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Abstract

The classical Economic Order Quantity (EOQ) model of Harris and Wilson ezhibits
a convez objective function. The Dynamic Lot Size (DLS) model of Wagner and Whitin
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The classical Economic Order Quantity (EOQ) model of Harris[Hal3] and Wil-
son[Wi34] exhibits a convex objective function. The Dynamic Lot Size (DLS) model
of Wagner and Whitin[WW?58] exhibits a concave objective function. In this paper, we
reconcile these two results by showing that a reformulation of the DLS model along the
lines of the EOQ model exhibits a convex objective function provided only that unit
production costs are stationary. A counterexample is provided to show the necessity of
the condition.

Both of these fundamental models have been studied extensively in the literature.
See Maxwell and Muckstadt[MM85] for references to many papers related to the EOQ
model and see Hax and Candea[HC84], and Aggarwal and Park[AP90] for references
to the DLS. Aggarwal and Park[AP90] propose very fast algorithms for the DLS model
and some variants of it.

We first consider a reorder interval formulation of the EOQ model. Let d, c, K and
h denote, respectively, the demand per period, the unit production cost, the set-up or
fixed order cost, and the unit holding cost per period, all assumed non-negative and
stationary. Let T denote the number of periods between orders, a decision variable.
The average cost per unit time is given by C(T'):

K hd h
C(T) = T + —2—T + (¢ — -2—)d
The EOQ problem is to find an integer T' such that C (T) is minimized. The problem
is interesting only if K, h, and d are positive; in which case, it is well-known that C(T)
is strictly convex on the set of positive integers IN. (A function f mapping a countable
subset of IR onto a subset of IR is said to be strictly convex if the epigraph of the
piecewise-linear version of f is a convex set and all the target points are extreme points
of the convex hull of the set. E.g. see Figure 1.)



Figure 1. Graph (T, C(T))




To clarify the relationship with the DLS model, we perform a simple change of
variable: let M = T-!, the frequency of ordering. Let Z(M) denote the average cost

per unit time:
hd 1 h
Z(M)=EKM + —.— — —)d.
(M) = KM + .2+ (e = 3)
Assuming positive K, h, and d, Z(M) is strictly convex on the set of reals corresponding
to M~ € IN.

Next, we consider a standard formulation of the DLS model. Given a schedule of
time-dated nonnegative demands, the problem is to determine a schedule of production
and inventory levels such that total cost is minimized over a finite planning horizon.
Let n be the number of production periods in the planning horizon and dj, ¢;, Kj, and
h; denote, respectively, the demand, unit production cost, set-up or fixed order cost,
and unit holding cost per period for period j, j € {1,2,...,n}. The DLS model can be
written as follows: .

min Y[ fi(P;) + h;1;]
=1
subject to Iy = 0;
Ij = Ij._l + P; — dj,Vj € {1,.. .,TL};
Ij > O,Pj 2> 07VJ € {157”‘}3

where P; and I; are production and end-of-period inventory levels in period j, and

I{j-l—Cij if P; > 0;
fi(P;) =
0 if P; =0.

The objective function for this formulation is concave. Since the feasible region is
defined by a set of linear inequalities, there is an extreme point optimum whenever
the problem admits an optimal solution. Wagner and Whitin[WW58] observed that an
extreme point solution of the constraint set is characterized by the condition

I;1P;=0,Yj5 € {1,...,n}.

Consequently, the DLS problem reduces to the combinatorial problem of determining
the periods for which P; > 0 such that the total cost is minimized. They proposed a
dynamic programming algorithm to identify the optimal production periods.



Our interest is in relating the DLS model to the EOQ model. To this end, let Y.(m)
denote the minimum n-period cost of a feasible production plan that uses exactly m
set-ups, m > 1. We develop an expression for Y,(m) as follows. We assume that
d; > 0, so that an order must be placed for period 1. Let S denote any set of distinct
production periods other than period 1 (ie. S C {2,3,...,n}) such that |S|=m—1.
There are three components to the cost function: the fixed order cost, the holding cost,
and the variable production cost. We treat each in turn.

Let s denote the fixed order cost implied by the production period schedule 5:

Kg:=K; + ZI{]'.
Jj€S

Define &5 to be the set of inter-order intervals as follows: if S = {j1,...,Jk} then

@52{{2737"”j1—1}7{j1+17°"3j2—1}""’{jk+17-“7n}}7

and if S = 0 then &5 = {{2,3,...,n}}.

Let Hs denote the holding cost implied by the production period schedule, S. It is
easily shown that

i-1
Hs= Y Zdi( > hk),
JedgieJ k=lj~1
where [; :=min{j : j € J}.

Let Cs denote the variable production cost implied by the production period sched-
ule, S:

uy
CS = Cldl -+ chd] + Z Cly-1 (Z dk) )
JES Jeds k=ly
where uy := max{j :j € J}.
Let A :={S C{2,3,...,n} :|S| = m — 1}. Hence, we can write Y,(m) as

Yi(m) = srgixn {Ks+ Hs +Cs}.

Under this reformulation, the DLS problem can be described as the problem of choosing
m € {1,...,n} to minimize Y,(m). The relationship of this new DLS objective and the
EOQ objective can now be clarified.



Proposition 1. If all the cost parameters of the DLS model are stationary(i.e. K; = K,
dj=d, hj=h, and ¢; = ¢ Vj) and if n = mT where m and T are positive integers, then

“Y,(m) = Z(5).

Proof: By stationarity,

K;(m)zmlf—}-dsrgfi&{h[z Z(i-l;«{—l)} +cn}

Jedsied

-—mK+dcn+———(n——m)+§— mm { > |J|2}
Jedg

Since n is an integral multiple of an integral T it is easily shown that the latter
minimum is achieved by equal reorder intervals

(]JJ] =T —1). Hence,

th2

Yo(m)=m |K + + (¢ — —)dT}

Corollary 1. If all the cost parameters of the DLS model are stationary, then
1Y.([nM]) — Z(M) as n — oo.

Proof: In the second equality of the proof substitute m = [nM| (the smallest integer
greater than or equal to nM) and note that the minimum will be achieved by “almost”
equal intervals (see appendix). Then, dividing by n and taking limits as n — oo gives
the desired result. .

Having established a relationship between the objectives of the EOQ and DLS mod-
els, at least for stationary parameters, our interest is now in showing that the objectives

exhibit similar behavior. The reformulated DLS objective is not necessarily a convex
function as the following counterexample shows.



Example: Wetaken =3, d; =dy = d; =1, K1 = K, = K3 =0, hi = hy =1,
¢i =1, c; =4, c3 = 6. Then Y3(1) = 6, Y3(2) = min{10,9} = 9, and Y3(3) =11. Asis
clear from Figure 2, Y,,(m) is not convex.

Yy(m

Figure 2. Graph of (m, Y, (m)) for the counterexample



The essential element of the counterexample is the nonstationarity of the unit pro-
duction costs. In the case of stationary unit production costs, the objective is convex.
This is the central result of this paper.

Theorem 1. If the unit production costs in the DLS model are stationary, then Y.(m)
is convex on {1,2,...,n}.

Proof: Note that Y,(m) is convex if and only if
Yo(m — 1) + Yy(m + 1) > 2Y,(m), Vm € {2,...,n — 1}.

Since ¢; = ¢, Vj, we have Cs = ¢¥ %, d; VS. So, 2C will be in both sides of
the inequality (and therefore can be cancelled). Without loss of generality, we can
assume that d; > 0, so 2K; will be in both sides of the inequality(and therefore can be
cancelled).

Then, Y,(m) is convex if and only if (1) holds for all m € {2,...,n — 1}:

min {}CSI + HSL} + _min {K:52 + H52} > zsi%i}xlm{lcsa + HSs} (1)

S51CAm-1 52CAm41

Suppose the minimums in the LHS of the inequality are achieved by ST = {t1,12,..., tm—2}
and 53 = {r1,72,...,Tm}, respectively. Suppose, for now, that 57 N S3 = 0. Construct
St U S and sort the indices in S} U S5 in increasing order:

S; U S; = {81, L IEREE ng_z}.
Now, consider the following sets:

S5- = {31,83, . ,32m—3} and St = {32,84,. - ,ng_g}.

Clearly, Ks+ + Ks- = Ksr + Ks;. Since S5+ 8= C Ap, to show (1) it suffices to
show

Hsy + Hsy =2 Hs+ + Hs- (2)

For a given production period schedule, S,and any period, k, let ss(k) denote the
largest element of S that is less than or equal to k, or 1, if no such element exists. An
alternative expression for the holding cost of schedule S is given by

m:idk( > hi)

k=1 i=ss(k)

where any summation is null if the lower limit exceeds the upper limit. Written in this
form, the left hand side of (2) becomes

n k-1 k-1
LHS =Y de| Y. hi+ > hif,

k=1 i:ssr (k) i=55.:,‘ (k)
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and the right hand side becomes

n k-1 k-1

k=1 i:es+ (k) i:ss__ (k)

For any k it is easily seen that

max{ss+(k), ss-(k)} = max{ss:(k), ss3(k)}

and
min{sg+(k), ss-(k)} > min{ss:(k), ss;(k)}-

Hence, LHS > RHS and (2) holds. To handle the case in which SrnS; # 0, simply
insert the elements of S7 N S} into both sets S~ and S*. The same results carry
through. a

Corollary 2. Ifh; > 0 and d; > 0 Vj, then Y,(m) is strictly convex on {1,2,...,n}.

Proof: In the proof of Theorem 1, note that |S;| = |St| + 2. For this reason, there
must exist at least one value of k such that

min{sg+(k), ss-(k)} > min{ss:(k), ss; (%)}

It follows under the assumption of the corollary, that the inequality in (2), and hence
in (1), is strict. O

The proof of the theorem is didactical. Given two minimum cost production plans
with (m—1) and (m+1) set-ups, the proof shows a way of getting two production plans
with m set-ups each such that average cost of the latter two plans less than or equal
to the average cost of the former two plans. More importantly, we have reconciled the
EOQ model with the DLS model by showing that the DLS objective function, after
suitable reformulation, has the same convexity property as the EOQ objective function,
provided unit production costs are stationary. Convexity of the EOQ objective, Z(M),
permits the development of efficient algorithms to compute its minimum. Convexity of
the DLS objective, Y,(m), is less useful because a combinatorial problem still remains
(selection of S from A,;). Nevertheless, this result may open the way to alternative
algorithms for the DLS.



Appendix
Details in the proof of Corollary 1

Substituting m = [nM] we get

1 1 dh dh . 2
;Yn(an]) =~ [nM]K + den + —2—(n — [nM]) + 5 Selzrﬁll:,?m {Jg‘;s |J] }} (3)
Finding the minimum in the RHS is equivalent to solving
[nM)]
minv* = Z z?
i=1
[nM]
Z z; =n — [nM)]
t=x]
z; > 0 and integer, Vi
Clearly the optimum solution of the continuous version is given by z = ""nj'\',IM V.

The same solution is optimal in the discrete version if n is divisible by [nM]. Tt is also
clear that for any optimal solution we have the following properties:

o |z; —z;| <1,V4,5;

o Joi— 2l < 1,Vi

So, as n — 0o, we have & — M(4; — 1)%. Then taking limits in (3) term by term

yields 1Y, ([nM]) — Z(M) as n — co.
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