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Abstract 

In this paper we characterize the set of efficient points in the planar point-objective location problem under a convex 
locational constraint, when distances are measured by a strictly convex norm in ~2 and the set of demand points is a compact 
set. 

It is shown that, under these assumptions, the efficient set coincides with the closest-point projection of the convex hull 
of the demand points onto the feasible set. 
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1. Introduction 

Let A and S be nonempty sets in ~2, and let 7 be a 
norm in ~2. Consider the vector-optimization problem 
P ( > A , S ) ,  

P (>A,S) :  min(Ta(X): a c A ) ,  
xEs 

where, for each a E A, ),a is the function 

7a :X E ~2 ----+ ),a(X) = 7(X -- a)  

measuring the distance up to a. 
A point x c S is said to be efficient for prob- 

lem P(7,A,S)  iff there exists no y E S  such that 
7a(Y) <~ )'a(x) for all a E A ,  with at least one strict 
inequality. A point x E S is weakly  efficient iff there 
exists no y E S such that 7a(Y) < 7a(x) for all a EA. 

* Corresponding author. 

Throughout this note, the set o f  efficient and weakly 
efficient points for P(7,A, S) will be denoted, respec- 
tively, E(7,A, S) and WE(7,A, S). 

A number of  papers (see e.g. [2,4,6,10,14,15]) have 
been devoted to the search o f  efficient points of  the 
problem above, known in the literature as the point-  

objective location problem (see [13]), but mostly in 
the unconstrained case, i.e., under the assumption that 
the facility can be placed at any point in the plane, 
i.e., S = ~2. 

Although this assumption has been widely ques- 
tioned (see, e.g., [5]), only some partial results have 
been obtained in the presence o f  constraints. For in- 
stance, in [5, 9] necessary conditions for a point to be 
efficient are derived, e.g., the points in E(7,A, S) are 
visible from the set E(7,A, 1~ 2) o f  efficient points for 
the unconstrained problem [9]. However, a full char- 
acterization o f  the set of  (weakly) efficient points has 
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only been obtained in [1] for the classical case when 
7 is the euclidean norm and A is finite, showing that 
E(7, A, S) and WE(7,A, S) coincide with the orthogo- 
nal projection onto S of  E(7,A, ~2), known to equal 
the convex hull o f  A [13]. 

In this paper we characterize E(7,A,S)  and 
WE(7,A, S) when A is compact, S is a closed convex 
set and 7 is a strictly convex norm, (i.e., 7 is a norm 
such that the boundary of  its unit ball does not con- 
tain nondegenerate line segments), showing that both 
E(7,A,S) and WE(7 ,A,S)  equal the closest-point 
projection (with respect to 7) of  the convex hull of  A 
(i.e., E(7,A, ~2) = WE(7,A ' ~2) [13]). 

Since the euclidean norm is strictly convex, the 
characterization given in [1] is extended here in two 
ways: A is allowed to be infinite, and 7 is an arbitrary 
strictly convex norm. 

The proofs make use of  rather well-known results 
of  Convex Analysis, which may be found, e.g., in [12]. 

of  a more general result given in [11], and the proof  
is not repeated here. Lemmas 2 - 4  are new, and the 
proofs can be found in the Appendix. 

Lemma 1. For any x E S, the following statements 
are equivalent." 

(i) There exists no y E S such that 7o(Y) < 7a(x) 
j o t  all a E A. 

(ii) S*(x)  N conv(Uae A t37a(X)) ¢ O. 

Lemma 2. The Jbllowing statements are equivalent." 
(i) 0 ~ conv(U~A O7(a)), 

(ii) 0 E conv(A), 

(iii) 0 E UaEco,v~A) t37(a)- 

Recall that, if x = 0, then O7(x) = B °, whilst, for 
x ~ 0, 07(x) is an exposed face o f B  °, see e.g. [3]. 

Lelnma3.  Let  a,b, c E b d ( B ) ,  u,v, w E b d ( B  °) be 
such that 

2. The results u E t?7(a), v ~ ~37(b), w E c37(c ). 

In what follows, S is a nonempty closed and convex 
set in ~2, A is a nonempty compact subset of  ~2, and 
7 is a strictly convex norm, whose unit ball is denoted 
by B; the dual norm of 7 is denoted by 7 °, and its unit 
ball by B °. 

Given a set X c ~2, let conv(X) denote its convex 
hull, and bd(X  ) its boundary; for any x c X, let X* (x) 
be the convex cone 

X * ( x )  = {u E Re: ( u , y - x )  ~ 0 for all y E X } ,  

where (., .) denotes the usual scalar product. In other 
words, X * ( x )  = - N x ( x ) ,  where Nx(x )  is the normal 
cone of  X at x (see [12]). 

Given x E S, it is well-known that, since 7 is a 
strictly convex norm, saying that no y E S verifies 
7~(Y) < 7~(x) for all a c A is equivalent to saying that 
no y E S verifies (7,(Y) ~< 7a(x) Va E A, with some in- 
equality strict) [ 10, 13], thus the concepts of  efficiency 
and weak efficiency coincide: 

WE(~,, A, S) = E(';, A, S). 

In order to characterize E(7,A, S), some properties 
of  strictly convex norms are needed. These properties 
are stated in Lemmas 1-4: Lemma 1 is a consequence 

(i) Ij 'a ~ dzb and c = )~a + Izb for  some )~, p > 0, 
then there exist  ~, fl > 0 such that w = ~tu + fly. 

(ii) I r a  ¢ - b  and w = ~u + fly for  some ~, fl >1 O, 
then there exist )~, # >~ 0 such that e = )~a + pb. 

Lemma 4. For any closed convex cone C with vertex 
at 0, the followin 9 statements are equivalent: 

(i) C N conv(UaE A 07(a)) ¢ O, 

(ii) C N (UaEconv(A)~T(a)) • ~. 

Given a point x E [~2, denote by proj.;,s(x) the point 
in S closest to x with respect to 7, i.e., 

proj..s(X ) = arg rain 7x(Y)- 
yES 

Since S is closed and convex and 7 is a strictly convex 
norm, proj,;,s is always well-defined. 

For any set X C ~2, denote also by proj~, s (X) ,  the 
set 

proj;, s (X ) = {projT, s(X): x E X}. 

With this notation, we are in position to character- 
ize the set E(7,A,S)  of  efficient points for problem 
P(7,A,S),  showing that the characterization given in 
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[1] for the euclidean norm remains valid for general 
strictly convex norms. 

the recent paper [8] for a different approach to the 
problem. 

Theorem 1. Let S be a nonempty closed convex set 
in ~2, and let ~, be a strictly convex norm. Then, for 
any nonempty compact set A C ~2, 

E(7, A, S) = WE(7, A, S) = projz,,s(conv(A )) 

Proof Let x E S ;  by Lemma 1, x E W E ( y , A , S )  
(=E(7,A, S)) iff 

As conv(Ua6 A aTa(X ) ) = c o n v ( U b E x _  A aT(b ) ) ,  S *  ( x  ) 
is a closed convex cone with vertex at 0, and x - A is 
compact, Lemma 4 applies, and we have 

u 
bEconv(x--A) 

In other words, x E WE(7,A,S)iff3b E conv(x-A)= 
x - conv(A) such that S*(x) N 87(b) ~ 0, which occurs 
iff 3a* E conv(A) such that S*(x) N 87~,(x) ~ ~. By 
Lemma 1 (with A -- {a*}), nonvoidness of S*(x) N 
aTa* (x) is equivalent to x being equal to proj~.,s(a*). 
Hence, x E WE(7,A,S) iffx Cproj~.,s(COnv(A)). [] 

Remark 1. As a consequence of Theorem 1 in [7], 
when A is finite, WE(7,A,S) equals the set of Weber 
points, i.e., the optimal solutions to problems of the 
form 

rain Z 2a7a(X) 
xES 

aEA 

when 2 = (2~)~eA varies in the set of nonnegative 
nonzero vectors. 

Hence, Theorem 1 implies that the set of Weber 
points for constrained problems equals the closest- 
point projection (with respect to 7) of the set of Weber 
points without constraints, a result more precise than 
those given in [5]. 

Remark 2. The proof of Theorem 1 (in fact, the tech- 
nical precedent lemmas) heavily relies on the fact that 
7 is a norm, thus its ball B is symmetric with respect to 
the origin. Extensions of Theorem 1 to general strictly 
convex gauges with asymmetric balls, seem to require 
different tools than those used in this paper. See also 
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Appendix 

Proof  of Lemma 2 (part (i) ~ (ii)). Since 7 is a norm, 
it follows that ay( -a ) - -  -aT(a ) for all a E ~2. Hence, 

0 C cony( U 87(a))iff0 E conv( U 87(-a)] 
\ aEA / \ aEA / 

By Lemma 1 as (g~z)*(x) = {0},  one has 

0 6  conv (a?A0y(--a)) 

iff (~2)*(0) O conv( U 87a(0)] ~ 0, 
\ aEA / 

iff there exists no y E ~2 such that 7o(Y)< 7a(0) 
VaEA, which is equivalent to 0EWE(7,A,~2). 
Hence, 

0 6conv(aUA~7(a)) iff 0 EWE(7,A,~2). 

By Corollary 1 of[11], 

0 E WE(7,A, ~z) iff 0 E WE(7,A', R e) for some 

finite A ~ C A 

Since 0 E WE(7,A ~, R 2) = conv(A ~) for all finite A ~ 
(see [13]), and conv(A) = U{conv(A'): A' CA, A' 
is finite}, it follows that 0Econv(UaE A 87(a) ) iff 
0 E conv(A), as asserted. [] 

Proof  of  Lemma 2 (part (ii) ¢~, (iii)). 0 E conv(A) 
iff 3a* E conv(A) such that 0 minimizes in •2 the 
function 70*. As 7a* is convex, 0 minimizes 7a* iff 
0 E 87(--a*)----- --87(a*). Hence, 0 E conv(A) iff 0 E 
UaEconv(A)aT(a), as asserted. [] 

Proof o f  Lemma 3. We only prove part (i); part (ii) 
can be proven with similar arguments. 
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As u E @(a),  v E @(b), Jza, +b E bd(B) ,  and B is 
symmetric with respect to 0, one has: 

(1) ( a , u ) =  1, 
(2) {b, v ) =  1, 
(3) I(x,,>l ~< 1 and I(x,*'>l ~ 1 for a l l x E B .  
In particular, I(a, v) l~< 1 and l(b , u)l~< 1. Further- 

more, these inequalities are strict; indeed, if {a, v) = 1 
(respect. (a, v) = - 1 ), the line (v,x) = 1 would support 
B at a and b (resp. - a  and b), implying, because of  
the convexity of  B, that the whole segment with ex- 
treme points a and b (resp. - a  and b) is contained in 
bd(B) ,  contradicting the assumption that 7 is a strictly 
convex norm. Hence, one has: 

(4) [(a,v)l < 1, 
(5) I(b,u)[ < 1. 
As, by assumption, c = ).a +/2b ~ B, ( 1 ) (2) imply 

(by (3), f o rx  = e): 

(6) I;. + /2 (b , , ) l  ~< i, 
(7) I)~(a, v) +/21 ~< 1. 
The vectors u and v are linearly independent; in- 

deed, otherwise, as 7 ° ( u ) =  7°(v)-= 1, we would have 
that u = :kv, contradicting (1 ) - (4 ) .  Hence, {u ,v}  is 
a basis in N2, thus there exist z~, fi E N such that 

w = z~u + fly. 
Observe that w E bd(B°);  hence, the line (w,x)  = 1 

supports B, thus 
(8) I~(b,u) + fll ~< 1. 
(9) I~ +/3(a ,v) l  ~ 1. 
Furthermore, as w E 77(c) and (w, c) = 1, we also 

have: 
(10) ~{;. + / 2 ( b , . )  } + N ; . ( a ,  ~') +/2} = I. 
Define the segment F in R 2, 

F = {(~,fl) ~ N2: (~,]~) verifies (8) , (9)  and (10)} 

which, of  course, contains the point (~,/3). 
In order to show that ~ and 13 are strictly positive, 

we first show that F is included in the nonnegative 
quadrant F '  = {(~,fl) E N2: ~ ~> 0,fl >~ 0}, by show- 
ing that the vertices of  F are in F'. The vertices of  F 
are among the points obtained by replacing one of  the 
inequalities in (8) or (9) by an equality. 

Let us study separately the different cases: 
Case 1: 7(b,u) + f i  = 1 
It leads to the values: 

~ = ( l  - / 2  - 2(a,v} )/(2(1 - (a ,v ) (b ,u)  )), 

f i =  (). - (1 - /2) (b ,u) ) / ( ) . (1  - (a ,v ) (b ,u ) ) ) .  

By (4), (5) and (7), it immediately follows that ~ >/0. 
On the other hand, (9) implies that 2 ~> I 1 - #1; indeed, 
by (9), 

= I((l - / 2  - ;~(a, t') ) 

+ (a, v)( 2 - (1 - /2) (b ,u) ) ) / (2( l  - (a, v) (b,u) ) )[ 

= I(l - / 2 ) ( 1  - (a, v} (b, u) )/(,~(1 - (a,v}(b,u)))[  

= f(1 -/2)/)-I ,  thus I1 -/21 ~< 12i = 2 ,  

as asserted. 
Hence, by (5), 

; ~ - ( 1  - / 2 ) ( b , ~ )  > / i - I 1  - /2 I  >~0. 

As ). > 0, (4) and (5) imply that ).(l - (a,v) 
(b, u)) > 0; hence, fl ~> 0. 

Case 2: ~(b, u} + fl = - 1 
It leads to the values 

= (1 + It + 2{a,v)) /2(1  - (a ,v ) (b ,u ) ) ,  

= - ( ) .  + (1 +/2)(b,u))/)~(l  - (a ,v}(b ,u)) .  

First, (5) and (6) imply that 

1 >~ ). + /2(b ,u )  >1 ). - / 2 l (b ,u ) l  > 2 - / 2 ,  

thus ~. < 1 +/2. On the other hand, (~, r )  must verify 
(9), which is readily seen to be equivalent to 2 ~> [1 + 
/21 = I +/2,  what is a contradiction. 

Hence, the solution of  (10) and 7(b ,u)  + fl = - 1  
does not give a feasible point. 

Due to the symmetry in ~, r ,  2,/2 in F and con- 
straints ( 1 ) - (7 ) ,  similar results are obtained for the 
cases 

+ ]~(a, v) = + 1. 

Hence, all the extreme points o f F  are contained in F ' ,  
thus F C F'; as (~, fl) E F, it follows that ~, fl >~ 0. 

Furthermore, x and [~ are both strictly positive; 
otherwise, w = ~u for some ~ > 0 or w = /3v for 
some fl > 0; suppose that w = c~u for some ~ > 0; as 
l = 7°(w) = 7°(u), we would have that w = u. Hence, 
the line tu, x) = 1 would support B both at a and 
c, thus the nontrivial segment with extreme points 
a and c would be contained in bd(B) ,  which is a 
contradiction (recall that 7 is a strictly convex norm). 
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With this we have shown part (i). [] 

Proof of Lemma 4 (part (i) ~ (ii)). As 0 E C, 
the result follows from Lemma 2 if  0E  cony 
(U~A0?(a ) ) .  Hence, we further assume that 
0 ¢ conv(U~EA 07(a)) (or, equivalently, 0 ¢ conv(A)). 

Consider the planar convex cone A, 

= {u E II~2: u = 2~ for some A 

E conv(  U ct7(a)],2 ~> 0}. 
\ a~A ,t 

A is a planar closed convex cone, and A ¢ [~2; indeed, 
it is easily seen that A is a convex cone; closed- 
hess follows from the fact that conv(Ua~ A O?(a)) 
is compact (see, e.g. [11]); as, by assumption, 
0 ¢ conv(Ua~A 0?(a)) and conv(UaE A c3?(a)) is com- 
pact and convex, it follows that A ~ R 2. Furthermore, 
it is straightforward to check that the extreme rays of  
A are necessarily elements of  UaCA c3?(a), i.e., there 
exist aj,a2 EA, ~1 ~ O?(al), ~2 E c37(a2) such that 

A =  {u~[~2:  u = h ~ l  +/2~2  

for some t~, tz >~ 0}. 

Furthermore, (1/y(al))al  ¢ -(1/y(a2))a2 because, 
otherwise, 0 E conv(A). 

Let d E C~conv(UaEA 87(a)). As d E A, and d e 0 ,  
it follows that 

d = 21~.l + 22~2 for some )q,),2 ~> 0,),1 + 22 > 0 

Let d t = d/?°(d). One has: 
• d '  = ~ l  + / ~ 2  for some ~,/~ t> 0, ~ +/~ > 0. 
• There exists c E bd(B) such that d '  E 87(c) (because 
d' E bd(B°)). 

AS ~i E O?(ai/?(ai)),  (i  = 1,2), al / ] : (a l )  ~ - -a2/  

y(az), and ai/7(ai) E bd(B), (i = 1,2), by Lemma 3 
(part ii), 

c = 2 a l + # a 2  for some 2, /t ~> 0, A + / . t > 0  

Let c ~ be the vector c' = c/(2 + #) E conv(A). 
It follows that d '  E ~7(c ' )C U~co ,  v(A)c97(a), and 

dl EC. 
Hence, U~E~onv(A) OT(a) N C ¢ 0, as asserted. [] 

Proof of Lemma 4 (part (ii) =~ (i)). The result fol- 
lows from Lemma 2 if 0 E UaEconv(A) c~7(a). Hence, 

we further assume that 0 ¢ UaEconv(A) aT(a), i.e., 0 
conv(A). Consider the planar convex cone F, 

F = {u E ~z: u = 2a for some 2 > 0, a E conv(A)}. 

Then, there exist a~,a2 E A such that 

F ---- {u: u = hal + t2a2 for some tl,t2 >~ O, 

t~ + t2 > 0}. 

Furthermore, (1/7(al))al :/:-(1/7(az))a2 (else, 0 E 
conv(A)). 

Let d ~Z 0, d E C M UaEconvIA) aT(a). There exists 
a* E conv(A) such that d E ~y(a*). Furthermore, as 
0 ¢ conv(A) and a* ¢ 0, it follows that d E bd(B°). 

As conv(A)C Y, there exist 2,/~/> 0, Z +/~  > 0 
such that 

a* : 2al + kta2. 

If  (1/7(a*))a* = (1/?(ai))ai for some i =  1,2, 
(1/7(a*))a* : (1 /?(a l ) )a l ,  say, the result holds be- 
cause d E C and 

d E d7(a*) = Oy(a*/7(a*)) = c3?(aj/y(al )) 

:87(a, ) C conv(  U 87(a)) 
\ a~A / 

If  it is not the case, we have that 2 > 0,/~ > 0, and 

(1/7(al))al  ¢ (1/7(a2))a2. 

Let ~1 E 07(al), ~2 E c3y(a2). By Lemma 3, part (i), 
there exist ct, fl > 0 such that d ~ = 7~1 +/3~2. Hence, 
the vector d"  = d~/(~ + fl) verifies: 
• d ' E C ,  
• d"  E conv(dT(al ) U c37(a2)) C conv(Ua~A ~?(a)), 

thus (i) holds, as asserted. [] 
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