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Abstract 

In this short note we outline a general method for characterizing the ergodicity and computing performance 
measures for a large class of telecommunications models. We also point out errors that have appeared in the 
literature when using the transform method to analyze such models. 
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1. In troduct ion  

The transform method frequently has been used in the modeling and analysis of certain 
telecommunicat ions systems. That is, to determine the equilibrium probabilities of the Markov 
chain that describes the behavior of  such models, it is common to study an equivalent set of 
generating function equations. This technique involves finding singularities of an analytic 
matrix valued function inside the closed unit disk, and using these singularities to obtain 
equations for a finite set of boundary  probabilities. Arguments  usually involving Rouch~'s  
Theorem are used to count the zeros of the determinant  of the matrix function. However,  we 
show in Section 3 that applications of theorems from complex analysis that have appeared in 
the literature are often incorrect. We then present  in Section 4 a correct argument that 
determines the number  and location of  the zeros. Conditions that describe when the chain is 
ergodic, null recurrent  or transient are also given. We note that although these models appear  
to have different structures, they are all M / G / 1  type Markov chains with essentially identical 
transition matrices. Their  analysis can be handled by a single argument,  which we give below. 
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2. M / G / I  type Markov chains 

The Markov chain governing the behavior of many telecommunications models is a particu- 
lar example of the following class of chains. A discrete-time Markov chain ~" with states (i, j), 
i = 0, 1 , . . . ,  j = 0 . . . . .  M where M is a nonnegative integer, is said to be of M / G / 1  type if its 
transition matrix is of the form 

bo,o 

bN lO 

a o 

0 

bo3 • . . b o , N _  1 b o , N  b o , N + l  

b N -  1,1 " " " b N -  1 , N -  1 bu-  1,N b N -  1 , N +  1 " " " 

a 1 • . . a N _  1 a N  a N + l  • . . 

a 0 • . . a N _  2 a N - 1  a N • . . 

(1) 

a(z)  = Y'. akz  k (3) 
k = O  

and, for i = 0 , . . . , N -  1, 
o o  

#,(z) = E #,,,z*. 
k=O 

Transforming the balance equations yields 
N - 1  

G(z)[  z N I  - -  a(z)] + Y'~ "/Ti [ z i I  - -  b i ( z ) ]  = 0 .  

i = 0  

An equivalent equation involving the probability generating function 
~ N - 1  

T I ' ( Z )  = E T i ' i z i = z N G ( Z )  "~- E 7ri Z i  

i = 0  i = 0  

(4) 

(5) 

(6) 

The Markov chain ~' is assumed to be irreducible. The entries bik , ak ,  = 0 , . . . ,  N -  1, k = 0, 
1 , . . . ,  are (M + 1) x (M + 1) matrices, and N is a positive integer. The first coordinate of (i, j) 
is called the level of the state, while the second coordinate is called the phase or stage of the 
state. States with a level of at least N constitute the homogeneous part of the chain, while 
states with a level of at most N -  1 are called boundary states. An extensive theory of these 
chains based on an algorithmic treatment has been developed by M.F. Neuts [11]. Another 
classical approach to their study is through the use of generating functions, and this method is 
fully developed in [2]. We now briefly review this latter approach based on techniques from 
complex analysis. 

Our interest is in determining the stationary probabilities of the chain ~ .  That is, we seek 
1 × (M + 1) vectors rri, i = 0, 1, . . .  ,where Tr = [Tr0, 7rl, . . .  ] e  11, which satisfy ~ - - r r ~ .  Define 
the vector generating function corresponding to the homogeneous states 

o o  

G ( z ) =  E 7"i'i Zi-N (2) 
i = N  

and also define the generating functions 
o o  
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is given by 

rr(z)[zNl--a(z)] + 
N - I  
E T I ' i [ z i a ( z ) - - z N b i ( z ) ]  = 0 .  (7) 
i=o 

Since rr ~/1 ,  the unknown vector function G(z) (or 7r(z)) is analytic in the open unit disk 
and continuous in the closure. The usual method employed to solve (5) or (7) is to find all 
singularities of the matrix valued function 

A(Z) =zNI--a(z) (8) 

in the closed unit disk and use them to find linear equations involving the probability vectors 
7r i, i = 0 , . . . ,  N - 1 ,  associated to the boundary states. The solution of these equations, 
normalized by conservation of probability, yields the boundary probabilities, and hence from (5) 
or (7) the stationary probabilities 7r i, i = 0, 1, . . . .  Although this approach is straightforward, 
there are many technical difficulties that must be resolved in order  for it to be carried out 
rigorously. A second problem of interest is to characterize in terms of the matrices a k and bik 
when the chain is ergodic, null recurrent  or transient. 

3. Telecommunications Models 

A particular class of M / G / 1  type Markov chains has appeared recently to model the 
behavior of switches with multiple types of traffic (voice, data, video, multimedia) [4-10,12,14- 
17]. The following model  of a vo ice /da t a  multiplexor appears in [9,12]. Time is divided into 
slots with N slots comprising a frame. There  are at most M voice connections actively 
transmitting during a frame, and such connections can become active or inactive only at the 
beginning of a frame. The number  of active voice connections per frame is governed by an 
M +  1 state Markov chain with an irreducible, aperiodic transition matrix Q = [qss'], s, 
s' = 0 , . . . ,  M. Data packets are one slot in length and have an arrival process with generating 
function R(z)= E~=0rkz k. Packets that arrive during a frame can only be transmitted in 
subsequent frames, and there is an infinite buffer for data packets. Voice has priority over data, 
in that all active voice connections occupy one slot during a frame. Let u n be the number  of 
buffered data packets at the beginning of the nth frame, cn the number  of active voice 
connections at the beginning of the nth frame, and w n the number  of data packets that arrive 
during the nth frame. Then (u n, c n) is a two-dimensional Markov chain with states (i, j), i = 0, 
1 . . . . .  j = 0 . . . . .  M, the behavior of which is represented by the equation 

u~+l=(u~+v~-N)++w~. (9) 

Here  we use the notation X += max(X, 0). 
By (9) the probabilities of  transitions from level N + i to level k + i are identical for i = 0, 

1 , . . . ,  so ~ '  is the transition matrix of an M / G / 1  type Markov chain. To find the entries of ~ ,  
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consider a transition from level N, and note that if un=N then U n + l : l ) n " ~ W  n. Now a 
transition from state (N, s) to state (s + w, s') takes place with probability qss, rw, so that 

a(z)=R(z)  

1 

qoo qo1 " "  qOM I 

] Zqlo Z q l l  • . .  Z q l M  

ZMqMo ZMqM, ... ZMqMM 

The matrix functions bi(z) , i = 0 , . . . ,  N - 1, are also easy to obtain as 

b i ( z  ) = R ( z )  

qoo qo1 "'" qOM 

ZqN- i+ l ,O  Z q N - i + l , 1  • . .  Z q N _ i + l ,  M 

z M - N + i q M  0 z M - N + i q M  1 . . .  z M - N + i q M  M 

with bi(z)=R(z) Q for O < i < N - M .  We may write a(z), bi(z), in terms of the diagonal 
matrices 

O i (  z ) = diag( 1,. .  Z , 1, z ,  . . . , z M - N + i )  

N - i + l  

as a(z) =R(z)Dg(z) Q and bi(z) =R(z)Di(z)Q, i = 0 , . . . ,  N -  1. The generating function 
equation (7) is then 

rr( z )[ zNI -- R( Z )DN( Z )Q] = 
N-1 
E rriR(z)[zgDi(z)--ZiDN(z)]Q • (10) 

i=O 

The equation derived in [4] is slightly different, since data packets do not have to wait until 
subsequent frames to be transmitted in the model  studied there. Instead, a packet may be 
served in any slot after the one in which it arrives. In this case, the matrix function 
A(z) = z N I -  R(Z)DN(z)Q is the same as before since (9) still holds when u n is at least N, but 
the bi(z) a r e  different. 

The first problem to be addressed is the determinat ion of the number  and location of the 
zeros of det  A(z) in the closed unit disk. The following argument  is given in [4]. Write 

det A(z)=det[zNI-R(z)DN(z)Q] 
M 

= 

j=O 

where Aj(z), j = 0 , . . . ,  M, are the M + 1 eigenvalues of DN(Z)Q and where I Aj(z)l < 1 for 
I z l <  1. If the Aj(z) were analytic in the open unit disk as asserted in Lemma 4.2 of [4], one 
might apply Rouch6's Theorem to the individual factors z n -  R(z)Aj(z) to find the number  
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and location of the zeros of det A(z) in the unit disk. The problem with this argument is that 
the Aj(z) are not, in general, even continuous functions. 

Example 1. Consider the simplest case M = 1 (N arbitrary), and let 

[ q °  l - q °  1 
Q = 1 - ql ql ' 

where 0 <q0 <q l  < 1 and ql 4 : 1 - q 0 .  For a fixed z, the eigenvalues of DN(Z) Q are the 
complex numbers A = A(z) that satisfy the equation 

de t{AI -DN(z )O}  = A 2 -  (q0 +zql)A - z ( 1  - q 0 - q l )  = 0. 

The roots of this equation are continuous functions in the unit disk if and only if the two zeros, 
~:0 and ~:1, of the discriminant 

~(z)=q2z2 + [2q0ql + 4 ( l _ q o _ q l ) ]  z +q2 

either coincide or lie outside the unit disk. However, ~:0~:1 = (qo/ql) z < 1, and thus at least one 
of ~:o and ~:1 is inside the unit disk. Further, -(~:o + ~1) = [2qoql + 4(1 - qo - ql)]/q 2, so if the 
two roots coincide then 

qo 1 - ( 1 - q o ) / q l  q2 
= - - - 2  , ~ ) -  q~. -~o ql ql 

This can happen if and only if ql = 1 or ql = 1 - q0, which is ruled out by assumption. Hence, 
the eigenvalues are not continuous functions in the unit disk. What is actually demonstrated in 
Lemma 4.2 of [4] is only that the leading term in the Puiseux series at the origin for Aj(z) has 
integral exponent. 

In Proposition 4.1 of [5] it is noted that if the eigenvalues Ai(z) are all distinct then they are 
analytic, which is true. However the authors also assert that if the eigenvalues are not distinct, 
then the input parameters can be perturbed to make them so. That is, every set of input 
parameters is a limit point of input parameters for which the eigenvalues are analytic, which is 
false. Note that there is no way to perturb the input parameters q0 and ql in the above 
example to obtain analytic eigenvalues. 

In addition, Rouch6's Theorem is applied in Proposition 4.1 of [5] to an equation z N__ Aj(Z) 
with I Aj(z)l < 1 to deduce that it has N roots in I z l <  1. The example z K, K> N, illustrates 
that the requirement of strict inequality on the unit circle to find roots in the open disk cannot 
be replaced by nonstrict inequality to find roots in the closed disk when using Rouch6's 
Theorem. 

A slightly different model than the one discussed above has appeared in the sequence of 
papers [6-8,10,14-16]. The two-dimensional Markov chain that is studied is governed by the 
simpler equation 

u n + l = ( u n + v , - N )  +, (11) 
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where v n is the amount of traffic arriving during the nth frame, and u n is the amount of 
buffered traffic at the beginning of the nth frame (an infinite buffer is assumed). Here v n may 
consist of many different types of traffic (e.g. multimedia), and each type may have distinct 
statistical properties. In this case (see [13] and Section 6.2.B of [11]), the traffic matrix 
decomposes into the Kronecker product of matrices associated with the individual traffic types, 
and this decomposition can be exploited in the analysis. However, it is clear that (11) defines a 
chain of M / G / 1  type of the previous form with R ( z ) =  1 (note that M >  N may hold), and 
thus the above comments again apply. For example, the generating function equation for 7r(z) 
is 

7r( z )[ zNI  -- DN( Z )Q] = 
N-1  
E 7 r i [ z N D i ( z ) - - Z i D N ( Z ) ] Q ,  

i=0  

(12) 

which is easily seen to be equivalent to the main equation (2.12) in [6], (22) in [10], (2.12) in [7], 
(2.3) in [8], (9) in [14], (9) in [15] after some straight-forward manipulations. The assertion that 
the eigenvalues are analytic is again false, and, in fact, the Q matrix given in Example 1 is the 
matrix studied in equation (3.1) of [6], (45) of [10], (3.1) of [7], (3.1) of [8], (46) of [15]. 

Additional errors appear in these papers. On page 2027 of [16] it is claimed that the infinite 
buffer equation (11) is the evolution equation for the previous model considered with a finite 
buffer. Further, balance equations for the infinite buffer case are said to hold for the finite 
buffer case (see equations (4)-(6) in [16]). Zeros of the generating function for the infinite 
buffer model are found on page 2028 of that paper using the above incorrect eigenvalue 
arguments, and they then are used to analyze the finite buffer model. 

In equation (2.15) of [6], (26) of [10], (2.15) of [7], (2.5) of [8], it is claimed that the matrix 
a ( z ) = D N ( Z )  Q can be diagonalized. However, Example 1 shows that this matrix is not 
diagonalizable in general. Also, in these papers, the left and right eigenvectors associated to the 
eigenvalues Aj(z) are determined, and it is asserted that they are analytic in the closed disk. In 
fact, equations (3.7) and (3.8) in [7] provide a counterexample to this assertion. On page 2169 of 
[8] it is stated that each A~.(z) is a different branch of an algebraic function, and all of them are 
analytic in the closed unit disk. Again, this is not true in general. Using zeros of these 
eigenvalues to obtain numerical results is also discussed in [6-8,10,14,15]. Since these functions 
may not even be continuous, it is not clear what sort of search procedure should be used to find 
their roots. 

On page 1120 of [7] the following argument appears involving an eigenvalue A0(z). It is 
stated that since ,t0(1) = 1, A0(0) = q0, and Xo(z) ~ 0 for 0 < I z I < 1, then by properties of 
conformal mapping q0 <lA0(z)l  < 1. First, as shown above A0(z) is not in general differen- 
tiable, and it is not conformal. Further, the example (1 + z ) / 2  satisfies the above conditions, 
but clearly 1 /2  < I(1 + z ) / 2  J < 1 does not hold in the punctured disk. 

In [17] the results of [4] are generalized to arbitrary irreducible aperiodic matrices Q (the 
assumptions in [4] include Poisson arrivals of voice connections and geometric distribution of 
length of connection). We will see below that the root count given in [17] is not correct for 
these generalizations. Further, the Markov chain ~ is not necessarily irreducible without 
additional assumptions on Q. These comments also apply to the model with evolution equation 
(11) studied in [6-8,10,14-16]. 
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Example 2. Let  M = 4, N = 2, and consider  the irreducible aperiodic matrix 

° ° ] 0 000 0 00 0° 000 0° 01 
T h e n ~  is not irreducible, since {0, 1, 2} consti tutes an absorbing set of levels. 

4. Analysis of telecommunications models 

Determin ing  the zeros of det  A(z)  in the closed unit  disk is a nontrivial problem for 
irreducible M / G / 1  type Markov chains ~', with complications involving mult iple zeros and 
zeros on the unit  circle. In [2] it is shown that  the number  and location of the zeros depends  on 
the structure of the matrix a ( 1 ) =  E~=oak. For  the te lecommunicat ions  model,  the matrices 
a(1) = b i (1)=  Q are irreducible, and the following is known in this case. The  number ,  g, of 
distinct zeros of det  A(z)  on the unit  circle satisfies 1 < g < ( M  + 1)N when the chain ~ is 
irreducible. Fur ther ,  g has a probabilistic in terpreta t ion in terms of the changes in level for 
cycles be tween stages of ~ (see [2] for a precise interpretat ion).  The  zeros in the open  unit  disk 
are de te rmined  by the integer  g and the real number  

d z:  3 '=  dzz det  A(z )  , (13) 
1 

which is closely related to the drift in the homogeneous  part  of the chain. The  next theorem is a 
consequence  of T h e o r e m  2 of [2]. 

Theorem 1. Suppose that R ( z )  is continuously differentiable for  I 1 and that a(1) is 
irreducible. 

(i) I f  3, > O, then det  A(z)  has exactly ( M  + 1 ) N - g  zeros (counting multiplicities) in the open 
unit disk and simple zeros at the gth roots o f  unity on I z l =  1. 

(ii) I f  y < o, then det  A(z)  has exactly ( M  + 1)N zeros (counting multiplicities) in the open unit 
disk and simple zeros at the gth roots o f  unity on I z l =  1. 

Suppose, in addition, that R( z ) is twice differentiable in the closed unit disk. 
(iii) I f  3, = O, then det A( z ) has exactly ( M + 1)N - g zeros (counting multiplicities) in the open 

unit disk and zeros o f  multiplicity 2 at the gth roots o f  unity on I z I = 1. 

We will briefly sketch a proof  of this t heo rem under  the addit ional hypothesis  that  R ( z )  is 
analytic in a ne ighborhood  of I zl ___ 1. Without  this hypothesis,  more  intricate technical 
a rguments  are required (a complete  proof  appears  in [2]). 

Proof. Define the matrix functions A(z, t ) = z N I - - t a ( z )  indexed by the real pa ramete r  
0 < t < 1. Clearly det  A(z, 0) = z ~M÷I~N has ( M  + 1)N zeros in the open  unit  disk and none  on 
the unit  circle. A computa t ion  shows that  A(z,  t) is a strictly diagonally dominan t  matrix for 
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0 < t < 1, I z l =  1, and so it is nonsingular. Therefore,  by the argument  principle [1], the 
number  of zeros of det  el(z, t) in the open disk is a continuous integer-valued function of t. 
Thus det el(z, t) also has ( M  + 1)N zeros in the open disk and none on the boundary for 
0 < t < 1. The proof is completed for t = 1 by considering det el(z, 1) at z = 1, since the 
behavior is the same at all g zeros on the unit circle because Z - ( M + I ) N  det el(z, t) is a function 
of z g [2]. First note that det el(l, t) > 0 for 0 < t < 1, since the determinant  is nonzero for such 
t and is positive when t -- 0. Using this, it is easy to show that the zero of det el(z, 1) at z = 1 is 
the limit of real zeros of det A(z, t) from inside the unit disk as t ~ 1 when y > 0, while it is 
the limit of real zeros from outside the disk when y < 0. For the remaining case, it is shown in 
[2] that d2 /dzZ(de t  a (z ) )  I z=a < 0 when 7 = 0, so that the determinant  has a zero of order  2 at 
z = 1, and it is the limit of  real zeros from both inside and outside the unit disk. [] 

In [4] the arrival process of voice connections is Poisson, and the duration of a connection 
has a geometric distribution. As a consequence,  z = 1 is the only zero of det A(z) on the unit 
circle, i.e. g = 1. However, [17] a t tempted to generalize these results to cases where  the arrival 
process was given by an arbitrary irreducible aperiodic matrix Q. In these cases, g may be 
greater  than 1, even when ~" is irreducible. Thus the resulting theorems counting the zeros of 
det  el(z) are incorrect. The same type of error occurs in [15,16] for the model  corresponding to 
equation (11). 

Example 3: Consider the case M = 3, N = 4, of  Eq. (9), and let 

0 1 /2  1 / 2  0 ]  

Q =  0 0 0 1 1 1 0 0 0 ' 
1 0 0 0 

and R(z )  = (1 + z4) /2 .  Then  Q is irreducible and aperiodic, ~" is irreducible, y > 0, g = 2, and 
det A(z) has zeros on the unit circle at z = 1, z = - 1 .  On page 868 of [17], it is claimed that 
z = 1 is the only zero of modulus 1 in this case. 

Example 4. To find an example for Eq. (11), let M = 4, N = 2, and 

1 /3  1 /3  1 /3  0 0 ] 

i 0 0 1 0 
Q =  0 0 0 1 . 

0 0 0 0 
[ 1 / 2  0 0 0 1 / 2  

Then Q is irreducible and aperiodic, ~ is irreducible, y > 0 and g = 2. Again on page 194 of 
[15] and page 2028 of [16] it is claimed that z = 1 is the only zero on the unit circle. 

A second question of interest is to characterize the ergodicity of the Markov chain ~'. This 
depends on y and R'(1), the mean number  of data packets that arrive during a frame. 
Although the correct condition was given in [4], it was based on the incorrect Lemma 4.2. The 
following is a consequence of Theorem 7 of [2]. 
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Theorem 2. Suppose a(1) is irreducible. The Markov chain ~ is transient if and only if 3' < O. It is 
ergodic if and only if 3' > 0 and R'(1) < +o0. 

The quantity y has a natural interpretation that allows the above characterization of 
ergodicity to be given in intuitive terms. Consider the equations 

adj{A(z)}A(z) = d e t  A ( z ) I =  A(z)adj{A(z)},  (14) 

where adj represents the classical adjoint matrix. Differentiating the left-hand equation and 
evaluating the result at z = 1 yields 

d z= adj{A(1)}A'(1) + ~ z  adj{A(z)} A(1) = yI.  
1 

Multiplying an (M + l) x (M + 1) matrix on the right by the (M + 1) X 1 column vector 1 every 
entry of which is 1 simply adds the rows of the matrix. Now A(1) = I - a(1) has zero row sums 
because a(1) is stochastic, so 

adj{a(1)}a ' (1) l  = y l .  (15) 

Since de tA(1)= 0, (14) shows that the rows and columns of adj{A(1)} are left and right 
eigenvectors of a(1) for the eigenvalue 1. Further,  since a(1) is an irreducible stochastic matrix, 
it is well-known that the entries of adj{A(1)} are strictly positive (see page 75 of [3]). These facts 
imply that the rows of adj{A(1)} are all equal and are a positive multiple of 7?, the stationary 
probability vector of a(1). That is, 

adj{A(1)} - -c  , (16) 

where c > 0 and rl = rla(1). In addition, we have 

d [ z N i _ a ( Z ) ] z = l l = N l _ a , ( 1 ) l "  (17) a'(1)1 

Substituting (16) and (17) into (15) and using -ql = 1 yields 

y / c  = g - ~/a'(1)l, (18) 

for a Markov chain of M / G / 1  type with an irreducible a(1) matrix. The expression on the 
right-hand side of the above equation is the negative of the one step drift in levels for the 
homogeneous part of the chain. 

For the telecommunications case, using Q1 = 1 we have 

a ' (1) l  = [diag{0, 1 , . . . , M }  +R' (1) ]Q1 = h  + R ' ( 1 ) I ,  

where h is the (M + 1) x 1 column vector [0, 1 , . . . ,  M] T. Since a(1) = Q, r/ is the stationary 
probability vector of the irreducible stochastic matrix Q. Thus from (18) 

y / c  = g -  (~ + ~),  (19) 
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where ~ = E ~ 0  Jr; i is the mean number  of active voice connections per  frame and where  
= R'(1) is the mean number  of  arriving data packets per  frame. The number  of zeros of det 

A(z) and the ergodicity of  the chain ~ can now be given in very natural probabilistic terms. For 
example, when R'(1) < + ~ ,  the chain is ergodic, null recurrent,  or transient if and only if the 
average amount  of  work arriving per  frame, ~ + ~,  is less than, equal to, or greater  than N, the 
number  of slots per  frame. 

5. Conclusions 

In this note we have given an analysis of  a class of  telecommunications models, and in the 
process we have corrected errors that have appeared  in the literature. Specifically, we have 
determined the number  and location of  zeros of  the determinant  of  a fundamental  matrix 
function, which are used to obtain boundary  probabilities of  the Markov chain model. We  have 
also given the stability condition for the chain, which has a natural  probabilistic interpretation. 
We also wish to reiterate that the models  used are special cases of Markov chains of  M / G / 1  
type, and in addition to the generating function approach there is a general algorithmic theory 
of these chains in the work of M.F. Neuts.  
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