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Let N n be the number of points of a Poisson point process of intensity n times the Lebesgue measure over [0,1] 2, and let 
LMsT(N n) be the length of the optimal spanning tree connecting these N n points. It is well-known that there is a constant 
0 </3Ms T <o¢ such that l i m n ~  ELMsT(N~) / f~= ~MST" In this paper we give the exact rate of convergence for this limiting 
behavior. 

Euclidean minimum spanning tree; asymptotic analysis; rate of convergence 

I. Introduction 

The minimum spanning tree problem (MSTP) 
in the plane requires finding the length of the 
shortest tree spanning n points of R 2. We are 
concerned here with stochastic versions of the 
problem. First let Xi, 1 _ i < o0, be uniformly and 
independently distributed random variables in 
[0,1] 2 and let LMsT(n) be the length of the short- 
est tree spanning {X 1, X 2 . . . . .  Xn}. Steele [9] 
proved that LMsT(n) is asymptotic to /3MSTX/n 
with probability one (the same being true in ex- 
pectation). In fact this result is valid for any 
uniform i.i.d, random variables with compact sup- 
port of measure one in R d, d ~ 2, provided v~ is 
replaced by n (d-  t)/d, the constant depending only 
on the dimension of the space and not on the 
shape of the compact support. Similar results had 
previously been obtained for the traveling sales- 
man problem, the weighted matching problem, 
and the Steiner tree problem (Beardwood et al. 
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[2] and Steele [8]). Questions about rates of con- 
vergence for these limit laws have been raised 
many times in the literature (see for example 
[2,5,8,9]). There are in fact two issues concerning 
information on rates of convergence (let P be a 
generic symbol representing any of the problems 
pre-cited): 

1. What is the asymptotic size of Le (n ) -  
ELp(n)? 

2. What can be said about the rate of conver- 
gence of the normalized means ELp(n)/  
to ~p.9 

With respect to the first question, Rhee and 
Talagrand [7] proved that, for the TSP, there is a 
constant k such that II L T s p ( n )  -- E L T s p ( n ) I I  p < 

kx/~ for each p for all n. This interesting result 
indicates that LTsv(n) is quite concentrated 
around its mean. With respect to the second 
question, some partial results have been obtained 
in Jaillet [4], where it is proved that IELe(n) / 
~h-- /3p]  = O(1/v/n -) (see also Alexander [1]). 
However, the important question remained open: 
Is 1 / v ~  the exact rate of convergence, or does 
ELp(n)/~/n go faster to /3p? 

In this paper, we consider the case of the MST 
and give an answer to this question for a Poisson 
point process 7r n of intensity n times the Lebesgue 
measure over [0,1] 2. More precisely, let Nn be a 
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Poisson random variable with parameter  n repre- 
senting the number of points of this process in 
[0,1] 2. We prove that IELMsT(Nn)/V~ -/3MST I 

= 0(1/v~-). 
The paper is organized as follows. In Section 

2, we state, in the context of a Poisson point 
process, some simple results of [4]. In Section 3, 
we prove our main result. Finally in Section 4, we 
give some final remarks. 

2. Background results 

If one follows the usual subadditivity argument 
(such as in [2,8]), one can go one step further and 
show that ELMsT(N.)>--/3MSTX/n- - -k l  for a posi- 
tive constant k r Also, adapting a classical argu- 
ment given in [2] for the TSP, one can show that 
ELMsT(N n) < flMSTVn- + k 2 for a positive con- 
stant k 2. Let us present these arguments (adapted 
from [4]), and combine the results in one lemma. 

l ~m ma  1. Let N, be the number of points of a 
Poisson point process ~'n of intensity n times the 
Lebesgue measure over [0,112, and let LMsT(N .)  be 
the length of the minimum spanning tree connect- 
ing these N n points. Then we have 

IELMsT(N,,)/(n--~MST[=O(1/(E). (1) 

Proof  Let  us first prove that there exists a con- 
stant k 1 such that 

ELMsT(N,)  > flMSTV~- - k, .  (2) 

Consider x = {xi: 1 < i  < oo} to be an arbitrary 
infinite sequence of points in [0,1] 2, and let x (') 
= {x~, x 2 . . . . .  x,} be its first n points. Let {Qi: 
1 < i < m 2} be a partition of [0,1] 2 into m 2 squares 
with edges parallel to the axes and of side length 
1/m. Then there exists a constant k I such that 

m 2 

LMST(x(")) < ~] LMST( X(n) O Qi) +k lm.  (3) 
i = l  

The argument, classical, has its origin in [2, 
Lemma 1] and has been used subsequently in 
many papers. Consider the following tree con- 
struction connecting x (") (see Figure 1 for an 
illustration): first construct optimal trees connect- 
ing x (n) r3 Qi for 1 < i _<_< m 2. Then, in each square 
Qi where x(")t3 Qi is not empty, choose one 
point as a representative and finally construct an 

% / 
"V H 

\ 1/m 

(i) Find MST trees in the subsquares 

J_, 

1/m 

(ii) Patch the MST trees together by 
connecting their representatives 

Fig. 1. T ree  const ruct ion on x (") in [0,1] 2 " 

optimal tree connecting the set S of all represen- 
tatives (at most m E points). The combination of 
the small trees together with the large tree gives a 
spanning tree connecting x (") of length ~. mz i=1 
LMsT(X (") n Qi) + LMsT(S). NOW it is easy to show 
(see [3]) that there exists a constant k 1 such that 
LMsT(S) < ki I ~ 1  , and this establishes (3). From 
(3) we then have, starting with a Poisson point 
process ~'m2, on [0,1] 2 and using an obvious scal- 
ing property, the following subadditive inequality: 

ELMsT(Nmln) <~mELMsT(Nn) +ktm.  (4) 
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Dividing both sides of (4) by mf~-nn, letting m g o  
to infinity, and using the fact that ELMsT(Nm2n) / 

goes to /3MS T when m goes to infinity, we 
finally obtain (2). Now let us prove that there 
exists a constant k 2 such that 

ELMsT(Nn) <~ ~MSTV/-~ -4-k 2 . (5) 

From the arguments given above, it will be enough 
to prove that there exists a constant k 2 such that 

m 2 

LMsT(X (")) >__ ELMsT(x(n) A Q i ) - k 2 m .  ( 6 )  
i=1  

Indeed, one would then have the following in- 
equality: 

ELMsT(Nm2n) >_mELMsT(N,, ) - k 2 m ,  (7) 

which can be analyzed in the same manner as 
inequality (4). The argument for proving (6) is 
also classical and is adapted from [2, Lemma 2] 
(see Figure 2 for an illustration). Let T* be an 
optimal tree through x (n) and let us suppose that 
X (n) n Qi is not empty. Let T,* = T* n Qi and let 
Tq for l < j < t z  i (]A,i~ I x ( m n a i l )  be the con- 
nected pieces of T/* which contain at least an 
element of x ~n). Let l i be the total length of all 
these connected pieces. By using some portion of 
the perimeter of Q, one can connect endpoints of 
these pieces (lying on the perimeter of Q;) in 
order to form a tree spanning X (n) n Qi. Now, the 
additional points, used for this connection, lie 
outside of the convex hull of x (n) n Qg. Hence we 
have LMsT(X (mn  Qi) < li + per(Q/) = I i + 4 / m .  
By summing both sides for all i, we get the 
validity of (6), with k 2 = 4. [] 

3. The main result 

The main result of this paper is the following 
theorem: 

Theorem 1. Let N n be the number of  points of  a 
Poisson point process 7r n of intensity n times the 
Lebesgue measure over [0,1] 2, and let LMsT(N .)  be 
the length of  the optimal spanning tree connecting 
these N, points. Then 

[ELMsT(Nn)/Vn -/~MSTI = e(1/fn-). (8) 

Proof. From Lemma 1, it suffices to prove that 
there exists a positive constant c such that 

ELMsT(Nn)/v/-~ > ~MST "]- C / V ~ - .  (9) 

Let us first replace the traditional partitioning 
and patching way of getting the subadditivity in- 
equality (as in Figure 1) by a recursize way. We 
divide [0,1] 2 into four squares with edges parallel 

1 to the axes and of side length ~ and we solve the 
MSTP in each of them. Then we select in each 
(not empty) quadrant the point closest to the 

P 

(i) Find a MST tree spanning all points 

Ii l /m 

I I 

I 

I 

I 

I 

I 

I I I/m 

(ii) Connect the components in a 
subsquare, using part of the 
perimeter 
Fig. 2. Tree construction on x (n) N Qi in [0,1] 2 
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center of [0,1] 2, and finally we construct a tree 
connecting these points (see Figure 3, parts (i) 
and (ii)). Starting with the Poisson point process 
7r4n in [0,1] 2, we obtain 

ELMsT( N4n ) < 2ELMsT( Nn) + kl~/-n, (10) 
where k is a positive constant. By using this 
inequality recursively we get 

ELMsT( N4"n) 
< 2mELMsT( Nn) + 2m-l(1- (¼ )m)4k/3Vrn. 

(11) 

Dividing each side by 4~-~ ,  and letting m go to 
infinity, we get 

ELMsT(N.) 2k 
>/~MST -- - -  (12) 

~ -  3n '  

which is already an improvement on (2). Can we 
do better? Yes. The main idea is to improve the 
feasible solution, obtained from the connection of 
the 4 trees, by considering potential savings along 
the borderline of two given adjacent subsquares. 
Figure 3 part (iii) illustrates such savings. Note 
that there will be savings each time there exists a 
point in one of the subsquares which has its 
closest point (among 7r4n) that is located in an 
another subsquare. In order to evaluate the size 
and likelihood of these savings, let us refer to 
Figure 4, where we show two concentrated balls 
centered on the borderline of two subsquares, of 
radius r and 4r, respectively. Now consider the 
following event • :  

There is exactly one point in region A, no 
point in region B, and at least one point in 
region C. 

N 

(i) The four optimal trees (ii) Connection of the four optimal trees 

(iii) The circles indicate areas where 
savings have been possible. 

Fig. 3. Construction of a feasible solution and 'post-savings' 
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Subsquare I Subsquare II 

I 

I 
' 

(i) Two concentric squares centered 
on the border of two subsquares 

Subsquare I 

[ ~ t  A 

N c  

Subsquare II 

I 
4 r  

I 

(ii) Exchange of two edges with 
savings of at least r 

Fig. 4. Conditions for savings 

If such an event is true, then, by connecting the 
point of A to one of the points of C, one gets 
savings of at least 3r - 2r = r (see Figure 4 (ii)). 
What is the probability of this event when one 
considers a Poisson point process ~'4, in [0,1127 
For r = a / f n ,  where a is any positive constant, 
one can always find n large enough, so that this 
probability is greater than or equal to a positive 
constant, say a (indeed, if r = a~ v'-n, the number 
of points in region A, B, and C are all given by 

independent Poisson random variables with con- 
stant parameters). Along the side of two adjacent 
squares (of length ½), one can pack at least 
[ ~ - / ( 8 a ) ]  non-overlapping, and thus indepen- 
dent, such combination of two concentric balls. 
The expected total savings will then be bounded 
from below by 

a ( a / f n ) ( [ f d / ( 8 a ) ] )  > c], (13) 

where c t is a positive constant. Instead of (10), 
we now have 

ELMsT(N4, ) < 2ELMsT(N,) + k /~ /n  - c,. 
(14) 

This in turn implies that, for any positive constant 
c < c], there exists n(c) large enough such that 
for all n > n(c), 

E L M s T ( N 4 n )  < 2ELMsT(  Nn) -- c. (15) 

By using this inequality recursively we get 

ELMsT( N4.,n) < 2mELMsT( Nn) - c(2 m - 1). 
(16) 

Dividing each side by 4 v / ~ ,  and letting m go to 
infinity, we finally get the desired result. [] 

4. Concluding remarks 

The techniques and results developed in this 
paper remain valid for other functionals of geo- 
metric probability. For the Steiner tree problem 
and the minimum weight matching problem, the 
arguments are in fact almost identical. However, 
for the traveling salesman problem, difficulties 
may arise. Indeed, going back to Figure 4 (i), and 
assuming that event ~ is true, then, if one de- 
cides to visit the unique point of region A by a 
double link from one of the points of region C, 
savings will not necessarily occur with certainty 
(the point in A could indeed be very close to the 
line joining its predecessor and successor along 
the previous TSP tour). In a first version of this 
paper, we conjectured that these savings would 
occur with a constant probability, still implying a 
rate of O ( 1 / v ~ )  for the TSP. In fact, Rhee [6] 
has recently and independently proved this result. 
The basic idea of her proof is identical to ours, 
although it involves solving a number of signifi- 
cant technical problems in order to insure that 

77 



Volume 14, Number 2 OPERATIONS RESEARCH LETTERS September 1993 

such savings i n d e e d  occur  wi th  a cons tan t  p roba -  
bility. 

Final ly ,  for  all these  p rob lems ,  it is na tu ra l  to 

expect  tha t  IELp(n) /v /n  - - / 3  e I = ~9(1/v%-) re-  
ma ins  t rue  u n d e r  the  un i fo rm f ixed s amp le  s ized 
model .  However ,  as p o i n t e d  out  in [6], this  does  
not  s eem to be  an easy consequence  of  the  corre-  
spond ing  resul t  s t a t ed  u n d e r  the  Poisson model .  
The  usual  way to l ink the  two mode l s  (see  [4] for  
de ta i l s )  is to p rove  tha t  IELp(k  + 1) - E L p ( k ) I  
= O(1/x/-k-), which then  impl ies  tha t  [ E L p ( N  n) 
- ELp(n) I  = O(1). This  last  r e l a t ionsh ip  is how- 
ever  not  suff icient  he re  and  a d e e p e r  u n d e r s t a n d -  

ing of  how IELe (k  + m)  - E L e ( k ) l  behaves  as a 
funct ion  of  m and  k seems  to be  necessa ry  for  
closing the  gap.  
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