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The concept of maximum potential improvement has played an important role in computing lower bounds for single-machine 
scheduling problems with composite objective functions that are linear in the job completion times. We introduce a new method for 
lower bound computation: objective splitting. We show that it dominates the maximum potential improvement method in terms of 
speed and quality. 
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1. Introduct ion 

A single-machine job shop can be described as 
follows. A set of n independent  jobs has to be 
scheduled on a single machine that is continu- 
ously available from time zero onwards and that 
can process no more than one job at a time. Each 
job Ji(i = 1 . . . . .  n) requires processing during a 
positive time Pi. In addition, it has a due data di, 
at which it should ideally be completed. A sched- 
ule defines for each job Ji its completion time C i 
such that no two jobs overlap in their execution. 
A per fo rmance  measure  or scheduling criterion 
associates a value f(cr)  with each feasible sched- 
ule o-. Some well-known measures are the sum of 
the job completion times E C  i, the maximum job 
lateness Lma x = max i ~ i ~ ,,(Ci - di ) ,  and the max- 
imum job earliness Ema x = max I <~i~n(di - Ci). 

In this paper,  we adopt the terminology of 
Graham,  Lawler, Lenstra and Rinnooy Kan (1979) 
to classify scheduling problems. Scheduling prob- 
lems are classified according to a three-field no- 
tation a1/317, where a specifies the machine 

environment, /3 the job characteristics, and 7 the 
objective function. For instance, l lnmit IEma x de- 
notes the single-machine problem of minimizing 
maximum earliness, where nmit denotes that no 
machine idle time is allowed. 

Most research has been concerned with a sin- 
gle criterion. In real life scheduling, however, it is 
necessary to take several performance measures 
into account. There  are basically two approaches 
to cope with multiple criteria. If  the scheduling 
criteria are subject to a welldefined hierarchy, 
they can be considered sequentially in order to 
relevance. An example is the problem of minimiz- 
ing maximum lateness subject to the minimum 
number  of tardy jobs, for which Shanthikumar 
(1983) presents a branch-and-bound algorithm. 

The second approach is s imul taneous  opti- 
mization of several criteria. The K performance 
measures specified by the functions f k ( k  = 
1 . . . . .  K)  are then transformed into one single 
composi te  objectir, e func t ion  F: J2 ~ ~, where 
denotes the set of all feasible schedules. We 
restrict ourselves to the case that F is a linear 
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composition of the individual performance mea- 
sures. This leads to the problem class (P) that 
contains all problems that can be formulated as 

K 

m i n , ~  E % f k ( t r )  (P) 
k = l  

where a = (a  l . . . . .  a t )  is a given vector of real 
nonnegative weights. The problem of minimizing 
a linear function of the number of tardy jobs and 
maximum lateness, denoted as 1 II EUi + L . . . .  is a 
member of this class. Nelson, Sarin and Daniels 
(1986) present a branch-and-bound algorithm for 
its solution. 

In addition to solving some problem in (P) for 
a given a >~ 0, it may be of interest to determine 
the extreme set. The extreme set for given func- 
tions f l , . - . ,  f~: is defined as the minimum cardi- 
nality set that contains an optimal schedule for 
any weight vector a >~ 0. The elements of this set 
are the extreme schedules. If this set has been 
identified, then we can solve any problem for 
these functions by computing the function value 
for each extreme schedule and choosing the best. 
Hence, if the cardinality of the extreme set is 
polynomially bounded in n, the number of jobs, 
and if each extreme schedule can be found in 
polynomial time, then any problem in (P) with 
respect to these functions f l  . . . . .  f r  can be solved 
in polynomial time. 

Suppose that some problem in (P) is NP-hard 
and that one wishes to design a branch-and-bound 
method for its solution. In that case, good lower 
bounds are required. Unil now, virtuallly all lower 
bound computations for problems in (P) are based 
upon the so-called maximum potential improve- 
ment method. We prove in Section 2 that these 
bounds arc dominated in terms of quality and 
computational effort by a much simpler method 
that we name objective spfitting. In Section 3, we 
refine the basis objective splitting method. 

The problem 1 ] ]~_~C i -I- Lrnax + Ema x is our 
benchmark in comparing the two lower bound 
approaches. It is still an open question whether 
this problem is NP-hard. Sen, Raiszadeh and 
Dileepan (1988) develop a branch-and-bound al- 
gorithm and derive lower bounds by means of the 
maximum potential improvement method. There 
is an optimal schedule for this problem without 
machine idle time, although Ema x is nonincreas- 
ing in the job completion times. It is not mean- 

ingful to insert idle time, as the gain for Ema x will 
at least be compensated by the increase of ECi. 
We recall the following fundamental algorithms 
for the three embedded subproblems. 

Theorem 1 (Smith, 1956). The 11 I~C i problem is 
minimized by sequencing the jobs according to the 
shortest-processing-time (SPT) rule, that is, in or- 
der of  nondecreasing Pi. 

Theorem 2 (Jackson, 1955). The 11 I Lmax problem 
is minimized by sequencing the jobs according to 
the earliest-due-date (EDD) rule, that is, in order 
of nondecreasing d r 

Theorem 3. The l lnmitlEma x problem is solved 
by sequencing the jobs according to the minimum- 
slack-time (MST)  rule, that is, in order of nonde- 
creasing d i - Pi. 

The proof of each of these algorithms proceeds 
by a straightforward interchange argument. Note 
that each of these problems is solved by arranging 
the jobs in a certain priority order that can be 
specified in terms of the parameters of the prob- 
lem type. 

The optimal solution values for these single- 
machine scheduling problems will be denoted by 

ECi* ' * • Lma x and E . . . .  respectively. Furthermore,  
ECi(o-), Lmax(O'), and Emax(O-) are the objective 
values for the schedule ~r. In analogy, Ci(~), 
Li(~r), and Ei(~r) denote the respective measures 
for job Ji(i = 1 . . . . .  n). Whenever (~r) is omitted, 
we are considering the performance measure in a 
generic sense, or there is no confusion possible as 
to the schedule we are referring to. The sched- 
ules that minimize ECi, L . . . .  and Ema x are re- 
ferred to as SPT, EDD, and MST respectively. In 
addition, v( .)  denotes the optimal objective value 
for problem .. 

2. Maximum potential improvement versus ob- 
jective splitting 

Townsend (1978) proposed the maximum po- 
tential improvement method to compute lower 
bounds for minimizing a quadratic function of 
the job completion times. Since then, the method 
has been extended to problems in (P), including 
1 I EC i + Lma x (Sen and Gupta, 1983), 1 Inmit I 
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Lma x +Ema x (Gupta and Sen, 1984), and l lISZ G 
÷ L m a x ÷ E m a x  (Sen, Raiszadeh, and Dileepan, 
1988). To our knowledge, there is only one publi- 
cation on objective splitting avant la lettre: Tegze 
and Vlach (1988) obtained an extremely simple, 
but  provably  s t ronger  lower bound  for 
1 ] nmit ] L m a x  ÷ Emax" 

Meanwhile, Hoogeveen (1990) and Hoogeveen 
and Van de Velde (1990) have found polynomi- 
al-time algorithms for 1 ]nmit ] a l L m a  x + o~2Ema x 
and 1 ] ]a~Y'.C~i + o~2Lma x. The former problem 
has O(n) extreme schedules, each of which is 
found in O(n log n) time. The latter problem has 
O(n 2) extreme schedules, each of which is deter- 
mined in O(n) time after appropriate preprocess- 
ing. However, it is an interesting issue how to 
derive lower bounds for NP-hard problems in (P). 
The maximum potential improvement method is 
a cumberstone procedure. However, by viewing it 
from a different angle, we derive a closed expres- 
sion for the resulting lower bound. It is then 
immediately clear that the maximum potential 
improvement method is completely dominated by 
the much simpler objective splitting method. 

Objective splitting is based upon the observa- 
tion that 

m i n ~  Y'. ak fk (o )  
k= l  

>~ 
K 

E ak[min~xf fk(~r)] ,  
k - I  

if a k >~ 0 for k = 1 . . . . .  K. The application of this 
idea to 1 ] ]EC i + Lma x + Ema x yields the problems 
1[ ]Y~C,, 1] ]L . . . .  and 1 [nmit ] Ema x. Each prob- 
lem is polynomially solvable, and we obtain the 
LB °s = EC~* + Lma x + Ema x. This bound is com- 
puted in O(n) time in each node of the search 
tree, provided that the SPT, EDD, and MST 
sequences have been stored and that we employ a 
convenient branching strategy. 

It is relatively easy to apply the maximum 
potential improvement method to problems in (P) 
for which each embedded single-machine prob- 
lem has a priority order. The 1 J ]Y'.Ci + Lma x + 
Ema x problem has three: the SPT order for EC~, 
the EDD order for L . . . .  and the MST order for 
Ema x. Clearly, we have solved an instance of this 
problem in case these orders concur; in general 
though, the priority orders are conflicting. 

Suppose we start with the MST schedule, which 
we refer to as the primary priority order. The 
scheduling cost induced by the MST schedule is 
Y'Ci(MST) * + Ema x + Lmax(MST); this is obviously 
an upper bound on the optimal solution value. In 
addition, we know that any optimal schedule ~r* 
must have Emax(O'*) >- * ;..Emax, and ECi(~r*)+ 
Lmax(~r*)4Y2Ci(MST)+Lm,x(MST). The maxi- 
mum potential improvement method assesses the 
current schedule with respect to the maximum 
improvement that can be obtained for each of the 
performance measure separately. Accordingly, we 
get a lower bound by subtracting the total maxi- 
mum potential improvement from the upper 
bound. 

First, consider the maximum lateness criterion, 
which is the secondary priority order. If we inter- 
change every pair of adjacent jobs Ji and Jj for 
which d i > d i and Ci < C i, then we need to con- 
duct O(n 2) interchanges before we have trans- 
formed the MST schedule into an EDD schedule. 
The actual effect on the objective value by one 
particular interchange depends on the inter- 
changes that have been conducted thusfar. It 
might have no effect whatsoever on the perfor- 
mance of the schedule; this is true if both the 
maximum lateness and the maximum earliness 
remain unchanged. The maximum possible de- 
crease of the scheduling cost, however, is d / -  dj; 
if or and ~- denote the schedule before and after 
the interchange, respectively, then the maximum 
decrease is realized if Lmax(O-)= Lj(o'), Lmax(Vr) 

= Li(~') and Emax(~')= Emax(o-). The effect that 
the interchange might have on the sum of the job 
completion times is not considered here and dealt 
with separately. Any interchange conducted to 
transform the MST schedule into the EDD 
schedule may improve the maximum lateness by 
the corresponding maximum possible decrease. 
The sum of these is the maximum potential im- 
provement with respect to the initial lateness 
Lm~×(MST). It is given by 

MPI2=  E ( d i - d y ) .  
i,j:di>dj,Ci<Cj 

Note that the maximum potential improvement 
does not depend on the order in which the inter- 
changes are conducted. 

Second, the sum of the job completion times, 
which is the tertiary priority order, is reduced by 
interchanging two adjacent jobs Ji and Jj with 
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pi > &  and (7,. < Cj. The maximum potential im- 
provement  is then Pi--Pj, which is also the true 
improvement.  The maximum potential improve- 
ment with respect to ECj(MST) is then 

MPI3 = E (Pi--Pj)" 
i , j  : Pi >Pj  ,Ci < Cj 

The lower bound LB MPI suggested by Sen, 
Raiszadeh and Dileepan (1988) for I lIEC~ + 
Lma x q- Ema x is t h e n  

LB MPI _- Ema x *  + L m a x ( M S T  ) - MPI 2 

+ ECi (MST)  - MPI 3. 

Since ECi(MST) - MPI 3 = ECi(SPT) = ECi* and 
Lmax(MST)  - M P I  3 -.~ Lmax, as we  h a v e  systemati- 
cally overest imated the reduction in maximum 
lateness, we conclude that 

LBMPI * = Ema x + ~Ci* -I- Lmax(MST) - MPI 2 

~< LB °s. 

The maximum potential improvement  method 
can be generalized to problems in (P) as follows. 
Let cry* denote an optimal schedule for the k-th 
individual objective. Furthermore,  let the optimal 
sequence that goes with the k-th objective be the 
k-th preference order. The first step is then to 
sequence the jobs according to the primary pref- 
erence order, which gives the upper  bound 

K . ~ l f l ( o h * ) + E k = 2 a k f ~ ( %  ). We then have to 
transform the primary preference order into the 
k-th preference order for k = 2 . . . . .  K, and deter- 
mine the corresponding maximum potential  im- 
provement  MPI k. The lower bound is then given 
by 

K 

LB Mm = a~fa(oh* ) + ~ a~(fk(crl* ) - MPI~) .  
k - 2  

Note that this procedure requires O ( n  2) time for 
fixed K in addition to the time required to deter- 
mine trk*, for k = 1 . . . . .  K. Since fk(crl*) - MPI~ 
~<fk(~*) for each k = 1 . . . . .  K, we have the fol- 
lowing theorem. 

Theorem 4. For any problem in (P), the lower 
bound obtained by the maximum potential im- 
provement method is dominated in terms of both 
quality and speed by the lower bound obtained by 
the objective splitting method. 

Consider the following example shown in Table 1 
that is taken from Sen, Raiszadeh and Dileepan 

Table 1 

Jl J2 J2 '/4 

Pi 14 7 6 7 
d i 20 14 15 17 
di  - Pi 6 7 9 10 

(1988) for the problem 11 I qECi + (1 - q)(Lma x 
+Ema x) with 0 ~< q ~< 1. By means of the maxi- 
mum potential improvement  method, we obtain 
the lower bound LB MPl= 64q + 9. It is easy to 
verify that ECj* = 73, Lma x = 14, and Ema x - 6 .  
This gives the bound LB °s = 53q + 20. Note that 
5 3 q + 2 0 > / 6 4 q + 9 f o r a l l  q w i th0~<q~<l .  

3. Improving the objective splitting procedure 

The objective splitting procedure above was 
given in its simplest form: we separated the com- 
posite objective function into K single-criterion 
scheduling problems. We now propose a refine- 
ment  that gives us a lower bound that is at least 
as good, but requires more time. Our  more gen- 
eral approach allows combinations of objective 
functions. Let (T~, . . . ,  T H) be a partition of the 
set {1, . . . ,  K}, i.e., the sets T h are mutually dis- 

H joint and U h=lTh = {1 . . . .  , K}. For any problem 
A in the class (P) we clearly have 

u ( A ) >  h=lE [min~ ~a k~Th akfk(trk) 

K 
E = L B  ° s  

k - 1  

This idea can be refined even further, since it is 
not obligatory to match each performance crite- 
rion f~ with only one set T h. Hence,  let us relax 
the assumption that (T 1 . . . . .  T H) is a partition of 
{1 . . . . .  K}, and let akh denote the fraction of fk 
that is assigned to T h. We must have that Ehakh 
= a k for each k = 1 . . . . .  K, and also that akh > O, 
since the composite objective function associated 
with the set S h has to be nondecreasing in each 
of its arguments,  for h = 1 . . . . . .  We can compute 
the lower bound for given values of akh as 

H 

(OS) u(OS)=~-'[min~gl~Thakhfl ' (O')] 'h=l k 
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An interesting question is how to determine the 
values of akh that maximize the lower bound 
u(OS). This problem, referred to as problem (D), 
is to 

(D)  maximize u(OS)  

subject to 

a k h = a k  f o r k = l  . . . . .  K,  
h - 1  

akh>~0 f o r k = l  . . . . .  K,  h =  l , . . . , H .  

A sufficient condition for solving problem (D) in 
polynomial time (for fixed K)  is that the extreme 
set for each problem induced by T h (h = 1 . . . . .  H )  
can be determined in polynomial time. In that 
case, there is only a polynomial number  of ex- 
treme schedules involved, and problem (D) can 
then be formulated as a linear programming 
problem with a polynomial number  of constraints 
and variables. Let N(h)  be the number  of ex- 
t reme schedules for the problem associated with 
T h (h = 1 . . . . .  H) ,  and let %~h) denote the j-th 
extreme schedule for the problem associated with 
T h. There  are at most 2 ~ - 2  sets T h ( [ T ~ I < K  
and T h ~ ¢). The linear program is then to 

maximize w 

subject to 

H 

h -  1 k ~ T  h 

for j ( h )  = 1 . . . . .  N ( h ) ,  h = 1 . . . . .  H ,  

H 
a~. h = a  k f o r k = l  . . . . .  K,  

h=l  

c%j,>0 f o r k = l  . . . . .  K,  h =  l , . . . , H .  

In general, it would be unreasonable to pre- 
sume that each of the possible 2 ~ - 2  sets T h 
would result into a polynomially solvable prob- 
lem; it may be a formidable challenge to identify 
those that will. If  we touch upon a problem that 
appears  to be hard to solve, then we may relax 
the assumptions by allowing preemption (I.e., the 
processing of the jobs may be interrupted and 
resumed to the computational  complexity, but 
also with respect to the lower bound quality. The 
latter follows particularly from the following the- 
orem. 

Theorem 6. The optimal objective value of  
1 I pmtn K I~k=lakfk  is greater than or equal to 
Y'akfk(O'k*), where o'~ is the optimal value for 
11 I fk(k  = 1 . . . . .  K). 

Proof. The proof  follows from the observation 
that ~rk* also solves 1 I p m t n l f k ,  if fk is either 
monotonically nondecreasing or monotonically 
nonincreasing in the job completion times. [] 

If we apply the refined objective splitting pro- 
cedure to 1 [ IECi + Lmax + Emax, then, except for 
the obvious single-criterion problems, we have to 
consider three problems: 1 I I alY'.Ci + a2Lma×, 
1 Inmit I Ol l~ . ,C i q.- a2Emax, and 1 Inmit la lLma x + 
~x2Ema x. H o o g e v e e n  (1990) p resen t s  and 
O(n21og n) time algorithm for 1 Intuit I alLm~ x + 
a2Ema x to find the O(n) extreme schedules, and 
Hoogeveen and Van de Velde (1990) present and 
O ( n  3) time algorithm for 1 I I alECi + a2Lma x, 
which has O(n 2) extreme schedules. For the 
problem (Hoogeveen and Van de Velde, 1990). 
The complexity of the case cq < a 2 is unknown. 
However, 1 Inmit, pmtn I a~EC~ + a2Ema x is solv- 
able in O(rt 4) time and has O(n 2) extreme sched- 
ules. 

If we reconsider the example, we find that 
there is one extreme schedule for EC~ and Lma x 
with ~2C i = 73 and Lma x = 14; there are two ex- 
t reme schedules for Lma x and E .... with values 
Lma x = 14 and Ema x = 7, and Lma × = 17 and Ema x 
= 6; there are three extreme schedules for Ema X 
and F.C i if we allow preemption with values Ema x 
= 6 and F_.C i = 96, Ema x = 7 and Y~C i = 74, and 
Em~ x = 9 and F_,C, = 73, respectively. 

The lower bound that is obtained by the im- 
proved objective splitting method depends on the 

1 parameter  q. Suppose q = 3. Then we obtain 
LB MPl= 41 and LB ° s =  46½. It is easy to verify 
that the improved objective splitting method gives 
47½ as a lower bound. This bound is tight, since 
the optimal sequence (J2, J3, J4, J l)  has the same 
value. 
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