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The one-terminal network design problem considered here is to select a subset of the set of potential edges so as to minimize 
the sum of construction cost plus expected usage cost with discounting. We distinguish between easy and hard cases of this 
problem. 
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We will consider one-terminal network design 
problems of the sort of Section A2.1 in Garey and 
Johnson's book [2]. We will explore the borderline 
between easy and hard problems of this kind 
(from the computational complexity point of view). 
A related problem is the capacitated spanning tree 
problem (denoted ND5 in [2]). Another related 
paper is [3] where a linear programming line of 
attack is adopted. The reader is referred to Section 
A2.1 in [2] for additional references. 

The general problem is to select a subset E' c E 
of edges from a graph G = (V, E )  so that the total 
cost associated with the subgraph G'= ( V ,  E')  is 
minimized. The total cost consists of the cost of 
constructing the roads corresponding to E '  plus 
the expected cost of traveling within the subnet- 
work G'. The latter may be discounted over time. 
We will show that simple subcases of this problem 
are NP-hard. Thus, the restrictive assumptions that 
we list below strengthen in fact the NP-hardness 
results. First, we note that the multi-terminal prob- 
lem is NP-hard even if all the demands are equal; 
this follows from the fact that the problem of 
finding the shortest total path length spanning tree 
is NP-hard [2, p. 2061. 

We consider only one-terminal problems, i.e. 
the demand for traveling is between each vertex v 
and one distinguished vertex t (the terminal). We 
assume all demands are equal, i.e., for example, at 
each vertex v there lives one user who has to 
commute daily between v and t .  Two extreme 
cases are easy. First, if the cost of commuting is 

zero, i.e. only construction cost should be mini- 
mized, then our problem is that of the minimum 
spanning tree. Second, if the cost of construction 
is zero then the total length of paths from all v's to 
t has to be minimized and this is achieved by the 
tree of shortest routes from t to all v's. This is 
because each user travels the shortest distance 
possible whatsoever. This tree is found very effi- 
ciently by Dijstra's shortest-path algorithm (see 
[I]). If demands are not all equal then minimizing 
the cost of construction alone if NP-hard even 
when all demands are either zero or one, since this 
is in fact the Steiner tree problem in graphs 
(ND12). The one-terminal problem of minimizing 
the total weighted path length is solved, of course, 
by the tree of shortest routes from t to all 0's. 

We now turn to the case where the two differ- 
ent costs are positive. We further assume that the 
costs are proportional to the length d(l, j )  of the 
edge (i, j) .  We first claim that the optimal solution 
can be assumed, without loss of generality, to be a 
tree. This is argued as follows. Let x,, denote the 
number of users who will travel, on their way to t ,  
along the edge (i, j )  in the direction from i to j. 
Since exactly one user travels from I to t (not 
necessarily along the edge (i, t)), B,(x,, - x,,) = 1. 
Let a denote the cost of constructing a unit-length 
of road and let b denote the unit travel cost ( a ,  
b > 0). Thus, the total cost associated with the 
edge ( i ,  j )  is zero if x,, = 0 and equals ( a  + b x,,) 

d(i, j )  if x,, > 0. We have to minimize the sum of 
all edge-costs subject to Z,(x,, - x,,) = 1, x,, 2 0. 

0167-6377/82/0000-0000/$02.75 O 1982 North-Holland 105 



Volume 1. Number 3 OPERATIONS RESEARCH LEITERS July 1982 

Since the objective function is concave, there is 
always a basic optimal solution. However, all basic 
solutions of this problem correspond to spanning 
trees. 

An obvious consequence of the tree argument is 
that the case of equal lengths is easy. For construc- 
tion cost is equal for all spanning trees and hence 
the tree of shortest routes is again the optimal 
solution. 

Our main result is the following. 

Theorem. For all a ,  b > 0,  the one-terminal network 
design problem with equal demands and exactly two 
different edge-lengths is NP-hard. 

Proof. We will show that 3-satisfiability reduces to 
our problem. Let E, = x, V y, V z,, j = 1,. . .,m, be 
the clauses, where x,, y,, z, are from the set { u , ,  
c ,,..., up, C p } .  Construct the following network. 
Associate vertices with each E,, u, and .15, and let t 
be an additional vertex. Let there be edges of the 
forms ( u , ,  t ) ,  ( C , ,  t )  and ( v , ,  i r , )  i =  1 ,..., p ,  and 
also let there be edges of the form (E,,  x,), (E, ,  y,) 
and (E,,  z , )  for j  = 1, .. . , m .  Let the length of ( u , ,  
c ,)  be equal to a and let the length of all other 
edges be 2a + b. 

First, suppose that the formula E, A . . . AE, is 
satisfiable and let s C { v , ,  3 , , . . . ,up ,  Cp}  be an 
appropriate assignment of truth-values, i.e. S fl E, 
#Q;  j =  1 ,..., m ,  and I S n  { v , ,  C,)I = 1, i =  1 ,..., p. 
Consider the following solution for the network 
design problem. All edges (u , ,  5:)  are constructed 
and also ( w ,  t )  is constructed if and only if w is in 
S.  Finally, for each E, construct one edge (E , ,  w )  
such that w E S n {x,, y,, z , ) .  Obviously, the total 
construction cost is equal to a 2  + a ( p  + m)(2a + 
b )  which is also the cost of minimum spanning 
tree. The total travel cost is bp(2a + b )  + bp(3a + 
b )  + bm - 2(2a + b ) .  

On the other hand, in any optimal solution 
exactly one of the two edges (u , ,  t ) ,  ( q ,  t )  will be 
constructed. For if ( C , ,  t )  exists then it is less 
expensive to construct ( v , ,  q )  (at the cost of a 2 )  
for u, so that u, travels via 5, (at the cost of 
b(3a + b ) )  than to construct ( v , ,  t )  to let u, travel 
directly (at the total cost of ( a  + b)(2a + b)) .  Also, 
each E, should have exactly one of the three edges 
incident upon E, (all of the same cost) constructed 
for him. Thus, in any optimal solution the con- 
struction cost is the cost of a minimum spanning 
tree, i.e., a Z p  + a ( p  + m)(2a + b ) .  Since each E, 

Fig. 1. 

has to travel at least the distance of 2(2a + b )  to t 
and each pair v i ,  6, always travels altogether a + 
2(2a + b ) ,  it follows that a total traveling distance 
of p . ( a  + 2(2a + b ) )  + rn .2(2a + b )  is an optimal 
value which is feasible if and only if our formula is 
satisfiable. That enables each E, to travel no more 
than the minimum requires in any case (see Fig. 1). 
Note that precisely one member of the pair v , ,  5, is 
selected in this way. 

It is only natural to expect, in view of the 
theorem that a locally optimal solution (i.e., a 
subtree which cannot be improved upon by just 
interchanging two edges) may not be globally opti- 
mal. This is illustrated in Fig. 2. It can be easily 
verified that with respect to a = b = 1 the (20, 20, 
5 )  spanning tree is locally optimal but the (19, 19, 
5 )  spanning tree is the global minimum. 

t 

Fig. 2. 
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