

Operations Research Letters 19 (1996) 129-134

operations research letters

A characterization of efficient points in constrained location problems with regional demand

Emilio Carrizosa^{a,*}, Frank Plastria^b

^a Facultad de Matemáticas, C/Tarfia s/n, 41012 Sevilla, Spain ^b Center for Industrial Location and Development, Pleinlaan 2, B 1050 Brussels, Belgium

Received 1 January 1995; revised 1 February 1996

Abstract

In this paper we characterize the set of efficient points in the planar point-objective location problem under a convex locational constraint, when distances are measured by a strictly convex norm in \mathbb{R}^2 and the set of demand points is a compact set.

It is shown that, under these assumptions, the efficient set coincides with the closest-point projection of the convex hull of the demand points onto the feasible set.

Keywords: Location problems; Efficiency; Convex analysis; Strictly convex norms

1. Introduction

Let A and S be nonempty sets in \mathbb{R}^2 , and let γ be a norm in \mathbb{R}^2 . Consider the vector-optimization problem $\mathbf{P}(\gamma, A, S)$,

 $\mathbf{P}(\gamma, A, S): \quad \min_{X \in S} (\gamma_a(x): a \in A),$

where, for each $a \in A$, γ_a is the function

$$\gamma_a: x \in \mathbb{R}^2 \to \gamma_a(x) = \gamma(x-a)$$

measuring the distance up to a.

A point $x \in S$ is said to be *efficient* for problem $\mathbf{P}(\gamma, A, S)$ iff there exists no $y \in S$ such that $\gamma_a(y) \leq \gamma_a(x)$ for all $a \in A$, with at least one strict inequality. A point $x \in S$ is *weakly efficient* iff there exists no $y \in S$ such that $\gamma_a(y) < \gamma_a(x)$ for all $a \in A$. Throughout this note, the set of efficient and weakly efficient points for $\mathbf{P}(\gamma, A, S)$ will be denoted, respectively, $\mathbf{E}(\gamma, A, S)$ and $\mathbf{WE}(\gamma, A, S)$.

A number of papers (see e.g. [2,4,6,10,14,15]) have been devoted to the search of efficient points of the problem above, known in the literature as the *pointobjective location problem* (see [13]), but mostly in the unconstrained case, i.e., under the assumption that the facility can be placed at any point in the plane, i.e., $S = \mathbb{R}^2$.

Although this assumption has been widely questioned (see, e.g., [5]), only some partial results have been obtained in the presence of constraints. For instance, in [5, 9] necessary conditions for a point to be efficient are derived, e.g., the points in $\mathbf{E}(\gamma, A, S)$ are *visible* from the set $\mathbf{E}(\gamma, A, \mathbb{R}^2)$ of efficient points for the unconstrained problem [9]. However, a full characterization of the set of (weakly) efficient points has

^{*} Corresponding author.

^{0167-6377/96/\$15.00} Copyright © 1996 Elsevier Science B.V. All rights reserved PII \$0167-6377(96)00005-3

only been obtained in [1] for the classical case when γ is the euclidean norm and A is finite, showing that $\mathbf{E}(\gamma, A, S)$ and $\mathbf{WE}(\gamma, A, S)$ coincide with the orthogonal projection onto S of $\mathbf{E}(\gamma, A, \mathbb{R}^2)$, known to equal the convex hull of A [13].

In this paper we characterize $\mathbf{E}(\gamma, A, S)$ and $\mathbf{WE}(\gamma, A, S)$ when A is compact, S is a closed convex set and γ is a *strictly convex norm*, (i.e., γ is a norm such that the boundary of its unit ball does not contain nondegenerate line segments), showing that both $\mathbf{E}(\gamma, A, S)$ and $\mathbf{WE}(\gamma, A, S)$ equal the closest-point projection (with respect to γ) of the convex hull of A (i.e., $\mathbf{E}(\gamma, A, \mathbb{R}^2) = \mathbf{WE}(\gamma, A, \mathbb{R}^2)$ [13]).

Since the euclidean norm is strictly convex, the characterization given in [1] is extended here in two ways: A is allowed to be infinite, and γ is an arbitrary strictly convex norm.

The proofs make use of rather well-known results of Convex Analysis, which may be found, e.g., in [12].

2. The results

In what follows, S is a nonempty closed and convex set in \mathbb{R}^2 , A is a nonempty compact subset of \mathbb{R}^2 , and γ is a strictly convex norm, whose unit ball is denoted by B; the dual norm of γ is denoted by γ^0 , and its unit ball by B^0 .

Given a set $X \subset \mathbb{R}^2$, let conv(X) denote its convex hull, and bd(X) its boundary; for any $x \in X$, let $X^*(x)$ be the convex cone

$$X^*(x) = \{ u \in \mathbb{R}^2 : \langle u, y - x \rangle \ge 0 \text{ for all } y \in X \},\$$

where $\langle \cdot, \cdot \rangle$ denotes the usual scalar product. In other words, $X^*(x) = -N_X(x)$, where $N_X(x)$ is the normal cone of X at x (see [12]).

Given $x \in S$, it is well-known that, since γ is a strictly convex norm, saying that no $y \in S$ verifies $\gamma_a(y) < \gamma_a(x)$ for all $a \in A$ is equivalent to saying that no $y \in S$ verifies ($\gamma_a(y) \leq \gamma_a(x) \forall a \in A$, with some inequality strict) [10, 13], thus the concepts of efficiency and weak efficiency coincide:

$$\mathbf{WE}(\gamma, A, S) = \mathbf{E}(\gamma, A, S)$$

In order to characterize $\mathbf{E}(\gamma, A, S)$, some properties of strictly convex norms are needed. These properties are stated in Lemmas 1–4: Lemma 1 is a consequence of a more general result given in [11], and the proof is not repeated here. Lemmas 2-4 are new, and the proofs can be found in the Appendix.

Lemma 1. For any $x \in S$, the following statements are equivalent:

(i) There exists no $y \in S$ such that $\gamma_a(y) < \gamma_a(x)$ for all $a \in A$.

(ii) $S^*(x) \cap \operatorname{conv}(\bigcup_{a \in A} \partial \gamma_a(x)) \neq \emptyset$.

Lemma 2. The following statements are equivalent:

- (i) $0 \in \operatorname{conv}(\bigcup_{a \in A} \partial \gamma(a)),$
- (ii) $0 \in \operatorname{conv}(A)$,
- (iii) $0 \in \bigcup_{a \in \operatorname{conv}(A)} \partial \gamma(a)$.

Recall that, if x = 0, then $\partial \gamma(x) = B^0$, whilst, for $x \neq 0$, $\partial \gamma(x)$ is an exposed face of B^0 , see e.g. [3].

Lemma 3. Let $a, b, c \in bd(B)$, $u, v, w \in bd(B^0)$ be such that

 $u \in \partial \gamma(a), \quad v \in \partial \gamma(b), \quad w \in \partial \gamma(c).$

(i) If $a \neq \pm b$ and $c = \lambda a + \mu b$ for some λ , $\mu > 0$, then there exist $\alpha, \beta > 0$ such that $w = \alpha u + \beta v$.

(ii) If $a \neq -b$ and $w = \alpha u + \beta v$ for some $\alpha, \beta \ge 0$, then there exist $\lambda, \mu \ge 0$ such that $c = \lambda a + \mu b$.

Lemma 4. For any closed convex cone C with vertex at 0, the following statements are equivalent:

(i) $C \cap \operatorname{conv}(\bigcup_{a \in A} \partial \gamma(a)) \neq \emptyset$, (ii) $C \cap (\bigcup_{a \in \operatorname{conv}(A)} \partial \gamma(a)) \neq \emptyset$.

Given a point $x \in \mathbb{R}^2$, denote by $\operatorname{proj}_{\gamma,S}(x)$ the point in S closest to x with respect to γ , i.e.,

$$\operatorname{proj}_{\gamma,S}(x) = \arg \min_{y \in S} \gamma_x(y).$$

Since S is closed and convex and γ is a strictly convex norm, $\text{proj}_{\gamma,S}$ is always well-defined.

For any set $X \subset \mathbb{R}^2$, denote also by $\operatorname{proj}_{\gamma,S}(X)$, the set

$$\operatorname{proj}_{\gamma,S}(X) = \{\operatorname{proj}_{\gamma,S}(x) \colon x \in X\}.$$

With this notation, we are in position to characterize the set $\mathbf{E}(\gamma, A, S)$ of efficient points for problem $\mathbf{P}(\gamma, A, S)$, showing that the characterization given in [1] for the euclidean norm remains valid for general strictly convex norms.

Theorem 1. Let *S* be a nonempty closed convex set in \mathbb{R}^2 , and let γ be a strictly convex norm. Then, for any nonempty compact set $A \subset \mathbb{R}^2$,

$$\mathbf{E}(\gamma, A, S) = \mathbf{WE}(\gamma, A, S) = \operatorname{proj}_{\gamma, S}(\operatorname{conv}(A))$$

Proof. Let $x \in S$; by Lemma 1, $x \in WE(\gamma, A, S)$ (= $E(\gamma, A, S)$) iff

$$S^*(x) \cap \operatorname{conv}\left(\bigcup_{a \in A} \partial \gamma_a(x)\right) \neq \emptyset.$$

As $\operatorname{conv}(\bigcup_{a \in A} \partial \gamma_a(x)) = \operatorname{conv}(\bigcup_{b \in x-A} \partial \gamma(b))$, $S^*(x)$ is a closed convex cone with vertex at 0, and x - A is compact, Lemma 4 applies, and we have

$$x \in \mathbf{WE}(\gamma, A, S) \text{ iff } S^*(x) \cap \left(\bigcup_{b \in \operatorname{conv}(x-A)} \partial \gamma(b)\right) \neq \emptyset.$$

In other words, $x \in WE(\gamma, A, S)$ iff $\exists b \in \operatorname{conv}(x-A) = x - \operatorname{conv}(A)$ such that $S^*(x) \cap \partial \gamma(b) \neq \emptyset$, which occurs iff $\exists a^* \in \operatorname{conv}(A)$ such that $S^*(x) \cap \partial \gamma_{a^*}(x) \neq \emptyset$. By Lemma 1 (with $A = \{a^*\}$), nonvoidness of $S^*(x) \cap \partial \gamma_{a^*}(x)$ is equivalent to x being equal to $\operatorname{proj}_{\gamma,S}(a^*)$. Hence, $x \in WE(\gamma, A, S)$ iff $x \in \operatorname{proj}_{\gamma,S}(\operatorname{conv}(A))$. \Box

Remark 1. As a consequence of Theorem 1 in [7], when A is finite, $WE(\gamma, A, S)$ equals the set of Weber points, i.e., the optimal solutions to problems of the form

$$\min_{x\in S} \sum_{a\in A} \lambda_a \gamma_a(x)$$

when $\lambda = (\lambda_a)_{a \in A}$ varies in the set of nonnegative nonzero vectors.

Hence, Theorem 1 implies that the set of Weber points for constrained problems equals the closestpoint projection (with respect to γ) of the set of Weber points without constraints, a result more precise than those given in [5].

Remark 2. The proof of Theorem 1 (in fact, the technical precedent lemmas) heavily relies on the fact that γ is a norm, thus its ball *B* is symmetric with respect to the origin. Extensions of Theorem 1 to general strictly convex gauges with asymmetric balls, seem to require different tools than those used in this paper. See also

the recent paper [8] for a different approach to the problem.

Acknowledgements

The research of the first author has been partially financed by the Dirección General de Investigación Científica y Técnica, Spain, under grant PB93-0927.

Appendix

Proof of Lemma 2 (part (i) \Leftrightarrow (ii)). Since γ is a norm, it follows that $\partial \gamma(-a) = -\partial \gamma(a)$ for all $a \in \mathbb{R}^2$. Hence,

$$0 \in \operatorname{conv}\left(\bigcup_{a \in A} \partial \gamma(a)\right) \text{ iff } 0 \in \operatorname{conv}\left(\bigcup_{a \in A} \partial \gamma(-a)\right)$$

By Lemma 1 as $(\mathbb{R}^2)^*(x) = \{0\}$, one has

$$0 \in \operatorname{conv}\left(\bigcup_{a \in A} \partial \gamma(-a)\right)$$

iff $(\mathbb{R}^2)^*(0) \cap \operatorname{conv}\left(\bigcup_{a \in A} \partial \gamma_a(0)\right) \neq \emptyset$,

iff there exists no $y \in \mathbb{R}^2$ such that $\gamma_a(y) < \gamma_a(0)$ $\forall a \in A$, which is equivalent to $0 \in \mathbf{WE}(\gamma, A, \mathbb{R}^2)$. Hence,

$$0 \in \operatorname{conv}\left(\bigcup_{a \in A} \partial \gamma(a)\right) \text{ iff } 0 \in \mathbf{WE}(\gamma, A, \mathbb{R}^2).$$

By Corollary 1 of [11],

 $0 \in \mathbf{WE}(\gamma, A, \mathbb{R}^2)$ iff $0 \in \mathbf{WE}(\gamma, A', \mathbb{R}^2)$ for some

finite $A' \subset A$

Since $0 \in \mathbf{WE}(\gamma, A', \mathbb{R}^2) = \operatorname{conv}(A')$ for all finite A'(see [13]), and $\operatorname{conv}(A) = \bigcup \{\operatorname{conv}(A'): A' \subset A, A'$ is finite}, it follows that $0 \in \operatorname{conv}(\bigcup_{a \in A} \partial \gamma(a))$ iff $0 \in \operatorname{conv}(A)$, as asserted. \Box

Proof of Lemma 2 (part (ii) \Leftrightarrow (iii)). $0 \in \operatorname{conv}(A)$ iff $\exists a^* \in \operatorname{conv}(A)$ such that 0 minimizes in \mathbb{R}^2 the function γ_{a^*} . As γ_{a^*} is convex, 0 minimizes γ_{a^*} iff $0 \in \partial \gamma(-a^*) = -\partial \gamma(a^*)$. Hence, $0 \in \operatorname{conv}(A)$ iff $0 \in \bigcup_{a \in \operatorname{conv}(A)} \partial \gamma(a)$, as asserted. \square

Proof of Lemma 3. We only prove part (i); part (ii) can be proven with similar arguments.

As $u \in \partial \gamma(a)$, $v \in \partial \gamma(b)$, $\pm a, \pm b \in bd(B)$, and B is symmetric with respect to 0, one has:

(1) $\langle a, u \rangle = 1$,

- (2) $\langle b, v \rangle = 1$,
- (3) $|\langle x, u \rangle| \leq 1$ and $|\langle x, v \rangle| \leq 1$ for all $x \in B$.

In particular, $|\langle a, v \rangle| \leq 1$ and $|\langle b, u \rangle| \leq 1$. Furthermore, these inequalities are strict; indeed, if $\langle a, v \rangle = 1$ (respect. $\langle a, v \rangle = -1$), the line $\langle v, x \rangle = 1$ would support *B* at *a* and *b* (resp. -a and *b*), implying, because of the convexity of *B*, that the whole segment with extreme points *a* and *b* (resp. -a and *b*) is contained in bd(B), contradicting the assumption that γ is a strictly convex norm. Hence, one has:

 $(4) |\langle a, v \rangle| < 1,$

 $(5) |\langle b, u \rangle| < 1.$

As, by assumption, $c = \lambda a + \mu b \in B$, (1)–(2) imply (by (3), for x = c):

- (6) $|\lambda + \mu \langle b, u \rangle| \leq 1$,
- (7) $|\lambda \langle a, v \rangle + \mu| \leq 1.$

The vectors u and v are linearly independent; indeed, otherwise, as $\gamma^0(u) = \gamma^0(v) = 1$, we would have that $u = \pm v$, contradicting (1)–(4). Hence, $\{u, v\}$ is a basis in \mathbb{R}^2 , thus there exist $\alpha, \beta \in \mathbb{R}$ such that $w = \alpha u + \beta v$.

Observe that $w \in bd(B^0)$; hence, the line $\langle w, x \rangle = 1$ supports *B*, thus

(8) $|\alpha \langle b, u \rangle + \beta| \leq 1$,

(9) $|\alpha + \beta \langle a, v \rangle| \leq 1.$

Furthermore, as $w \in \partial \gamma(c)$ and $\langle w, c \rangle = 1$, we also have:

(10) $\alpha \{ \lambda + \mu \langle b, u \rangle \} + \beta \{ \lambda \langle a, v \rangle + \mu \} = 1.$ Define the segment Γ in \mathbb{R}^2 ,

$$\Gamma = \{ (\overline{\alpha}, \overline{\beta}) \in \mathbb{R}^2 : (\overline{\alpha}, \overline{\beta}) \text{ verifies } (8), (9) \text{ and } (10) \}$$

which, of course, contains the point (α, β) .

In order to show that α and β are strictly positive, we first show that Γ is included in the nonnegative quadrant $\Gamma' = \{(\overline{\alpha}, \overline{\beta}) \in \mathbb{R}^2: \overline{\alpha} \ge 0, \overline{\beta} \ge 0\}$, by showing that the vertices of Γ are in Γ' . The vertices of Γ are among the points obtained by replacing one of the inequalities in (8) or (9) by an equality.

Let us study separately the different cases: *Case* 1: $\overline{\alpha}\langle b, u \rangle + \overline{\beta} = 1$ It leads to the values:

$$\overline{\alpha} = (1 - \mu - \lambda \langle a, v \rangle) / (\lambda (1 - \langle a, v \rangle \langle b, u \rangle)),$$
$$\overline{\beta} = (\lambda - (1 - \mu) \langle b, u \rangle) / (\lambda (1 - \langle a, v \rangle \langle b, u \rangle)).$$

By (4), (5) and (7), it immediately follows that $\overline{\alpha} \ge 0$. On the other hand, (9) implies that $\lambda \ge |1-\mu|$; indeed, by (9),

$$\begin{split} 1 \ge |\overline{\alpha} + \beta \langle a, v \rangle| \\ &= |((1 - \mu - \lambda \langle a, v \rangle) \\ &+ \langle a, v \rangle (\lambda - (1 - \mu) \langle b, u \rangle)) / (\lambda (1 - \langle a, v \rangle \langle b, u \rangle))| \\ &= |(1 - \mu)(1 - \langle a, v \rangle \langle b, u \rangle) / (\lambda (1 - \langle a, v \rangle \langle b, u \rangle))| \\ &= |(1 - \mu)/\lambda|, \text{ thus } |1 - \mu| \le |\lambda| = \lambda, \end{split}$$

as asserted.

Hence, by (5),

$$\lambda - (1 - \mu) \langle b, u \rangle \ge \lambda - |1 - \mu| \ge 0.$$

As $\lambda > 0$, (4) and (5) imply that $\lambda(1 - \langle a, v \rangle \langle b, u \rangle) > 0$; hence, $\overline{\beta} \ge 0$. *Case* 2: $\overline{\alpha} \langle b, u \rangle + \overline{\beta} = -1$ It leads to the values

$$\overline{\alpha} = (1 + \mu + \lambda \langle a, v \rangle) / \lambda (1 - \langle a, v \rangle \langle b, u \rangle),$$

$$\overline{\beta} = -(\lambda + (1 + \mu) \langle b, u \rangle) / \lambda (1 - \langle a, v \rangle \langle b, u \rangle)$$

First, (5) and (6) imply that

$$1 \ge \hat{\lambda} + \mu \langle b, u \rangle \ge \hat{\lambda} - \mu |\langle b, u \rangle| > \lambda - \mu,$$

thus $\lambda < 1 + \mu$. On the other hand, $(\overline{\alpha}, \overline{\beta})$ must verify (9), which is readily seen to be equivalent to $\lambda \ge |1 + \mu| = 1 + \mu$, what is a contradiction.

Hence, the solution of (10) and $\overline{\alpha}(b, u) + \overline{\beta} = -1$ does not give a feasible point.

Due to the symmetry in $\overline{\alpha}, \overline{\beta}, \lambda, \mu$ in Γ and constraints (1)–(7), similar results are obtained for the cases

$$\overline{\alpha} + \beta \langle a, v \rangle = \pm 1.$$

Hence, all the extreme points of Γ are contained in Γ' , thus $\Gamma \subset \Gamma'$; as $(\alpha, \beta) \in \Gamma$, it follows that $\alpha, \beta \ge 0$.

Furthermore, α and β are both strictly positive; otherwise, $w = \alpha u$ for some $\alpha > 0$ or $w = \beta v$ for some $\beta > 0$; suppose that $w = \alpha u$ for some $\alpha > 0$; as $1 = \gamma^0(w) = \gamma^0(u)$, we would have that w = u. Hence, the line $\langle u, x \rangle = 1$ would support *B* both at *a* and *c*, thus the nontrivial segment with extreme points *a* and *c* would be contained in bd(B), which is a contradiction (recall that γ is a strictly convex norm).

132

With this we have shown part (i). \Box

Proof of Lemma 4 (part (i) \Rightarrow (ii)). As $0 \in C$, the result follows from Lemma 2 if $0 \in \text{conv}$ $(\bigcup_{a \in A} \partial \gamma(a))$. Hence, we further assume that $0 \notin \text{conv}(\bigcup_{a \in A} \partial \gamma(a))$ (or, equivalently, $0 \notin \text{conv}(A)$). Consider the planar convex cone A,

 $\Lambda = \Big\{ u \in \mathbb{R}^2 : \ u = \lambda \xi \text{ for some} \\ \xi \in \operatorname{conv}\Big(\bigcup_{a \in A} \partial \gamma(a)\Big), \lambda \ge 0 \Big\}.$

A is a planar closed convex cone, and $\Lambda \neq \mathbb{R}^2$; indeed, it is easily seen that Λ is a convex cone; closedness follows from the fact that $\operatorname{conv}(\bigcup_{a \in \Lambda} \partial \gamma(a))$ is compact (see, e.g. [11]); as, by assumption, $0 \notin \operatorname{conv}(\bigcup_{a \in \Lambda} \partial \gamma(a))$ and $\operatorname{conv}(\bigcup_{a \in \Lambda} \partial \gamma(a))$ is compact and convex, it follows that $\Lambda \neq \mathbb{R}^2$. Furthermore, it is straightforward to check that the extreme rays of Λ are necessarily elements of $\bigcup_{a \in \Lambda} \partial \gamma(a)$, i.e., there exist $a_1, a_2 \in \Lambda$, $\xi_1 \in \partial \gamma(a_1)$, $\xi_2 \in \partial \gamma(a_2)$ such that

$$\Lambda = \{ u \in \mathbb{R}^2 \colon u = t_1 \xi_1 + t_2 \xi_2$$

for some $t_1, t_2 \ge 0$.

Furthermore, $(1/\gamma(a_1))a_1 \neq -(1/\gamma(a_2))a_2$ because, otherwise, $0 \in \text{conv}(A)$.

Let $d \in C \cap \operatorname{conv}(\bigcup_{a \in A} \partial \gamma(a))$. As $d \in A$, and $d \neq 0$, it follows that

 $d = \lambda_1 \xi_1 + \lambda_2 \xi_2$ for some $\lambda_1, \lambda_2 \ge 0, \lambda_1 + \lambda_2 > 0$

Let $d' = d/\gamma^0(d)$. One has:

d' = αξ₁ + βξ₂ for some α, β ≥ 0, α + β > 0.
There exists c ∈ bd(B) such that d' ∈ ∂γ(c) (because d' ∈ bd(B⁰)).

As $\xi_i \in \partial \gamma(a_i/\gamma(a_i))$, (i = 1, 2), $a_1/\gamma(a_1) \neq -a_2/\gamma(a_2)$, and $a_i/\gamma(a_i) \in bd(B)$, (i = 1, 2), by Lemma 3 (part ii),

 $c = \lambda a_1 + \mu a_2$ for some $\lambda, \mu \ge 0, \lambda + \mu > 0$

Let c' be the vector $c' = c/(\lambda + \mu) \in \operatorname{conv}(A)$.

It follows that $d' \in \partial \gamma(c') \subset \bigcup_{a \in \operatorname{conv}(A)} \partial \gamma(a)$, and $d' \in C$.

Hence,
$$\bigcup_{a \in \text{conv}(A)} \partial \gamma(a) \cap C \neq \emptyset$$
, as asserted. \Box

Proof of Lemma 4 (part (ii) \Rightarrow (i)). The result follows from Lemma 2 if $0 \in \bigcup_{a \in \text{conv}(A)} \partial \gamma(a)$. Hence,

we further assume that $0 \notin \bigcup_{a \in \operatorname{conv}(A)} \partial \gamma(a)$, i.e., $0 \notin \operatorname{conv}(A)$. Consider the planar convex cone Γ ,

 $\Gamma = \{ u \in \mathbb{R}^2 : u = \lambda a \text{ for some } \lambda > 0, a \in \operatorname{conv}(A) \}.$

Then, there exist $a_1, a_2 \in A$ such that

$$\Gamma = \{u: u = t_1 a_1 + t_2 a_2 \text{ for some } t_1, t_2 \ge 0, \\ t_1 + t_2 > 0\}.$$

Furthermore, $(1/\gamma(a_1))a_1 \neq -(1/\gamma(a_2))a_2$ (else, $0 \in \operatorname{conv}(A)$).

Let $d \neq 0$, $d \in C \cap \bigcup_{a \in \operatorname{conv}(A)} \partial \gamma(a)$. There exists $a^* \in \operatorname{conv}(A)$ such that $d \in \partial \gamma(a^*)$. Furthermore, as $0 \notin \operatorname{conv}(A)$ and $a^* \neq 0$, it follows that $d \in bd(B^0)$.

As $\operatorname{conv}(A) \subset \Gamma$, there exist $\lambda, \mu \ge 0$, $\lambda + \mu > 0$ such that

$$a^* = \lambda a_1 + \mu a_2.$$

If $(1/\gamma(a^*))a^* = (1/\gamma(a_i))a_i$ for some $i = 1, 2, (1/\gamma(a^*))a^* = (1/\gamma(a_1))a_1$, say, the result holds because $d \in C$ and

$$d \in \partial \gamma(a^*) = \partial \gamma(a^*/\gamma(a^*)) = \partial \gamma(a_1/\gamma(a_1))$$
$$= \partial \gamma(a_1) \subset \operatorname{conv}\left(\bigcup_{a \in A} \partial \gamma(a)\right)$$

If it is not the case, we have that $\lambda > 0$, $\mu > 0$, and

$$(1/\gamma(a_1))a_1 \neq (1/\gamma(a_2))a_2.$$

Let $\xi_1 \in \partial \gamma(a_1)$, $\xi_2 \in \partial \gamma(a_2)$. By Lemma 3, part (i), there exist $\alpha, \beta > 0$ such that $d' = \alpha \xi_1 + \beta \xi_2$. Hence, the vector $d'' = d'/(\alpha + \beta)$ verifies:

- $d'' \in C$,
- $d'' \in \operatorname{conv}(\partial \gamma(a_1) \cup \partial \gamma(a_2)) \subset \operatorname{conv}(\bigcup_{a \in A} \partial \gamma(a)),$ thus (i) holds, as asserted. \Box

References

- E. Carrizosa, E. Conde, F.R. Fernández and J. Puerto, "Efficiency in euclidean constrained location problems", *Oper. Res. Lett.* 14 (1993) 291-295.
- [2] L.G. Chalmet, R.L. Francis and A. Kolen, "Finding efficient solutions for rectilinear distance location problems efficiently", *Eur. J. Oper. Res.* 6 (1981) 117-124.
- [3] R. Durier and C. Michelot, "Geometrical properties of the Fermat-Weber problem", *Eur. J. Oper. Res.* 20 (1985) 332– 343.
- [4] R. Durier and C. Michelot, "Sets of efficient points in a normed space", J. Math. Anal. Appl. 117 (1986) 506-528.

- [5] P. Hansen, D. Peeters and J.F. Thisse, "An algorithm for a constrained Weber problem", *Management Sci.* 28 (1982) 1285-1295.
- [6] P. Hansen, J. Perreur and J.F. Thisse, "Location Theory, dominance and convexity: Some further results", Oper. Res. 28 (1980) 1241-1250.
- [7] T.J. Lowe, J.F. Thisse, J.E. Ward and R.E. Wendell, "On efficient solutions to multiple objective mathematical programs", *Management Sci.* 30 (1984) 1346–1349.
- [8] M. Ndiaye, "Efficiency in constrained continuous location", Working paper no. 8/1995 of the Laboratoire d'Analyse Appliquée et Optimisation, Université de Bourgogne.
- [9] F. Plastria, Continuous location problems and cutting plane algorithms, Ph.D. Dissertation, Vrije Universiteit Brussel, 1983.

- [10] F. Plastria, "Points efficaces en localisation continue", Cahiers de Centre d'Etude en Recherche Operationelle de l'ULB (CCERO) 25 (1983), 329–332.
- [11] F. Plastria and E. Carrizosa, "A geometrical characterization of weakly efficient points", to appear in: J. Optim. Theory Appl. (1996).
- [12] R.T. Rockafellar, *Convex Analysis*, Princeton University Press, Princeton, NJ, 1970.
- [13] J.F. Thisse, J.E. Ward and R.E. Wendell, "Some properties of Location problems with block and round norms", *Oper. Res.* 32 (1984) 1309-1327.
- [14] R.E. Wendell and A.P. Hurter, "Location Theory, dominance and convexity", Oper. Res. 21 (1973) 314–320.
- [15] R.E. Wendell, A.P. Hurter and T.J. Lowe, "Efficient points in location problems", *AIIE Trans.* 9 (1977) 238-246.