe 1n 1988 and the degree Doktor-Ingenieur (Ph.D. in Engineer-
ing) from the Technical University of Berlin in 1992. Presently, he is a Research Scientist at the
GMD Research Institute for Computer Architecture and Software Technology (GMD-FIRST)
at the Technical University of Berlin. During the summer 1993 he was a Visiting Scientist at
IBM Almaden Research Center in San Jose, California. Christoph Lindemann is recipient of a
‘“Habilitandenstipendium” (a two-year research fellowship) from the Deutsche Forschungsge-
meinschaft (German Research Council).

Dr. Lindemann is the program committee co-chair of the 6th International Workshop on Petri
Nets and Performance Models. His research interests are in performance and dependability

modeling, parallel computer architectures, distributed operating systems, numerical analysis and scientific comput-
ing, and applied probability.

