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Ab,tract. We propose a branch-and-bound method for minimizing an indefinite quadratic function over a convex

set. The bounding operation is based on a certain relaxation of the constraints.

Problem Statement. Wepropose a new branch.and.bound method for the followingproblem

(P) min{J(x, y) := pT x+ xT My + qT Ylx E JRn, y E JRm, (x, y) ES},

where S c JRn X JRm is a closed convex nonempty set, p E JRn and q E JRm are given vectors,
and M is a given real (n x m).matrix.

Essentially the same problem has also been considered in [1]. The algorithm given there is quite
different from ours. In [1] the bounding operation was based on using lower convex envelopes
to the function xT My, whereas here it is based on relaxation of the constraints.

We suppose that problem (P) has an optimal solution, and we denote by r the optimal value of
(P). We assume further that we can fix two compact convex polyhedra Xc JRn and Y C JRm
such that at least one optimal solution of (P) is contained in X x Y .

Deseription of the Algorithm. For BeY we denote by R(B) the problem

R(B) min{J(x, y)lx EX, Y E B, u E B, (x, u) ES},

and by ß(B) we denote the optimal value of R(B) (welet ß(B) := 00 if R(B) has no feasible
points).If (xB, yB, uB) is an optimal solution of R(B), then clearly

The algorithm can now be recursively described as follows:
At the beginning of iteration k (k=O,1, ...) we have a collection rk ofpolyhedral subsets BeY
such that at least one optimal solution of (P) is contained in X x U{BIB E rk} (at the start
set ro := {Y}). For each B E rk we have determined ß(B) and, if ß(B) < 00, a solution
(xB, yB, uB) of R(B). Furthermore ak-l ~ r is at hand (at the start set a-l := 00). Let
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Let Dok := {B E rkIß(B) $ Qk}. Select Bk E Dok such that ß(Bk) = min{ß(B)lB E Dod.
Let (xk,yk,uk) be a solution ofR(Bk), and set ßk:= .B(Bk) = I(xk,yk).
If .Bk ~ I(xk, uk), then terminate: (xk, uk) solves (P).
If .Bk < 1(xk, uk), then let Ck := (ßk +1(xk, uk)) /2 and bisect Bk into the two sets

Bk := {y E Bkl/(xk, y) ~ Ck}, Bt:= {y E Bkl/(xk, y) ~ Ck}.
Solve R(Bk) and R(Bt), obtaining the optimal values and optimal solutions. Set rk+1 .-
Dok\{Bk} U {Bk" ,Bt}. Go to iteration k + 1.

This completes the description of iteration k.

From (xB, uB) E S follows r ~l(xB, uB) and therefore r $ Qk. From min{.B(B)IB E
rk} ~ r foIlows then Dok =F 0 and .Bk ~ r. Moreover £rom (xk, uk) E S foIlows .Bk ~
r ~I(xk,uk). Hence iteration k is weIl defined. If the algorithm terminates at iteration
k, then .Bk = r = 1(xk, uk), hence (zk, uk) solves (P). If no termination occurs in iteration
k, then again X X U{BIB E rHd contains an optimal solution of (P), and it is clear that
.Bk ~ .BH1 ~ r. Of course, if .Bk ~ 1(zk, uk) - e for some e.> 0, then (xk ,uk) is an e-optimal
solution of (P).

Convergence of the Algorithm. If the algorithm is not finite, then we have the foIlowing
result.

THEOREM. If the algorithm does not terminate, then .Bk / r, and any cluster point of
{ (zk, uk)} solves (P).
Proof: From monotonicity, ßk / ß for some ß ~ r. Let (x,:U) be a cluster point of {(zk, uk)}.
By extracting a subsequence if necessary, we may assume that xk -+ x, uk -+:U,yk -+ y. Again
by extracting a subsequence if necessary, we may assume that either BHl C Bk for all k or
BHl C Bt for aIl k. In the first case we have UHl E Bk" and therefore l(xk,uHl) ~ Ck,
hence

I(xk, uk) - ßk = 2(J(zk, uk) - Ck) ~ 2(J(xk, uk) - I(zk, uHl)) -+ o.
In the second case we have yH lEB t and there£ore 1(xk , yH l) ~ Ck, hence

I(xk,uk) -.Bk = 2(Ck - I(xk,yk)) ~ 2(f(xk,yHl) - I(xk,yk)) -+ O.

Thus in both cases we obtain in -the limit that 1(x, :u) ~ ß ~ r. From (xk, uk) ES foIlows
that (x,:U) is feasible for (P). It remains 1(x, :u) = ß = r, and (x,:U) solves (P). q.e.d.

Bounding Operation. A crucial operation in the algorithm is the solution of R(B). Due
to the fact that I(x,.) is affine and B is a compact polyhedron, R(B) can be solved using
only convex subprograms. Indeed, let vi (i = 1,2, ...,q) be the vertices of B. Then since
min/(x,y) =~/(z,vi), we have
yEB I

ß(B) =min{J(z, y)!x EX, Y E B, u E B, (x, u) ES}
=min{~/(z,vi)lx E X, u E B, (x, u) ES}

I

=m!m(min{J(z, vi)!x E X, u E B, (x, u) ES}),
I
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and the solution of R(B) is reduced to the solution of finitely many convex subprograms, one
for each vi. We observe that, since B is generated £rom some predecessor B' by adding one
affine inequality, the vertices of B can be calculated from those of B' with reasonnable effort,
see [2]. The starting polyhedron Y should be simple so that its vertices are easily obtained.

Outer Approximation. If S is a polyhedron, then our algorithm uses only linear subprograms.
If we insist on obtaining linear subprograms even in the case of a general convex set S, then we
must combine the above algorithm with polyhedral approximations to S. Assume for simplicity
that S:= {(x, y) E mnxmmlg(x, y) ::;;O}, where g :mnxmm ~ m is convex, and subgradients
of gare available. Then the above algorithm can be modified as folIows.

At the start we set So :=mn x mm. At iteration k we have a convex (possibly unbounded )
polyhedron Sk C mn x mm such that S C Sk. Now we replace everywhere in iteration k the
set S by Sk. Thus (xB, yB, uB) is now determined as a solution of

min{J(x, y)lx EX, Y E B, u E B, (x, u) E Sk}.

f(XB,yB) ::;;f(xB,uB) continues to hold. Since (xB,uB) may not be feasible for (P), the rule
for determining CXkmust be modified as folIows: With (x*, u*) E S fixed, for alI B E rk with
ß(B) < 00 we let TB :=min{J (e, 1,) I(e, 1/) E ((z*, u*), (xB, uB)] nS}, and we set

Again 1* ::;;CXk. Then t::..k,Bk, ßk are determined as before. We have ßk ::;; f(xk, uk) and
ßk ::;;1*.
If ßk ~ f(xk,uk) and (xk,uk) ES, then (xk,uk) solves (P), and the algorithm terminates.
Otherwise we determine ck,B; ,Bt ,rk+1 as before (however, if f(xk,.) == Ck on Bio then we
would have B; = Bt = Bk; to avoid this redundancy we can set rk+1 := t::..k in this case).
In addition: If (xk, uk) ES, then Sk+1 := Sk. If (xk, uk) , S, then

Since Sk :) Sk+1 :) S we have still ßk ::;;ßk+1 :5 1*, and the convergence theorem remains
valid. Indeed, if (Z-, ü) is a cluster point of the sequence {(zk, uk)}, then the same proof as
above shows that f(Z-,ü) ::;;1*, and £rom (zk,uk) E Sk and the rule for constructing Sk folIows
by a standard argument that g(Z-, ü) :5 o. Hence (z-, ü) is feasible for (P), and thus optimal.

Indefinite Quadratie Programming. Problem (P) is equivalent to the (indefinite) quadratic
programming problem with convex constraints, which we write in general form.as

(Q)
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Here 0 c IRn is a closed convex nonvoid set, pE IRn, and M is areal (n x n)- matrix. We

convert problem (Q) into the form (P) by introducing the function J (x, y) := pT x + x TM Y and

writing (Q) as

min{J(x, y)lx E IRn, y E IRn, (x, y) E S := (0 X 0) nD},

where D := {(x, y) E IRn x IRnlx = y} is the diagonal in IRn x IRn. The above algorithm
can be applied to (p) and thus solves (Q). At the start we need a compact convex polyhedron

Xc JRn containing an optimal solution of (Q). We set (6.ctitiously) Y :=X. Then for B cX
problem R(B) with the above choice of S specializes-to

R(B) min{J(x, y)lx E 0nB, y E B, u = x}.

Clearly we may drop from R(B) the variable u altogether. We must then in the description
of the algorithm replace uB by xB and uk by xk• Everything else remams unchanged. If the

method does not terminate, then every cluster point of {xk} solves (Q).

If 0 is not a polyhedron, but is given by 0 := {x E IRnlg(x) 5; O}, g : IRn -IR convex, then we

replace in iteration k the set S by Sie := (Oie X Oie) nD, where Oie is a polyhedral approximation
to O. At the start 00 := JRn, and

if xle E 0
else,

where t E 8g(xle). The TB needed in the modi6.ed rule for QIe should now satisfy

where x. E 0 is 6.xed.
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