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ABSTRACT

Proving properties of fault tolerant distributed programs is a com-
plex task as such proofs must take into account failures at all pos-
sible points in the execution of individual processes. The difficulty
in accomplishing this is compounded by the need also to cater for
simultaneous failures of two or more processes. In this paper, we
consider programs written in a version of Hoare’s CSP and define a
set of axioms and inference rules by which proofs can be con-
structed in three steps : proving the properties of each process
when its communicants are prone to failure, establishing the effects
of failure of each process, and combining these proofs to determine
the fault tolerant properties of the whole program.



1. Introduction

In some earlier work [3,4], we had studied the problem of building fault-tolerant
distributed programs and shown that it is possible to prove the properties of such
programs when they are subject to a variety of failures. Programs were written
in an slightly extended version of CSP [2] and it was assumed that faults in a
process or in a communication channel could be detected, and that recovery
could be initiated by ‘re-making’ a faulty process, causing it to ‘repair’ its chan-
nels and resume execution from its initial state. In general, recovery required the
cooperative action of several processes and could then be performed without the
use of stable storage [5]. The proof techniques were based on the proof system
devised by Apt, Francez and de Roever [1], using local invariants for individual

processes, a global invariant for the whole program and a proof of cooperation.

Apart from their use in proving properties of fault-tolerant programs, local and
global invariants can be analyzed to provide guidelines for constructing fault-
tolerant versions of correct distributed programs [4]. Such guidelines are quite
useful for simple programs, but we have found that they do not always provide
enough information to help in constructing larger and more complex fault-
tolerant programs. Informally, we can say that local and global invariants allow
characterization of the ‘low level’ behaviour of a program and that this is some-
times inadequate when ‘higher level’ properties of a fault-tolerant program must
be established; for example, a global invariant provides links between communi-
catioh commands in pairs of processes but it is difficult to both represent the
effects of failure in one process on other processes and account for the simultane-

ous failure of more than one process.
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Consider a program S,; in which process R, sends process B, an ascending
sequence of integers and R, sums successive pairs of integers and sends the

results to process R3 to be printed.

Sy [ Ry =1 *x[{LI(R,;)} Ry!i— i:==i+1]

Ry Rytx; +[{LI(Ry)} Ry%y — Ry ! (x+y); Ry?x]

Ry :: x[{LI(R3)} Ry?t — “‘print t”]

Assume process R, fails (and recovers) and that this failure is detected by R,. If
the failure is detected when ¢ > 2 and even, the local invariants LI(R,), LI(R,)
and LI(R3) and a suitable global invariant will permit the inference that the sum
of the two integers (¢-3) and (#-2) has been sent by R, to R5. But if the value of
i is odd, no assertion can be made about whether R, failed after or before it
communicated the new sum to R3 In a fault tolerant version of the program,
R, must then assume the worst and decrement ¢ by 2 before re-sending values to
R,. And this can lead to the same value being printed twice (or more often, if
there are repeated failures in R,). Unfortunately, even with as few as three
processes, the reasoning that leads to this conclusion must be based on properties
of the whole program and the assertion describing this condition is no longer sim-
ple. It can easily be seen that the situation can get rapidly out of hand as the

number of processes increases.

If R is modified to print only those values received from R, that are in strictly

ascending order, such repetitions can be avoided. But if R, and Rj fail
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simultaneously, i.e. within the same interval of time, it can no longer be assured
that values are printed in this order and we must accept a weaker global invari-
ant that admits the possibility of repetitions. In general, in all such cases we
must either rely on the intuition of the programmer in specifying these effects
and their combinations correctly, or look for a methodology by which the effects
can be systematically derived. Even a limited acquaintance with the construction
of fault tolerant programs will show that intuition, by itself, is not sufficient : we
have found building such programs and proving their properties to be an

extremely complex task unless it is supported by a sound methodology.

We have therefore been investigating other techniques for constructing fault-
tolerant programs. A more promising approach than dealing with the program as

a whole would be to decompose the main problem into the sub-problems of :

a. Specifying the behaviour of each process when its communicants fail and are

re-made,
b. Specifying the effects of failure and re-making for each process, and

c. Combining these specifications to prove the properties of the program as a

whole.

Steps (a) and (b) can then be performed locally (i.e., in isolation) for each process
and step (c) requires the use of proof rules for communication between processes.
It should be noted that the properties of the same program with and without
failures can be rather different and this should emerge from the application of

step (c), rather than from informal reasoning by the programmer.
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The CSP proof system of Soundararajan [8] follows similar steps in reasoning
about programs : properties of individual processes are proved in isolation and
then combined by a rule of parallel composition where ‘compatibility’ between
the assumptions made in each process about communications from other
processes is established. We shall extend the axioms and inference rules of this
proof system for our purposes, adding clauses to account for detected failures,

and then prove the fault-tolerant properties of a simple program.

2. A System Model

Assume every process in a CSP program executes on a separate processing node,
and that the nodes are interconnected by a communication medium. A node con-
sists of processors and memory, and the processors independently execute the
instructions for a process. Failure of a node occurs when there is a discrepancy in
the actions of the processors : when there are two processors, this can be
detected by ‘matching’ circuits, and if there are three processors the error is
detected by simple majority logic. For our purposes, the processors need not exe-
cute in step as it is only necessary that errors be detected at synchronization
points, i.e. before communication takes place with another node. When an error
is detected in a node, execution of the resident process must cease and the node
will fail to respond to any communication requests. A failed node (and its
resident process) is said to be ‘withdrawn’. (A node with these properties is simi-

lar to the ‘fail-stop’ processors of [7]).

A process attempting to communicate with another process on a withdrawn node

will receive an error signal, so failures of a node can be detected by attempts at
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communication from other nodes. This simple model is adequate to deal with
failure of a single node at a time. But consider what will happen if two (or more)
communicating nodes fail the same interval of time. In this case, the multiple
failures of a set of nodes will not be detected unless some other node attempts
communication with the failed nodes. It is therefore necessary to add to the sys-
tem an independent means of failure detection and this is done using a communi-
cation checker process executing on a separate node. The communication checker
regularly interrogates each node and detects a failure by the lack of (or an
incorrect) response from a node. A process P, will be designated as the communi-

cation checker.

The communication checker has an additional function : when it detects failure
of a node, it re-starts execution of the resident process on a new node. Thus we
assume there is adequate hardware redundancy, and that the communication
checker keeps a table of the status of all nodes and of the assignment of processes
to nodes. To complete the model, we must also assume there are a number of
communication checkers (one master and several standbys) each in communica-
tion with the others, so that failure of a communication checker does not
compromise the reliability of the whole system. In general, failure of a communi-
cation checker must be determined using a ‘Byzantine general’ solution [6] and

we shall assume this is done by some underlying mechanism.

The system model outlined here has been kept as simple as possible, because the
purpose of this paper is really to examine issues of fault tolerance at the program
level. Nevertheless, it is useful to know that a number of implementations of
such a model are possible, e.g. on a shared memory system, or on a local area

network where the communication interface of each node stores the identity of
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the process executing at the node. A generous amount of hardware redundancy

is required, but its actual extent will be determined by the degree of failure resili-

ence required.

3. Fault Detection and Recovery

We shall make the following assumptions about failures :

1.

All failures in a process are detected by the process P, and a failed process
is ‘withdrawn’ from active service, i.e., it attempts no further communica-
tion, until it is re-made; one way to ensure such fault detection is to execute

each process on a ‘fail-stop’ processor [7].

A failed process is re-made by a reemake command executed by communica-
tion checker process P, and a re-made process resumes execution from its
initial state. (A technique for implementing this is described in [3].) At times
it may be more desirable to use checkpoints and to re-start the execution of
a failed process from a previous checkpoint; it will turn out that the proof

rules we will develop can be easily tailored to handle this model.

The communication statements of CSP are altered to deal with failures.
Using the symbol ‘.’ to mean either input (‘?’) or output (‘!’), a statement in

process P, to communicate with process P,' appears as

Py .z <<85'>> (1)
and in a guarded command as

b; Pz = S <<8'>> (2)

where b is a boolean guard.
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As in CSP, a communication command such as P,' .z may be selected for execu-
tion in two ways : deterministically, as in (1), and non-deterministically (subject
to b evaluating to true), as in (2). When such a statement is selected for execu-

tion in a correct program, there are two possibilities :

(a) Process Py’ may be ready to reciprocate the communication, and the com-

mand P, .z is executed,

(b) Process P, may have failed since it last communicated with P;’, and the
statement < <S'>> is executed : if P, is still in a failed state, it is

implicitly re-made before S’ is executed.

Note that exactly one of these possibilities will be selected : either Py .z is
correctly executed, or < <S'>> is executed. In our further discussion, we shall
call <<S'>> the ‘fault’ alternative. To keep the control flow simple, we do

not allow any communication statement to be included in a fault alternative.

To illustrate the use of such statements, consider the following example of the
well known bounded buffer. A producer process P,' sends a sequence of num-
bered lines to a process P,' with a buffer of size n. The buffer process in turn
sends a sequence of lines to the consumer process P3' which sends each line to a

printer process P ' .



Sy [Py || Py || Ps' || P{]

P,' :: pseq : integer; ready : boolean; nextline : line;
pseq:=0; ready:=false;
*[- ready — nextline:=Line(pseq+ 1); ready:=true
O

ready; P,' ! (nextline,pseq+ 1) — pseq:=pseq+ 1; ready:=false

|

P, ::in,out : integer;
A :[0..(n-1)] of record In : line; linenum : integer end,;

in:=0; out:=0;
*[in < out+ n-1; P’ ?Afin mod n] — in:=in+ 1
a

out < in; P4’ ! Afout mod n] — out:=out+ 1

|

P3' ::In : line; num : integer;
%Py ? In,num — P,/ !In

|

Py :ln: line
#[Pg' ? In — skip

|

Let us assume for simplicity that the producer process, P,', and the printer pro-
cess, P,/ , never fail. A failure in the buffer process, Py, will be detected by P,
and Pj3' and will cause the loss of (out - in) lines. As out and sn are local vari-
ables of P,', it must then be assumed by P, that up to n lines may be lost.
Thus, a solution is for P,' to re-send these lines to P,'. If, in fact, (out - in)

were less than n at the time of failure, this may lead to up to n repetitions in



- 10 -

lines sent to P3'. To suppress such duplicate lines, P3' can be altered to forward
to P, only those lines that have numbers in strictly ascending order; e.g., if last-
num is the number of the last line printed, the next line to be printed must have
num > lastnum. Failure of P3' will be detected by P,' and P, and may result
in the loss of a line taken from P, but not yet printed. P,’ must therefore
make provision for repeating the last line sent to Pj' and, if this line had been
printed, this will lead to a duplicated line. The last case to be considered is when
P, and P34 fail within an interval of time such that the value of lastnum in P

is lost and duplicate lines sent from P,' reach the printer.

This informal analysis suggests that failure of P,' and Pj3' will, in general, lead
to duplicated printing. The extent of such duplication depends on the points of
failure, on the number of individual failures in P,' and Pj', and on the interac-
tion between the effects of failures in Py’ and P3'. We shall later formally prove

the fault tolerant properties of S3, which is a fault-tolerant version of S,.
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531?[P1||P2||P3||P4]

P, :: pseq,sent : integer; ready : boolean; nextline : line;
pseq:=0; sent:=0; ready:=false;
*[- ready — nextline:=Line(pseq+ 1); ready:=true
a
ready; P, ! (nextline,pseq+ 1) — pseq:=pseq+ 1; ready:=false;
sent:;——sent+ 1
< <ready:=false;
[sent < n — pseq:=pseq - sent
a
sent > n — pseq:=pseq - n

]; sent:=0 >>

P, :: in,out : integer; output : boolean;
A : [0..(n-1)] of record In : line; linenum : integer end,;
in:=0; out:=0; output:=false;
*[in < out+n - 2; P;?Alin mod n] — in:=in+1
a
out < in; Pj! Afout mod n] — out:=out+ 1; output:=true
< <[output — out:=out - 1
a
- output — skip
]; output:=false >>
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P3 :: In : line; num,lastnum : integer;
lastnum:=0;
*[Po ? In,num — [num > lastnum — P, ! In; lastnum:=num

O
num < lastnum — skip

]
<< skip >>

P4 In: line;
#[Pg ? In — skip
< <skip>>

Note that the program takes into account the possibility of repeated failures of
P, and P at all points in their execution, including the cases where they fail

more than once before engaging in any communication.

4. Communication Sequences

Let every communication in an (extended) CSP program be characterised by a
triple of the form <1{,j,m >, where ¢ is an integer index for the sender process,
J a similar index for the receiver process and m the communication (or message).
Thus the communication resulting from the simultaneous execution of the state-
ment P3! 5 in process P, and P’z in process P; would be represented by the
triple <1,3,5>. We shall refer to communications resulting from the execution

of input and output commands as ‘explicit’ communications.
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‘Implicit’ communication takes place without the execution of input and output
commands. There are two kinds of implicit communication and we shall charac-

terise them by ‘messages’ received implicitly by a process :

6 received by P, when some other process P; fails
p received by a process before it communicates with a failed and re-made

process

But it should be emphasised that implicit communications do not necessarily
represent the transmission of real messages from a sender to a receiver; in partic-
ular, the message ‘¢’ originates from the detection of failure in a process by the
communication checker process P, rather than from any action assumed to be
taken by the failed process. When a process P; fails then before any other pro-

cess P;, j 7 0, can start communication with P;, P; must receive the message

L0

p .

With every process P; of a CSP program, we associate a communication sequence
h; which consists of triples denoting communications sent to or received by P;.
Thus the execution of the command P3! 5 in process P, and the command P,?z
in process Pz will result in two identical triples, both equal to <1,3,5>, being
concatenated to the communication sequences of P, and P3;. A failure of a pro-
cess P; is recorded as <1,0,6> in h;; and before any other process P; can com-

t

municate with P;, P; records this failure as <1,7,p>.

The following operations are defined over sequences.
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k| is the length of the sequence A
hy+ h, concates hy to the end of h,
h|i is the subsequence of all elements of A which are of the form

<t,ym>or <j,1,m>

h (k] is the k** element of h from the beginning
hly : k] is the subsequence of h from its j** element to its k** element
h; C h; if for 1 < k < | b |, hi[k] = h;[K]

Much of this has been taken from Soundararajan [8], except for the introduction
of implicit communications. We can therefore use the general form of the axioms
and rules of inference defined there, with adaptations to deal with the extensions

to CSP described above.

5. Axioms and Rules of Inference

Hoare-style proof systems are characterized by rules of the form {p} S {¢q} which
are interpreted as saying that if the predicate p is true before the execution of S,
then the predicate ¢ will be true if and when execution of S is completed. Con-

sider now the execution of the process Py :

Pg :: [ true — Pg! 1; *[ true — skip]

a
true —» Pg! 2]
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Assume in an execution of Pg, the first guarded command is chosen in the alter-
native statement, so that 1 is output to Py and Pj then loops in the repetitive
command. When considering Pg's normal execution (i.e. without faults), it would

still be correct to annotate Pg with the assertions
{hs = €} Ps {hs = <5,6,2>}

because the post-condition is indeed provably true for the only case when Py does
terminate; when Pj does not terminate, a partial-correctness proof system will

allow any arbitrary post-condition to be asserted.

That is not the case for the execution of Py in an environment where faults may
appear. Taking the execution of Py described above, assume Py fails when exe-
cuting its repetitive command. When Pj is re-made, let its execution be such
that this time the second guarded command is chosen. The sequence kg will then

consist of
<5,6,1><5,0,6><5,6,2>

The post-condition for Pg should thus be such that it is satisfied by any sequence
of partial execution each ending in failure followed by recovery, followed by onc

ending in termination.

In our proof system, we shall specify axioms and rules of inference corresponding
to the normal execution of a program. A final rule will allow us to obtain the
behaviour of the failure-prone program from its normal behaviour. To do this,
we shall use the notation (r){p} S {q} which stands for the following : in the
process P;, if p is satisfied initially, then throughout the execution of S the

3

sequence h; will satisfy r, and if and when S terminates, the predicate ¢ will
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hold; r is a predicate over h; only, and does not refer to any (other) variables of

P;.

The following axioms and rules of inference refer to statements executed in a pro-
cess P; whose communication sequence is denoted by h;, + > 0. We shall not

define the actions of process P, which is the communication checker and is

assumed to be part of the underlying implementation.

R1. Skip
p=>r
(r){p}skip{p}
R2. Output

k.
p = r,p = Ih + <i,je>r 4 = r

(r){p}P;'e{q}

R3. Input

z,h,
p = r,p =Vm. Im b+ <jim> 4 = T
(r){r} P;?z {q}

R4. Fault Tolerant Communication

(r){r} C; {q} where C; is either P;?z or P,!e
h,

q’h."+ <j,i,p>

'} S {q}

p} C; <<85>> {q}

~[R
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R5. Assignment

p = r,p = ¢/, ¢ = r

(r){p} z:= e {q}

R6. Composition

p = r,(r){p} Si{e'}, (r){qe'} Ss{q}
(r){p}Sy; Seiq}

R7. Alternative Command

p = r

(r) {p A B(g)} C (9x); Sk {q}, k=1,..,m
h.

[P AB(ge)] = @' h'+ <oP(g)ip>

(r) {a'} S’ {q}, k € IO
(r) {p} [0 (k=1,.,m) g = 5 <<S'>>]{q}

where B(g,) is the boolean part and C(g;) the communication part of the guard
g (C(g) is skip if g is purely boolean), IO is the set of indices of the
input/output guards, and CP(g;) is the index of the process with which P; is
trying to communicate in C(gz). <<S,'>> will be present only if g, is an

input or output guard.

R8&8. Repetitive Command

p => r

(1) (p A V. B(g)} [0 (k=1,m)gy — S <<S'>>] {p}

(r){p} *[0 (k=1,.,m) g = S <<S'>>] {p Ak& - B(g)}

Note that to simplify the presentation we assume a loop terminates only when

the boolean parts of all the guards evaluate to false.
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R9. Consequence

= r,p = p', () {p'} S} ¢ = ¢
(r){p} S {q}

R10. Strengthening

(r) {p} S {q}, (ro) {p} S {q}
(ryArg) {p} S {q}

R11. Disjunction

(r){p1} S {q}, (r){p2} S {q}
(r){p1V p2} S {q}

R12. Conjunction

(r){p} S {q:}, (r){p} S {42}
(r){p} S {91 A g2}

6. Failure of a Process

We now need to see how to obtain the behaviour of the failure-prone execution of
a process P; from the rules given above. Let [P;] denote such an execution of P;;
[P;] then consists of a series of partial executions of P; which end in failure and

re-making of P;, followed by a final and complete execution. The behaviour of

[P;] can be defined by a rule.
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R13. Failure-Prone Process Execution

(r){p} P; {q}
qg = ¢’

h: ] hl'
l[¢" Ar ] = @' 00 4 <io6> + A

{r}[P;]{q"}

Note that in general, h; in r,ﬁ'} and ¢’ :' + <i,0,6>+ h; does not refer to the same
sequence. This is because all predicates involved in the annotation of process P;
are described in terms of a general but arbitrary sequence named h;. We could
have written the third clause of R13 as

[¢"(R)Ar(B')] = q¢'(B' + <5,0,6>+ b;)
where ¢(H) would be defined to be true if and only if the predicate ¢ is satisfied
for the sequence H. We have not adopted this notation since it would make the

presentation of most of the other rules much more complicated.

The second clause of R13, ¢ => q', ensures that the results of the executions of
[P;] that proceed to completion without encountering an error satisfy [P;]’s post-
condition. The next implication ensures that the results of those executions of
[P;] that encounter n+1 errors before going through one fault-free execution will
satisfy the post-condition ¢' provided the results of those executions of [P;] that

encounter n errors satisfy ¢’'. This may be seen as follows.

Consider an execution of [P;] which encounters n+1 errors, after each of which
the process is re-made with its variables set to their initial values and <1,0,6>
concatenated to h;. When the final execution begins, the variables of P; will

have their initial values and the value of k; will have the form
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R+ <i,06> + A2+ <i06>+ -0 + AT+ <i,0,6>

where h;j is the record of communications that the process goes through during
its j** partial execution. Let h”; be the sequence of communications by the pro-
cess during its final execution, and let the final state of the local variables of the
process be denoted by S,-f. Since after each error, the local state of [P;] is reset
to its initial value, a possible execution of [P;] would be one in which n (rather
than n+1) errors were encountered, with the n+ 1 execution proceeding
without error and reaching the same final state S,-f, and with its communication

sequence being
h,‘z + <1,0,6> + -+ h,'n+l + <’;0)6> + h”t"

Thus the n-error execution of [P;] is identical to the n+1-error execution except

that it avoids the first error of that execution. Also, h;! will satisfy r (i.e., r,:’:
will be true if h;' = h;!). Then if the results obtained following the n-error exe-
cution of [P;] satisfy ¢’, and the second implication in R13 is true, the results

obtained following a n+I-error execution will also satisfy ¢'.

It would appear that it should be possible to obtain the predicate r directly from
the partial correctness post-condition ¢ of P;, rather than by building it up dur-

ing the proof of P;. One way of doing this would be to define
r=3h'. [k C k' Aq]

and to argue that any sequence h; that satisfies r must be the initial subsequence
of some sequence h;' that will satisfy ¢. Recall, however, the example given ear-
lier where we indicated why a simple Hoare-style rule was inadequate for proving

properties of fault tolerant programs. If Pg starts execution with the pre-
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condition hs = €, and no errors occur, we can obtain the post-condition [hg =

<5,6,2>]. r could then be
r=[hs= €V hy = <5,6,2>]

Using this to derive the post-condition when errors do occur would give
[Vk, 1<k<|hs | [hslk] = <5,6,2> V hglk] = <5,0,6>]]

This is incorrect, as some execution of Py may choose the first guard, send 1 to
Py, fail, recover (i.e. send 6 to P,), choose the next guard, send 2 to Pg and ter-

minate. For such an execution of Py, we will have
hy = <5,6,1><5,0,6><5,6,2>

which does not satisfy the post-condition. We must therefore adopt the alterna-

tive task of proving

(r) {hs = €} Ps {hs = <5,6,2>}
With r = [h5 = €V h5 == <5,6,1> Vv h5 = <5,6,2>]

7. Parallel Composition of Fault-Tolerant Processes

R14. Parallel Composition

{pi A hi::e}lpl']{qi}) i=17","
{p1 A Ap,}[Py]]|.-1] Pal{g1 A .. A g, A Compat(hy,..,h,)}

R14 seems identical to the rule for parallel composition in [8]; however, the
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definition of Compat is slightly different, to take care of the é and p type ele-

ments that may appear in communication sequences.

Compat(hy,..h,) =3 h . [Vi,1 < i <n,h|, i =h AR1(h)A R2(h)]
where
h|,j is the subsequence of all elements of A which are of the form <1,;,m>,
<j,g,m>, <j7,0,6> or <i,j,p> wherem & {p, 6}
Informally,
R1(k)= P,, .., P, are informed of all faults
= if the k** element of h is an explicit communication between ¢ and j

and if there exists k' < k such that h[k'] = <1,0,6>

then there exists k'', k! < k'' < k such that h[k''] = <i,j,p>
Formally,
R1(h)=VEk .1 < k < |h].

[ (h[k] = <i,j,m> V hlk]=<j,im>)Am¢{p, 6}
A3k k' <k.h[k']=<i06> |
= Jk' K <k <k.RE)=<i, 0>
Informally,
R2(h) = P, detects all faults
= if the k* element of h is <i,5,p>
then there exists k', k' < k such that h[k'] = <i,0,6>
and in A[k' + 1 : k] there is no explicit communication between ¢ and j

Formally,
R2(h)=VEk .1<k <|h|

hlk] = <i,7,p> = 3k' kK < k.

{h[k'] = <4,0,6> A (R[k' + 1:k]|j)|f = €}
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The definition ensures that if P; fails (and this is recorded by a <¢,0,6> in h;),
then before P; and P; can communicate with each other, P; must ‘register’ that
P; had failed and recovered (as recorded by a <#,5,p> in h;). Similarly, it
ensures that if P; has registered failure and recovery of P; (i.e. if there is a
<i,j,p> in h;), P; must indeed have failed and recovered (recorded by a
<1,0,6> in h;) since the last communication between P; and PJ-. Note that
even when a process P; fails several times before communicating some other pro-
cess P;, exactly one triple <i,5,p> will be appended to h; when P; next

attempts to communicate with P;. As an example, if P, fails and then sends a

value 3 to P, the various sequences will be as follows :

h = <1,0,6><1,2p><1,23>
h|,1=h,=<1,06><123>
h|,2=hy= <12,p><1,23>

8. Non-terminating Processes and Programs

The axioms and rules of the last section can be used to obtain the post-condition
of fault tolerant programs; frequently, however, we wish to consider the
behaviour of non-terminating programs, such as the bounded buffer program
given earlier. In this section we explain how we can use the approach of this

paper to deal with such programs.

Consider a fault tolerant program
[Pyl [ P,]

Suppose for each of the processes P; (1=1,..,n), we have shown, using the axioms

and rules of the last section, the following results :
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(r;) {p; A by = €} P; {g;}
If P; is a non-terminating process, g; will presumably be the predicate false; how-
ever, we are interested not in the post-condition of P; (or of the other processes),
but in the predicates it satisfies at certain points during its execution. Fre-
quently, for instance, we are interested in the ‘invariant’ relation that is satisfied
by the variables of P; (in particular by its communication sequence h;) at all
times during P;’s execution. If each of the processes is non-terminating, as is
often the case (and is the case in the bounded buffer), we are usually interested
in the invariant relation that the communication sequences of the various
processes satisfy; in particular, in the case of the bounded buffer we would prob-
ably like to prove that the lines produced by P, are received by P, in proper

order, possibly with some repetitions, and that the number of repetitions is

bounded by some function of the number of failures of the processes P, and Pj.

If we are able to prove
(ri ) {pi Ab; =€} P; {g;}

then throughout a fault-free execution of P;, its communication sequence h; will
satisfy the predicate r; (recall that r; can only involve A; -- no other variables of
P; or of any other process may appear in r;). However an arbitrary execution of
P; will not be fault-free, and we have to find a relation that will be satisfied by
h; even if the particular execution of P; that we are considering has a number of
faults (each, of course, followed by a recovery). In other words, we wish to find a
relation r;' that will be satisfied during executions of P; that may include faults.

Clearly then r;' may be obtained in more or less the same way that ¢' of rule

R {3 was obtained in the last section.

Thus, following the analogy of R 3, ;' must be such that
= T’"

hl
!

h.
! | )
[ Arigs 120" 4 <io,6> + b
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More formally, we can consider the following rule of inference :

R15. Process Execution With Faults
(r;) {p; A b; = €} P;{q;}

r;

= r;!

A A,
' vl = ot
[r‘. A r; h.’] T b + <i,086> + b

{p:} [Pi] (")

where the notation {p;} [P;] (r;') means the following : if the initial values of the
variables of P; (not including h;) will satisfy p;, then throughout the execution of

[P;] (i.e., including those executions in which P; goes through a number of faults

and recoveries), the communication sequence h; will satisfy the relation r;’.

Next, suppose we have been able to prove

{pi}[Pi](ri’) ’ i=17")n

It should then be clear that throughout the execution of the program [P, |]|... ||
P,], the various communication sequences h,..,h, will satisfy the following rela-

tion :

ri! Ary AL A, A Compat(h,..,h,)

The predicate Compat will be satisfied at all times during the execution of the
program, since it merely expresses the requirement that the communications of
the various processes, as recorded in their individual communication sequences,
must be mutually compatible, and that this requirement must be met at all times
during the execution of the program -- not merely when the program finishes exe-

cution.
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Thus, an appropriate rule of inference would be

R16. Parallel Composition of Processes With Execution Faults

{p;} [Ps] (') =1, .. ,n
{prA - Ap } [P - JI[Pall(ry A -+ - Ar,' A Compat(hy,..,h,))

We shall use the notations and rules of this and the last section to show, in the
next section, that the bounded buffer program does indeed behave the way we
might expect. The reader may recall that in the bounded buffer program we

assumed that P, and P4 do not fail; clearly, then, if we can prove
() {pi Ah; = €} P; {g;}, i=L1,..4

the appropriate invariant for the whole program, allowing for faults in P, and P3

but not in P; and P, would be
riAry Arg Arg A Compat(hy,..,h,)
rather than

ri Ary' Arg Ary A Compat(hy,.. hy)

In the next section we shall prove
(ri){pi Ab; = €} P {q;}, i=L1,..4

with appropriate r; (p; being identically true, and g; identically false, and each of

the processes being in an infinite loop), and show that
[TIA T2' A r3’ A T4A COmpat(hl,,h4)] = [TIA T2A T3A T4] (3)

where
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T, =Vk.1<k < [hy) {hok] € {<34,p>, <34,Line(m)>}}  (4)

that is h, € { <3,4,p >, <3,4,Line(m)> }*
Thus T, in (3) will essentially show that the only ‘“‘normal” values the printer
process P, will receive are the ‘“lines.” (Recall that P, prints all the normal

values it receives.)

To=[Vk .1 < k < |hyl. {hylk] = <3,4,p>}
VE3k.1<k < |hy|. {hyk] = <34,Line(1)>
AVE' (1 <K' <k {hyk') = <34,p>1}}]
(5)

that iS h4 € { <3)4,p> }‘
orhy € { <3,4,p> }* <3,4,Line(1)> { <3,4,p >, <3,4,Line(m)> }

T, ensures that the first normal value that P4 receives is Line(1).

T,=Vk k' 1<k <k <|hy].
{h4k] = <3,4,Line(m)> A hyfk'] = <3,4,Line(m')>
= Vm'"' .m<m'' <m'.
{3k'" K <K' <k

{h k'] = <3/4,Line(m'")> } } }
(6)

T, ensures that if at some time ¢ the m* line is printed and at a later time ¢'
the m'* line is printed then all lines from m+ 1 to m'-1 are printed between

time ¢ and ¢’ (possibly with duplications).
Ty= folhy) < (n-1) * [ (ko) (7)

where



- 98-

f1(hy) = number of elements of the kind <2,0,6> in h, ie., the

number of failures of P,

fo(hy) = number of repetitions in elements of the kind <3,4,Line(m)>

in hy
f1(hy) and fo(h,) can be defined in a straightforward manner and we leave that
for the reader. Thus T, specifies an upper bound on the number of duplications
in the lines printed; it is possible to get a tighter bound involving ho, h3 and hy;
however, this would be much more complex than T, since it would involve the

relative times at which P, and Pj failed (not just the number of failures of P,

and Pj).

With T,, T, T3and T, as defined in (4), (5), (6) and (7), (3) will clearly show

that the program does indeed behave as we expect it to.

9. Proof of the Bounded Buffer Program

Our proof of the bounded buffer program will be quite informal; we shall begin

by informally proving the results
(r,-) {h' = E}P" {fGISC}, l-—_—l,,4 (8)

The formalization of these proofs (appealing to the various axioms and rules
applicable to the statements in P;) will be left to the interested reader. Our
informal arguments will be rather like the semi-formal proofs of sequential pro-
grams, omitting most of the intermediate details and all but the key assertions
such as loop invariants; such informal proofs are justified since our formalism
allows (or rather requires) us to consider one process at a time, and the validity

of the various assertions in the proof of a process depends entirely on what the
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process does - and not at all on what the other processes do or on how they
interact with this process or with each other. Thus once the intuition behind the
proof rules is understood, it is as easy to informally prove a result such as (8) as

it is to informally prove the partial correctness of sequential programs.

However, in the current case, we have to prove an additional result, after proving

(8) :
[riAry Ars' Arg A Compat(hy,..,hy)] = [T;AToAT3AT,]
Let us begin by considering the process P4 of the bounded buffer since it is the

simplest. (The processes P; through P, have been introduced in section 3 but

we will repeat them here for convenience.)

P4 In: line;
*[P3 ? In — skip
< <skip>>

The reader should easily be able to see the following result :

(rd {hy= €} Py{false} (9)
where,
ra =Vk . 1<k< |hy|. {hylk] e {<34m>, <34p>}Am & {p,6}} (10)

that is h, € {<34,m>, <34,p>}’
(the loop invariant will be identical to r ).
The post-condition in (9) merely expresses the fact that the loop does not ter-
minate; r4 will be true at all times during the execution of P since the only com-

munications P4 participates in are those in which it receives an input from Pj or
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a signal that Pj3; has failed and recovered since the previous communication

between Pz and P,.

Next consider P :

P,:: pseq,sent : integer; ready : boolean; nextline : line;
pseq:=0; sent:=0; ready:=false;
*[- ready — nextline:=Line(pseq+ 1); ready:=true
a
ready; P, ! (nextline,pseq+ 1) — pseq:=pseq+ 1; ready:=false;
sent:=sent+ 1
< <ready:=false;
[sent < n — pseq:=pseq - sent
a
sent > n — pseq:=pseq - n

]; sent:=0 >>

The loop invariant for P, is :
LI, = h, € {<1,2,p>,<1,2,(Line(m),m)>}"*
A ready => nextline = Line(pseq+ 1)
A pseq = gy(hy) A sent = go(h,)
AVE. 1<k << by [ bk]=<12(p,9)>

=> p = Line(q) A q = gy(hy[1:k-1])+1]
where

g.(e) =0

g i(h+ <12,(p,q)>) = g,(h)+1

g1(h+ <1,2,p>) = g,(h) - min(n,g4(h))
gole) =0
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goh+ <1,2,(p,q)>) = g2(h)+ 1
go(h+ <1,2p>) =0
The relation r, is
r=VEk. 1<k < by [ hylk] = <12(p,9)>
= p = Line(q) A ¢ = g,(h,[1:k-1])+ 1]
As stated earlier, we will leave it to the reader to formally verify (r,) {h; = € }
P, {false}, using LI, as the loop invariant, and introducing appropriate asser-

tions as necessary.

Next consider P,.

P, :: in,out : integer; output : boolean;
A : [0..(n-1)] of record In : line; linenum : integer end;
in:=0; out:=0; output:=false;
*[in < out+ n-2; P;?Alin mod n] — in:=in+ 1
a
out < in; Pj3! Afout mod n] — out:=out+ 1; output:=true
< <|output — out:=out - 1
O
- output — skip

]; output:=false >>

We will only specify r,, leaving the other assertions including the loop invariant

to the reader.
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ro = what P, receives from P, is sent out to P
and the number of values received from P, but not sent to P3 can

be atmost n-1

More formally,

23 '
To = [fs(h2|3)1]2 C hy |1

Al 1f3(haI3) IS Th2 |1 1< |S3(h2|3) ]+ n - 1]

where
f 3(hy | 3) = sequence obtained from h, |3 by dropping from it all
subsequences of the form <2,3,m > < 3,2,p> for all m.
= h, |3 if in that execution there were no failures in P,
= h, |3 in the execution of P, where the fault alternative

< <..>> has been removed

More formally f3(hy |3) is defined as follows :

f3(€)=€
f3(<32p>+ k)= [3(h)
f3(<23m>+ <23m'>+ h)
=<23m> + f4(<23m'>+ h)form, m' # p
f3(<23m>+ <32p>+ h)=f3(h)

In writing down r,, we have allowed for failures in P, but not in P, since P, is

assumed not to fail; failures in P, will be accounted for when we write down r,’.

We still need to consider Py :
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Pj :: In : line; num, lastnum : integer;
lastnum:=0;
*[P5?In, num — [num > lastnum — P4 ! In; lastnum:=num
O

num < lastnum — skip

|
< < skip >>

Again, we will only specify rj, leaving the formal verification of (r3) { h3 = € }

P {false} to the reader. First define

[ {<*%,(m;my)>}", 1) = retain only those triples <x*,*,m;> whose second
component of value are in increasing order starting from greater
than ¢

Note that the difference between Pj3' and the fault-tolerant Pj; given above is

that some ‘evasive action’ is taken in the fault-tolerant version to compensate for

possible failures in P,. Then, f ,(h3|2, 0) of fault-tolerant P3 = h3|2 of Pj'.

3,4
rs=[h; |42]3 C f4(h3]2,0)

Allhg|41< 1 f4(h3]2,0) 1< |hs[4] + 1]
More formally

f4€4) =€
[4(<238p>+ h,i)= [, (h,)
£4(<23,(mymy)> + h,i) = if my<i then fh, i)
else <2,3,m;> + f,(h,my)

3,4
r5 expresses the fact that [hg |4 | is a prefix of f4( h3 |2,0) and that the length
2,3
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of h; |4 can be at most 1 less than that of f (k3 | 2,0).

That completes the informal proofs of

(r;){h; = €} P; {false}, i=1,..4
Before trying to prove
[ryAry Arg Ary A Compat (hy,..,h,)] = [T{AT,AT3AT,] (11)
we write down r,’ and r3' (from ry and rj respectively):
rf =VE. 1<k < Num(hy,8) + 1. {rs sdineg by, b1, &, 5) }

where

Num(h;, ) = number of triples of the kind <j,f,z> in h;

subseq(h;, m1,m2, z) = The subsequence of h; from just after the m1 ele-
ment of h; of the form <j,f,z> (from the beginning of

h:

if m1 = 0) to just before the m2t* element of h; of the

form <j,i,z> (to the end of h; if m > Num(h;, z)).

Essentially r,' says that h, looks like a concatenation of a number of (smaller)
sequences each of which satisfies r, with a <2,0,6> element sandwiched

between each consecutive pair of these smaller sequences.

rg' is similar :
h
1'3’ =Vk. 1 S k S Num(hlia 6) + 1. {T3 asbccq(hs, k-1, k, §) }

Proof of T,
From r; and r,' we can infer that

ho |1 € {<1,2, (Line(m)m)>}"*
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This together with r3' gives us

hy|2 € {<23, (Line(m)m>, <2,3,p>}°
Combining this with r, we get

h, € {<34,Line(m)>,<3,4,p>}"
Proof of T,
From r; and ry’ we know that

ho |3 € {<2,3,(Line(1),1)> <32,p>, <3,2,p>}°

+ <2,3,(Line(1),1)> <2,3,(Line(2),2)> + some arbitrary trace.

Combining this with r3' gives us

hsy|4 € <3,4, Line(1)> + some arbitrary trace
and hence

hy € {<34,p> }* <3,4,Line(1)> + some arbitrary trace.

Proof of T,
From r, and r,’ we obtain
Vk . 1<k< |hy . {holk] = <1,2,(Line(m),m)> A m>1
= Jk'. k' <k . {ho]k'] = <1,2(Ltne(m-1),m-1)>
AhoJk'+1:k-1] |1 € {<1,2(Line(p),p)>}*
where p > m}}
Combining this with r,' gives us
Vk . 1<k< | hy]. {hslk] = <2,3,(Line(m)m)> A m >1
= Jk'. k' <k . {h3[k'] = <2,3,(Line(m-1),m-1)>
Ahglk'+1:k-1] |2 € {<2,3,(Line(p),p)>, <2,3p>}"

where p > m}}

From the above and r4 we can infer that
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Vi . 1<k< |hy|- {hyk] = <3,4,Line(m)>Am >1
= Jk'. k'<k . {h4k'] = <3,4,Line(m-1)>
A hyk'+1:k-1] € {<3,4,Line(p)>, <3,4,p>}°
where p > m}}

which can be rewritten as

Ve k' 1 <k < k' < |hy].
{h k] = <3,4,Line(m)> A hk'] = <3,4,Line(m')>
= Vm'"' .m<m' <m'.
{3k" K <K' <E
{hylk'"] = <34,Line(m'")> } } }

Proof of T,.

From r, we obtain

number of repetitions in h; |2 < (n-1) * number of failures of P,
Combining this with r,' we get

number of repetitions in hy |3 < (n-1) * number of failures of P,

+ number of failures of P

From the above and r3' we get

number of repetitions in A3 |4 < (n-1) * number of failures of P,

Since

number of repetitions in k3 |4 = number of repetitions in h,

we have proved T,.
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10. Discussion

The proof rules defined here provide a means for formally proving the properties
of fault tolerant programs written in extended CSP. They are naturally more
complex than proof rules for programs that are not subject to faults but, with
some familiarity, their interpretation becomes no more difficult than the task of
constructing fault tolerant programs. In fact, during the course of proving the
properties of even simple programs we have sometimes found errors in programs

that earlier passed fairly thorough but informal inspection.

The rules are limited to proofs of partial correctness and it is tempting to con-
sider how they may be extended to deal with total correctness. For example, if it
can be proved that all loops will terminate, the function Compat can be extended
to detect deadlock and to prove process termination. Unfortunately, proof of
loop termination cannot in general be done in isolation and requires re-inspection
of the proof outlines of all processes. This militates against the basic intention of
this proof system that once the proofs of individual processes are over, proof of
the program should directly result from the application of the rule of parallel
composition. The possibility of carrying forward loop termination predicates in
post-conditions and proving their ‘compatibility’ at the end must be rejected
because it results in extremely unwieldy proofs. So the proof system remains one

of partial correctness.

It is important to prove that the proof system is consistent and complete with
respect to an operational model for extended CSP. Though we shall not attempt
to demonstrate this here, it appears quite possible for the proof given in [9] for

the proof system of [8] to be adapted for our version of extended CSP.
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Throughout this paper we have assumed that a failed process is restarted from it
initial state. Such an assumption allows the possibility of running the system of
processes using read only stable storage. On the other hand, the use of check-
points requires that the processor states be stored at various checkpoints and a
failed process along with all the other necessary processes must be restarted from
some previous checkpoint. Such a technique requires the usage of stable storage
but may at times simplify the recovery action involved. Checkpoints can be han-

dled by suitable altering axiom R13 for Failure-Prone Process Execution.
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