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ABSTRACT 

Reward models have become an important method for specifying performability models 

for many types of systems. Many methods have been proposed for solving these reward 

models, but no method has proven itself to be applicable over all system classes and sizes. 

Furthermore, specification of reward models has usually been done at the state level, which 

can be extremely cumbersome for realistic models. We describe a method to specify reward 

models as stochastic activity networks (SANs) with impulse and rate rewards, and a method 

by which to solve these models via randomization. The method is an extension of one 

proposed by de Souza e Silva and Gail in which impulse and rate rewards are specified at 

the SAN level, and solved in a single model. Furthermore, a novel method of discarding 

trajectories of low probabilities with algorithms to compute bounds on the injected error is 

proposed. The methodology is presented, together with the results on the time and space 

efficiency of a particular implementation. 
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CHAPTER 1 

Introduction 

In the past few years, the growing dependence on computing systems has caused com

puter performance and computer reliability evaluation to emerge as important technical 

disciplines. Traditionally, performance and reliability issues have been distinguished by 

regarding "performance" as "how well the system performs provided it is failure free" and 

"reliability" as "how long the system is failure free". Meyer [18] has introduced another 

approach to quantify behavior of systems with parallel resources that exhibit degradable 

performance. The approach introduced by Meyer defines a general modeling framework 

that formulates and evaluates a unified performance-reliability measure, formally intro

duced as "performability" measure. Reward models, as defined by Howard [14], seem well 

suited to quantify the performability of systems. In this thesis, we propose a reward model 

solution method based on randomization to evaluate the probability distribution of the 

performability measure. 

1.1 Performability 

Performability and its associated concepts are defined by Meyer [18], as follows. Let S 

denote a degradable system in question, wherein A defines the set of all possible performance 

outcomes the system S can accomplish. Then, the performance of S over a specified time 
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period T can be represented by a random variable Ya talcing values in the set A. Accordingly, 

the performability of S for a set of outcomes B is the probability measure induced by Ya, 

provided B C A 

probability that S has a performance outcome 
Ps{B)  =  

from set B 

Solution of performability is based on the underlying stochastic process {Xt : < < 0} 

which represents the dynamics of the system structure and the performance variable Ya. 

Performability model construction is the process of identifying a performance variable Y and 

determining the base model stochastic process X that permits the solution of performability. 

This process, if used with traditional construction techniques, will lead to models which 

are stifT. Stiffness is associated with the large differences in magnitude between various 

rates. Meyer [19] has studied this problem and presented a solution in terms of behavioral 

decomposition. 

1.2 Behavioral Decomposition 

Behavioral decomposition, based on time-scale differences, has become an accepted mod

eling technique for predicting the combined performance and dependability of computer 

systems. The basic idea behind the behavioral decomposition can be easily understood 

by considering a gracefully degradable system, where performance-oriented events occur 

more often than dependability-related events. Therefore, it is reasonable to assume that a 

degradable system performs in steady state between the structural changes. Based on the 

above idea of behavorial decomposition, a performability model can be decomposed into a 

structural model and a number of performance models equal to the number of structural 
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states. Each performance model provides an estimate of the steady state performance for 

the particular structural configuration. Howard [14] has defined the performance as a real 

valued "reward function", r : M —<• 3J, defined on the structure state space M. 

1.3 Reward Models 

Reward models [14] allow us to compute the behavior of a system by analyzing the 

state occupancies and the transitions of the associated stochastic process. Informally, a 

reward model consists of two parts: a stochastic process X = {Xt : t > 0} representing 

the structural behavior of the system and a reward function defined on the state space 

of the process X. On the basis of the nature of stochastic process, reward models are 

characterized as Markov reward models and semi-Markov reward models. And on the basis 

of the reward assignment, reward functions are classified into "rate reward functions", 

r(i,t), and "impulse reward functions", r(i,j). Rate reward functions are time dependent 

rewards associated with occupancy of state i of the structure state space M. Impulse reward 

functions are time independent rewards associated with the transition from state i to state 

j where i, j £ M. 

The reward structure quantifies the behavior of the system, but does not distinguish a 

variable by the utilization interval it is measured for. Typically one might be interested in an 

instant-of-time variable, interval-of-time variable or time-averaged-interval of time variable, 

Sanders et al. [27]. This thesis focuses on the interval-of-time behavior, which calls for 

transient analysis of the system. Much work has been done in an attempt to calculate the 

distribution of reward accumulated over an interval-of-time. In particular, Furchtgott and 

Meyer [9] define a reward structure to evaluate the performability distribution function 
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(PDF) of the performability variable by associating non-increasing (fixed) rate rewards 

to the performance (accomplishment) levels of degradable non-repairable systems. They 

derive an integral expression for performability by enumerating all the state trajectories 

of the queueing model. Donatiello and Iyer [6] propose a method based on the Laplace-

Stieljes transform while Goyal and Tantawi [10] suggest a recursive solution for analyzing 

the discrete rate reward model of degradable non-repairable systems. 

Relatively little work has been done in obtaining the performability solutions of re

pairable fault-tolerant systems. Kulkarni et al. [17] consider a Markov process model of 

repairable fault-tolerant system and investigate a transform solution, de Souza e Silva and 

Gail [7] present an elegant solution based on randomization and linear combinations of 

the order statistics of state occupancies in the randomized Markov chain. However, they 

evaluate the performance variable by defining the reward structure either on the transi

tions or the state occupancies of the randomized Markov chain rather than the underlying 

Markov process. There is a significant difference between the two assignments as after the 

randomization the reward structure based on transitions may lose information due to the 

resulting self-transition arcs in the subordinated Markov chain. 

1.4 SAN-Based Reward Models 

In the past few years, the enormous increase in the versatility and complexity of com

puter systems has placed significant constraints on the types of modeling techniques that 

can be used. Specifically, it is difficult to model the parallelism, fault tolerance and degrad

able performance exhibited by complex systems by using queueing networks, since one is 

typically limited to asking questions regarding service utilization, queue lengths, waiting 
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times and service times. Stochastic Petri nets (SPNs) [20, 23] are better suited to exhibit 

the above mentioned characteristics because of their representation at a lower level, but 

they rapidly run into problems due to the large number of states that need to be consid

ered using traditional methods. Balbo et al. [1] has addressed the problem of exponential 

growth of reachability set as a function of the number of places and tokens in the general

ized stochastic Petri net (GSPN) Ciardo et al. [2], while modeling the machine scheduling 

policy of flexible manufacturing systems. Couvillion and Sanders et al. [3] and Sanders 

et al. [26] have introduced a model construction technique which significantly reduce the 

state space in modeling hierarchical systems. 

In all existing solution techniques known to the author for computing the reward vari

ables, the repairable or non-repairable systems are modeled by queueing networks which 

describe the state level structure. The rate rewards associated with the states could be 

a measure of the throughput of the system and the impulse rewards associated with the 

transitions could be a loss of performance due to different types of failures. Sanders [25] 

and Ciadro et al. [2] have claimed that this state level reward structure is inadequate 

to quantify the performance behavior at the network level. Stochastic activity networks 

(SANs) define reward structures by associating impulse rewards and rate rewards with the 

activity completions and the number of tokens in the distinguished places, respectively. 

The network level structure of SANs allows us to define the reward structure at a lower 

level where the modeler thinks rather than at the state level, which is there after use in 

the base model construction. Therefore, the assignment of rewards and the interpretation 

of solutions is more natural. 
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1.5 Research Objectives 

The reward model solution techniques known to the author either for repairable or 

non-repairable systems consider state level assignment of rewards, which limits the scope 

of the systems that can be evaluated. Also, none of the solution method make use of 

reward structure types that are as general as those considered by Howard [14]. Most of 

the methods use inverse Laplace transforms to compute the transient probabilities. The 

large time complexity of the transform solution restricts the methods to evaluate only 

small non-repairable systems. Although some solution methods have used Fourier series 

approximation of the Laplace transform inversion to minimize time-complexity, they run 

into numerical instability. This thesis addresses the above mentioned issues and proposes 

a method to evaluate the PDF of the performability measure based on randomization and 

linear combination of order statistics. 

The initial work for evaluating the performability measure of Markov reward models by 

using randomization and linear combination of order statistics was presented by de Souza 

e Silva and Gail [7]. They did avoid the problems with methods that make use of of the 

complexity of Laplace transforms but their reward structure lacked generality (they either 

used rate rewards or impulse rewards but not both) and the reward assignment was at the 

state level. Another drawback was the assignment of rewards to the state occupancies or 

the transitions of the randomized Markov chain rather than the underlying Markov process, 

which makes it difficult to capture some system behaviors (explained in detail in the third 

chapter). Also, their algorithm has inherent problem of memory explosion which they 
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acknowledge, but do not address. In view of these shortcomings, the goals of this study 

can be summarized as: 

1) The development of a solution method based on a SAN-level assignment 

impulse and rate rewards. 

2) The development of an expansion mechanism which distinguishes between 

transitions due to activity completions and fictitious self-transitions in the ran

domized process. 

3) The development of a scheme to reduce the memory required by the algo

rithm, by neglecting certain transition paths depending on the desired accuracy. 

4) The development of a program to implement the algorithm. 

5) An illustration of the usefulness of the tool through its application to a 

multiprocessor model. 

The remainder of the thesis is organized as follows. Chapter 2 presents an overview of 

the SANs and discuss their use in perform ability evaluation. In particular, the construction 

of the SAN-based reward models (SBRMs) are discussed. 

Chapter 3 presents an algorithm for solving SBRMs via randomization. A method for 

expanding a SBRM, which is based on expanding a Markov renewal process, to a Markov 

process is presented. Prom the resulting Markov process, the PDF of the performability 

measure is computed using randomization and the order statistics of particular paths in 

the process. 

Chapter 4 defines two kinds of errors and computes bounds on these errors. First, the 

error due to truncation of the states of the randomized process is considered. Second, 
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the error due to the throwing away of low probability paths to minimize computational 

complexity is characterized 

Chapter 5 presents some numerical results while chapter 6 summarizes the results of this 

research and suggests future research in this area. 
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CHAPTER 2 

Review of SAN-Based Reward Models 

SANs [21, 22] provide a modeling framework to capture the complex behaviors inherent 

to large distributed systems. The modeling framework is general enough to easily represent 

realistic system designs and formal enough to permit derivation of analytical results. A 

model of a system consists of two parts: 1) a representation as a SAN, 2) a reward struc

ture defined on the SAN. Representing systems at the SAN level provides extensibility in 

the range of questions which can be asked about the system, while the reward structure 

specifies the particular question (variable) in terms of network behavior. A stochastic activ

ity network along with its reward structure is called a "SAN-based reward model", Sanders 

[25]. 

"Reduced based model construction" (RBMC) methods can then be used to derive a 

stochastic process from a SBRM, that supports the solution of the variable in question. 

This chapter briefly explains the basic concepts necessary to understand stochastic activity 

networks. 

2.1 Network Level Representation 

Structurally, SANs consist of activities, places, gates, and arcs. Activities represent 

delays and events of the modeled system that affect its dependability and performance. 
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There are two types of activities, timed and instantaneous. A non-zero completion time is 

associated with each timed activity, while instantaneous activities complete as soon as they 

are enabled. Several actions may be possible upon an activity's completion. Cases represent 

these alternative actions. Each case has a probability which represents the likelihood of the 

cases occurance. (Note: the sum of probabilities associated to the cases of an activity is 

always one). Graphically, timed activities are represented by elongated ovals, instantaneous 

activities by solid bars, and cases by small circles on the output side of an activity. 

Places are represented by circles, which can contain small dots called tokens. It is up to 

the modeler to give appropriate meaning to each place with its collection of tokens. Each 

place with its tokens define a partial marking or partial state of the system. The places 

collectively define the marking (state) of a SAN model. 

Gates permit greater flexibility in defining enabling and completion rules of activities. 

They reduce the complexity of a SAN by replacing places, activities and arcs, which could 

make the graphical representation of the model unmanageable. There are two types of 

gates; input gates and output gates. 

Each input gate is depicted by a triangle with a finite set of inputs and one output. 

Inputs are connected to places while the output is connected to an activity. Each gate 

has a predicate and a function. The predicate is defined over the marking of the input 

places. If the predicate is true, the gate is enabled. The predicate activates the activity 

and, upon completion, executes the gate function. The function may change the markings 

of the places connected to the gate. 

Similarly, each output gate is depicted by a triangle but with one input and a finite 

set of outputs. The input is connected to an activity while the outputs are connected to 
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places. Each gate has a function, but no predicate. When the activity connected to the gate 

completes, the gate function is executed which may change the markings of the connected 

places. 

An arc is used to connect activities, places, and gates. The direction of the flow of 

execution of SAN is indicated by an arrow on the arc. 

To illustrate the construction and execution of SANs, figure 2.1 illustrates a SAN repre

senting a multiprocessor system with a finite number of buffer stages. Places processor and 

buffer represent the number of fault-free processors and buffer stages, respectively, while 

the place repair indicates the number of processors queued for repair. Activities processor-

failure and buffer-failure represent the occurrence of faults in the processors and buffer 

stages respectively. Activity processor-failure has three associated cases, representing three 

possible types of processor faults: 1) a repairable fault, 2) a fault causing total system 

failure, 3) non-repairable processor failure. Activity buffer-failure has two associated cases: 

1) a non-repiarable buffer failure, 2) a fault causing total system failure. Processor repairs 

are represented by activity processor-repair. The two output gates G1 and G2 implement 

the effect of a total system failure. Tables 2.1, 2.2, and 2.3 represent the associated details 

about the exponential marking dependent rates of the activities, the case probabilities, and 

the gate functions, respectively. 

2.2 SAN-Based Reward Models 

After defining the network level representation of a system, a method is needed to relate 

the possible behavior of the SAN model to a specified performance variable. Typically, 

this is done by associating rate rewards to occupation of states and impulse rewards to 
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proceBBor_repair 

procoBBor_fi 

buffer 
buffer failure G2J 

Figure 2.1: Example SAN 

Table 2.1: Activity Time Distributions 

Activity Distribution 
buffer-failure expon(0.0001 * MARK(buffer)) 
processor-failure expon(0.005 * MARK(processor)) 
processor-repair expon(0.05) 

transition of states. The interval-of-time variables used herein can be evaluated by 

computing the reward accumulated over the utilization interval. Recall a reward structure 

at the network level quantifies the benefit obtained by associating impulse rewards with 

activity completions and rate rewards with the numbers of tokens in places. 

Sanders and Meyer [27] define an activity-marking oriented reward structure of a stochas

tic activity network, with places P and activities A, as a pair of functions, C and R. 
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Table 2.2: Case Probabilities for Activities 

Activity Case Probability 
buffer.failure 1 0.95 buffer.failure 

2 0.05 
processor-failure 1 0.90 processor-failure 

2 0.05 
processor-failure 

3 0.05 

Table 2.3: Output Gate Functions 

Gate Function 
G2 MARK (processor) = MARK (buffer) = M ARK (repair) = 0 
G\ MARK (processor) = MARK (buffer) = MARK (repair) = 0; 

C: A —* IR where for a £ A, C(a) is the impulse reward obtained due to completion of 

activity a; and 

R: V(P,1V) —• M where for v G V(P,JN), R(u) is the rate reward obtained when, for 

each (p, n) E u, there are n tokens in place p, 

where IV is the set of natural numbers and V(P,JN) is the set of all partial functions 

between P and IN. 

The cumulative measure of the behavior of the system for the interval of time [0, <] is 

y[0,t]= E RxJ[O.t)+EC(a)**[a0.t] (2.1) 
V£V(P,]N) ae A 

Here tj is the random variable representing the total time that the SAN is in a marking 

such that, for each (p,n) £ v, where there are n tokens in p during [0, t], and N^Q ^ is 

a random variable representing the number of completions of activity a during the time 

interval [0, t]. 
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The concept of SAN-based reward model can be illustrated by formulating the availabil

ity measure of the multiprocessor model of figure 2.1. Define the system to be available 

whenever there is at least one processor functioning. With the reward structure 

C { a) = 0 ,  Va € A  

R ( v )  =  

the availability measure is defined. 

0 if v = {(processor, 0)} 

1 otherwise 

2.3 Reduced Base Model Construction 

A problem with traditional analysis techniques is that they generate huge numbers 

of states for realistic sized systems. The state space representation of even very small 

systems can grow too large to solve in a reasonable period of time. Therefore, a state space 

reduction scheme is required which is solvable and can support performance, dependability, 

and performability variables. RBMC defines such a scheme for a restricted, but common, 

class of SANs. The restricted class includes stochastic activity networks that have replicated 

components with identical reward structures. For systems with some degree of replication 

the base model is considerably smaller than that obtained using traditional techniques. 

RBMC allows the solution of much larger systems with replicated components. 

The RBMC method defines two primitive operations, "replicate" and "join", to construct 

a complete model of a system. The replicate operation replicates a SAN-based reward model 

and is extremely useful when a system has two or more identical components. The effect of 

the replicate operation depends upon a set of places which allow communication between 
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the replicated submodels. Such places are called distinguished (or common) places and are 

not replicated when the operation is carried out. Informally, the result of the replicate 

operation on a SAN-based reward model is another SAN-based reward model, where 

• The SAN contains a set of common places and the number of copies of all other places 

(distinguished places) equal to the number of replicates. 

• The reward structure assigns an impulse reward to each replicate activity equal to 

its reward in the original model and reward rates to each partial marking in the new 

model equal to the rate assigned to the corresponding partial marking in the original 

model. 

The join operation permits the representation of systems that consist of several different 

components, each of which may be replicated. Like the replicate operation, the join oper

ation acts on and produces SAN-based reward models. Again, common places are defined 

which allow communication between joined subnetworks. The reward structure is defined 

by assigning 

• an impulse reward to each activity in the new model equal to the reward of the 

corresponding activity in the original model, and 

• a reward rate for each partial marking in the new model equal to the rate assigned 

to the corresponding partial marking in the original model. 
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Algorithms to construct reduced base models are illustrated in Sanders [25]. Rai [24] 

implemented these algorithms to generate a transition-rate state diagram, which are con

sidered as input to the solution method proposed herein. In the next chapter, an algorithm 

to solve for the probability distribution of an interval-of-time variable is discussed. 
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CHAPTER 3 

Performability Solution 

Most of the methods for computing PDF of the performability variable require a pro

cess to be Markov in order to be solved. To satisfy this requirement, the activity time 

distribution function of a SAN must be exponential and its activities must be reactivated 

often enough such that the activity times only depend on the current marking. But a prob

lem with Markov processes is that they are unable to count the number of transitions to 

the same state (self-transitions). A Markov process representation which can capture the 

self-transition behavior of SANs is presented. The process representation with appropriate 

reward assignments is used to compute PDF via randomization. 

3.1 State Expansion 

Sanders [25] describes the resulting "activity marking behavior" (am-behavior) from 

the execution of SANs as a time homogeneous Markov renewal process {Rn,Tn : n € N} 

where Tn is the time of the nth activity completion, and Rn is the "activity marking state" 

(am-state) reached after the nth time activity completion. The minima] am-behavior for 

SANs which is a Markov process can be derived from the am-behavior by looking at the 

am-states as a function of time, [25]. The minimal am-behavior can support instant-of-time 

variables, but not interval-of-time variables, since activity completions that do not result 
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in an am-state change (note: similar to self-transitions) cannot be detected. To model the 

interval-of-time variables, the am-behavior must be expanded to a Markov process which 

holds both activity and marking related behavior. The expansion of an am-behavior to a 

Markov process has the following requirements: 

1) Expand states which have self-transitions. 

2) Replace each self-transition state by a combination of two states which inherit 

the reward structure and all the outgoing transitions from the replaced state. 

3) Only one of the combination states inherits the incoming transitions. 

4) Assignment of the self-transition rate of the replaced state to the transitions 

between the new states. 

Figure 3.1 considers an example SAN with an initial marking of 2 tokens in place A and 

0 tokens in place B. Tables 3.1 associates the completion rates with the activities and the 

probabilities with the cases of activities, respectively. The reward structure is defined by 

associating an impulse reward of 1 with the completion of activity T2 and some marking 

dependent rate reward with the place B. Figure 3.2 depicts the am-behavior (Markov 

renewal process) of the SAN, and derives the expanded Markov process by fulfilling the 

above mentioned requirements. Each transition is labeled with transition rate and each 

state in figure 3.2 is represented as AB^T<^ where AB is the marking of the SAN and, r 

and i define the related rate and impulse rewards. 



T1 T2 

B 

Figure 3.1: Example SAN 

Table 3.1: Activity Time Distributions 

Activity Distribution Case Probabilities 
1 2 

T1 expon(.004) 1 0 
T1 expon(0.02) 0.4 0.6 
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3.2 Randomization 

By using randomization, a Markov process {X(<) : t > 0} defined on a countable state 

space S = {a,- : i = 1,2,..., M} can be represented by a Markov chain {Zn : n G N} with 

the same state space S and a Poisson process {iVf : t > 0}. This approach is based on 

the subordination of a Markov chain to a Poisson process. The Poisson process counts the 

number of transitions of the Markov chain with a rate defined by the minimum holding time 

(minimum diagonal element of the generator matrix) of the Markov process.The general 

form of the randomization equation is, according Gross and Miller [12], 

P { X t + s  = j \ X t  =  i }  =  J 2  y ; (3.1) 
n=0 

where A is the rate of the Poisson process and k n ( i , j )  is the probability that Maikov chain 

Z moves from the state Xt = i to Xt+S = j in n-steps. 

In the proposed solution method, the expanded Markov process is first randomized. 

Then, the distribution of the reward variable is calculated by conditioning on the trajectories 

of the randomized process. The paths are enumerated with respect to reward accumulated. 

To keep track of the reward accumulated for each transition of the randomized Markov 

chain, in the next section, we define two vectors corresponding to each type of reward: rate 

and impulse. 

3.3 Trajectory Vectors 

Let M and Q be the total number of states and transition arcs, respectively, in a random

ized Markov chain Z with Ii" + 1 < M distinct rate rewards and J +1 < Q distinct impulse 
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rewards. Consider a trajectory of the process during some interval of time. The intervals 

between the transitions correspond to sojourn times in states of the Markov chain Z. Each 

trajectory then consists of n + 1 sojourn times, and n state transitions. Two vectors are 

assigned to each trajectory, one for each type of reward, such that the number of elements 

in each vector is equal to the number of different possible rewards of the particular type. 

Specifically, the vectors 

k = < ki, &2, • • •, kx+i > 

j = < J u h i -  •  - , j j + i  >  

are assigned to each trajectory. Where for each rate reward i = 1,2,..., K + 1, there are 

ki entrances to states of rate i. Similarly, for each impulse reward i = 1,2,..., J + 1, 

there are ji entrances to states with impulse i. These vectors are constrained such that 

0 < k{ < n 4- 1, for i = 1,2,..., K + 1, 0 < ji < n, for i = 1,2,..., J + 1, and 

K+l 
^2 ki = n+ 1, 
;=i 

J+i 
£ ji = n. 
•=i 

The total reward accumulated during some period of time [0, t] can be expressed, using 

randomization, by conditioning first on the number of transitions during [0, <] and, further 

on k and j, as follows 

00 e~>lt(X/•>" 
y[o.U = E EErKk,j]y(f,n,k,j), 

n=0 ' Vk Vj 
(3.2) 
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where r[ra, k, j] = P\j transition arcs and k intervals \ n transitions] and 

Y(t, n, k, j) is Y[0,t]> given t, n, k and j. Given (3.2), the PDF of y[0 tj can be expressed as 

00 p~M(\i\n 

PPW] <y] = E E E rKk'j]p[y[o,t] < y I ».k>j]- (3-3) 
n=0 ' vk Vj 

In order to solve this equation, it is necessary to be able to calculate Ppfot] < V I n, k, j] 

and r[n,k, j]. 

3.4 Calculation of Conditional Distribution 

Consider the calculation of .P[F[o,t] < y | n, k, j]. Our calculation is similar to that of 

de Souza e Silva and Gail [7], but complicated by the fact that we condition on two reward 

vectors (rate and impulse) instead of one. Define /,• to be the sum of the lengths of intervals 

with rate reward i where i = 1,2,.. .,/s' + 1. Suppose the rate rewards are ordered such 

that 

r i >  r 2 >  . . . >  r K + 1  >  0, 

and si, S2,..., sj+i are the impulse rewards. Then 

A'+i J+i 

y( / ,  n ,  k, j) = nU + Y^sdi, (3.4) 
:=1 t=l 

J+l 
where Y2sdi is a deterministic value, given n, k, j. Thus Y ( t ,  n ,  k,j) is in the range 

1=1 

J+i J+i 
rK+it + E ^ Y(*>k> j) ^ ri* + E5'-?'- (3-5) 

»'=i t'=i 

de Souza e Silva and Gail [7] evaluate such an expression by using a linear combination 

of the order statistics of the length of fc; intervals for the performability measure Y[0, t] 

conditioned on k. They exploit the independence between the Poisson process N and the 
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Markov chain Z to arrange the state occupancy times Ta, where a = 1,2,..n + 1, such 

that first k^ intervals are of rate r\, the next intervals of rate r2, and so on. Then 

Uk can be defined to be the kth order statistic of a set of n independent and identically 

distributed random variables Ta, and sum of the lengths of intervals of rate reward r,-, where 

i = 1,2,..., K + 1, can be expressed as 

h  =  U ( k  x )  

h  =  U ( k !  +  k 2 )  -  U ( h )  

Given this, 

Ik+I = t - U(kl+...+kK). 

K J+i 
Y ( t ,  n ,  k, j) = - rh+1)U{rlh)] + rK+it + 

A=i i=i 

where rih = ^ kh This implies that 
l=i 

< y  \ n ,  k, j] = P  
K J+1 

- 
rh+i)U( i h ) l  +  r K + i t  +  y ^ . s j j i  <  y  

h=1 x=l 

de Souza e Silva and Gail [7] then use the result by Weisberg [29] to evaluate the conditional 

distribution of performability measure. 

The result of [29] is applicable here if the variable parameter is shifted to be within 

the range described by Dempster and Klyle [5], according to which 0 < y < r\t and 

rit > r2t > • • • > rK+it- To fulfill the condition, a shifting of axis can be done such that 

< V I = P 
K v J+i 

Yj{rht ~ rh+1t)-^- <y- TK+1t - J2sdi 
h=l 1=1 

(3.6) 
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Now, the shifted parameter is in the range 

•H-i 

1=1 
0 < y - rK+1t - s{ji < rit. 

To simplify the notation, define 

and for 1 < i < K, 

Further, let 

J+1 
x = y - rK+1t - S{ji, 

X=1 

K 
Ci = - rh+it) = nt - rK+\t. 

h=i 

CK+1 = rx+it - rK+it = 0 

then, ci > C2 > .. • > ck > ck+i = 0. Applying the results of Weisberg [29], yields 

-rk+it)^*1 < x 
L h=i 

=  i - E  
1=1 

(*,-!)! (3.7) 

where <7*(c,-) is the k th  derivative of function gi(ci) and m is the largest index i such that 

x < Ci and x as defined earlier. Weisberg also shows that derivatives of functions <7, (ct ) can 

be calculated as follows 

k-i 
i 

«!"(«> = £ 
3=0 

k -  1  

3 

gVha^-^ici), 

hPte) = (-i)'j! 
K+1 

2 h 
(ci-i)-'+1 2-J (C,-C|)J+1 

1=1, Ifr 

Note that k{ = 0 if no state with rate reward i is visited. This implies that the element 

corresponding to k{ in the realization of k has a value of 0. Such &,•'s do not contribute to 

the conditional distribution given n, k, and j. A simple renumbering is used to disregard 
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such elements of k. Let /(k, 1) be the index of the first nonzero fc;, Z(k, 2) be the index 

of the second nonzero k{, and so on. Then the conditional distribution of Y[o,t] can be 

expressed as follows 

'\ki> "(l , 
Hk.i) 1 i(k,J)' (3-8) 

1=1 

where m(k,j) defines the selection of m, as described above, given k, and j. Using the 

above results, the distribution of accumulated reward can be expressed as 

ci(k ,i)^ 

n=0 Vk Vj 

™(k,j)s
(fc'(k,i) J)

(c 

i _ V l(k'Z) (3.9) 

To solve (3.9), we still need to compute r[n,k,j] and the summations. The first sum

mation is infinite, while the second and third summations can grow very fast. The second 
/ \ 

K -f-7l -|-1 
summation has a combitorial growth rate of 

V 
71+1 

while the growth rate of the 

third summation depends upon the number of distinct impulse rewards assigned to the 

set of states with a distinct rate reward. These summations quickly limit the size of pro

cess that may be solved, if some truncation method is not employed. In the next chapter 

first, based on the generation of a trajectory graph, an algorithm for recursively calculating 

T[n, k,j], for increasing n, k, and j is proposed. Then methods for truncating each of the 

summations are proposed. 
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CHAPTER 4 

Algorithms and Error bounds 

The previous chapter used randomization to derive an infinite sum representing the 

distribution of accumulated reward over a finite interval. In this chapter, algorithms and 

error bounds required to efficiently solve equation (3.9) are defined. First, an algorithm 

for generating the trajectory graph with respect to the three summations: 1) over all 

realizations of vector j for a particular realization of vector k, 2) over till realizations of 

vector k for a particular transition n, 3) over all number of transitions n, is presented. 

Second, an example is introduced which helps to better understand the relation between 

7i, k, j and the generated graph. Third, two types of errors are defined which arise in the 

practical implementations of the method. Algorithms to compute bounds on these errors 

are presented. Finally, computational equations with bounds are presented. 

4.1 Trajectory Graph Generation 

Trajectory graph keeps track of all the possible trajectories generated with each random

ized transition of the Markov chain. It represent trajectories with realizations of vectors k 

and j. Each trajectory is defined with one element from each of the three summations and 

the last state reached. Trajectory graph is used to compute the conditional probabilities 
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Figure 4.1: Acyclic Graph 

T[n,k,j]  and also, provides a way to truncate the summation which is explained in the 

error bound section. 

The generation of a trajectory graph, with respect to the three summations in equation 

(3.9), is illustrated in figure 4.1. Each level n of the graph, corresponding to the n ih  

transition of the randomized process, consists of a set of nodes T]n. The number of nodes at 
/ \ 
K+ 1 

a level n can grow combitorially by 

n + 1 

, where K + 1 is the number of distinct 

/ 
rate rewards. Each node is defined by a tuple (k,  JfaSk), as follows: 



k, a particular realization of vector k, 

<>k, a set of possible j, when k is the vector of rate rewards, 

*k. a set of sets 5^ j where each set •S'kj corresponds to a distinct k and 

j G </k> and 

5k,j> a set of pairs (s , p ), where s  is the state of the expanded Markov process, 

and p is the sum of probabilities of all the transitions to state s resulting in k 

and j. 

Based on the above definitions, an algorithm to compute r)n given rjn-i is: 

Note: p(s, s) is single-step transition probability from state s to s'. 

Algorithm 4.1.1 (Compute T]n given Tjn_i) 

Vn " 4* 

for each k £ »?n-i-

for each j£ 

for each (s,p) G 5^-' 

for each s reachable from s: 

compute k , j . 

if k'G 1]n 

2/j'e Jk> 

i f  { s  , p )  G S i .i for some p 
k j 

p  = p  + p x  p ( s , s ) .  

else 
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S  i . /  =  S  t  j  U  { s  , p x  p ( s , s ' ) ) .  
K J K J 

else 

Jk'=/Jk'U{j'}-

S  t . /  =  { s ' , p x p ( s , s ' ) ) .  
K J 

else 

V n = T ) n  u {k'}. 

J 'i = {j'}. 

S . I . /  =  { ( s ' , p x p ( s , s ) } .  
K J 

Next s'. 

N e x t  ( s , p )  £  S k j .  

Next j £ Jk. 

Next k£ 77n i • 

For a better understanding of equation (3.9), it would be appropriate to rewrite it in 

terms of the definitions of node and their elements. According to the above mentioned 

definitions, equation (3.9) can be precisely written as 

oo 
=  £  E p [ Y \ o , t ] < y  I n,k,j] £ r[n,k,j,a], (4.1) 

n=0 VkG 7?„VjG Jk V(3,p)6Skj 

where r[n,k,j,s] is the probability of generating k and j such that the last state reached 

is s, given n, and < V I ni j] as defined earlier. 

4.1.1 Example 

To help understand the generation of a trajectory graph, we consider the uniformed 

Markov chain of figure 4.2, corresponding to the SAN example considered earlier. The 
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Figure 4.2: Randomized Markov Process 

process consists of seven states with three distinct rate rewards and two distinct impulse 

rewards. According to the definition of k and j, we let k = < ki, &2, &3 > where ki, &2, and 

/?3 correspond to intervals of rate rewards 2, 1, and 0 and j = < ji,j2 > where ji, and j'2 

correspond to transitions to states with impulse rewards 1, and 0, respectively. For matter 

of convenience, we rename states of the process as: 20{O,o} by a, 20^o,i} by 20^O)i} by c, 

11(1,1} by d, 11{1<1} by e, 02{2)1} by /, and ll{li0} by g. 

Figure 4.3 gives a lexicographic illustration of possible realizations k and j for 0,1, and 2 

transitions of the process. Each node represents a possible realization k, corresponding to a 

possible assignment of rate rewards. Each element of k indicates the number of transitions 

to states with a particular rate reward. The elements are arranged such that the left-most 
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element corresponds to the highest rate reward, the following element corresponds to the 

next highest rate reward and so on. Each node contains a set of realizations of j, which 

represent the possible impulse rewards accumulated in reaching a particular k. Also, each 

node contains sets of (s,p) corresponding to each j where s is the state to which the last 

transition is made resulting in k and j, and p is the sum of probabilities of all the trajectories 

to the state s. 

To illustrate the computation of entries in the nodes, we trace a trajectory of the process 

in figure 4.3. Initially, the process is in state a with a probability of 1. According to 

the reward assignments, the realization of vectors are k=< 0,0,1 > and j=< 0,0 >. The 

process will then make a transition to state e with the probability of 0.5, resulting in 

k=< 0,1,1 >, j=< 1,0 >, and (s,p) = (e,0.5). Similarly, a transition from state e to 

state / with probability of 0.5 would generate k=< 1,1,1 > and j=< 2,0 >, and (s,p) = 

(/, 0.5 X 0.5). Other entries in the figure are generated in a similar manner. 

To solve (3.9), now we only need to compute the summations. The first summation is 

infinite, while the second and third summations can grow very fast. The second summa-
/ \ 

I i  +  1  
tion has a combitorial growth rate of while the growth rate of the third 

71 + 1 
\ 

summation depends upon the number of distinct impulse rewards assigned to the set of 
/ 

states with a distinct rate reward. These summations quickly limit the size of process that 

may be solved, if some truncation method is not employed. In the next section, propose 

methods for truncating each of the summations. 
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4.2 Error Bounds 

Trajectory graph gives us a way to truncate the summations in two ways: 1) limiting 

the depth of the graph, and 2) discarding particular (s,p), depending upon the probability 

V -

4.2.1 Error Due to Depth Truncation 

Truncation based on the depth of the graph is simple and not new. Gross and Miller 

[12] and de Souza e Silva and Gail [7] have pointed out how to pick a truncation point on 

the first summation to achieve a given error bound. In particular, the error induced due to 

the truncation of the infinite summation to the Nth step, EN, is 

co 

E N =  £ £ £ P [ Y m < y  I n,k,j] £ r[n,k,j,5]. (4.2) 
N = N + L  VkG VnVje V(S,p)£Skj 

The error defined in equation (4.2) can be bounded by observing that -P[^[o,t] < y I n, k, j] < 1 

for all y and £ £ £ r[rc,k,j,s]= 1. Therefore 
VkG 77„vjG JkV(s,p)65kj 

E N <  £ =-?£!£, (4.3) 
n=7V+l 

or, equivalently, 

e „ <  i  -  < « >  
n=0 

Equation (4.4) can be used to calculate a truncation point N ,  to achieve a desired error. 
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4.2.2 Error Due to Trajectory Truncation 

Even with depth truncation, the solution of equation (3.9) is immensely complex, since 

the size of the set 5^ for a realization k increases exponentially with the number of ran

domization steps, which can cause memory explosion. We propose a new method, in which 

certain (s,p) G •S'kJ ^ sma^ Pi are discarded, and a bound on the error 

induced by this discarding is computed. To a large extent, the memory explosion can be 

avoided. We call this trajectory truncation, since this action effectively truncates certain 

trajectories whose final state is s. A particular (s,p) in the node of the acyclic graph can 

be ignored if p is less than a defined variable weight. As will be seen in the next section, 

the selection of the weight value is a trade off between memory consumed and the error 

produced. Let Ep be the error induced by discarding certain trajectories for which 

To compute E p ,  we first compute JSp(n,k,j, s), the error produced by discarding a partic

ular (s,p). The error will be 

r[re, k,j,s] < weight. (4.5) 

ffp(rc,k,j,s) = e A'j!At)" P[y[0|i] < y | n,k,j]r[n,k,j,«]. (4.6) 

Since the conditional distribution 

•PPW] < V I ra» k> j] <1 V D, (4.7) 

we can bound the error by assuming it equal to 1. This implies that 

E p ( n , k , j , p )  <  6 M
n

(!At)"r[w,k,j^]. (4.8) 
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We now consider the error induced by throwing away a set of (s,p)'s at the n tk  transition. 

In particular, let Gn be the set of (s,p)'s discarded at nth transition. The bound for the 

error produced by discarding trajectories defined by (s,p)'s at nth transition is then 

This gives us a bound on the error due to discarding ( s ,  p)'s at a given transition. Since 

the probability calculation is recursive, the total error due to discarding trajectories for a 

given number of transitions must also include the error induced by discarding trajectories 

at previous transitions. The effect of error induced by throwing away trajectories in any 

transition on the subsequent transition is calculated as follows. 

Suppose, with probability p ( a , b ) ,  process makes the (n  4- l)"1 transition by changing 

from state a to b. Then 

m 

Now, let total number of states be m. Since ^ p(a, g,) = 1, therefore 
t=i 

m 
r[n, k, j, a] = jy [n + 1, k, j, (4.11) 

i=i 

This implies that the error propagated to the (n+ l)"1 transition is equal to the error 

induced due to throwing away new (s,p)'s in nth transition and the error propagated from 

the (n - l)"1 transition. Therefore, the error induced by discarding trajectories at n th  

transition can be expressed as 

Y. r[n,k,j,s]. (4.9) 
(5,p)GGn 

r[ra + 1, k,j, 6] = T[n, k,j, a] X p ( a , b )  (4.10) 

.(®,P)6G„ 
(4.12) 
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For error bound over ail the transitions, we have 

N 
E p  <  ̂ T E p ( i ) .  (4.13) 

t=i 

Thus a lower bound on the probability distribution function of F[0it] can be expressed as 

N 

P \Y[o , t ]  < y ]>  I ».k,j] £ r[n,k,j,S] (4.14) 
n=0 Vke 77„Vje J k  V(»,P)€5^ 

where is the set of (s,p) not discarded. The upper bound on the PDF can be computed 

by adding Ev and EN to the lower bound. 
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CHAPTER 5 

Implementation and Results 

The method has implemented as a part of the large modeling package UltraSAN [3], 

based on the SAN modeling framework. In UltraSAN, a model of a system consists of 

a SAN representation and a reward structure, collectively defined as "SAN-based reward 

model" (SBRM). The package automatically generates the am-behavior and state-level 

reward structure from SBRM. This state-level representation serves input to a solver which 

implements the method developed in this paper. The solver comprises of 3700 lines of 

c language code. It provides options to specify parameters such as: interval of time (<), 

desired accuracy for depth truncation (a), weight to discard trajectories (w), range of the 

distribution (r), and the number of points to be computed (ra). 

The computation of higher order derivatives to calculate conditional PDF -P[F[o,<] < 

V I n, k, j] runs into numerical accuracy problems. Also, the probabilities of trajectories 

grow smaller with each randomized step and loose numerical accuracy. For the conditional 

PDF we use floating point accuracy of 100 decimal digits while we throw away the tra

jectories with probabilities lower than the user defined weight (default is l.OOe — 12) and 

calculate bound on the injected error. The bound for default weight is normally in the order 

of l.OOe - 10 which is acceptable for most of the applications. All the results presented in 

this section are for a IBM RS6000 model with 64 megabyte of RAM. 
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Table 5.1: Activity Time Distributions 

Activity Distribution Case Probabilities 
1 2 3 

buffer-failure expon(0.0001 * MARK(buffer)) 0.95 0.05 0 
processor-failure expon(0.Q05 * MARK(processor)) 0.90 0.05 0.05 
processor-repair expon(0.05) 1 0 0 

The applicability of the proposed solution method is illustrated by considering the per-

formability and availability analysis of a multiprocessor system with finite buffers taken 

from Sanders [25]. Figure 5.1 depicts the SAN model of the multiprocessor system. Here, 

places processor and buffer represent the number of fault-free processors and buffer stages, 

respectively, while the place repair indicates the number of processors queued for repair. 

Activities processor-failure and buffer-failure represent the occurrence of faults in the pro

cessors and buffer stages respectively. Activity processor-failure has three associated cases, 

representing three possible types of processor faults: 1) a repairable fault, 2) a fault caus

ing total system failure, 3) a non-repairable processor fault. Activity buffer-failure has two 

associated cases: 1) a non-repiarable buffer failure, 2) a fault causing total system failure. 

Processor repairs are represented by activity processor-repair. The two output gates Gl 

and G2 implement the effect of a total system failure. Tables 5.1, and 5.2 represent the 

associated details about the exponential marking dependent rates of the activities, the case 

probabilities, and the gate functions, respectively. 

Table 5.3, from [25], shows the throughput for different configurations of the multipro

cessor system described above. The rate of accumulation of benefit due to completion 

of jobs in the system, for a given structure configuration, is obtained by multiplying the 

throughput in that state by a constant x. Costs associated with the processor repairs are 
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Figure 5.1: Example SAN 

Table 5.2: Output Gate Functions 

Gate Function 
G2 M ARK (processor) = M ARK (buffer) = MARK (repair) = 0 
Gl M ARK (processor) = MARK(buffer) = MARK(repair) = 0; 

# Processors # Buffers # Processors 
1 2 3 4 5 

0 .833 1.622 2.352 3.008 3.576 
1 .968 1.859 2.656 3.338 3.891 
2 .994 1.945 2.807 3.532 4.093 
3 .999 1.978 2.888 3.658 4.232 
4 1.000 1.997 2.934 3.744 4.334 
5 1.000 1.999 2.961 3.805 4.412 
6 1.000 1.999 2.977 3.850 4.474 
7 1.000 1.999 2.986 3.883 4.524 
8 1.000 1.999 2.992 3.909 4.566 

Table 5.3: Throughput as Determined from Performance Submodel 



50 

presented in the reward structure by associating a reward of — y with each completion of 

activity processor .repair. Under these assumptions, the probability distribution of the 

total profit associated with operating the system for some utilization period [0,2] can be 

found by using the reward structure 

C(a) = 
—y if a = processor .repair 

0 otherwise 

R(v) = 
xxThru(m,n) if v = {(B,n),(C,m)} 

0 otherwise 

Before formulating the availability measure, a definition of "system availability" must 

be given. In this regard, the system is defined to be available if there are at least m 

number of working processors and n working buffers in the system. Then availability can 

be formulated by using the reward structure as follows 

C(a) = | 0, V a £ A 

1 if there at least m processors and n buffers 

0 otherwise 

The remainder of the section presents results for the availability and performability of 

the multiprocessor system to illustrate the effects of various parameters on the time and 

space complexity of the developed method. 

The results presented in table 5.4 show the space and time required to calculate the 

distribution of total profit obtained from operating the system for 10 days when the number 

of buffers is varied. An increase in the number of processors and buffers corresponds to 

R(v) = 
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Table 5.4: Effect of Increase in Number of Distinct Rate Rewards (t = 10, a = 6, w = 12) 
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Table 5.5: Evaluation of the Availability Measure (t = 10, a = 6, w = 12) 
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Table 5.6: Effect of Discarding Trajectories (t = 10, a = 6) 
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observation time (days) observation time (days) 

Table 5.7: Effect of Increasing the Time Observation (a = 6, w = 12) 

the increase in the number of different performances the system can exhibit. This implies 

the increase in number of different rate rewards in the reward model, which increases the 

number of elements of vector k. Therefore, at each level, there are more nodes to compute 

which increases the computation time and memory required to store a level to compute the 

next level in the trajectory graph. 

The second set of experiments compute the distribution of availability for the modeled 

system. For availability measure, the increase in the number of combinations of processors 

and buffers only increases the number of states having a particular rate reward and not 

the number of distinct rate rewards. The number of distinct rate rewards remains fixed 

corresponding to availability and nonavailability of the system. In terms of trajectory 

graph, the number of nodes at each level remains the same while the number of elements 

(s,pys of set 5^ increases. Table 5.5 shows that the increase of states keeping the distinct 
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Table 5.8: Effect of Increase in Number of Points (t = 10, a = 6, w = 12) 

rate rewards fixed significantly increases the required memory for the process. The increase 

in time to evaluate the distribution is negligible as number of nodes remains same. 

The third experiment shows how the scheme of discarding trajectories can reduce the 

space and time required to compute the distribution. The weight provided by the user is 

the criterion used for discarding trajectories. In table 5.6 we varied the weight and observed 

its impact on the error bound, process size, and cpu time while evaluating the distributions 

of interval availability. The results show that a reduction in weight increases the number 

of discarded trajectories, drastically reducing the size and the cpu time of the process. 

For different weights, the error bounds are calculated, illustrating the effectiveness of the 

scheme. 

The fourth experiment investigates the effect of the value of the minimum holding time 

of the Markov process, or equivalently, the length of the observation interval, on the time 

and space complexity. Low values of minimum holding times and large observation intervals 
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Table 5.9: Results for Large State Spaces (t = 10, a = 3, w = 5) 

require generation of more transition steps of the randomized process for a specified error 

bound. An increase in the number of transitions required increases the time require to 

calculate the performability distribution. Also, at a higher level the number of generated 

nodes will increase and results in the increase of process size. Table 5.7 illustrates the 

relation of an increase in the observation time interval to the required time for computation 

and the process size. 

Sometimes, it is desired to compute the distribution for more than one reward value 

(point). A typical example may be a. plot of a distribution graph, figure 5.2. Calculating 

distributions for more values increases the computation time, but not significantly. Table 

5.8 illustrates the results. 

All the above results are evaluated to a very high accuracy. In particular, except for table 

5.6 a weight of 12 for discarding certain trajectories was used. The required accuracy for the 
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Figure 5.2: Probability Distribution (t = 10, a = 6, w = 12) 
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probability distribution depends upon the underlying nature of the model and the variable 

that is evaluated. For certain systems an accuracy of two decimal points is sufficient. To 

show how big of a process the tool can estimate the PDF for, the distributions for large state 

spaces of the multiprocessor model is evaluated with an accuracy of two decimal points and 

an interval of 10 days. As can be seen from table 5.9, very large problems can be solved if 

many significant digits are not necessary. 

A typical distribution for 5 processors and 2 buffers with the parameters defined in table 

5.3 is illustrated in figure 5.2. 

In summary, the performability solver can solve both repairable and non-repairable 

systems. It provides options to the user to overcome, to an extent, the inherent problems 

of space and time complexities. Of course the problems is dealt by reducing the accuracy 

of the solution, but the option is given to the user to define desired accuracy. 
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CHAPTER 6 

Conclusions 

The objective of the study was to develop an efficient method for solving reward models 

specifying performability for both repairable and non-repairable systems. The objective 

was achieved by: 

o Using a generalized reward structure, where both impulse and rate rewards are con

sidered. 

• Assigning rewards at the network level rather than the state level, as the state as

signment limits the scope of the systems that can be evaluated. 

• Developing a mechanism to expand a Markov Renewal process to a Markov process, 

without loosing information concerning self-transitions. 

• Truncating the infinite summation of the randomized equation to a certain step to 

avoid memory and time complexity, and calculating bound on the error produced. 

• Discarding certain paths in the computation to avoid the memory explosion. Calcu

lating bound on the error induced by discarding paths. 

• Implementing the solution method in form of a software tool. 



59 

• Illustrating the usefulness of the tool by considering the evaluation of a simple mul

tiprocessor system. 

Much time was spent on developing the equation (3.9), based on randomization, to 

compute the specified performability measure of a system using the generalized reward 

structure. The most challenging problems related to use of randomization to solve gener

alized reward models were: 1) Developing a technique to transform the reward model into 

a Markov process which holds both impulse and rate rewards, 2) Keeping track of impulse 

reward accumulated for every possible generated path, 3) Deriving algorithms to compute 

bounds on the error produced by discarding certain path trajectories. 

The implementation of the performability evaluation algorithm exposes to certain inter

esting computational problems. The traditional ones are the time and space complexities. 

Error algorithms are designed to overcome time and space complexities. Path probabilities 

decrease drastically with increase in number of transitions. This causes underflow problems 

which results in numerical inaccuracies. We used a multiprecision arithmetic tool to keep 

a precision of 100 decimal digits. This slows the tool performance but solves numerical 

inaccuracies. 

Performability tool provides options to the users which help them to control parameters 

such as time interval, weight, accuracy, and the desired number of result points within the 

user specified range. These options enable users to control the time and space required to 

evaluate a system. 
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6.1 Area of Further Research 

The theory of reward structure solution is under development and there are a number of 

interesting areas for investigation. One such area is the development of a reward assignment 

technique to specify the performability variable that would result in a reduction in the 

number of states which must be considered. 

The tool can also be improved by implementing an application oriented memory alloca

tor. 
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Appendix A 

Implementation in UltraSAN 

A.l Data Structures 

Following are the data structures utilized in the performability solver. The first 

data structure stores the matrix elements. Each structure represents a matrix 

row. The source code for this data type is represented as: 

/* STRUCTURE TO CONTAIN ONE ROW OF THE MATRIX 

row_element - points to the first element in the row 

column_index - points to the column index of the first element 

length - the allocated length of row.element and column.index 

num_zeros - the number of unused elements in the row 

next.row - structure pointer to the next row in the matrix, will 

point to NULL for the last row 

*/ 

struct matrix 

{ 

double *row_element; 
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unsigned long *column.index; 

unsigned long length; 

unsigned long num.zeros; 

struct matrix *next_row; 

>; 

The second data type stores the performance variable information. Each struc

ture represents one performance variable. The source code for this data type is 

represented as: 

/* REWARD STRUCTURE - One structure is needed per performance variable, 

pvname - points to the name of the performance variable 

impulse - points to an array of impulse rewards 

rate - points to an array of rate rewards 

next - points to another reward structure 

The length of the arrays is the total number of states 

*/ 

struct reward 

{ 

char *pvname; 

double *impulse; 

double *rate; 

struct reward *next; 
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The third data type stores the states with the associated rewards, impulse and 

rate. These states are arranged in the descending order of rate rewards. The 

source code for this data type is represented as: 

/* STATE INFORMATION - States are arranged according to the rate rewards, 

state - state number 

impulse - impulse reward assigned to the state 

rate - rate reward assigned to the state 

Structure contains the information of the perfvar in consideration 

*/ 

struct arrangeRew 

unsigned long state; 

double impulse; 

double rate; 

>; 

The fourth data type stores the expanded state space. Each structure contains 

its state number and its expanded state number if it has been expanded. The 

source code for this data type is represented as: 

/* EXPANDED STATE SPACE STORAGE - structure is used to expand the 

renewal process to Markov process without losing the information. 

state - state which has self transition in the renewal process. 



expstate - the new included state. 

rate - rate in or out from or to another state. 

*/ 

typedef struct exp_storage 

unsigned long state; 

unsigned long expstate; 

double rate; 

} expstorage; 

The fifth data type stores the information about states which have same rate 

reward. Each structure stores the rate reward, the number of states with the 

rate reward, and a pointer to an array of the states. The source code for this 

data type is represented as: 

/* REWARD DISTRIBUTION over the states. 

rate - different rates 

states - no. of states for each rate 

ptr - array containing states with same rate and diff. impulses. 

* /  

typedef struct stateRewDist { 

double rate; 

unsigned long states; 

impulseArrEle *ptr; 
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> stateRewDist; 

The sixth data type defines the element of the array pointed by the structure of 

type "stateRewDist" defined above. Each structure contains the state number, 

the impulse reward associated with entering the state, and the probability of 

reaching that state. The source code for this data type is represented as: 

/* SAME RATE DIFFERENT IMPULSE - element of an array which contains 

the information about states with same rate rewards and different 

impulse rewards. 

state - state number 

impulse - impulse reward accumulated by reaching that state 

probability - probability of following the path 

*/ 

typedef struct impulseArrEle { 

unsigned long state; 

double impulse; 

double probability; 

} impulseArrEle; 

The seventh data type stores the information about each of the color sequence 

generated. Each structure contains a particular sequence, number of paths 

fc 'owed to the sequence, and a pointer to an array containing information about 

each of the path traversed. The source code for this data type is represented as: 



/* SEQUENCE AND PATHS FOLLOWED - Each element is for a particular 

color sequence. 

sequence - particular sequence 

noPathDep - number of paths resulting in the sequence 

pathProbEle - array containing info about each of the path 

typedef struct cellstruct { 

int *sequence; 

unsigned long noPathDep; 

pathProbEle *ptr; 

} cellStructEle; 

The eighth data type stores the information about the paths followed to generate 

a particular sequence. Each structure contains the state last reached in following 

a particular path, and the probability of reaching that state and the impulse 

reward accumulated along the path. The source code for this data type is 

represented as: 

/* PATH PROBABILITIES AND IMPULSE REWARDS - It contains the path 

probability and the last state reached following the path. 

state - last state reached in a particular path 

probabilities - probability of reaching the state 

impulse - impulse reward accumulated following the path 

typedef struct pathProb { 

unsigned short state; 
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double probabilities; 

double impulse; 

> pathProbEle; 

A.2 Process Flow 

The following description of procedures suggests the process flow of the solver. 

It also describes the call relationships between procedures. 

Procedure: main 

Read the command line arguments. 

Calculate the points of distribution by computing -n[] points between 
the reward range -rl[] to -r2[]. 

call procedure testsolv. 

Procedure: testsolv 

Read in the transition matrix. 

Subordinate the Markov process to a Poisson Process. 

Compute the truncation point for the time interval of interest. The 
-t option specifies the time interval, and the -a option specifies the 
desired accuracy on the basis of which the number of iterations of the 
randomized process is calculated. 

For each iteration 

Call procedure perfcalc 

Write results in the output file struct.result. 

Procedure: perfcalc 

Calculate the possible state trajectories (paths) and the resulting color 
sequences. Transition-rate matrix determines the probability of fol
lowing a path. If the probability of a path is less than the weight 



specified by -w option then ignore that path. 

Compute impulse reward accumulated for each state trajectory. 

For each color sequence 

For each path 
Call procedure condDist 

Multiply the conditional distribution with the prob
ability of the path. 

Sum up for the paths in a given color sequence. 

Sum up for the color sequences in the given iteration. 

Procedure: condDeriv 

For each color of the sequence greater than one. 

Call procedure derivative 

Procedure: derivative 

Calculate the kth derivative. 

A.3 Reference Manual 

NAME 

pdf - probability distribution solver for UltraSAiV 

SYNTAX 

pdf -Pproject -ttime -rlrange -r2range [options] 

DESCRIPTION 

pdf obtains the probability distribution of the specified performability vari

able^) for the generated reduced base model (created previously using Gen(l)) 



using randomization (also known as uniformization). It calculates the proba

bility distribution function of intervaJ-of-time variables. The probability dis

tribution files are given in a format compatible with splot(l). The splot files 

are found in the directory project/int, named with the extension ".splot". For 

technical informa- tion concerning the solver, see the reference below. 

OPTIONS 

-P project 

Is a character string naming the project to be solved. A name must 

be specified. No default is assumed. 

-t time 

Is a double representing the desired interval of observation. An inter

val has to be specified. No default is assumed. 

-aaccuracy 

Is a short integer representing the number of digits to the right of 

the decimal point that are desired to be accurate. Six digits is the 

default. If the number of digits specified exceeds the machine accu

racy, then the machine accuracy becomes the default. 

-d filename 



Is the file where debug information will be stored (i.e. project/results/-

filename.debug). If -d is specified with no filename, then project/res

ults/project.debug is assumed. If -d is not specified, no debug infor

mation is generated. 

-w weight 

Is the scale to instruct the solver to discard paths with probabilities 

less than the specified weight. Default does not discard any paths. 

-rl range 

Is a double and specifies the lower range between which probability 

distribution is evaluated. Used only with option r2. Cannot be used 

alone or with option r. 

-r2 range 

Is a double and specifies the upper range between which probability 

distribution is evaluated. Used only with option rl. Cannot be used 

alone or with option r. 

r range 

Is a double and specify the upper range between which probability 

distribution is evaluated. In this case lower limit is 0. Used alone. 

Either r or rl and r2 are necessary to specify. 

n points 
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Is an integer and specifies the number of points between the range. 

Default consider only two points, lower and upper limits. 

M. A. Qureshi, Reward Model Solution Methods with Impulse and Rate Rewards: An 

Algorithm and Numerical Results, Masters Thesis, Dept. of Electrical and Computer En

gineering, University of Arizona, May. 1992. 

s 
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