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Einleitung

Motivation

Fine Potenz(bereich)-Konstruktion bildet jeden semantischen Bereich X aus einer be-
stimmten Klasse von Bereichen in einen sogenannten Potenzbereich iiber X ab, dessen Punkte
Mengen von Punkten des Grundbereichs reprasentieren. Potenzbereich-Konstruktionen wur-
den urspringlich entwickelt, um die Semantik nichtdeterministischer Programmiersprachen
[Plo76, Smy78, HP79, Mai85] zu modellieren. Andere Motivationen sind die semantische Re-
prasentation eines Datentyps von Mengen [Hec90c] oder relationaler Datenbanken [BDWS8S8]
[Gun89b].

Plotkin [Plo76] schlug die erste Potenzbereich-Konstruktion im Jahre 1976 vor. Weil seine
Konstruktion aus der Kategorie der beschrinkt vollstandigen algebraischen Bereiche hin-
ausfiihrt, schlug er die grofiere Kategorie der SFP-Bereiche vor, die unter seiner Konstruktion
abgeschlossen ist. Kurze Zeit spater fiihrte Smyth [Smy78] eine einfachere Konstruktion ein,
die obere oder Smyth-Potenzkonstruktion, die beschrankte Vollstindigkeit erhilt. In [Smy83]
kommt eine dritte Potenzbereich-Konstruktion vor, die untere Potenzkonstruktion, die das

Trio der klassischen Potenzbereich-Konstruktionen vervollstandigt.

Von Problemen in der Datenbanktheorie ausgehend schlugen Buneman et al. [BDWS88]
vor, den unteren und oberen Potenzbereich zu einem sogenannten Sandwich-Potenzbereich zu
kombinieren. Gunter erforschte die Logik der klassischen Potenzbereiche [Gun89a]. Indem er
die Logik von Plotkins Bereich auf natiirliche Weise ausdehnte, entwickelte er einen sogenann-
ten gemischten Potenzbereich [Gun89b, Gun90]. Plotkins Potenzbereich ist eine Teilmenge

des gemischten, welcher wiederum eine Teilmenge des Sandwich-Potenzbereichs ist.

Unabhangig davon fanden wir den Sandwich- und den gemischten Potenzbereich in einer
isomorphen Darstellung als groflen und kleinen Mengenbereich, als wir Konstruktionen zur
Beschreibung der Semantik eines abstrakten Datentyps von Mengen in einer funktionalen
Sprache entwickelten (sieche [Hec90c]).

In Anbetracht von mindestens 5 verschiedenen Potenzbereich-Konstruktionen stellt sich
die Frage nach dem Wesen dieser Konstruktionen, d.h. nach denjenigen Eigenschaften, die
die Anwendung des Begriffs ‘Potenzbereich’ gestatten. Wir suchen also nach einer Theorie
der Potenzbereich-Konstruktionen, die die existierenden beschreibt und die Beantwortung
der folgenden Fragen gestattet:

(1) Was sind Potenzbereich-Konstruktionen?

(2) Welche Beziehungen bestehen zwischen den verschiedenen Potenzbereich-Konstruktionen?
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(3) Gibt es mehr als die fiinf oben aufgezdhlten Konstruktionen?
(4) Wenn ja, wie sind diese finf Konstruktionen unter allen anderen ausgezeichnet?

Eine allgemeine Theorie der Potenzkonstruktionen sollte auch — wenn sie niitzlich sein
soll — allgemeine Sétze enthalten, die auf alle speziellen Potenzbereich-Konstruktionen an-

wendbar sind.

Die Autoren der frithen Papiere iiber Potenzbereich-Konstruktionen erwidhnen alle einige
algebraische Operationen, die in ihren Potenzbereichen moglich sind. Sie geben jedoch weder
die algebraischen Eigenschaften dieser Operationen noch die Beziehungen zwischen ithnen an.
In [HP79] werden die drei klassischen Potenzbereiche als freie Algebren beziiglich gewisser al-
gebraischer Theorien charakterisiert. Diese Theorien beschreiben kommutative idempotente
Halbgruppen mit verschiedenen Zusatzaxiomen, die aber mathematisch nicht gut motiviert
sind. Gunter [Gun89b] charakterisiert seine gemischten Potenzbereiche auf etwa dieselbe
Weise. Anstelle zusdtzlicher Axiome fiir die Halbgruppe beniitzt er eine zusdtzliche ein-
stellige Operation. In [Hec90c] konnten auch die Sandwich-Potenzbereiche als freie Al-
gebren beschrieben werden beziiglich einer Theorie von Halbgruppen mit einer partiellen

Verkniipfung, deren algorithmische Bedeutung im Dunkeln liegt (siche Kap. 24).

Diese Frgebnisse liefern aber wohl nicht die gewiinschte allgemeine Theorie der Potenz-
bereich-Konstruktionen. Thre Antwort auf die Frage (1) von oben wire ndmlich, daB Potenz-
bereiche freie Algebren beziiglich einer algebraischen Theorie von kommutativen idempoten-
ten Halbgruppen mit mehr oder minder seltsamen zusdtzlichen Operationen und Axiomen
sind. Dariiberhinaus hitte diese Theorie den Nachteil, daf} sie eher einzelne Potenzbereiche
behandelt als die ganze Potenzbereich-Konstruktion, d.h. die Abbildung von Grundbereichen

nach Potenzbereichen.

Die algebraische Theorie der Potenzbereich-Konstruktionen

Gunter beschreibt in [Gun90] die Semantik einer nichtdeterministischen Sprache mithilfe
einer generischen Potenzbereich-Konstruktion. Diese bietet drei Grundoperationen an, nim-
lich Einermengenbildung, Vereinigung von zwei Mengen und Ausdehnung einer mengenwerti-
gen Funktion von Punkten auf Mengen. Diese generische Semantik kann instanziiert werden,
indem die generische Konstruktion durch eine konkrete ersetzt wird, welche die notwendigen

Grundoperationen zur Verfiigung stellt.

Wir definieren daher eine Potenzbereich-Konstruktion durch Axiome, die die Existenz
einiger Grundoperationen fordern. Dazu kommen Axiome, denen die Grundoperationen
geniigen miissen. Uber die Wahl dieser Axiome kénnte man sich streiten. Wir sind jedoch
der Ansicht, dal unsere Wahl natiirlich ist. Diese Meinung wird dadurch bestarkt, dafl un-
sere Definition zu einer reichen Theorie fiihrt, die in Teil II der Arbeit vorgestellt wird. Die
bekannten Konstruktionen werden von dieser Theorie nicht nur erfafit, sondern auch unter

allen anderen moglichen Konstruktionen ausgezeichnet.



DIE ALGEBRAISCHE THEORIE DER POTENZBEREICH-KONSTRUKTIONEN 3

Spezifikation der Potenzkonstruktionen

Im folgenden verstehen wir unter Bereichen gerichtet vollstindige partiell geordnete Men-
gen. Wir fordern also weder die Existenz eines kleinsten Elements noch Zusatzeigenschaften
wie Algebraizitdt. Wie in Kap. 9 ausgefithrt, bildet eine Potenz(bereich)-Konstruktion P
Grundbereiche X in Potenzbereiche iiber X ab. Die Potenzbereiche miissen den folgenden

Axiomen geniigen:
Leere Menge: Es gibt ein ausgezeichnetes Element 0 in jedem Potenzbereich PX.

Vereinigung: Es gibt eine stetige Operation Y : [PX x PX — PX] in jedem Potenzbereich.
‘Y’ ist kommutativ und assoziativ mit neutralem Element 0.

Einermengen:
Es gibt eine stetige Abbildung ¢ : [X — PX], z — {jz[} fir jeden Grundbereich X.

Erweiterung von Funktionen: Fiir je zwei Bereiche X und Y gibt es eine hohere Funktion
ext : [[X — PY] — [PX — PY]], die mengenwertige Funktionen auf Grundbereichele-
menten in mengenwertige Funktionen auf Mengen abbildet. Sie mufl den folgenden
Axiomen geniigen:

ext f

(P1) ext fO =10 PY

(P2) ext f(AQ B)=extfA Y ext fB

(P3) ext f{zl} = fz oder: ext for=f L
(siehe Abbildung)

(S1) ext(Az.0)A =0 X

(S2) ext(Az. fr Y gr)A=ext fAY extgA.
Wenn man ‘g’ auf Funktionen hochhebt, kann man kiirzer schreiben: ezt (fdg) =
ext f 9 exty.

(S3) ext (Az. {z[}) A=A oder: ext L = id.
(S4) Fiir je zwei Abbildungen f:[X — PY] und g :[Y — PZ] gilt
ext g (ext f A) = ext (Aa. ext g(fa)) A

fiir alle A aus PX, oder: extgoextf=ext(extgof)
(sieche Abbildung)

ext f ext g
~PY

- PZ

X Y

Man beachte, da§ wir nicht fordern, daB ezt f durch (P1) bis (P3) eindeutig fiir jedes f
bestimmt ist. Wenn wir diese Eindeutigkeit gefordert hitten, wiren die Gleichungen (S1) bis
(S4) beweisbar. Deshalb nennen wir sie sekunddre Axiome im Gegensatz zu den priméren

Axiomen (P1).
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Halbringe und Moduln

Die oben eingefiihrten Grundoperationen erlauben die Herleitung vieler anderer Operatio-
nen mit niitzlichen algebraischen Eigenschaften (siehe Kap. 10). In dieser Zusammenfassung
erwiahnen wir nur die wichtigsten.

Die Erweiterungsfunktion hdngt von zwei Grundbereichen X und Y ab. Besonders in-
teressante Instanzen der Erweiterungsfunktion entstehen, wenn einer der beiden Bereiche X
und Y der Einpunkt-Bereich 1 = {0} ist. Im Falle X = 1 hat die Erweiterungsfunktion
die Funktionalitit ezt : [[1 — PY] — [P1 — PY]]. Weglassen des unnotigen Arguments
aus 1 sowie Zusammenfassen und Vertauschen der Argumente fithrt zum ‘Gufleren Produkt’
-1 [P1XPY — PY]. Seine Definition ist b-5 = ext (A¢..5)b. Multiplikation wird zur inneren
Verkniipfung auf P1, wenn man zusitzlich Y = 1 wihlt.

Wenn wir die leere Menge 0 von P1 in 0, die Vereinigung ‘Y’ in ‘4’, und die Finer-
menge { o[} in 1 umbenennen, erhalten wir aus den Potenzaxiomen die folgenden algebraischen
Gesetze fiir P1:

a+(b+c)=(a+b)+c at+tb=b+a a+0=04+a=ua
a-(b-c)=(a-b)-c a-1l=1-a=a
a-(bi+by)=(a-b1)+(a-by) (a1+az)-b=(a1-b)+(az:b) a-0=0-a=0

Solche algebraischen Strukturen heiflen Halbringe. Man beachte, daf} alle Algebren, die in
dieser Arbeit vorkommen, Bereiche als Irigermenge und stetige Funktionen als Operationen

haben.

Halbringe verallgemeinern sowohl Ringe als auch distributive Verbdnde. Man kann sie
daher auch logisch interpretieren: 0 als ‘falsch’, 1 als ‘wahr’, Addition als Disjunktion
und Multiplikation als Konjunktion. Der Halbring P1 stellt dann die inhdrente Logik der
Potenzbereich-Konstruktion P dar. Diese Sicht der Dinge ist besonders sinnvoll, wenn die
Halbringaddition idempotent ist. Bei den bekannten Potenzkonstruktionen ist das der Fall.

Wenn wir auch die leere Menge 6 von PX in 0 und die Vereinigung ‘J’in ‘4’ umbenennen,
erhalten wir die folgenden algebraischen Gesetze fiir PX:

A+ (B+C)=(A+B)+C A+ B=B+A A+0=04+A4=4
r-(s-A)y=(r-s)-A 1-A=4A
T'(A1-|-A2):(T'A1)-|-(7"A2) (7‘1-|-7‘2)'A:(7'1'A)-|-(7‘2'A) r-0=0-A=0

Hierbei wurden die Elemente von PX grof} geschrieben im Unterschied zu den Elementen
von P1.

Solche algebraischen Strukturen heifien P1-Moduln. Eine Funktion f : [M — M'] zwi-
schen zwei P1-Moduln heiBt linear wenn f(A+ B) = fA+ fBund f(r-A)=r- fA gilt.

Die Ergebnisse von Kap. 10 liefern den folgenden Satz:
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Satz 11.1.3: Sei P eine Potenzkonstruktion und seien

+=u: [PX x PX — PX]
0=20: PX
- =XNa, 9).ext (M. 5)a: [Pl x PX — PX]
1 ={of}: P1

Dann ist P1 mit diesen Operationen ein Halbring und PX ein P1-Modul fir alle
Bereiche X. Fiir f : [X — PY] ist die Erweiterung ezt f : [PX — PY] linear und
ext for= f gilt.

Dieses Ergebnis bringt unsere Arbeit in Verbindung mit einem Artikel von Main [Mai85],
in dem Potenzbereiche als freie Halbring-Moduln eingefithrt werden. Es gibt jedoch einige
Unterschiede: unsere Konstruktionen koénnen auch unfreie Moduln erzeugen und unsere
Einermengen-Funktion ¢ braucht nicht strikt zu sein.

Der Halbring P1 heifit der charakteristische Halbring der Potenzkonstruktion P. Groflere
Allgemeinheit erreicht man, wenn man auch solche Halbringe charakteristisch fiir die Potenz-
konstruktion P nennt, die zu P1 isomorph sind. In diesem Falle muf} allerdings der Isomor-
phismus als fest angenommen werden.

Verschiedene Potenzkonstruktionen konnen durchaus denselben charakteristischen Halb-
ring haben. Umgekehrt ergibt sich aus den Sdtzen 14.5.1 und 15.1.1, daB es zu jedem gegebe-

nen Halbring zwei ausgezeichnete Potenzkonstruktionen gibt.

Potenzhomomorphismen

Homomorphismen zwischen algebraischen Strukturen sind Abbildungen, die alle Opera-
tionen dieser Strukturen erhalten. Potenz-Konstruktionen koénnen als algebraische Struk-
turen auf einer héheren Ebene betrachtet werden. Daher ist es moglich und auch sinnvoll,
entsprechende Homomorphismen zu definieren (siche Kap. 12).

Ein Potenzhomomorphismus H : P—-Q zwischen zwei Potenzkonstruktionen P und Q ist
eine ‘Familie” von Abbildungen H = (Hx)x : [PX — QX], die iiber alle Potenzoperationen
kommutieren, d.h.

¢ Die leere Menge von PX wird auf die leere Menge von OX abgebildet: H0 = 0.
¢ Das Bild einer Vereinigung ist die Vereinigung der Bilder: H(AY B) = (HA)SY (HB).
e Einermengen in PX werden zu Einermengen in QX: H{z[}p = {z[}o.

o Sei f:[X—PY]. Dannmufl Ho f: [X — QY] und H(extp fA) = extg(Ho f)(HA)
fir alle A in PX gelten.

Wenn zwei Konstruktionen 7 und Q denselben charakteristischen Halbring haben, kann man

definieren, dafl ein Potenzhomomorphismus linear ist, wenn alle Funktionen Hyx linear sind.

Ein Potenzisomorphismus zwischen zwei Konstruktionen P und @ ist eine Familie von
Isomorphismen H = Hx : [PX — QX], so da sowohl (Hx)x als auch (Hy')x Potenzho-
momorphismen sind.



6 EINLEITUNG

Initiale Potenzkonstruktionen

Eine Potenzkonstruktion P ist initial fiir einen Halbring R, wenn es zu allen Potenzkon-
struktionen Q mit demselben charakteristischen Halbring R genau einen linearen Potenzho-
momorphismus P—@Q gibt. Ein Hauptergebnis der Theorie der Potenzkonstruktionen ist,
daB es fiir alle Halbringe R initiale Konstruktionen gibt.

Initiale Potenzbereiche iiber X ergeben sich aus freien R-X-Moduln. (F, n) ist ein freies
R-X-Modul, wenn F ein B-Modul und 7 eine stetige Abbildung von X nach F ist, so daf}
es fir jedes R-Modul M und jede stetige Abbildung f : X — M genau eine stetige lineare
Erweiterung f : F — M mit fon = f gibt.

Die Idee, freie Moduln zu betrachten, geht auf [HP79] zuriick. Hoofman [Hoo87] zeigte die
Existenz freier Moduln fiir den Halbring {0, 1}. Main [Mai85] schlug Potenzkonstruktionen
vor, die als freie Moduln fiir einige ungewohnliche Halbringe definiert waren. Im Gegensatz zu
uns fordert er dabei die Striktheit der Einermengenabbildung, ohne genau zu sagen warum.
Die Einermengenabbildungen in die gemischten und Sandwich-Potenzbereiche jedenfalls sind
nicht strikt, weswegen sie in unserer allgemeinen Theorie der Potenzkonstruktionen auch

nicht strikt sein kdnnen.

Freie R-X-Moduln existieren fiir alle Halbringe R und Bereiche X und sind bis auf Iso-
morphie eindeutig bestimmt. Wahrend der Eindeutigkeitsbeweis ziemlich einfach ist, ist der
Existenzbeweis recht schwierig. Ublicherweise wird er mit Hilfsmitteln der Kategorientheorie
gefiihrt. Fiir diese Arbeit wurde der Beweis von [Hoo87] abgedndert und so vereinfacht, daf}
keine Sdtze aus der Kategorientheorie mehr bendtigt werden (Abschnitt 13.5). Leider wird
das freie Modul durch den Beweis nicht explizit gegeben.

Der Hauptsatz iiber initiale Potenzkonstruktionen wird in Abschnitt 14.5 formuliert.

Satz 14.5.1:
Sei R ein Halbring und sei P die Konstruktion, die jeden Grundbereich X in das freie
R-X-Modul (F, n) abbildet. Dann ist P die initiale Potenzkonstruktion fiir Halbring
R.

Die Potenzoperationen Vereinigung und leere Menge sind durch die Addition und ihr
neutrales Flement in F gegeben. Die Einermengenabbildung ist 5. Fiir Funktionen
f[X — PY]ist ext f gegeben durch die eindeutige Erweiterung von f. Das von
vornherein gegebene duflere Produkt der Moduln PX stimmt mit dem aus den Potenz-

operationen abgeleiteten duBeren Produkt iiberein.

Fiir jede andere Potenzkonstruktion @ mit Halbring R erhdlt man den eindeutigen
linearen Potenzhomomorphismus H : P—-Q als Erweiterung Hx = Az. {|z2]}o.

Finale Potenzkonstruktionen

Eine Potenzkonstruktion P ist final fiir Halbring R, wenn es fiir jede Potenzkonstruk-
tion @ mit demselben Halbring R genau einen linearen Potenzhomomorphismus Q=P gibt.
Finale Konstruktionen werden in Kap. 15 behandelt.

Finale Potenzkonstruktionen wurden in der Literatur bisher nicht vorgeschlagen, wahr-
scheinlich weil der Begriff des Potenzhomomorphismus fehlte. Im Gegensatz zu initialen
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Konstruktionen kénnen finale Potenzkonstruktionen durch Prddikate zweiter Ordnung ex-
plizit dargestellt werden. FEs ergibt sich, daff die von Smyth [Smy83] eingefiihrte obere
Potenzkonstruktion final ist, wahrend sein urspriinglicher Vorschlag in [Smy78] sich als initial

herausstellte.

Wie oben erwihnt, impliziert die Erweiterungsfunktion besonders interessante Operatio-
nen, wenn einer der beiden Bereiche, von denen sie abhingt, der Einpunktbereich 1 = {¢}
ist. Im Falle Y = 1 erhidlt man ezt: [[X — P1] — [PX — P1]]. Vertauschen der Argumente
liefert eine Abbildung & : [PX — [[X — P1] — P1]] von formalen Mengen nach Funktionen
zweiter Ordnung. Gemdf der logischen Interpretation von P1 kénnen diese Funktionen als
Pradikate zweiter Ordnung aufgefaflt werden. Die intuitive Bedeutung von & ist existentielle
Quantifizierung. Der Wert von £A p zeigt fiir ein A in PX und ein Pridikat p : [X — P1]
an, ob ein Element von A das Pradikat p erfiillt.

Die Axiome der Erweiterungsfunktion liefern die folgenden Figenschaften:
(P1) £0=Xp.0
(P2) £E(AY B)=MXp.(EAp) B (€ Bp)
(P3) E{z[} = Ap.p=
(S4) € (ext fA)=Ap.EA(Na. & (fa)p)
Diese Resultate legen nahe, zu einem gegebenen Halbring P1 eine Potenzkonstruktion

durch PX = [[X — P1] — P1] zu definieren. Eine leichte Variante dieser Idee liefert tat-
sdchlich eine Potenzkonstruktion.

Sei R ein gegebener Halbring. Dann konnen wir ein Produkt - : [X — R] x R — [X — R]
durch f+r = Az.fz - r definieren. In dhnlicher Weise kann auch eine Addition als innere
Verkniipfung auf [X — R] eingefiihrt werden. Fine Funktion F : [[X — R] — R] ist
rechtslinear, falls F'(fi + fo) = Ffi + Ffyund F(f-r) = Ff-r gelten. Der Bereich aller

rechtslinearen Funktionen von [X — R] nach R wird durch [[X — R] mhip R] bezeichnet.

Satz 15.1.1:
Sei R ein gegebener Halbring. Die finale Potenzkonstruktion fiir R bildet jeden Grund-
bereich X in die Menge der rechtslinearen Pradikate zweiter Ordnung iiber X ab:
PX = [[X — R] hip R]. Thre Operationen sind gegeben durch

e 0=2g.0
e AY B=MAg.Ag + Byg

{2} = Ag. gz fiir z € X.
o ext f A= Ag. A(Aa. fag) fir f:[X — PY]und A € PX.

Sei Q eine andere Potenzkonstruktion mit Halbring R. Der eindeutige lineare Potenz-
homomorphismus von Q nach P ist durch die existentielle Quantifizierung A =
Ag.extog A fir Ain QX gegeben.

Die Definition von ext sowie die der iibrigen Operationen werden durch die oben aufge-
fithrten Eigenschaften von £ motiviert. Man beachte, dafi P1 sich zu [[1 — R] hy R] ergibt,
das nicht gleich sondern nur isomorph zu R ist.
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Teilkonstruktionen

Sei P eine gegebene Potenzkonstruktion. Q heifit Teilkonstruktion von P, falls Q@ Grund-
bereiche X in Teilmengen von PX abbildet, so da8

¢ OX abgeschlossen ist gegeniiber Suprema von gerichteten Mengen,
e 0 € OX,

e wenn A und B in QX sind, dann ist A & B in @X,

{z[} in @X ist fir alle z in X,

wenn f:[X — QY] und A in X, dann ist ezt f A in QY.

Kurz, QX ist abgeschlossen gegeniiber allen Potenzoperationen von P. Q ist trivialerweise
eine Potenzkonstruktion, da die Giiltigkeit der Potenzaxiome fir Q@ von P geerbt wird.
Teilkonstruktionen werden in Kap. 14 behandelt.

Man sieht leicht, dafl der Durchschnitt einer Familie von Teilkonstruktionen einer Potenz-
konstruktion P wieder eine Teilkonstruktion von P ist, wenn wir ((\;c; Q)X = N;c(2:X)
definieren. Daher bilden die Teilkonstruktionen von P einen vollstindigen Verband.

Sei R ein Halbring. R’ ist ein Teilhalbring von R, falls R’ eine Teilmenge von R ist, die
0 und 1 enthilt und abgeschlossen ist gegeniiber Suprema von gerichteten Mengen, Addition
und Multiplikation. Weil die Operationen im charakteristischen Halbring von den Potenz-
operationen abgeleitet sind, ist der Halbring einer Teilkonstruktion Q von P ein Teilhalbring
des Halbrings von P. Aus denselben Griinden ist der Halbring eines Durchschnitts von
Teilkonstruktionen gleich dem Durchschnitt der Halbringe der Teilkonstruktionen.

Wir fanden zwei allgemeine Methoden zur Bildung von Teilkonstruktionen einer gegebe-
nen Konstruktion P mit Halbring R. Die Methode der Kernbildung ergibt die kleinste
Teilkonstruktion von P, die noch den Halbring R hat, wihrend die Methode der existen-
tiellen Einschrankung die gréfite Teilkonstruktion von P mit einem gegebenen Teilhalbring
R’ von R liefert. Der Kern der existentiellen Einschrinkung ist dann die kleinste Teilkon-
struktion mit dem gegebenen Halbring R'.

Der Kern P¢X eines Potenzbereichs PX ist die kleinste Teilmenge von PX, die die leere
Menge 0 und alle Finermengen {z[} enthilt und abgeschlossen ist gegeniiber Vereinigung ‘4,
Produkt mit Faktoren aus P1 und gerichteten Suprema. Man kann zeigen, dafl die Moduln
PX auch gegeniiber der Erweiterungsfunktion von P abgeschlossen sind. Daher ist P eine
Teilkonstruktion von P. Wir nennen sie den Kern von P. Er ist die kleinste Teilkonstruktion
von P mit demselben Halbring wie P.

Eine Potenzkonstruktion, die mit ihrem Kern iibereinstimmt, heifit reduziert. Reduzierte
Konstruktionen haben besonders schone Figenschaften. Alle initialen Konstruktionen sind
reduziert.

Wenn P eine Potenzkonstruktion mit Halbring R ist und R’ ein Teilhalbring von R, dann
ist die ewistentielle Finschrinkung von P auf R’ definiert durch

OX = PlpX ={A e PX|Vp:[X — R]:EApe R'}.

Sie ist eine Teilkonstruktion von P mit Halbring R’ und die gréfite derartige Teilkonstruktion.
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Wegen ihrer Definition durch existentielle Quantifizierung kénnte man glauben, dafl die
existentielle Einschrankung einer finalen Konstruktion fiir R eine finale Konstruktion fiir R’
ist. Das ist jedoch nicht der Fall, wie wir in Abschnitt 23.4 sehen werden. Dafiir gibt es
zwei Griinde. Erstens konnen zwei verschiedene Priadikate in [[X — R] thp R] auf Pradikaten
in [X — R'] iibereinstimmen. Sie unterscheiden sich dann noch in der Einschrankung der
finalen Konstruktion fiir R, obwohl sie in [[X — R'] hip R'] gleich wiren. Zweitens kénnte
[X — R'] i R'] zusétzliche Elemente haben, die sich nicht aus der Einschrankung von
Pradikaten in [[X — R)] thp R] ergeben.

Trotz dieser allgemeinen Resultate finden sich auch Beispiele fiir Halbringe R und R’,
wo die existentielle Einschrankung der finalen Konstruktion fir R final fir R’ ist — siehe

Satz 23.3.1.

Produkte von Potenzkonstruktionen

In Kap. 16 wird eine weitere Methode zur Bildung neuer Konstruktionen aus bereits
existierenden vorgestellt. Zu einer gegebenen Familie (P;);er von Potenzkonstruktionen wird
eine Produktkonstruktion P = [[;c; P; wie folgt gebildet:

o PX = [[;c; P;X fiir alle Grundbereiche X

0= (0:)ier

(Adier Y (Bi)ier = (Ai Y Bi)ier

{2} = ({{=[}i)ier fir alle 2 in X

Fir f: [X — PY] sei f; =m0 f. Dann ist ext f (A;)icr = (ext; fi A;)icr, wobei ext;

die Erweiterungsfunktion von P; bezeichnet. Hierbei bedeutet m; Projektion auf die

Komponente 1.

Die Uberpriifung der Potenzaxiome fiir P ist einfach, da die Potenzoperationen in den einzel-
nen Dimensionen unabhingig voneinander arbeiten. Der charakteristische Halbring von P
ist das Produkt der charakteristischen Halbringe der P;.

Folgende Sitze iiber das Produkt wurden hergeleitet:

Finalitatssatz 16.3.1:
Wenn P; finale Potenzkonstruktionen fiir die Halbringe R; sind fiir alle 7 € I, dann ist
das Produkt [];c; P; eine finale Konstruktion fiir das Produkt [];; R;.
TTIX — R ™ R] = [[X — ] k] =TT &)
el €1 €1
Kernsatz 16.5.1:  Der Kern des Produkts zweier Potenzkonstruktionen ist gleich dem
Produkt ihrer Kerne: (Py x P3)° = P§ x P§

Initialitatssatz 16.5.3:  Wenn Py initial fiir By und P5 initial fiir Ry ist, dann ist P; x P,
initial fir Ry X Rg.

Faktorisierungssatz 16.6.1:
Sei P eine Potenzbereich-Konstruktion fiir den Halbring Ry x Ry. P kann faktorisiert
werden, d.h. es gibt Potenzkonstruktionen Py fir Ry und Py fir Ry, so dal P iso-

morph zu Py X Py ist vermittels eines linearen Potenzisomorphismus genau dann, wenn
ext (Az.(1,0)-{zf}) B=(1,0) B fiir alle B in allen Potenzbereichen PX gilt.
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Die Bedingung des Faktorisierungssatzes ist fir viele Klassen von Potenzkonstruktionen
erfiillt. Zum Beispiel kann jede reduzierte Potenzkonstruktion fir Ry X Ry faktorisiert werden.
Die resultierenden Faktoren sind wieder reduziert (vgl. Kor. 16.6.4).

Spezielle Potenzkonstruktionen

Die algebraische Theorie der Potenzbereich-Konstruktionen kann auf die fiinf am Anfang
erwiahnten bekannten Potenzkonstruktionen angewandt werden. In der folgenden Zusammen-

fassung unserer Frgebnisse beschrinken wir uns auf algebraische Grundbereiche.
Die fiinf bekannten Potenzkonstruktionen kénnen wie folgt charakterisiert werden:

e Die untere Potenzkonstruktion £ ist sowohl initial als auch final fiir den Halbring L =
{0, 1} mit0<lund 14+1=1.

¢ Die obere oder Smyth-Potenzkonstruktion ¢/ ist sowohl initial als auch final fir den
Halbring U = {0, 1} mit 1 <OQund 1+1=1.

o Die konvexe oder Plotkin-Potenzkonstruktion C ist initial fiir den Halbring C = {0, 1}
mit 1+ 1 = 1 und unvergleichbaren Werten 0 und 1.

e Die gemischte Potenzkonstruktion M von Gunter ist initial fiir den Halbring B =
{L, 0, 1}, wobei L unter den unvergleichbaren Werten 0 und 1 liegt. In B ist Addition
gegeben durch parallele Disjunktion und Multiplikation durch parallele Konjunktion.

¢ Die Sandwich-Potenzkonstruktion § von Buneman et al. ist final fiir denselben Halbring
B.

¢ Die finale Potenzkonstruktion fiir den Halbring C fehlt in dieser Liste. Sie wurde bisher

nie betrachtet, weil sie degeneriert ist und ziemlich merkwiirdige Eigenschaften hat.

In Kap. 17 studieren wir die Halbringe L, U, C und B und die dazugeh6renden Moduln.
Die algebraischen Strukturen, die in [HP79] zur Charakterisierung von C, £ und U erwihnt
werden, sind nichts anderes als C-, L- und U-Moduln ohne 0, wihrend Gunters Mix-Algebren
aus [Gun89b, Gun90] nichts anderes als B-Moduln sind. Gunters zusitzliche einstellige Ope-
ration ist gerade Multiplikation mit L.

Die Theorie dieser speziellen Potenzkonstruktionen wird symmetrischer, wenn man zu-
sitzlich die Halbringe D und B betrachtet. Der ‘doppelte’ Halbring D ist definiert als L x U.
D hat 4 Elemente: ein kleinstes Element L = (0, 1), ein gréfites Element T = (1, 0) und
zwei unvergleichbare Werte 0 = (0, 0) und 1 = (1, 1) dazwischen. B = {0, 1, T} ist der 7zu
B ordnungsduale Halbring. B und B sind Teilhalbringe von D. Der Schnitt von B und B ist
C.

Gemaf der Theorie der Produkte von Potenzkonstruktionen ist das Produkt D von L
und U sowohl initial als auch final fiir Halbring D. Existentielle Einschrinkung auf B fiihrt
zu der Sandwich-Konstruktion &, deren Kern wiederum M ist. Daher ist S die grofite
Teilkonstruktion von D mit Halbring B, wahrend M die kleinste ist. Wenn man statt B den
dualen Teilhalbring B beniitzt, erhilt man die duale Sandwich-Konstruktion S und die duale
gemischte Konstruktion M. Der Schnitt SS von S und S ist interessant, weil er beschrinkte
Vollstandigkeit erhdlt (wenn man die leere Menge wegldft) und denselben Halbring C wie
Plotkins Konstruktion C hat. Der Schnitt von M und M ist C selbst.
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Die Sandwich-Bedingung, die S als Teilkonstruktion von D = £ X U auszeichnet, ist
durch existentielle Quantifikation gegeben. In Kap. 21 wird diese Bedingung in verschiedene
aquivalente Formen tibersetzt. Eine explizte Charakterisierung von M als Teilkonstruktion
von D oder § wurde ebenfalls gefunden. Diese Mix-Bedingung wird in Kap. 22 diskutiert.
In diesen Kapiteln werden auch die Bedingungen fiir S und M untersucht.

Teil IIT enthdlt noch einige weitere Ergebnisse, die nicht direkt mit der allgemeinen al-
gebraischen Theorie der Potenzkonstruktionen zusammenhéngen. In Verallgemeinerung der
Ergebnisse von [FM90] wird bewiesen, dafi die untere und obere Potenzkonstruktion kom-
mutieren, d.h. LUX und ULX sind isomorph (Abschnitte 20.5 und 20.6). Die Sandwich-
Potenzbereiche SX werden als freie Sandwich-Algebren iiber X charakterisiert (Kap. 24).

Bereichsklassen

Die Ergebnisse von Teil 111 werden fiir méglichst allgemeine Klassen von Bereichen be-
wiesen. Die Ubereinstimmung zwischen der initialen, der finalen und der explizit durch
Scott-abgeschlossene Mengen gegebenen unteren Potenzkonstruktion konnte fiir alle Grund-
bereiche gezeigt werden. Bei den oberen Potenzkonstruktionen ist die Lage jedoch wesentlich
komplizierter. Die Frage der Ubereinstimmung zwischen der initialen oberen Konstruktion
U;, der finalen Uf s, ihres Kerns I, und der explizit durch kompakte obere Mengen gegebenen
Konstruktion Uk konnte nur fiir bestimmte (wenn auch sehr groBe) Bereichsklassen gekldrt
werden.

Zur genaueren Untersuchung der Verhidltnisse werden in Teil I der Arbeit topologische
Methoden eingefiihrt. Mit ihrer Hilfe konnen verschiedene Klassen von Bereichen definiert
und untersucht werden, die zum Teil neu sind. Fiir die oberen Potenzkonstruktionen konnte
U;X 2 U X fiir stetige Grundbereiche X gezeigt werden (Kap. 19). ¢ ;X und ¢.X hingegen
stimmen auf der gréfleren Klasse der multi-stetigen Bereiche definitiv iiberein. Die maximalen
Klassen der Ubereinstimmung sind dabei jeweils unbekannt. U X und U X sind genau auf
der Klasse der niichternen Bereiche isomorph. Ui X ist jedoch nicht fiir alle Bereiche sinnvoll
definiert, sondern nur auf der Klasse K-RD, die die Klasse der niichternen Bereiche enthilt.

Neuartige topologische Begriffshildungen wie starke Kompaktheit (Abschnitt 4.7) er-
laubten sogar die Definition weiterer oberer Potenzkonstruktionen (Kap. 20). Diese Kon-
struktionen sind Teilkonstruktionen von Uy bzw. Ux und stimmen mit diesen fiir multi-
stetige Grundbereiche iiberein. Die Frage der Ubereinstimmung auf gréBeren Klassen blieb
offen.

Schlufibemerkungen

Geschichte und Veroffentlichungen

Die algebraische Theorie der Potenzkonstruktionen ist aus dem Versuch entstanden, die
semantischen Eigenschaften eines Datentyps von Mengen in einer funktionalen Sprache zu
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beschreiben. Die so entstandene algebraische Spezifikation der ‘Mengenbereich-Konstruk-
tionen’ wurde in [Hec90c| veroffentlicht. Zwei spezielle Mengenbereich-Konstruktionen wur-
den gefunden, die die Spezifikation erfiillen. Die groflen Mengenbereiche erwiesen sich spater
als isomorph zu den Sandwich-Potenzbereichen, wihrend sich die kleinen Mengenbereiche als
isomorph zu den gemischten Potenzbereichen herausstellten.

Die Spezifikation der Mengenbereich-Konstruktionen beniitzt einen von vorneherein ge-
gebenen Bereich logischer Werte, ndmlich B = {1, 0, 1}. Die Untersuchung verschiedener
aus der Spezifikation abgeleiteter Operationen ergab — auch inspiriert durch [Mai85] — daf
ein Bereich logischer Werte auch im nachhinein aus den mengentheoretischen Operationen
der leeren Menge, der Finermengenabbildung, der Vereinigung und der Erweiterungsfunktion
gebildet werden kann. Die Spezifikation der Mengenbereich-Konstruktionen lief} sich dann in
zwei ‘leile zerlegen: in eine Spezifikation von allgemeineren Objekten, ndmlich Potenzbereich-
Konstruktionen, und die Forderung, dafl P1 isomorph zu B sein solle. Durch Weglassen der
jetzt als kiinstlich empfundenen Einschrinkung P1 = B ergab sich eine erste Version der
Spezifikation von Potenzkonstruktionen.

Ein zweiter Ausgangspunkt war die Beobachtung, dafl Sandwich-Potenzbereiche $SX iso-
morph zu Funktionenrdumen [[X — B] add B] sind. Der technische Bericht [Hec90a] enthielt
einen ersten ordnungstheoretischen Beweis dieser Isomorphie. In der Folge fanden wir her-
aus, dafl viel allgemeinere Funktionenrdume [[X — R] e R] immer Potenzkonstruktionen
im Sinne der algebraischen Spezifikation darstellen. Diese Ergebnisse wurden zusammen mit
der Beschreibung der gemischten und der Plotkin-Potenzbereiche durch Pradikate zweiter
Ordnung auf dem MFPS’90 Workshop in Kingston, Ontario, vorgestellt. Die Finalitit dieser
Konstruktion wurde erst im Sommer 1990 gefunden. Kern, existentielle Einschrinkung und

die Theorie der Produkte sind sogar noch jiingere Erkenntnisse.

Die voll entwickelte algebraische Theorie ist in dem Technischen Bericht [Hec90b] enthal-
ten, der zur Verdffentlichung als [Hec91] angenommen wurde. Ein Artikel mit Schwerpunkt
auf Pradikaten zweiter Ordnung und den Teilkonstruktionen von D wurde bei der Zeitschrift
TCS eingereicht. Ein dritter Artikel iiber die Vertauschbarkeit von £ und i wurde zur
MFPS’91-Konferenz geschickt.
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Introduction

Motivation

A power domain construction maps every domain X of some distinguished class of domains
into a so-called power domain over X whose points represent sets of points of the ground
domain. Power domain constructions were originally proposed to model the semantics of non-
deterministic programming languages [Plo76, Smy78, HP79, Mai85]. Other motivations are
the semantic representation of a set data type [Hec90c], or of relational data bases [BDWS&8,

Gun89b].

In 1976, Plotkin [Plo76] proposed the first power domain construction. Because his con-
struction goes beyond the category of bounded complete algebraic domains, Plotkin proposed
the larger category of SFP-domains that is closed under his construction. A short time later,
Smyth [Smy78] introduced a simpler construction, the upper or Smyth power construction,
that respects bounded completeness. In [Smy83], a third power domain construction occurs,

the lower power domain, that completes the trio of classical power domain constructions.

Starting from problems in data base theory, Buneman et al. [BDW88] proposed to combine
lower and upper power domain to a so-called sandwich power domain. Gunter investigated
the logic of the classical power domains [Gun89a]. By extending the logic of Plotkin’s domain
in a natural way, he developed a so-called mixed power domain [Gun89b, Gun90]. Plotkin’s
power domain is a subset of the mixed one, and this in turn is a subset of the sandwich power
domain.

We independently found the sandwich and mixed power domains in an isomorphic form as
big and small set domains when developing domain constructions that would give semantics

to an abstract data type of sets in a functional programming language (see [Hec90c]).

Given at least five different power domain constructions, the question arises what is the
essence of these constructions, i.e. what are their common features which allow the application
of the notion ‘power domain’. Thus, we look for a theory of power domain constructions that
covers the existing ones and provides answers to the following questions:

(1) What are power domain constructions?
(2) How are different power domain constructions related to each other?
(3) Are there more than the five constructions enumerated above?

4) If so, how are these five constructions distinguished among all the others?

13
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In addition, a general theory of power constructions provides — if it is to be useful — general
theorems that are applicable to all specific power domain constructions.

The authors of the early papers about power domain constructions all mentioned some
algebraic operations that are possible in their power domains. They however did not yet
indicate the algebraic laws of these operations and the relations among different operations. In
[HP79] then, the three classical power domains were characterized as free algebras w.r.t. some
algebraic theories. Basically, these theories describe commutative idempotent semigroups, but
employ various additional axioms that are mathematically not well motivated. In [Gun89b],
Gunter characterized his mixed power domains in roughly the same line. Instead of employing
additional axioms for the semigroup, he uses an additional unary operation. In [Hec90c], the
sandwich power domains were also characterized as free algebras w.r.t. a theory of semigroups
with a partial binary operation whose computational meaning is unclear (see chapter 24).

We felt that these results are not the general theory of power domain constructions.
Their answer to question (1) above would be: power domains are free algebras according
to algebraic theories of CI semigroups with more or less strange additional operations and
axioms. Moreover, this theory has the drawback to deal more with single power domains
than the whole power domain construction, i.e. the mapping from ground domains into power

domains.

The algebraic theory of power domain constructions

Gunter presents in [Gun90] the semantics of a non-deterministic language in terms of a
generic power domain construction using the three basic operators of singleton, binary union,
and extending set-valued functions from points to sets. These generic semantics may then
be instanciated by choosing a concrete construction instead of the generic one. The concrete
construction only has to provide the necessary basic operations.

Thus, we define a power domain construction by axioms concerning the existence of some
basic operations. In addition, we specify some axioms that should be satisfied by the basic
operations. One might worry about the actual choice of these axioms, but we think that our
choice is quite natural. This opinion is strengthened by the fact that our definition leads to
a rich theory presented in Part II of the thesis, covers the known power constructions, and
allows to characterize them algebraically.

Specification of power constructions

In the sequel, domains are just directed complete partially ordered sets, i.e. we neither
require a least element nor algebraicity. As explained in chapter 9, a power (domain) con-
struction P maps ground domains X into power domains over X. The power domains have

to satisfy the following axioms:
Empty set: There is a distinguished element 0 in every power domain PX.

Binary union: There is a continuous operation Y : [PX xPX — PX]in every power domain.
‘Y’ is commutative and associative, and 0 is its neutral element.
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Singleton sets: There is a continuous mapping ¢ : [X — PX], z — {z[} for every ground

domain X.

Extension of functions: For every two domains X and Y, there is a higher order function

ext : [[X — PY] — [PX — PY]] mapping set-valued functions on ground domain

elements into set-valued functions on sets. It has to satisfy the following axioms:

ext f

(P1) ext fO =10

(P2) ext f(AQY B)=extfA Y ext fB

(P3) ext f{zf} = fz or: ext for=f L
(see the figure to the right)

(S1) ext(Az.0)A =0 X

(S2) ext(Az. fr Y gr)A=ext fAY extgA.

Raising ‘Y’ to functions, one may shortly write ext (f & g) = ext f Y extg.

(S3) ext (Az. {z[}) A=A or: ext L = id.
(S4) For every two morphisms f: [X — PY] and g:[Y — PZ],
ext g (ext f A) = ext (Aa. ext g(fa)) A

holds for all Ain PX, or: extgoext f=ext(extgo f)
(see the figure below)

ext f ext g
PY

PZ

X Y

Note that we do not require ezt f to be the only morphism satisfying (P1) through (P3)

for given f. If we had assumed this uniqueness, (S1) through (S4) would have been provable.

That is why we call them secondary axioms in contrast to the primary axioms (P7).

Semirings and modules

The operations as specified above allow to derive many other operations with useful

algebraic properties (see chapter 10). We here include the most important ones only.

Fxtension depends on two ground domains, X and Y. Particularly interesting instances

of extension are obtained if one of X and Y is the one-point domain 1 = {o}. In case X = 1,

extension has functionality ezt : [[1 — PY] — [P1 — PY]]. Dropping the obsolete argument

in 1, uncurrying and twisting arguments leads to the ‘external product’ - : [P1 x PY — PY].

The definition is b -5 = ext (Ao. 5)b. If we additionally choose Y = 1, then multiplication

becomes an inner operation of P1.
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If we rename the empty set 0 of P1 into 0, the union ‘8’ into ‘4’, and the singleton {jo[}
into 1, then the power axioms imply the following algebraic laws for P1:

a+(b+c)=(a+b)+ec a+b=b+a a+0=04+a=ua
a-(b-¢c)=(a-b)-c a-l=1-a=a
a-(b1+b)=(a-b1)+(a-b3) (a1 +az) - b=(a;-b)+(az:b) a-0=0-a=0

Such algebraic structures are called semirings. Note that all algebras occurring in this thesis
have domains as carriers and continuous operations.

Semirings are common generalizations of rings as well as of distributive lattices. Thus,
they may also be interpreted logically: 0 as ‘false’, 1 as ‘true’, addition as disjunction, and
multiplication as conjunction. The semiring 71 then reveals the inherent logic of the power
domain construction P. This view makes most sense if the semiring addition is idempotent
— a fact that holds for the known power constructions.

If we also rename the empty set 0 of PX into 0 and its union ‘Y’ into ‘4’, then we obtain
the following algebraic laws where members of PX are capitalized in contrast to members of

P1:

A+(B+C)=(A+B)+C A+B=B+ A A+0=04+A4=4
re(s-A)=(r-s)-A 1-A=A4A
ro(A1+A)=(r-A)+(r-Ay) (ri4re) - A=(r1-A)+(r3-A) r.0=0-A=0
Such algebraic structures are called P1-modules. A function f : [M — M’] between two
P1l-modules is called linear iff f(A+ B)= fA+ fBand f(r-A)=r-fA hold.
The results of chapter 10 then allow to state:

Theorem 11.1.3:  Let P be a power construction and let

+=yY: [PX x PX — PX]
0=90: PX
= Ma, §). ext (Ao, S)a: [Pl x PX — PX]
1 ={of: P1

Then P1 with these operations is a semiring, and PX is a P1-module for all domains
X. For f: [X — PY], the extension ext f : [PX — PY]is linear, and ext for = f
holds.

This result connects our work with that of Main [Mai85] where power domains are intro-
duced as free semiring modules. There are however some differences: our constructions may

create non-free modules, and our singleton function ¢ need not be strict.

The semiring P1 is called the characteristic semiring of the power construction P. Gen-
eralizing a bit, a power construction P is said to have characteristic semiring R iff P1 and R
are isomorphic semirings where the isomorphism is assumed to be fixed.

Different power constructions may have the same characteristic semiring. Conversely,
Th. 14.5.1 and Th. 15.1.1 provide two distinguished power constructions for any given semi-
ring.
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Power homomorphisms

Homomorphisms between algebraic structures are mappings preserving all operations of
these structures. Power constructions may be considered algebraic structures on a higher
level. Thus, it is also possible and useful to define corresponding homomorphisms (see chap-
ter 12).

A power homomorphism H : P-Q between two power constructions P and Q is a ‘family’
of morphisms H = (Hx)x : [PX — QX] commuting over all power operations, i.e.

e The empty set in PX is mapped to the empty set in @QX: HO = 0.
e The image of a union is the union of the images: H(A Y B)=(HA)Y (HB).
e Singletons in PX are mapped to singletons in QX: H{z[}p = {z[}o.

o Let f:[X — PY]. Then Ho f:[X — QY], and H(extp fA) = extgo(H o f)(HA)
has to hold for all 4 in PX.

If the two constructions P and Q share the same characteristic semiring, then one can define:
A power homomorphism is linear iff all the functions Hyx are linear.

A power isomorphism between two constructions P and @ is a family of isomorphisms
H = Hx : [PX — QX] such that both (Hx)x and (Hy')x are power homomorphisms.

Initial power constructions

A power construction P is initial for semiring R iff for all power constructions Q with the
same characteristic semiring R there is exactly one linear power homomorphism P-Q. A
main result of the theory of power constructions is the existence of such an initial construction
for every semiring R.

Initial power domains over X are obtained as free R-X-modules. (F, n) is a free R-X-
module iff F is an R-module and 7 is a continuous mapping from X to F such that for
every R-module M and every continuous f : X — M, there is exactly one continuous linear
f:F — M with fon=f.

The idea to consider free modules dates back to [HP79]. Hoofman [Hoo87] showed the
existence of the free module for semiring {0, 1}. Main [Mai85] then proposed power construc-
tions defined as free modules for some fancy semirings. In contrast to our work, he requires
the singleton mapping to be strict without telling exactly why. The singleton maps of mixed
and sandwich power domain are not strict, whence the singleton maps in our general theory

of power constructions cannot be strict likewise.

For all semirings R and domains X, free R-X-modules exist and are unique up to iso-
morphism. Whereas the proof of uniqueness is quite simple, the proof of existence is difficult
and usually done by categorical means. In this thesis, we adapted and simplified the proof
of [Hoo87] such that categorical theorems are no longer used (section 13.5). Unfortunately,
the proof does not provide an explicit representation of the free module.

The main theorem about initial power constructions is formulated in section 14.5.

Theorem 14.5.1:

Let R be a given semiring. Let P be the construction that maps every ground domain X
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into the free R-X-module (F, n). Then P is the initial power construction for semiring
R.

The power operations of union and empty set are given by addition and its neutral
element in the free module F, and singleton is 7. For functions f: [X — PY], ext f is
given by the unique extension of f. The a priori given external product of the modules

PX coincides with the external product derived from the power operations.

For any other power construction @ with semiring R, the unique linear power homo-
morphism H : P-Q is obtained by Hx = Az.{z[}o.

Final power constructions

A power construction P is final for semiring R iff for every power construction Q with the
same semiring R there is exactly one linear power homomorphism Q-—=7P. Final constructions
are dealt with in chapter 15.

Final power constructions were never proposed in the literature, probably because the
notion of a power homomorphism was missing. In contrast to initial constructions, the final
power constructions may be explicitly presented in terms of second order predicates. Thus, it
turns out that the upper power construction of [Smy83] is final, whereas the original proposal
in [Smy78] is initial.

As mentioned above, extension yields particularly interesting operations if one of the
two domains it depends on is the one-point domain 1 = {¢}. In case Y = 1, one obtains
ext: [[X — P1] — [PX — P1]] which can be re-arranged by uncurrying, twisting, and then
currying again. The outcome is a morphism &£ : [PX — [[X — P1] — P1]] mapping formal
sets into second order functions. In view of the logical interpretation of P1, these functions
may be coined as second order predicates. The intuitive meaning of £ is then existential
quantification. Given a formal set A in PX and a predicate p : [X — P1], the value of EAp
intuitively tells whether some member of A satisfies p.

Some of the axioms of extension easily translate into the following properties:
(P1) £0=2Ap. 0
(P2) E(AY B)=Ap.(E Ap) B (€ Bp)
(P3) € fal} = Ap.pa
(S4) E(ext fA)=Ap.EA(Na. & (fa)p)
These results suggest to define a power construction for given semiring P1 by PX =

[[X — P1] — P1]. Indeed, a slight variant of this method to obtain power constructions
really works out.

Let R be a given semiring. Then we may define a product - : [X — R] x R — [X — R] by
f-r=Az.fz-r. Similarly, an addition may be defined as an inner operation on [X — R]. A
function I : [[X — R] — R]is right linear iff F'(fi+f2) = Ffi+F fy and F (f-r) = F f-r hold.
The domain of all right linear function from [X — R] to R is denoted by [[X — R] mhp R].
Theorem 15.1.1: Let R be a given semiring. The final power construction for R is

explicitly given by mapping the ground domain X to the space of right linear second
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order predicates over X:
PX = [[X — R] hip R]. Its operations are defined by
e 0=1Xg.0
e AY B=MAg.Ag + By
{z[} = Ag. gz for z € X.
o cxt fA=Xg. A(Xa. fag) for f:[X — PY]and A € PX.

Let @ be another power construction with semiring R. The unique linear power homo-

morphism from Q to P is given by existential quantification £A = Ag. extgg A for A
in OX.
The definition of ext as well as those of the remaining operations are motivated by the

properties of £ listed above. Note that P1 is [[1 — R] hp R] which does not equal R but is
isomorphic to R.

Sub-constructions

Let P be a given power construction. Q is called a sub-construction of P iff @ maps ground
domains X into subsets of PX such that

o QX is closed w.r.t. lubs of directed sets,

e 0 € 9OX,

o If Aand B arein QX, then A Y B isin @X,

{z[} is in OX for all z in X,

If f:[X— QY] and Ain X, then ezt f Aisin QY.

In shorter terms, OX is closed w.r.t. all power operations of P. Q is obviously a power con-

struction since the validity of the power axioms for @Q is inherited from P. Sub-constructions
are handled in chapter 14.

One easily verifies that the intersection of a family of sub-constructions of a power con-
struction P is again a sub-construction of P, if we define ((;c7 Q:)X = ;e7(2:X). Hence,

the sub-constructions of P form a complete lattice.

Let R be a semiring domain. R’ is a sub-semiring of R iff R’ is a subset of R containing
0 and 1, and being closed w.r.t. lubs of directed sets, addition, and multiplication. Because
the operations in the characteristic semiring are derived from the power operations, the
semiring of a sub-construction Q of P is a sub-semiring of the semiring of P. Similarly, the
semiring of an intersection of sub-constructions is the intersection of the semirings of the

sub-constructions.

We found two general methods to derive sub-constructions from a given construction P
with semiring R. The method of core formation yields the smallest sub-construction of P that
still has semiring R, whereas the method of existential restriction creates the greatest sub-
construction of P with a given sub-semiring R’ of R. The core of the existential restriction

is then the least sub-construction with the given semiring R’.

The core PX of a power domain PX is the least subset of PX that contains the empty
set © and all singletons {|z[}, and is closed w.r.t. union ‘8’, product by factors in P1, and
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directed suprema. One can show that the modules P°X are also closed w.r.t. extension of
P such that P° is a sub-construction of P. We call it the core of P. It is the least sub-
construction with the same semiring as P.

A power construction that coincides with its core is called reduced. Reduced constructions
enjoy particularly nice properties. All initial constructions are reduced.

If P is a power construction with semiring R, and R’ is a sub-semiring of R, then the

existential restriction of P to R’ defined by
OX =PlpX={AePX|Vp:[X = R|:EApe R}

is a sub-construction of P with semiring R’. It is the greatest such sub-construction.

Because of its definition in terms of existential quantification, one might believe that the
existential restriction of a final construction for R is a final construction for R’. However
this is not true as we shall see in section 23.4. There are two reasons for this. First, two
distinct second order predicates in [[X — R] hp R] may produce equal results for predicates
in [X — R']. They are then still different in the restriction of the final construction for R, but

equal in [[X — R'] i R']. Second, there may be additional members in [[X — R/] iy R']
that cannot be obtained by restricting predicates in [[X — R] thp R].

Despite of this general result, we also meet examples for semirings R and R’ where the
existential restriction of the final construction for R is final for R’ — see Th. 23.3.1.

Products of power constructions

In chapter 16, another method to build new constructions from existing ones is introduced.

Given a family (P;);er of power constructions, we may build a product construction P =
[Lies Pi:
¢ PX = [[;e; P:X for all ground domains X
0 =(0;)ier
(Ai)ier © (Bi)ier = (Ai Y Bi)ier
{z[} = ({z[}i)ier for all z in X
For f:[X — PY]let f; = mjo f. Then ext f(A;)icr = (ext; fi A;)ier where ext; denotes
the extension functional of P;. Here, m; denotes projection to component .

The verification of the power axioms for P is straightforward since the power operations
work independently in all dimensions. The characteristic semiring of P is the product of the

characteristic semirings of the P,.
We derived the following properties of the product:

Finality theorem 16.3.1: If P; are final power constructions for the semirings R; for all
i € I, then the product [],.;P; is a final construction for the product [[;.; R;.
TTIX — B] ™ R] = [[X — [ R] ™ I] &)
i€l el el
Core theorem 16.5.1: The core of the product of two power constructions equals the

product of their cores: (Py X P3)* = P{ x P5
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Initiality theorem 16.5.3:
If Py is initial for B1 and Ps initial for Ko, then Py X Py is initial for B X Ro.

Factorization theorem 16.6.1:
Let P be a power domain construction for semiring R, X Rs. P may be factorized, i.e.
there are power constructions Py for R and Py for Ry such that P is isomorphic to
P1 x Py by a linear power isomorphism, if and only if ezt (Az.(1,0)-{z[}) B=(1,0)-B
holds for all B in all power domains PX.
The condition of the factorization theorem holds for many classes of power constructions.
For instance, every reduced power construction for Ry X Ry can be factorized. The resulting
factors are reduced again (cf. Cor. 16.6.4).

Special power constructions

The algebraic theory of power domain constructions may be applied to the known 5 power
constructions mentioned in the beginning. In the following summary of our results, we restrict
ourselves to algebraic ground domains.

The five known power constructions may be characterized as follows:

e The lower power construction £ is both initial and final for the semiring L = {0, 1}
withO<land14+1=1.

e The upper or Smyth power construction f is both initial and final for the semiring
U={0,1} with1<Oand 1+1=1.

e The convex or Plotkin power construction C is initial for the semiring C = {0, 1} with
1+ 1 =1 and uncomparable values 0 and 1.

e The mixed power construction M of Gunter is initial for the semiring B = {L, 0, 1}
with L being below the uncomparable values 0 and 1. In B, addition is given by parallel
disjunction and multiplication by parallel conjunction.

¢ The sandwich power construction § of Buneman et al. is final for the same semiring B.

e The final power construction for the semiring C is missing in this list. T'he reason is
that it is degenerated and has quite awkward properties.

In chapter 17, we study these semirings and modules. The algebraic structures mentioned in
[HP79] to characterize C, £, and U are nothing else but C-, L-, and U-modules respectively
without 0. Similarly, Gunter’s mix algebras of [Gun89b, Gun90] are nothing else but B-
modules. Gunter’s additional unary operation is just multiplication by L.

The theory of these special power constructions can be made more symmetric by taking
the additional semirings D and B into consideration. The ‘double’ semiring D is defined as
L x U. D has 4 elements: a least element L = (0, 1), a greatest element T = (1,0), and
the two incomparable values 0 = (0, 0) and 1 = (1, 1) in between. B = {0, 1, T} is the
order-dual of B. Both B and B are sub-semirings of D. Their intersection is C.

According to the theory of products of power constructions, the product D of £ and U
is both initial and final for semiring D. Existential restriction to B leads to the sandwich
construction § whose core in turn is M. Thus, § is the greatest sub-construction of D with
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semiring B, and M is the least one. By employing the dual sub-semiring B, we obtain the
dual sandwich construction S and the dual mix construction M. The intersection SS of S
and S pays some interest since it preserves bounded completeness and has the same semiring
C as Plotkin’s construction C. The intersection of M and M is C itself.

The sandwich condition that characterizes S as sub-construction of D = £ XU is given by
existential quantification. In chapter 21, we translate this condition into various equivalent
forms. We also found an explicit characterization of M as a sub-construction of D or §. This
mix condition is discussed in chapter 22. In these chapters, the dual conditions for S and M

are also investigated.

Part III also contains some more results that are not directly connected to the general al-
gebraic theory of power constructions. The lower and upper power construction are shown to
commute generalizing the results of [FM90], i.e. LUX and U LX are isomorphic (sections 20.5
and 20.6). The sandwich power domains $X may be characterized as free sandwich algebras
over X (chapter 24).

Domain classes

The results of Part 11l are proved for as large classes of domains as possible. The coinci-
dence among the initial and the final lower power construction and the one explicitly given
in terms of Scott closed sets could be shown for all ground domains. The situation is however
much more complex if upper power constructions are considered. The question of coincidence
among the initial upper construction ¥;, the final one U, its core U, and the explicitly given
construction in terms of compact upper sets Ux could be answered for certain (though quite

large) classes of domains only.

To analyze the situation precisely, we use topological methods that are introduced in Part I
of the thesis. With these methods, various classes of domains can be defined and investigated.
Some of these classes are novel. For the upper power constructions, ¢;X = U ;X could be
shown for continuous ground domains (chapter 19). ;X and U,X however definitively
coincide for the larger class of multi-continuous domains. The maximal class of coincidence
is unknown in both cases. U X and UxrX are isomorphic iff the ground domain X is sober.
U X does not make sense for all ground domains. It is defined for the superclass K-RD of

the class of sober domains.

Novel topological notions such as strong compactness (section 4.7) allow to define even
more upper power constructions (chapter 20). The resulting constructions are sub-construc-
tions of Uy and Uk respectively. They coincide with these super-constructions for multi-
continuous ground domains. The question of full coincidence remains open.

Final remarks

History and publications

The algebraic theory of power constructions evolved from an attempt to specify the se-
mantic properties of a set data type in a functional language. The resulting algebraic spec-
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ification of ‘set domain constructions’ was published in [Hec90c]. Two specific set domain
constructions that satisfy the specification were found. The big set domains later turned out
to be isomorphic to the sandwich power domains, and the small set domains turned out to

be isomorphic to the mixed power domains.

The specification of set domain constructions involves an a priori given domain of logical
values, namely B = {1, 0, 1}. In investigating various derived power operations, we found —
also inspired by [Mai85] — that a domain of logical values may be derived a posteriori from
the set-theoretic power operations empty set, singleton, union, and extension. The set con-
struction specification then turned out to fall into two parts: a specification of more general
entities, namely power domain constructions, and the requirement that 71 be isomorphic to
B. Dropping the now artificial restriction P1 = B led to a first version of the specification
of power constructions.

A second starting point was the observation that sandwich power domains $X are iso-
morphic to function spaces [[X — B] add B]. A first order-theoretic proof of this isomorphism
is contained in the technical report [Hec90a]. In the sequel, we found that much more general
function spaces [[X — R] thp R] always define power constructions as defined by the algebraic
specification. These results together with the characterization of mixed and Plotkin power
domains in terms of second order predicates were presented at the MFPS’90 workshop in
Kingston, Ontario. The finality of the construction in terms of second order predicates was
found in summer 1990. Core, existential restriction, and the product theory are even more

recent results.

The fully evolved algebraic theory is contained in the technical report [Hec90b] and ac-
cepted for publication as [Hec91]. A paper with emphasis on second order predicates and
the sub-constructions of D is submitted to the TCS journal, and a third paper about the
isomorphism between LUX and ULX is submitted to the MFPS’91 conference.
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This first part of the thesis contains a collection of definitions and facts from domain
theory and topology. Power domain constructions do not occur in this part although its size
is more than one third of the whole thesis. The purpose of this foundations part is to serve as
a data base for all fundamental facts and technical proofs that are used in the two remaining
parts of the thesis when discussing power domain constructions. Experienced readers should
skip this part, immediately start reading Part 1I, and only occasionally look up concepts,
definitions, and results from the foundations part.

The material of the first four chapters is standard except the notion of strong compactness
introduced in section 4.7. Many of the concepts and ideas are mentioned in [Law88] together
with sketches of their proofs. Fully experienced readers will thus not find much interesting
in here. Many computer scientists however do not know much of topology, and conversely,
many topologists do not know domain theory. Thus, these four chapters serve as a consistent
attempt for an introduction of the mathematical aspects of both theories.

The first four chapters handle the more basic aspects of the theory. After introducing
some notations in chapter 1, we present the theory of partially ordered sets and monotonic
functions in chapter 2. In chapter 3, the theory of directed complete partial orders and
continuous functions follows. 1o be concise, we call the directed complete partial orders
domains in this thesis. Thus, our domains neither have to possess a least element nor must
they be algebraic. In chapter 4, we then introduce the theory of topological spaces and
(topologically) continuous functions. In contrast to classical introductions to topology, we
neglect the well separated Hausdorff spaces. Instead, we concentrate on the relations between
order theory and topology. Several of the lemmas in chapters 3 and 4 will be heavily used in
order-theoretic or topological proofs in the remaining two parts of the thesis.

Chapters 5 through 8 introduce classifications of domains. Among these, there are trivial
ones such as finiteness, well known ones such as bounded completeness and algebraicity,
almost unknown ones such as sobriety and multi-continuity, and novel classes such as SC
and S-RD. Chapter 5 is devoted to completeness properties from bounded completeness in
section 5.2 to SC in section 5.5. Chapter 6 deals with algebraicity and continuity. Besides all
the standard theory, it contains purely topological characterizations of algebraicity (Th. 6.2.5)
and continuity (Th. 6.7.9). These characterizations will be used in Part III of the thesis.
Chapter 7 treats finitely algebraic (bifinite) and finitely continuous domains, retracts, and
the preservation of domain classes by functors. These results directly apply to power domain
constructions because they are special functors as shown in chapter 10. In chapter 8, we study
multi-algebraicity and multi-continuity (8.1 —8.4), sobriety (8.5 —8.8), and the ‘Rudin classes’
K-RD and S-RD (8.9 — 8.11). The last section 8.12 of Part I contains tables and diagrams

summarizing the definitions and relative inclusions of the introduced domain classes.

As the end of this introduction, we include a table of all the sections of particular interest
in the foundations part.



28

Rudin’s Lemma

Classes SC and KC

Strong compactness

Topological criteria for ALG and CONT
Multi-continuity

Sobriety

Rudin classes S-RD and K-RD

Section 3.9

Section 5.5

Section 4.7

Sections 6.2 and 6.7
Sections 8.1 — 8.4
Sections 8.5 — 8.8
Sections 8.9 and 8.10



Chapter 1

Basic notations

This chapter introduces some basic mathematical notations that we shall use throughout
the thesis. In the first section, we present our notations for finite subsets, images, inverse
images, etc. In the second section, closure formation is considered in more detail.

1.1 Some notations from set theory

Here, we present only those notations that are not standard. For two sets A and B, the
notation A Cy B means A is a finite subset of B. If A is a subset of some universe X, then
co A denotes the complement of A in X, i.e. coA = X \ A. The power set of a set X is
denoted by 2¥.

Let f: X — Y be a function. We denote the image of a point 2 in X under f by fz, i.e.
we mostly omit parentheses in applications. Thus, the multiplication symbol -’ will never be
omitted, i.e. products are always written @ - b. Functions are often denoted by A-expressions.
For instance, the function f defined by fy = = -y where z is a constant, may be concisely
referred to by Ay.z -y. We assume the reader to be familiar with the elementary rules of a-,

-, and n-conversion for equational reasoning in the A-calculus.

Usually, applications will group left, i.e. Gfz means (Gf)z. In rare circumstances only
where the type of the involved terms obviously excludes the meaning (gf) z, we abbreviate
g(fx) by gfz. As the function occurs to the left of its argument in applications, composition
operates from right to left. The composition of f: X — Y and ¢ : Y — Z is hence denoted
by gof: X — Z,ie. (go f)z equals g(fz).

Let f: X — Y be again a function. The image of a subset A of X under f is denoted by
flA] = {fa | a € A}. Square brackets are used here to let the reader more safely distinguish
between applications to single points 2 and pseudo-applications to whole sets. Accordingly,
the inverse image of a subset B of Y is denoted by f~'[B] = {z € X | fx € B}.

1.2 Closure operations

Closure operations are a special form of set operations. Because of their fundamentality,
they occur in various different contexts. In the thesis, we shall introduce several distinct

29
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closure operations. In this section, we study the generic properties common to all closure

operators.
Definition 1.2.1

Let X be a given non-empty set, and let C be a set of subsets of X with

(Cl) Xisin C.

(C2) Arbitrary intersections of members of C are again in C.

Then, for every A C X, the set clA={B €C | B 2 A} is the closure of A w.r.t.C.
Because of the axioms (C1) and (C2), the intersection leading to cl A is not empty and always
produces a member of C.

The closure of A is the smallest set in C that still contains A as a subset. This is
formalized in the first three claims of the proposition below. The remaining claims are simple
consequences of the first three.

Proposition 1.2.2

(1) ACcA

(2) A el

(3) f AC Band Be(C,thencd AC B

(4) A Ccl B is equivalent to cl A C cl B

(5) AC Bimplies cl A C el B

(6) X =X

(7) AisinCiffcdd A=A

(8) cl(clA)=clA

Proof:

(1) Ais a subset of all those sets whose intersection is cl A.
(2) Due to axiom (C2).

(3) If AC B and B € C, then B is among those sets whose intersection is cl A.
(4)

4) By (2), cI B is in C. Using (3), then A C cl B implies clA C cl B. For the opposite
direction, (1) is used: A Ccl A C cl B.

(5) By (1), A C B C cl B holds. Using (4), cl A C cl B follows.
(6) By (1), X C ¢l X holds.

(7) If Aisin C, then A C A implies cl A C A by (3). The opposite inclusion holds by (1).
If cl A equals A, then A is in C by (2).

(8) Follows from (7) and (2). O

The closure operation is uniquely determined by the properties (1) through (3) given

above:

Proposition 1.2.3
If A cl’Ais a set operation with

(1) ACcl A
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(2) clAeC
(3) f AC Band BeC,thenc ACB
for all A, B C X, then cl A = cl’ A holds for all A C X.

Proof:
From A C cl" A and cI' A € C, the inclusion cl A C cl’ A follows by using Prop. 1.2.2 (3). The
inverse inclusion is derived analogously by exchanging the roles of the two operations. a



Chapter 2

Partially ordered sets

Semantic domains are partially ordered sets with additional axioms. Their order is to
be understood as given by informational content or computational progress. The relation
‘z <y’ for two semantic values z and y means that z contains less information than y from
a static point of view. Considered dynamically, z might be the outcome of a computation at
an early state, and might be refined to y as the computation proceeds.

In this chapter, we consider the elementary properties of partially ordered sets. Notions
of convergence and other topological properties will be treated later. After having defined
partially ordered sets, we investigate their upper, lower, and convex subsets and related
closure operations. Finally, we treat upper bounds, monotonic functions, minimal elements,
and finitary sets.

Readers who are experienced in poset theory will not find many new results in this chapter.
The only non-standard notion is the notion of finitary setsintroduced in section 2.7. A set is
finitary iff its upper closure may be obtained as the upper closure of a finite set. Equivalently,
a set is finitary iff there is a minimal element under each of its elements, and the number of

minimal elements is finite.

2.1 Definition and examples

The following definition is standard:

Definition 2.1.1 A binary relation ‘<’ on a set P that satisfies the axioms
(1) z<zforallz e P (Reflexivity)
(2) r <yand y < ximplies z =y (Antisymmetry)
(3) ¢ <yandy < zimplies z < z (‘Transitivity)

is called a partial order or shortly an order. If it satisfies axioms (1) and (3) only, it is

called a pre-order.

A poset (partially ordered set) (P, <) is a non-empty set P together with a partial order
c<7.

A point z is called least element of a poset (P, <) iff z < p for all p in P, and greatest
element iff p < z.

32
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We often identify a poset P = (P, <) with its carrier P, writing P for the carrier. Sometimes,
the order is denoted by <p for better distinction.

Least and greatest element are, if they exist, uniquely determined because of antisymme-
try. They are often denoted by L and T respectively.

Every pre-order ‘<’ on P induces an equivalence relation ‘~’” on P by the definition
rry iff 2 <yandy < z. Then, the pre-order defines a partial order ‘<’ on the set of
equivalence classes of P modulo ‘x’ by [z] < [y] iff 2 <y where [2] denotes the equivalence
class of the point z.

For a poset P = (P, <), the dual poset P? = (P, >) has the same carrier set P, but the
reverse order z > y iff y < x. Many theorems and propositions about posets have a dual
version formulated for the dual poset. This dual version need not be explicitly proved.
Examples for posets:

e The smallest poset has just one point ©. We denote this poset by 1 = {o}.

o Any set P becomes a poset by defining z < y iff z = y. This poset P- = (P, =) is

called the discrete poset over P.
e For any set 9, there is the so-called flat poset 5 :
SL=(SU{L}, <) where 2 <y iff =1 or 2=y
1 is the least element of a flat poset. Fxamples of flat posets include

— The two-point poset 2 = {T}  i.e. 2 = ({L, T}, <) where L < T. We shortly
write in a symbolic notation 2 = {1 < T}.

— The Boolean poset B = {F, T}, i.e. B=({Ll, F, T}, <) where L < Fand L <T.
Symbolically, we write B = {F > L < T} or B = {L < [F, T|} where the square
brackets group a level of uncomparable points.

— The flat poset of natural numbers N; ={0,1,2, ...}, ={L <[0,1,2,...]}.

e For any set S, the power set 2% forms a poset with the inclusion order ‘C’.  is the

least element.

o The set of natural numbers Ny = {0, 1, 2, ...} forms a poset with the usual arithmetic

order 0 <1 <2< ... We symbolically denote it by Nog={0< 1 <2< ---}.

e The poset N consists of the natural numbers together with a greatest element oo.

The orderis 0 <1 <2<+ <oo. Wewrite N ={0<1<2< < o0}
o Analogously, the poset N8°+1 ={0<1<2<:-<o00<oo+1} consists of the natural
numbers together with oo and oo + 1.

o Let N'={0,1,2,...,00,0, 1,2 ...} ordered by 0 <1 <2< ---<ooand n < m

iff n < m. Graphically, N’ looks like

0’ 1 2!
i i i
0 — 1 — 2 ... o©

This is the poset of the so-called ‘lazy naturals’. Its points may be understood as
constructor terms involving successor, zero, and bottom: the points n correspond to
suce™ 1, and the points n’ to succ™0.
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Finally, we consider one (of many) methods to construct new posets from given ones.

Definition 2.1.2 Let (P;);er be a family of posets where P; = (P;, <;). Then we define
their (Cartesian) product [[;c;P; = ([I;er Pis <) where (2;)ier < (yi)ier iff z; <; y; for
all 7in I. For k in I, the projection to dimension k is the function 7w : [[;c; P; — Py
with ﬂ'k((:vz')z'ej) = Zf.

The product [[;c; P; is again a poset. A special instance is the product of just two posets
P1 and Py. We write Py X Py instead of [J;eqy o3 Pi. By definition, (z1, z2) < (y1, y2) holds
iff 21 <y 91 and 2y <y yo.

2.2 Upper and lower sets

In this section, we consider some special classes of subsets of a general poset and their prop-
erties. The theory introduced here is not complex but is used a lot in the sequel. Throughout

this section, P always denotes a fixed poset unless explicitly stated.

Definition 2.2.1
A set ACPis alower setiff forall z, y€ P:a2 € Aand y <z implies y € A.
Dually, a set A C P is an upper setiff for all z, y € P: 2 € A and z < y implies y € A.

Proposition 2.2.2
(1) 0 and the whole poset P are as well lower as upper sets.

(2) If (Ai)ier is a family of lower (upper) sets, then (J;c; A; and ;c; A; are lower (upper)
sets.

(3) If A; is a lower (upper) set in P; for all ¢ in I, then [];c; A; is a lower (upper) set in
[Lier P
The proof is left to the interested reader.

Lower and upper set are not only dual notions, but also complementary ones:

Proposition 2.2.3 The complement of a lower set is an upper set and vice versa.

Proof:

Let A be a lower set, and let B be its complement. If z is in B and z < y, then y must be
in B since otherwise, it would be in A and so would z. Thus, B is an upper set.

The ‘vice versa’ follows from duality. a

Definition 2.2.4 For z € P, let |z = {y € P | y < z} the lower cone of z, and
Te ={y € P |y >z} the upper cone.

Next, we give a list of facts about cones that are easy to verify.
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Proposition 2.2.5
(1) z<y iff z€ly iff |2 Cly iff Tz>y iff Tz2 1y

(2) z=y iff Jz= 1y iff Tz =1y

(3) Aisloweriff J[aC Aforallac A Ais upper iff Ta C Aforallaec A
(4) |z is lower Tz is upper

(5) z€le r € lo

(6) lzntae={z}

By Prop. 2.2.2, the set of all lower sets and the set of all upper sets both satisfy the axioms
(C1) and (C2) of section 1.2 that are needed to define corresponding closure operations. They
are simple enough to be explicitly constructed:

Definition 2.2.6 For ACP,let |[A={z € P |Ja€ A:z <a} be the lower closure of
A,and TA={z € P|3Ja € A:a <z} be the upper closure.

The operations defined above are really the closure operations for the set of lower sets and
the set of upper sets. This may be shown by applying Prop. 1.2.3; the proofs of the three
properties required there are straightforward. Hence, all properties of general closure opera-
tions as enumerated in Prop. 1.2.2 hold. We repeat them here (in a different order) for later
reference.

Proposition 2.2.7

(1) |§=0and |[IP=P 10=0and TP=P

(2) |Aisalower set TA is an upper set

(3) AClA ACTA

(4) AC B and B is lower implies |[A C B A C B and B is upper implies TA C B
(5) Aislower iff |[A=A Ais upper iff A=A

(6) AC Bimplies |[AC |B A C B implies TAC 1B

(7) AC|B iff |[AC|B ACTB iff TACTB

(8) L1A=14 1A =14

Next, we consider how the closure operators interfere with set-theoretic operations.
Proposition 2.2.8 Let (A;)ier be a family of subsets of P. Then

P (Uier 4i) = Uier LA T (Uier Ai) = Uier TAi

F(Nier Ai) € Nier LA T(Mier Ai) € Nier TA

With intersection, ‘=" does not generally hold.

Proof:
Union, ‘Dt By monotonicity of ‘|’ (Prop. 2.2.7 (6)), | (U;er 4s) 2 1 A; holds for each i.
Union, ‘C": (J;er J A; is a lower superset of (J;c; A;. Prop. 2.2.7 (4) above implies the claim.
Intersection, ‘C”": By monotonicity of ‘|, | ((;cr 4s) € | A; holds for all 4. a

We shall give three counterexamples for inequality with intersection: one involving just
two sets, and two with a descending sequence.
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Example 1: Let P = {L < [a, b] < T} ordered such that L is least, T is greatest, and a
and b are incomparable. Then

LHayn{b})=10=10 Ha}n {6} = {L, e} 0 {L, b} = {1}
THayn{b})=10=10 THa}n1{b} = {a, T} {0, T} = {T}
Example 2: Let P = N = {0 < 1 < -+- < oo} be the poset of natural numbers, and
A, ={z|n <z < oo} Then

T(()An)=10=0 (V14 = (] (4n U{o0}) = {oc}
n=1 n=1 n=1
Example 3: Let P = N, be the flat poset of natural numbers, and A4, = {n,n 4+ 1, ...}.
Then
LA =10=0 1A= () (A u{Ll}) = {1}
n=1 n=1 n=1

There is a positive fact about closure and intersection:

Lemma 2.2.9 If L is a lower set, then T (L NTA)=1(LN A) holds for all sets A.

Proof: The inclusion ‘2’ holds since all involved operations are monotonic w.r.t. set
inclusion and TA O A holds.

For the opposite inclusion, we have to show LN TA C T(L N A). If 2 is a point of L N TA,
then z is in TA whence there is @ in A below x. « is in L because L is a lower set. Thus,
r>a€ L NAwhence z € 1(LNA). O

Finally, we consider Cartesian product.

Proposition 2.2.10 Let (P;)ier be a family of posets, and let A; be a subset of P; for
all 7in I. Then | (TT;er Ai) = [Tier L Ai and T(IL;c7 As) = [Tier TA: hold.

For the special case of binary products, one obtains | (A x B) = |Ax |B and T(A X B) =

TA X 1B.

Proof: (zi)ier € T(ILier As) iff 3 (ai)ier € [Lier Ai t (ai)ier < (wi)ier iff
Viel3da, € A;:a;,<zx; iff VieTlx; € TAZ iff (mi)iE[ € HieITAi O

2.3 Convexity

Convexity is a potential property of subsets of posets. Similar to the properties of being

a lower or an upper set, there is an associated closure operation, the convex hull.
A set is convex iff with every two points, all points in between belong to it.

Definition 2.3.1 A set A C P is convez iff, whenever a and ¢ arein A and ¢ < b < ¢
holds, then b is also in A.

Proposition 2.3.2
(1) @ and the whole poset P are convex sets.
2) If (A;);er is a family of convex sets, then ().-7 A4; is convex.
( S y ’ el

(3) If A;is a convex set in P; for all 4in I, then [];c; A; is a convex set in [];c; P;.
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(4) Every lower set and every upper set is convex.

The proof is left to the interested reader.

By part (1) and (2) of this proposition and the results of section 1.2, every set has a least
convex superset, the so-called convex hull. It may be constructed by means of lower and

upper closure, as indicated by the following definition.
Definition 2.3.3 For ACP,let JA=|ANTA be the conver hull of A.

The name ‘convex hull’ for the [-operator is appropriate, as parts (2) through (4) of the
following proposition show.

Proposition 2.3.4

(1) (0=0and IP=P
(2) TAis convex
(3) AC 1A
(4) If AC B and B is convex, then JA C B
(5) Ais convex iff JA=A
(6) AC Bimplies JAC IB
(1) AC1B iff 1AC 1B
(8) 114=14
(9) 174 =14 and 1JA=14
(10) JA=1B iff |A=|Band TA=18

Proof:
(1) 10=10n10=0n0 =0, same with P.
(2) | A and TA are convex by Prop. 2.3.2 (4), whence is their intersection JA by part (2) of
the same proposition.
(3) AC |Aand A C TA by Prop. 2.2.7 (3).
(4) Let y be a point of JA = |AN TA. Since y € | A, there is z € A with y < z. Since
y € TA, thereis x € A with « <y. A C B implies z,z € B, and convexity of B implies
y € B.
Statements (2) through (4) imply that ‘J’ is indeed the closure operation corresponding to

convexity due to Prop. 1.2.3. Statements (5) through (8) are reformulations of parts of
Prop. 1.2.2.

(9) 1TA D |Aby(3)and Prop.2.2.7(6). |JA= | (lANTA) C ||A = | A by Prop.2.2.7(6)

and (8).
(10) TA = B implies |A = | B and TA = TB by (9). The opposite direction follows from
the definition of {. O

2.4 Upper bounds

Definition 2.4.1 Let P = (P, <) be a poset, S C P and z € P. z is an upper bound of
S if z > sforall s € §. 5 is called (upwards) bounded if it has at least one upper bound.
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The least upper bound (lub) or supremum of S — if it exists — is denoted by | | S. Hence,
the defining properties of the supremum are

(1) s<|JSforalses
(2) VueP: if s<wuforall s€S, then ]S <u
If | |{a, b} exists, it is also written @ U b using a binary infix notation.

Dual notions are lower bound, greatest lower bound (glb) or infimum, and a M b.

Often, we apply these notions to an indexed family (z;);e; of points instead of a set §.
An upper bound of the family is an upper bound of the corresponding set {z; | i € I}. We
abbreviate the supremum of this set by | |;c; z;, or even by [ |z; if the index set is clear from
context.

The next three propositions are easy to prove:

Proposition 2.4.2 Each point of P is an upper bound of the empty set. Thus, | |} exists
iff P has a least element L, and then, | | = L holds.

Proposition 2.4.3 If a point x is both an upper bound and a member of a set A, then
| | A exists and equals z.

Proposition 2.4.4 Let A and B be two sets having the same upper bounds. Then | | A
exists iff | | B does, and in this case, both are equal.

The next lemma is not difficult either, but sometimes needed later when one set is replaced
by another.

Lemma 2.4.5 Let A and B be two sets with the same lower closure, i.e. |A = | B or
equivalently A C | B and B C | A. Then A and B have the same upper bounds.

Proof: Let u be an upper bound of B. For each a in A, there is bin B with a <b < u
because of A C | B. Thus, u is an upper bound of A. The opposite direction holds by

symmetry. O

The intersection of a family of upper cones is again an upper cone, if the vertices of the cones
have a least upper bound.

Lemma 2.4.6 Let (z;)ier be a family of points in a poset with a least upper bound

Llierzi- Then Nigr T2i = T Lier 2

Proof: Y€ Nier Tz it yeTa;foralliel iff y >z foralliel iff
y is an upper bound of the points z; iff y > ||,z iff y€T|lerz: a

The lub operation is monotonic w.r.t. set inclusion:

Proposition 2.4.7 Let A C B. If | |A and | | B exist, then | |A < || B holds.

Proof: || B is an upper bound of B, and hence of A. Thus, the least upper bound | | A
is below | | B. O

The next lemma deals with the lub of a set of lubs.
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Lemma 2.4.8 Let (A;)ier be a family of sets whose lubs exist. Then the sets {| |A; | i €
I} and J;cr Ai have the same upper bounds. Hence, the lub of one set exists iff the lub
of the other one exists, and in this case

LA e iy =1 40)

el

Proof: If w is an upper bound of the set of lubs, then u is an upper bound of all sets

A;, whence it is an upper bound of J;o; A;.

Conversely, if u is an upper bound of the union, it is an upper bound of each set A; and

hence of each lub | | A;. |

Lub operations may be exchanged:

Proposition 2.4.9 Let (z;;)ic1,;es be a doubly indexed family of points in a poset such
that | |;c;@i; exist for all 7 in I, and [ |;c; 7;; exist for all j in J. Then |l;c/ ;e #ij
exists, iff | ;e ey 7ij exists, iff U(i,j)eIxJ x;; exists, and all three are equal.

Proof: By comparing the upper bounds of the three sets {| |;cs2i; | i € I}, {ier@ij |

je€J},and {z;; |t e, j€ J}. O

Next we consider upper bounds in the product of posets as introduced in section 2.1.

Proposition 2.4.10 Let (P;)ier be a family of posets. Let A be a subset of [];c; P;,
and let A; = m;[A] for all ¢ in [I.

(1) AC ILerAi
(2) A and [];c; A; have the same upper bounds.
(3) | A exists iff | | A; exists for all i in I. In this case, | | A = (|| A;)ics holds.

Proof:

(1) If (a;)icr is in A, then q; is in A; for all 7 in I.

2) Any upper bound of []..; A; is an upper bound of A because of (1).
el

Let u = (u;);e; be an upper bound of A, and let (z;);cr be a point of [];c; A;. Then for
all kin I, xp € Ay implies there is a point @ in A such that 7pe = zp. Hence, a < u
follows whence in particular zx = mra < ug. Thus, zr < ug holds for all k£ in I, whence

r < u.
(3) By (2), || A exists iff | |(J];c; As) exists, and in this case, both are equal. The remainder
of the statement is trivial. O

2.5 Monotonic functions

Definition 2.5.1 Let P and Q be two posets. A function f from P to Q is monotonic
iff # <p y implies fz <q fy for all z,y € P.
A function f: P — Qis a poset embedding iff for all z,2" € Pz <p 2’ and fz <q fa'
are equivalent.

A poset isomorphism is a bijective function that is monotonic in both directions.
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Proposition 2.5.2
(1) A poset embedding is always injective.
(2) If P is a subset of a poset Q with the inherited order, then the natural inclusion map
1 : P — Q is a poset embedding.

(3) A surjective poset embedding is a poset isomorphism.

Proof:

(1) fz = fy implies fz < fy and fz > fy, whence ¢ < y and y < z, whence z = y by
anti-symmetry.

(2) Because P inherits the order of Q, z <p y is equivalent to iz <q 1y.

(3) By (1), f is bijective. By the definition of embedding, both f and its inverse are
monotonic. a

Proposition 2.5.3 A poset isomorphism also preserves all infima and suprema.

With the definition of continuity in the next chapter, a poset isomorphism between two
domains is in particular continuous in both directions by this proposition.

Proof: Let f be a poset isomorphism between P and Q. Let ¢ be its inverse mapping.
Then both f and g are monotonic.

Let A be a subset of P with a supremum | | A. For all y in f[A], y = fa holds for some a in A,
whence y = fa < f([JA). Thus, f([|A) is an upper bound of f[A]. Let u be another upper
bound of f[A]. Then for all @ in A, fa < u holds, whence ¢ < gu. Thus, we get | |A < gu,
whence f([]A) < u. Together, this proves that f(||A) equals [|( f[A]).

The proof for infima and for ¢ is analogous. a

Proposition 2.5.4 If f: X — Y is monotonic, then for all A C X, the inclusions
fILAL € Lf[A] and f[TA] C Tf[A] hold.

Proof: If yis in f[TA], then there is z € TA with y = fz. Further, there is ¢ in A with
a <z, whence fa < fz =y, ie. yisin Tf[A].
The proof for ‘|’ is analogous. a
Monotonic functions may also be characterized by means of lower sets.
Proposition 2.5.5 For a function f : P — Q between two posets, the following state-
ments are equivalent:
(1) f is monotonic.
(2) The inverse image of every lower set of Q is a lower set of P.

(3) The inverse image of every lower cone in Q is a lower set in P.

Proof:

(1) = (2) Let B be a lower set in Q and A = f~![B] its inverse image in P. Let a be a
point of A and @’ < a. We have to show ¢’ € A. a € A implies fa € B. a’ < a implies
fa' < fa by monotonicity. Since B is a lower set, fa' is in B whence a’ is in A.

(2) = (3) is trivial since lower cones are special lower sets.
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(3) = (1) Let z and 2’ be two points in P with 2 < 2. Let B = | f2’ be the lower cone of
fz' in Q, and let A be the inverse image of B by f. fz' € B implies z’ € A whence
z € A since A is a lower set. Thus, fx € B holds whence fz < fa'. a

Now we consider the relations between product and monotonicity. The next proposition is
an immediate consequence of the definition of the order in the product.

Proposition 2.5.6
Let (P;)ics be a family of posets. Then all projections 7y : [I;c; Pi — P} are monotonic.
A function f:Q — [[;c; P; is monotonic iff all functions 70 f : Q — Py are monotonic.

For functions over pairs, monotonicity may be checked component by component:

Proposition 2.5.7 Let f:P1 xPy— Q. Forz € Py and y € Py, let f¥:P; — Q and
fz : Py — Q be defined by fY(z) = fs(y) = f(z, y). Then f is monotonic iff f¥ and f,

are monotonic for all z € P1 and y € P».

Proof:

‘S a<a = (v,y) < (@ y) = fla,y) < f@y) = fUa) < ()
Analogously for f,.

‘<" Let (z,y) < (z',y'). Then z < 2’ and y < y’. Hence f(z,y) = fY¥(z) < fY(z') =
f@'sy) = farly) < fur(y) = F(2, ). O

2.6 Minimal elements

In this section, we consider the notion of minimal elements of a subset of a poset. The
dual notion of maximal elements has analogous properties, but is not treated explicitly.

An element of a set is minimal if there is no smaller element. On the contrary, a least

element of a set is smaller than all other elements.

Definition 2.6.1 Let P = (P, <) be a poset and S C P. An element z € § is called
minimal in S if for all s € 5, s < z implies s = z. It is a least element of 5, if v < s for

all s € 5.

The set of all minimal elements of 5" is denoted by min 5.

Dual notions are mazimal and greatest element and the set maz S.

A set may have zero, one, or many minimal elements, but there is at most one least

element by anti-symmetry. If the set S has a least element 2, then 2 is minimal in § and

there are no other minimal elements, i.e. min § = {z}.

Proof: z is minimal since s < z for s in 5 implies s = = due to antisymmetry because
z < s holds since z is the least element of §. Conversely, if m is minimal in 5, then z < m
implies z = m. O

The ‘min’ operator for sets has simple properties collected in the following proposition.

Proposition 2.6.2
(1) min® = 0 and min {2z} = {2} for all z € P.
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(2) minAC A

(3) If AC B and min B C A, then min B C min A
(4) min A = min(TA)

(5) If I is finite, then ' C T(min F') holds.

(6)

6) If f:P — Q is monotonic and B C A C TB holds for two sets A and B of P, then

min f[A] C f[B] holds in Q.

(7) If f: P — Q is monotonic and A C T(min A) holds for a set A of P, then min f[A] C
flmin A] holds in Q.

(8) BC AC 1B implies min A C B.

Proof:
(1) and (2) are obvious.

(3) Let m € min B. Then m is in A. To show the minimality of m in A, let a« € A with
a < m. Then a is also in B, whence @ = m since m is minimal in B.

(4) First we show min A C min (TA). Let m be a point in min A. Then m is in A and hence

in TA. Let r € TA with r < m. By definition of TA, there is a € A with a < r < m.
Since m is minimal in A, « equals m, whence r equals m.
For the opposite direction, we have to show min (TA) C A; then statement (3) can be
applied since A C TA. Let m be a point in min (TA). Then m is in TA, whence there is
a point @ in A below m. a is in TA because of A C TA. Minimality of m in TA implies
m=aé€ A.

(5) Let z be a point of F'. We inductively define a descending chain zq > 9 > - -

Let 1 = 2. Given z;, there are two cases: either x; is in min F', then we cannot proceed;
or z; is not in min I, then there is some ;47 in F such that z; > z;4,1. Since F’ is finite,
the descending chain cannot go on infinitely. Hence, the first case eventually occurs, i.e.
there is some z in min F. x > zj holds, whence z € T(min F).

(6) Let y be a point of min f[A]. Then y = fa holds for some a in A. By A C 1B, there is
bin B C A such that a > b. y = fa > fb follows. Since fbisin f[A], y = fb follows by
minimality of y.

(7) From (6) by B = min A.

(8) From (6) by f = id. o

2.7 Finitary sets

Finally, we consider sets having a finite number of minimal elements where a minimal
element can be found below any arbitrary element. Such sets are called finitary. They are
needed to characterize M-domains, and also to define stronger forms of compactness.
Proposition 2.7.1 For a set A C P, the following statements are equivalent:

(1) A C T(min A) holds and min A is finite.

(2) There is a finite subset F of A with A C TF.
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(3) There is a finite set /' with TA = TF.

In case (2) and (3), min A = min I holds.
Sets with these properties are called finitary.

Proof:

(1) = (2) : Let I = min A.

(2)=(3): AC 1F implies TA C TF by Prop. 2.2.7 (7), and TA 2 7F follows from A D F
by Prop. 2.2.7 (6).

(3)=(1): minA = min(TA) = min(TF) = min F holds by Prop. 2.6.2 (4). Hence,
min A C F is finite.
Applying Prop. 2.6.2 (5), we obtain A C TA = TF C T(min F) = T(min A). 0

The basic properties of finitary sets are given in the following proposition:

Proposition 2.7.2
(1) Ais finitary iff TA is.
(2
(3
(
(

) Every finite set is finitary.
)
4) The intersection of a lower set and a finitary set is finitary.

The union of two finitary sets is again so.

5

Monotonic images of finitary sets are finitary. More precisely: If f : P — Q is
monotonic and A is finitary in P, then f[A] is finitary in Q.

Proof:
In the proofs, we use the condition given in part (3) of the proposition above. Ounly for part
(5), condition (2) is used.

)
(1) TTA =14 holds. Hence, TA = TF and TTA = TF are equivalent.
(2) Let F'= A. Then F is finite with TA = TF.
(3) Given two finitary sets A and Asg, let F; be finite sets with TA; = 7F;. Then Fy U F is
a finite set with T(A4; U A2) =14 UTA = TFHLUTF, = 1(F U Fy).
(4) Let L be the lower set and A the finitary set. Let F' be a finite set with TA = TF. By
Lemma 2.2.9, T(LNA)=1(LNnTA) =1(LNTF)=1(LNF). LNF is finite.

(5) Since A is finitary, there is some finite set F' with A C TF. Then f[A] C f[TF] C Tf[F]
where Prop. 2.5.4 was used for the second inclusion. The set f[F]] is finite. O



Chapter 3

Directed sets and domains

Directed sets are a useful generalization of ascending sequences. By their nature, sequences
are always countable whereas directed sets may have any cardinality. Thus, Zorn’s Lemma
may be applied if every directed set has an upper bound.

The chapter at hand is organized as follows: In section 3.1, directed sets and their basic
properties are introduced. Section 3.2 handles directed lubs and the notion of a domain.
Domains are posets where every directed set has a supremum. We neither require a least
element nor algebraicity.

Next, we define continuous functions (section 3.3) by means of directed sets. In sec-
tion 3.4, the domain of continuous functions between two domains is introduced. Next, we
introduce directed closed sets (section 3.5) and the Scott topology (section 3.6) whose notion
of continuity coincides with that of directed sets. The domain of Scott open sets of X and
the function domain from X to 2 = {L < T} are isomorphic as pointed out in section 3.7.
In section 3.8, we present a Lemma telling that Scott open sets remain open if some of their
minimal points are removed. The final section 3.9 presents Rudin’s Lemma.

Readers who are experienced in domain theory will not find much new in this chapter. It
however collects a host of statements that are heavily used throughout the thesis.

3.1 Directed sets

Definition 3.1.1 A subset D of a poset is (upwards) directed iff all finite subsets of D

have an upper bound in D.

The notion of directed set is biased because it involves upper bounds, not lower bounds.
However, the dual notion of downwards directed sets will not occur much in this paper. In
case of doubt, we shall explicitly indicate the order. Directed sets as defined above are <-
directed sets, and downwards directed sets would be >-directed. Sometimes, C- or D-directed

sets of sets will occur.

We often also speak of directed families of points. A family (d;)ier of points is directed
iff the set {d; | i € I'} is directed.

The following proposition is an immediate consequence of the definition:

44
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Proposition 3.1.2 Every finite directed set contains a greatest element which is also the

supremum of the set.

There is a characterization of directed sets involving only two points instead of an arbitrary

finite number.

Proposition 3.1.3
A set D is directed iff it is not empty and for all z, y in D there is a point z in ) such

that z > z and z > y, i.e. any two points of /) have a common upper bound in D.

Proof: A directed set contains upper bounds for all its finite subsets. Hence, it contains
at least an upper bound of the empty set, i.e. it is not empty. If z and y are in D, then {z, y}
is a finite subset of D, whence there is an upper bound z of z and y in D.

For the opposite direction, let F' be a finite subset of D. If F’ is empty, any arbitrary point
is an upper bound of F. Since D is not empty, there is such a point in D. If F is not empty,
let ' = {z1,...,2,}. Then we recursively construct points y1, ..., y, in D: Let y = zq,
and y;+1 be an upper bound of y; and z;4; in D. Finally, point y, is an upper bound of the
whole set F' and contained in D. O

Monotonic images of directed sets are directed.

Proposition 3.1.4 If f:P — Q is a monotonic function between two posets and D is
a directed set of P, then f[D] is a directed set of Q.

Proof: We apply criterion 3.1.3. f[D] is not empty since D is not empty. For y; and y,
in f[D], there are 1 and z3 in D with y; = fz;. 21 and 23 have a common upper bound z
in D. Then fz is a common upper bound of y; and ¥, in f[D]. a

A directed union of directed sets is directed.

Lemma 3.1.5 Let D be a C-directed set of directed sets of a fixed poset P. Then |JD

is again a directed set in P.

Proof: Let D = |JD. D is not empty, because D is not empty, and thus contains at

least one non-empty set.

Let z1 and z2 be two points of D. Then there are two members Dy and Dy of D with z; € D;.
Since D is C-directed, there is a set D’ in D with D; C D’, whence z; € D’. Because D’ is
directed, there is a point 2z’ € D' C D with z; < z. O

The property of being directed carries over among sets with the same lower closure:
Proposition 3.1.6 If |]A = | B holds, then A is directed iff B is.
Corollary: A is directed iff | A is.

Proof: The corollary is easily proved, because | A = | | A holds.

Let |A = | B and assume A is directed. We apply Prop. 3.1.3 to show that B is directed. B
is non-empty, since otherwise A C |A = | B = | = () would imply that A is empty.

Let by and by be two points of B. By B C | B = | A, there are points a1 and ay in A with
b; < a;. Since A is directed, there is ' € A with a; < a’. By A C |A C | B, there is a point
b € B with @’ < b'. Thus, we have b; < a; < o’ < ¥, i.e. b’ is an upper bound of b; and b, in
B. O



46 CHAPTER 3. DIRECTED SETS AND DOMAINS

The proposition and its corollary indicate that instead of considering general directed sets,
one could restrict oneself to directed lower sets.

Definition 3.1.7
Directed lower sets are called ideals. T'wo sets with the same lower closure are cofinal. If
A is a subset of B and A and B are cofinal, one says A is cofinal in B.

A is cofinal in B iff A C B C | A holds. Remember that cofinal sets have the same upper
bounds by Lemma 2.4.5. By Prop. 3.1.6, two cofinal sets are either both directed or both not
directed. Summarizing, one obtains

Proposition 3.1.8 If D is directed with supremum | | D and A is cofinal in D, then A
is also directed and | |A = | | D holds.

In some sense, a directed set cannot be partitioned into two smaller sets.

Lemma 3.1.9 If D is directed and D = AU B holds, then at least one of the two sets A
and B is cofinal in D (and hence directed).

Proof: Assume A is not cofinal in D. Since A is a subset of D, D cannot be a subset of
L A. Thus, there is a point dp in D with do ¢ | A.

Since B C D holds anyway, we only have to show D C | B. Let d be any point of D. Since
D is directed, there is a common upper bound d’ of d and dg in D. If d’ were in A, dy would
be in |A. Thus, d’is in B, whence d is in | B. a

Finally, we consider directed sets in a product of two posets.

Proposition 3.1.10 Let P and Q be two posets, and let D be a directed set in their
product P x Q. Then Dp = {z | (z,y) € D} and Dg = {y | (z,y) € D} are both
directed, their product Dp X Dg is directed, and D is cofinal in Dp X Dg.

The cofinality statement cannot be shown in case of infinite products.

Proof: Since projections are monotonic, the sets Dp = m[D] and Dg = my[D] are
directed by Prop. 3.1.4.

Once we have shown the cofinality of D in Dp X Dg, the latter set is directed by Prop. 3.1.8.

If (z, y)isin D, then z isin Dp and yis in Dg. Thus, D is a subset of Dp x Dg. Conversely,
if (z, y) is a point in Dp X Dg, then there are points 2’ and ' such that (z, y') and (2/, y)
are in D). Since D is directed, there is a point (2", y”) in D above both (z, y') and (2/, y).
Hence, z” > z and y” > y hold, i.e. (2", y") is above (z, y), whence the latter point is in

1D. a

3.2 Directed lubs and directed completeness

Posets where all directed sets have a lub are particularly important.

Proposition 3.2.1 For a poset P, the following statements are equivalent:
(1) Every directed set of P has a lub.
(2) Every ideal of P has a lub.
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Posets with these properties are called directed complete posets or domains. Directed lubs
are also called (directed) limits.

Note that for domains, the existence of a least element is not required.

Proof: (1) implies (2) since every ideal is a directed set. (2) implies (1), since by
Prop. 3.1.6, every directed set D is cofinal in the ideal | D. By Lemma 2.4.5, the lub of | D
is also the lub of D. a

The notion of directed completeness is not self-dual: the poset Ny is itself directed, but
has no upper bound; thus it is not directed complete. But it is downwards directed complete
since every non-empty subset has a least element.

Directed completeness admits the application of the non-constructive Lemma of Zorn
since every totally ordered subset (‘chain’) of a poset is trivially directed. Hence, we obtain:
Lemma 3.2.2 (Zorn’s Lemma for domains)

In a domain, there is a maximal point above any given point. Formally:

Ve € P 3m € P such that m >z and Vz € P:(z > m implies z = m)
Proposition 3.2.3 The product of a family of domains is a domain again.

Proof: If D is a directed set in the product, then the projections D; = m;[D] are directed
by Prop. 3.1.4. Prop. 2.4.10 then states that | | D exists and equals (|| D;)ier- O
Examples for domains:

¢ Every finite poset is a domain by Prop. 3.1.2.

e Discrete and flat posets are directed complete.

e Power sets are domains.

N with the arithmetic order is not directed complete as mentioned above.

Ng° is directed complete. N’ is also directed complete.

o lor aposet P, the set of directed subsets of P ordered by ‘C’is a domain by Lemma 3.1.5.
Hence, there is a maximal directed superset for every directed set by Lemma 3.2.2.

3.3 Continuous functions

Whereas monotonic functions may be defined between two arbitrary posets, we define
continuous functions for domains only.

Definition 3.3.1 Let X and Y be domains. f : X — Y is (order) continuous if for
all directed sets D in X, | |(f[D]) exists and equals f(| | D). Continuous functions are
sometimes called morphisms.

Later, there will be other definitions of continuity. The notion of continuity introduced
here is then coined ‘order continuity’.

Often, we shall apply the following criterion for continuity.

Proposition 3.3.2 Let X and Y be domains.
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(1) Every continuous f: X — Y is monotonic.
(2) A monotonic f : X — Y is continuous iff for all directed sets D of X, [ |[(f[D]) >
f(UD) holds.

LI(f[D]) exists for all monotonic f and directed D.

Proof:

1) Let z < ¢ in X. Then {z, y} is a directed set of X with supremum 7. By continuit
y » Y p ) y Y
LI{fz, fy} exists and equals fy. Hence, fz < fy holds.

(2) A continuous function obviously satisfies the criterion since it weakens ‘=" to ‘>’
For the opposite direction, we have to show | |(f[D]) < f(UD). Forall din D, d <[ |D
holds, thus fd < f(|J D) by monotonicity, whence | |[(f/[D]) < f(LUD).

Monotonic functions f map directed sets D to directed sets f[D]. Hence, | |( f[D]) exists since
Y is a domain. ]

Even a bijective continuous map may have a non-monotonic inverse which is then more
than ever non-continuous. An example is given by f : {1,2} — {L, T} with f1 = L and
f2 =T where 1 and 2 are incomparable, but L < T holds.

A monotonic function from a finite poset is always continuous:

Proposition 3.3.3 Let P be a finite poset and Y a domain. A function f: P — Y is
monotonic iff it is continuous.

Proof: Let D be a directed set in P. By Prop. 3.1.2, D has a greatest element 2 which
is the lub of . By monotonicity, fz is the greatest element of f[D], whence it is the lub of

fID]. Thus, f(UD) = fa = (f[D]) holds. O
Continuous functions may be used as the arrows of a category:

Proposition 3.3.4 The identity id : X — X is continuous for every domain X. If X, Y,
and Z are domains and f: X — Y and g : Y — Z are continuous, then the composition

go f:X — Zis continuous.

Proof: Obviously, | |(id[D]) = | D = id(|] D) holds. Because continuous functions are
monotonic, the set f[D] is directed in Y. Hence, | |((g o f)[D]) = UglfIP]] = g(U fIDP]) =

9(f(UD)) = (g f)(UD) holds. O

Next, we consider the relations between continuity and product.

Proposition 3.3.5 Let (Y;)ies be a family of domains and Y = [[;c;Y; their product.
The projections 7 : Y — Y are continuous for all £ in I. A function f: X — Y is
continuous iff fy = 7 o f: X — Yy is continuous for all k£ in 1.

Proof: Let D be a directed set of Y. By Prop. 2.4.10, we know | | D = (||m[D])ier,
whence (| D) = || m[D] follows for all &k in [.

If f is continuous, then all functions 7o f are continuous by composition. Conversely, assume
all functions fi are continuous. Then for all k in I, 7(L] f[D]) = U(7x[f[D]]) = U(fx[D]) =
(U D) = 7e(f(UD)) holds where the first equality is due to the continuity of 71 and the
third one due to the continuity of fz. Thus, all components of | | f[D] and f(|| D) are equal.O
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Similar to monotonicity, continuity may be checked component by component. This would

however not be possible for infinite products.

Proposition 3.3.6 Let f: X XY — Z where all posets are domains. Let fY and f, be
defined as in Prop. 2.5.7. f is continuous iff f¥ and f, are continuous for all z € X and
yeY.

Proof: By Prop. 2.5.7, f is monotonic iff all f¥ and f, are monotonic. Hence, all the

suprema in the following proof exist since they are suprema of directed sets.

Assume f: X XY — Z is continuous. Fix z in X and let D be a directed set of Y. Then
U(f[P) = Uz} x D])
FUHz} x D)) by continuity of f since {z} x D is directed
= f(W{=}, UD) by Prop. 2.4.10
= flz,UD) = WUUD)
Conversely, let f, and fY all be continuous. For a directed set D C X x Y let Dx and
Dy be the projections to X and Y as in Prop. 3.1.10. By this Proposition, D is cofinal in
Dx x Dy,ie. DC Dx x Dy C |D. Then f[D] C f[Dx x Dy] C f[I D] C | f[D] where the
last inclusion is due to Prop. 2.5.4, i.e. f[D]is cofinal in f[Dx x Dy]. Thus, we get
LI(f[D]) LU(f[Dx x Dy]) by cofinality
U(f Uzeny{z} X Dy])
U Ureny (F[{z} x Dy])

Urep, U(S2[Dy]) by Prop. 2.4.8
= Ueny f=(UDy) by continuity of f,
= Uif(z,UDy) |z € Dx}
= UUPY[Dx]
APy (U px) by continuity of fLIPv
= f(UPx,UDy)
= fup) by Prop. 3.1.10 O

In section 2.5, we defined poset embeddings to be functions f: P — Q with z <p 2’ iff
fz <g fz'. Such embeddings need not be continuous. Consider as an example the function
f i NF — Nt with fn = n for all n € Ng and f(co0) = oo + 1. Here, the order in the
domains is given by N = {0 < 1 < +-- < oo} and NPT ={0< 1<+ <00 < o0+ 1}

In contrast to embeddings, poset isomorphisms are always continuous in both directions
because of Prop. 2.5.3.

3.4 The function domain

Since we are mainly interested in continuous functions, we define

Definition 3.4.1 For two domains X and Y, let [X — Y] be the set of all continuous
functions from X to Y. [X — Y] is ordered pointwise, i.e. f < g iff fz < gz holds for all
z in X.
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By this definition, [X — Y] becomes a poset. We shall soon see that it is moreover a domain.

First, we however establish some conventions. Whereas the notation f : X — Y simply

means, f is a function from X to Y, the notation f : [X — Y] will immediately imply

continuity of f such that this continuity need not be explicitly stated.

Lemma 3.4.2 For two domains X and Y, let 7 C [X — Y] be a set of continuous
functions such that for every z in X, the set {gz | ¢ € F} has a supremum. Then the

function f defined by fz = |],cr g2 is continuous and represents the supremum of F.

Proof: For continuity of f, we have to show || f[D] = f([| D) for all directed sets D.
U D] = Ugep fd

= UdeD I_lge]:g d

= UyerUsepgd by Prop. 2.4.9

= |_|g€.7: I_lg[D]

= lerg(UD) by continuity of g

= f(dn)
Once f is shown to be continuous, it is the supremum of F because of the pointwise order of
functions. a

From this Lemma, one concludes:

Proposition 3.4.3 If X and Y are domains, then [X — Y] is a domain.

Proof: Let F be a directed set of functions. Then for all z in X, the set {fz | f € F}is
directed. Thus, the function Az. | |7 fz exists, is continuous, and represents the supremum

of F. O
Next, we establish some continuous functions around the function domain.

Proposition 3.4.4
Application A:[X — Y] x X — Y defined by A(f, z) = fz is continuous.

Proof: By Prop. 3.3.6, we have to show the continuity in each component separately.
For fixed f, Ay = Ax. A(f, z) = Az. f = f holds, whence it is continuous.

To show the continuity of A for fixed z, let F be a directed set of morphisms. Then

L A®[F] = User(fz) = (UF)z = A"(LJF) holds because of Lemma 3.4.2. O

Proposition 3.4.5 For every f:[X x Y — Z], there is a curried version

fr=2 (Ay. f(z, ) [X = [Y = Z]].
Proof: We have to show the continuity of f’z for every z in X (the inner square brackets),
and the continuity of f’ itself (the outer square brackets).
For every z in X, f'z = Ay. f(z, y) = f: is continuous by Prop. 3.3.6. For continuity of f’,
let D be a directed set of X. Then for every y in Y

WAy = (Uien fa)y

= UdeD(fd Y) by Prop. 3.4.2
= leEDf(d7 y)
= YD) = fFUD) by Prop. 3.3.6

Fidpsy) = (S UUP)y
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By extensionality, || f/[D] = f (U D) follows. O

Because of the propositions 3.2.3 (product of domains is a domain), 3.3.5, 3.4.3 (function
domain), 3.4.4 (application), and 3.4.5 (currying), domains and continuous functions form a
Cartesian closed category.

Besides application and currying, there are some more useful functional combinators.

Proposition 3.4.6 If X, Y, and Z are domains, then functional composition
o:[[Y = Z] x [X — Y] — [X — Z]] is continuous.

The proof is a straightforward application of Prop. 3.3.6, Prop. 3.4.2, and continuity of g.

Proposition 3.4.7 If X;, X3, Y1, and Yy are domains, then the Cartesian combinator
X [[Xl — Yl] X [Xg — YQ] — [Xl X X.2 — Y1 X YQ]] defined by (fl X f?)(wl, ,772) =
(fiz1, faz2) is continuous.

The proof is also straightforward by using the same auxiliary facts as in the proof of the
previous proposition.

3.5 Directed closed sets

In this section, we investigate those sets which are closed w.r.t. suprema of directed
subsets. In the next section, they are restricted to the more important Scott closed sets.

Definition 3.5.1 Let P be a domain. A subset A of P is directed closed or shortly
d-closed iff the suprema w.r.t. P of all directed subsets of A are again in A.

Directed closed sets A of P are also called sub-domains of P because they are domains in
the order inherited from P.

In the sequel, we study the basic properties of d-closed sets.

Proposition 3.5.2
(1) 0 and P are d-closed.
(2) The intersection of a family of d-closed sets is d-closed.

(3) The union of two d-closed sets is d-closed.

Proof:

(1) @ has no directed subset since directed sets are not empty. Hence, the condition for being
d-closed is vacuously satisfied.

The whole domain P contains the lubs of all its subsets.

(2) Let (A;)ier be a family of d-closed sets, and A its intersection. If D is a directed subset
of A, then it is a subset of all sets A; whence its lub is in all sets A; whence it is in A.

(3) Let A and B be two d-closed sets, and let D C AU B. Then D = DN(AUB) =
(DNA)U(DNB) holds. By Lemma 3.1.9, one of these two sets — say DN A — is cofinal
in D. By Prop. 3.1.8, DN A is directed and [ [(D N A) = || D holds. Since A is d-closed
and D N A is a directed subset of A, this implies | |D € A C AU B as required. a
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Next, we establish some important classes of d-closed sets.

Proposition 3.5.3
(1) All upper sets are d-closed.
(2) All finite sets are d-closed.
(3) If I is finite, then | /' is d-closed.

Proof:
(1) Let A be an upper set, D C A a directed set and z the lub of D. Since D is not empty,

there is some member d € D C A. Then z is in A, too, since A is an upper set and d < z

holds.

(2) We show that singletons are d-closed and apply Prop. 3.5.2 (3).
If A= {z}is a singleton, then the only directed subset of A is A itself, whose lub z is
contained in A.

(3) We show that cones are d-closed and apply Prop. 3.5.2 (3). If A = |z is a cone, and D

is a directed subset of A, then all elements of D are below z, whence their lub is so. O

Considering part (2) and (3) of the definition above, one might believe that for all sets
A, Ais d-closed iff | A is. This belief is strengthened by the intuition that being d-closed is a
property of the upper margin of a set only. It is however completely wrong as two examples
show:

Example 1: Let N’ be the poset of ‘lazy natural’ numbers as introduced in chapter 2. Let
A = {0, s0, 520, ...}. This is an upper set, and thus d-closed. |A = N’ — {s*1}
however is not d-closed.

Example 2: Let P = N;°"! and A = P — {o0}. Then A4 is not d-closed, but | A = P is.

For convex sets, at least one implication holds:

Proposition 3.5.4 If Ais convex and | A is d-closed, then A is d-closed.

Proof: Let D be a directed subset of A. Then D C A C | A holds, whence | |D € |A
since | A is d-closed. This implies there is @ € A such that || D < a. Since D is not empty,
thereisd e D C A. d <||D < a implies | |D € A by convexity of A. a

Now, we consider the complementary notion of d-open sets.

Proposition 3.5.5
For a subset A of a domain P, the following statements are equivalent:
(1) For all directed sets D C P with | |D € A, DN A is cofinal in D.
(2) For all directed sets D C P with [|D € A, DN A is not empty.

(3) Ais d-open, i.e. the complement of a d-closed set.

Proof:

(1) = (2) By Prop. 3.1.8, DN A is directed since it is cofinal in the directed set D. Directed
sets are not empty.
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(2) = (3) Let B be the complement of A, and D be a directed subset of B. If | | D were not
in B, it would be in A, whence some element of D would be in A by (2) in contradiction
to D C B.

(3) = (1) Let B be again the complement of A. By (3), B is d-closed. D = (DNA)U(DNB)
holds, whence one of these two sets is cofinal in D by Prop. 3.1.9. Assume D' = DN B
were cofinal in D. By Prop. 3.1.8, D' is directed and | | D' = || D holds. Then D' C B
would follow, but | | D’ is in A in contradiction to B being d-closed. a

Now, we investigate the relationship between continuous functions and d-closed sets.

Proposition 3.5.6 Let f : P — Q be a continuous map between two domains. Then

the inverse image of every d-closed set in Q is d-closed in P.

Proof: Let B be a d-closed subset of Q and let A = f~![B] be the inverse image of
B. Let D be a directed subset of A, and let # be the lub of D. Then fz is the lub of the
directed set f[D] by continuity of f. Since f[D] is a subset of B and B is d-closed, fz is in
B, whence z is in A. O

The converse implication does not hold. The mapping f:{L, T} — {L, T} with fL =T
and fT = L for instance is not continuous since it is not even monotonic. However, it
backwards maps d-closed sets to d-closed sets since every subset of { L, T} is d-closed because
of Prop. 3.5.3 (2).

Towards the end of the next section, we shall see that the converse implication however
holds if the function is monotonic.

Because of Prop. 3.5.2 (1) and (2), there is a least d-closed superset to every set in a

domain.

Definition 3.5.7
Let X be a domain and A C X. The least d-closed superset of A is denoted by A.

A continuous function on A is uniquely determined by its values on A.

Proposition 3.5.8
Let X and Y be domains, A C X, and f,g : A — Y be two continuous functions. If
fa = ga holds for all a in A, then fz = gz also holds for all z in A.

Proof: Let B={z € A| fx = gz}. By the pre-condition, A C B holds. Let D be a
directed subset of B with lub z. Then fz = f(UD)=Lf[P]=Ug[P]=g(UD) = gz holds
by continuity of f and g and since both functions coincide on B. Thus, B is d-closed. From
A C B, A C B follows. ]

We now provide an upper bound for the cardinality of the d-closure of a set.

Proposition 3.5.9 Let A be a subset of a domain X. Then [A] < 24l holds.

Proof: Let B={JS5|S C A, ]S exists}. Then A C B holds since ¢ = | |[{a} holds
for all @ € A. We show that B is d-closed. If D is a directed subset of B, then for all d in
D there is a subset Sy of A such that d =[]S4. Then [|D = [l;ep(L154) = LU (Ugep S2) by
Prop. 2.4.8. Since Jyep 94 is a subset of A, [ | D is a member of B.

Since B is a d-closed superset of A, A C B follows, whence [A] < |B| < [24] = 241, O
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Note that the set B in this proof contained the lubs of all subsets of A that exist, not
only the lubs of the directed subsets of A. One might believe that the set A of all lubs of
directed subsets of A equals A. This belief is however wrong; in general, A does not contain
the lubs of directed sets of lubs of directed sets of A.

3.6 Scott closed sets

In this section, we define the important notions of Scott closed and Scott open sets. Scott
closed sets may be used to characterize continuous functions.

Definition 3.6.1 Let P be a domain. A subset A of P is called Scott closed iff it is a
d-closed lower set. The complements of Scott closed sets are called Scott open.

By Prop. 2.2.3, Scott open sets are upper d-open sets. For the properties of d-open sets see
Prop. 3.5.5.

Proposition 3.6.2
(1) @ and P are Scott closed.
(2) Arbitrary intersections of Scott closed sets are Scott closed.

(3) Finite unions of Scott closed sets are Scott closed.

Proof: Just apply Prop. 2.2.2 for lower sets and Prop. 3.5.2 for d-closed sets. O
By part (1) and (2) of this proposition, every set A has a least Scott closed superset clg A.

Proposition 3.6.3 The Scott closure operator ‘clg’ has the following properties:
(1) cls A D |Aforall ACP.
(2) clg A = | A for all finite sets A C P.

Proof:

(1) 1A is the least lower superset of A. clg A is also a lower superset of A, since it is the
least Scott closed one.

(2) ‘D’ holds by (1). | Ais a Scott closed superset of A, since it is d-closed by Prop. 3.5.3 (3).
Hence, clg A C | A holds since clg A is the least Scott closed superset of A. a

In contrast to the d-closure, the cardinality of the Scott closure of a set A is not bounded
by the cardinality of A. Let for instance S be a set, and let the domain X be the powerset of
S ordered by inclusion. Since S is the greatest element of X, the Scott closure of the singleton
set {5} is the whole domain X. There are also examples where a continuous function on clg A
is not uniquely determined by its values on A.

The order continuous functions of section 3.3 may be characterized in terms of Scott closed

sets:

Proposition 3.6.4 For a function f: P — Q between two domains, the following state-
ments are equivalent:
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1
2

[ is order continuous.

f is monotonic, and the inverse image of every d-closed set of Q is a d-closed set of P.

4
5

(1)
(2)
(3) The inverse image of every Scott closed set of Q is a Scott closed set of P.
(4) The inverse image of every lower cone in Q is a Scott closed set in P.

(5)

The inverse image of every Scott open set of Q is Scott open in P.

Proof:
(1) = (2) by Prop. 3.3.2 and Prop. 3.5.6.

(2) = (3) Let B be a Scott closed set in Q and A its inverse image by f. By Prop. 2.5.5, A
is a lower set by monotonicity of f, and it is d-closed by (2).

(3) = (4) is trivial since every lower cone is Scott closed by Prop. 3.6.3 (2).
(3) & (5) since the complement of an inverse image of a set A is the inverse image of co A.

(4) = (1) The inverse image of every lower cone is a lower set whence f is monotonic by
Prop. 2.5.5. Let D be a directed set in P with lub z. By monotonicity, f[D] is a
directed set in Q with lub y, and fz > y holds. We have to show fz < y. Let B = |y
be the lower cone of y in Q, and let A be its inverse image in P, which is Scott closed
by (4). Since y is an upper bound of f[D], f[D] C B holds, whence D C A. Since A is
d-closed, it contains z, whence fz € B, i.e. fz <. a

3.7 Open sets and continuous functions

Let X be a domain. In this section, we compare the domain X of (Scott) open sets of
X with the domain of continuous functions from X to 2 = {1 < T}. The open sets form a
domain when ordered by inclusion ‘C’ because arbitrary unions of open sets are open.

If f:[X — 2]is a morphism, then f~'[{T}]is open in X because {T} is open in 2.
Conversely, if an open set O of X is given, define a function f: X — 2 by fx = T for z in O

and fz = L otherwise. Continuity of this function is asserted by the following Lemma that
deals with a more general situation.

Lemma 3.7.1 Let X and Y be two domains, O an open set of X, and » and v two points
v ifzeO
of Y with v < ». Then the function f = Az. ] is continuous.
u  otherwise

Proof: Applying Prop. 3.6.4, we have to show that the inverse image of every open set
of Y is open in X. Let O’ be an open set of Y. Concerning u and v, there are three cases:

(1) Both u and v are in O'. Then f~1[0'] = X.
(2) Neither u nor v isin Q. Then f~'[0] = 0.
(3) visin O', but u is not. Then f~'[0'] = O.

In any case, f~1[0'] is open. The case where u is in O but v is not, is impossible since u < v
and O’ is upper. O
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Thus, we get a one-to-one correspondence between 2X and [X — 2] by means of O — fp =

T ifze0
Az. € ~ and f — f7'[{T}]. This correspondence is an order isomorphism since
L otherwise

f<g iff frx<gazforalzeX
iff  fa =T implies gz = T for all z € X
iff 2 f7U{T}]implies z € g7 [{T}] for all z € X
it T C T {TH

Order isomorphisms preserve all suprema and infima. Hence, union in QX corresponds to
pointwise lub in [X — 2], and binary intersection in X corresponds to binary infimum in
[X — 2]. Furthermore, § and X in X are associated with Az. L and Az. T in [X — 2]
respectively.

3.8 Removing minimal points of open sets

In this section, we state and prove a technical Lemma that informally reads as follows: if
one removes a part of the minimal points of a Scott open set O, then the set remains open.

Lemma 3.8.1 Let O be a Scott open set in a domain X, and let M be a subset of min O.
Then O \ M is Scott open.

Proof:

Let O'=0\ M and 0" = O \ min O. Because of M C min O, 0" C O’ C O holds.

O' is upper: Let 2 in O’ and z < y. Since O is upper, x € O implies y € O. If y is not in
min O, then y € 0" C O’ follows. If y is in min O, then z < y implies y = 2 € O'.

O’ is d-open: Let D be a directed set with | | D in O'. We have to show that D meets O'.
Assume it does not. Since | | D € O' C O, there is some z in D N 0. Let d be an arbitrary
point of D. The two points d and 2 have a common upper bound y in D. z in O and O being
upper implies y in O. By assumption, y is not in O’, whence it isin M C minO. z < y in
O implies # = y > d. Thus, x is an upper bound of D. | | D < z follows, whence z is in O’
as | | D is. This contradicts the assumption that 1) does not meet O. a

3.9 Rudin’s Lemma and its consequences

In [GLS83] and [Jun88], an interesting Lemma is stated and proved that in its original
weaker form dates back to [Rud80]. Although the Lemma is concerned with arbitrary posets,
we present it in this chapter since we derive some consequences from it that only hold in
domains.

In the version of [Jun88], the Lemma reads as follows:

Lemma 3.9.1 Let X be a poset and £ a set of non-empty finite subsets of X such that
TE] = {TF | E € £} is D-directed. Then there is a directed subset D of [J& that meets
all members of £.
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For the proof of this Lemma, we refer to [Jun88], or to [GLS83] for a proof of a slightly
different version. In the sequel, we derive some consequences of the Lemma.

Lemma 3.9.2 Let X be a domain and £ a set of non-empty finite subsets of X such
that T[] = {T# | £ € £} is D-directed. Then there is a point z that is both in [J& and
in N T[€].

Proof: Lemma 3.9.1 gives us a directed subset D of |J& that meets all sets £ in &, i.e.
there is a point dg in DN E for all £in £. Since X is a domain, the supremum z of D exists.
For every E in £, z > dg € E implies z € TE. D C|J& implies z € [JE. a

The next LLemma is concerned with a (Scott) closed set.

Lemma 3.9.3 Let X be a domain and F a D-directed set of finitary upper sets of X. If
all members of F meet a closed set C', then [ F meets C'.

Proof: By Prop. 2.7.1, for every F'in F, min I is finite and ¥ = T(min I) holds. Let
Er = C N min F. We show some properties of the sets Ep.

(1) The sets Er are finite since Fr C min F.

(2) The sets Er are not empty.
Proof: F meets C', whence there is a point w in C' N F. By F = T(min F'), there is a
point » € min I’ below u. Since C is lower, v also is in C.

(3) £ 2 F'implies TEp D TEp.
Proof: Let w be a point in Ep = CNmin F'. Then wis in min F' C F' C F = T(min I),
whence there is a point v € min F below u. Since C is lower, v is also in C'. Thus,
veCNminF = FEr, whence u € TEF.

Now let & ={EFr | FF € F}. By (1) and (2), £ is a set of non-empty finite sets. By (3), T[£]

is directed since F is directed. Hence, Lemma 3.9.2 applies, and there is a point z in both

U€ and N T[£]. By the first containment, » € (J€ C C = C holds since all members of £ are
subsets of C' by definition. By the second containment, z € TEr C T(min F) = F holds for
all Fin F. m

The last consequence involves a (Scott) open set.

Lemma 3.9.4 Let X be a domain, F a D-directed set of finitary upper subsets of X,
and O an open set of X such that (|F C O holds. Then F C O holds for some F € F.

Proof: Assume I ¢ O for all F' € F. Then FNeoO # P follows for all ' € F. By
Lemma 3.9.3, N F NcoO # () follows, whence N F € O — a contradiction. O



Chapter 4

Set-theoretic topology

This chapter presents general notions from topology such as closed and open sets, closure,
compact sets, and continuous functions. Besides these well known notions, the novel concept
of strong compactness is introduced in section 4.7. As the name suggests, strongly compact

sets have properties analogous to those of compact sets.

In contrast to usual introductions to topology, we are especially concerned with the con-
nections between order theory and topology. The previous chapter showed that every domain
is equipped with a standard topology, the Scott topology. In this chapter, we show that every
topological space induces a pre-order on its carrier that becomes an order under some mild

assumption.

In section 4.1, we define topological spaces and their closed and open sets. Section 4.2
handles topological closure. The specialization pre-order is introduced in section 4.3. The
separation properties (T0) and (T1) are defined in terms of this pre-order. In section 4.4, we

investigate the relations between order-theoretic and topological notions.

In section 4.5, topological continuity and its properties are studied. Section 4.6 is devoted
to the theory of compact sets, and the subsequent section 4.7 introduces strongly compact
sets. Section 4.8 investigates product domains topologically, and the final section 4.9 deals
with strongly compact sets in products.

Readers who are experienced in domain-oriented topology will not find much new in this

chapter. An exception are the strongly compact sets of section 4.7. Strong compactness seems
to be a novel concept. It is used in the theory of the upper power domain in chapter 20.

Prop. 4.3.1 and Lemma 4.4.4 (2) deserve particular attention. They allow to prove inequal-
ities and inclusions respectively by topological means and will be used heavily throughout

the thesis.

4.1 Closed and open sets
The Propositions 2.2.2, 3.5.2, and 3.6.2 show some common properties of lower sets,

d-closed sets, and Scott closed sets respectively. By abstraction, we obtain the following

definition:

58
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Definition 4.1.1 (Topological space)
A topological space X is a non-empty set X together with a set I' of subsets of X such
that

(C1) 0 and X arein T.

(C2) Arbitrary intersections of members of I' are again in T
(C3) Finite unions of members of I' are again in I'.

The sets in ' are closed sets, their complements are called open.

A set R is an environment of a point 2 or a set S if there is an open set O such that
z €0 CRorS CO C R respectively hold.

The set of all open environments of a set S is denoted by O(S). O({z}) is often abbre-
viated to O(z).

As with posets, we often identify the topological space X and its carrier X.

From the definition, one may immediately deduce that () and X are open, and arbitrary
union and finite intersection of open sets are open. Usually, topological spaces are defined by
their open sets.

As indicated in the beginning, every domain implies (at least) three topological spaces:
the Alexandroff space where the closed sets are the lower sets, the d-space with the d-closed
sets, and the Scott space with the Scott closed sets. From these, the Scott space is the most
important. The Scott space of a domain X is denoted by %X, and the Alexandroff space by
AX. Mostly, we shall identify X and »X.

4.2 Topological closure

The set T' of closed sets oversupplies the axioms of section 1.2 needed to establish closure
operations. Hence, there is a topological closure clA = N{B € I' | B O A}. The closure
of a singleton set cl{z} will often be abbreviated by clz. The topological closure enjoys all
properties given in Prop. 1.2.2. In addition, it has some further properties:

Proposition 4.2.1
(1) cld =10
(2) dd(AUB)=cAucdB

Proof:
(1) By Prop. 1.2.2 (8) and € T.

(2) AUB CclAUcl B holds by Prop. 1.2.2 (1). Since the latter set is closed by axiom (C3),
Prop. 1.2.2 (4) implies ¢l (AU B) CclAUcl B.

The opposite inclusion follows from ¢l A C el (AU B) and el B C cl (AU B), which in
turn follow from A C AU B and B C AU B by Prop. 1.2.2 (5). O

As introduced above, we denote the generic topological closure by ‘cl’. The Scott closure
is denoted for the moment by ‘clg’, whereas the d-closure is denoted by overlining. The
Alexandroff closure is already known as lower closure ‘| .
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The topological closure may also be characterized in terms of environments:

Proposition 4.2.2 For all x € X and S C X, z is in cl 5, iff all environments of z meet
S, iff all open environments of z meet 5.

Proof: Let the three statements be numbered by (1) through (3).

(1)=(2): Let z be in ¢l and let R be an environment of z by the open set O with
z € O C R. Then the complement of O is a closed set C' not containing z. If S were
a subset of C, then cl.S C C' would hold, whence z would be in C'. Hence $ is not a
subset of C', i.e. SN O # (), whence more than ever SN R # (.

(2) = (3) : Open environments are special environments.

(3) = (1): Let 2 be a point such that all open environments of z meet S. If z were not
in cl S, then the complement of ¢l S would be an open environment O of z, whence

SN O #0 would hold, i.e. S would not be a subset of cl S. O
From this proposition, we may deduce the next one:
Proposition 4.2.3

Let A be an arbitrary set. If an open set O meets cl A, then it also meets A.

Proof: Let z be a point of O Ncl A. Then z is in cl A, and O is an environment of x.
By Prop. 4.2.2, O meets A. a

4.3 The specialization pre-order

A domain may be turned into a topological space by the Alexandroff, Scott, or d-topology.
In this section, we consider the opposite direction. Given a topological space X, we define a
pre-order on the carrier of X. Later, we establish conditions when this pre-ordered set is a

poset or a domain.

Proposition 4.3.1 Let X be a topological space. For points 2 and y of X, the following
statements are equivalent:

(1) z €cly

(2) clz Cecly

(3) O(z) € O(y)

We denote this situation by = < y.
Proof: (1) and (2) are equivalent because of Prop. 1.2.2 (4).
By Prop. 4.2.2, z € cly is equivalent to the fact that every open environment of z meets {y}.
This in turn is equivalent to the fact that every member of O(z) contains y, i.e. is in O(y).0

Proposition 4.3.2 For every space X, the relation ‘<’ is reflexive and transitive.

Proof: Since x < y iff clz C cly. a

Applying Prop. 4.3.1, it is not difficult to characterize those spaces whose pre-order is an

order.
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Proposition 4.3.3 ((T0)-spaces)
For a space X, the following three statements are equivalent:

(1) ‘<’is an order, i.e. z < y and y < 2 implies z = y.

(2) Forall 2,y € X, clz = cly implies z = y.

(3) For all z, y € X, O(z) = O(y) implies z = y.

A topological space with these properties is called (70)-space.
In the sequel, we shall mostly consider (T0)-spaces. The poset belonging to a (T0)-space X
is denoted by AX. As we always did in chapter 2, we denote the order by ‘<’.

If we start with a domain X, then form the corresponding Alexandroff space AX or Scott

space %X, and finally form the pre-order of these spaces, then we get back the original domain
X.

Proposition 4.3.4 For all domains X, A(AX) and A(XX) are isomorphic to X.

Proof: Let ‘<’ be the order in X. z < y holds iff z € |y. By Prop. 3.6.3, |y = clsy
holds. Hence, ‘<’ is also the order of A(AX) and A(XX). ]

The proposition does not hold for the d-space. By Prop. 3.5.3 (2), all singleton sets are
d-closed, whence the order induced by the d-space of a domain degenerates to equality (cf.
Prop. 4.3.5 below).

The converse of the proposition is not true. From the poset belonging to a (T0)-space,
the space, i.e. the closed sets, cannot be recovered. It is possible that different (T0)-spaces
induce the same poset.

The poset belonging to a (T0)-space becomes uninteresting if the order degenerates to
equality. Such spaces are known as (T1)-spaces.

Proposition 4.3.5 ((T1)-spaces)
For a space X, the following seven statements are equivalent:

(1) Forallz,ye X,z < yiff z = y.

(2) Forall z,y € X, O(z) C O(y) implies z = y.

(3) Forall 2, y € X, clz C cly implies z = y.

(4) For all z in X, clz = {z} holds.

(5) Every singleton set is closed.

(6) Every finite set is closed.

(7) For all 2, y € X with z # y, there is an open set O such that z € O and y & O.

Topological spaces with these properties are called (T1)-spaces.

Proof:

(1) through (3) are equivalent by Prop. 4.3.1. (3) implies (4) since a € clz implies cla C clz

whence @ = z. (4) implies (5) since all closures are closed. (5) implies (6) since the empty

set is closed (C1), and finite unions of closed sets are closed (C3).

(6) = (7): Let O be the complement of {y}. Then z is in O, but y is not. O is open as
complement of the finite set {y}.
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(7) = (3): Let clz be a subset of cly and assume z # y. By (7), there is an open set O
with € O and y € O. Let C be the complement of O, ie. ¢ € C and y € C. Then
z €clz Ccy C C holds in contradiction to z ¢ C. O

Statement (7) in the definition of (T1)-spaces may be strengthened. This results in the
defining condition of (T2)-spaces.

Definition 4.3.6 ((T2)-space) A space X is a (T2)-space iff for all points z and y with
x # y there are disjoint open sets O, and O, with 2 € O, and y € O,,.

Classical topologists mainly investigate (T2)-spaces. They are usually not interested in
(T1)-spaces and do not consider (T0)-spaces at all. The Scott space of a domain however
satisfies (T0), but not in general (T1).

4.4 The structure of (T0)-spaces

Throughout this section, we state and prove some technical properties concerning the
relations between closed and lower sets, and between open and upper sets in (T0)-spaces.
The notions of lower and upper sets and the operators ‘|’ and ‘T’ refer to the poset induced
by the (T0)-space. The results of this section in particular hold for the Scott spaces of
domains.

Proposition 4.4.1 Let X be a (T0)-space. All closed sets of X are lower sets, and all
open sets are upper sets.

Proof: Let C be a closed set, and let z € C' and ' < z. Since C is closed, z € C implies
clz C C, whence by definition of ‘<’, 2’ € clz C C follows.

Open sets are upper sets, because closed sets are lower, and complements of lower sets are
upper sets (Prop. 2.2.3). O

Some properties that we already proved for Scott spaces also hold in this more general setting.
The following Proposition generalizes Prop. 3.6.3.

Proposition 4.4.2 Let X be a (T0)-space. For all subsets A of X, clA DO | A holds. If
Fis a finite subset of X, then cl #" = | F holds.

Proof: Since A is lower and A C cl A holds, | A C cl A follows.

Because z € cl{y} is equivalent to z < y, we obtain cl{y} = [ {y}. By meansof cl() = |0 = 0,
1(AUB) =AU |B,and cl (AU B) = cl AUcl B, we may deduce cl F' = | F' for all finite sets
F. O

Lower and upper sets may be obtained as unions of closed sets and intersections of open sets
respectively.

Lemma 4.4.3

(1) Every lower set A is the union of all its closed subsets:

A= U{C | C closed, C C A}
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(2) Every upper set B is the intersection of all its open supersets

B =00 open, O 2 B} =(O(B)

Proof:

(1) ‘27 is trivial. Let a € A. Then @ € |a C A, since A is a lower set. |a is a closed subset
of A because of Prop. 4.4.2.

(2) follows from (1) by complementing all sets. ]
Consequently, upper closures are obtained as the intersection of all open environments, and
may be compared by comparing the environments:
Lemma 4.4.4

(1) For all sets A, TA = O(A) holds.

(2) For two sets A and B, TA D 1B is equivalent to O(A) C O(B).

Proof:
(1) Since open sets are upper, O(A) = O(TA) holds. By Prop. 4.4.3 (2), NO(TA) is TA.
(2) f TA D 1B, then A C O where O is open implies B C TA C O.
Conversely assume O(A) C O(B). If z is in TB = (O(B), then it is in all members of
O(B). Thus, it is more than ever in all members of O(A), whence it isin TA = (N O(A).O

Part (2) of the Lemma above will be heavily used to prove inclusions of upper sets. If A
and B are upper sets, one may prove A C B by showing that B C O for some open set O
implies A C O.

4.5 Continuity

In section 3.3, we defined the notion of order continuity for functions between domains.
By Prop. 3.6.4, a function is order continuous iff the inverse images of all Scott closed sets are
Scott closed. Generalizing from Scott spaces to arbitrary spaces, we define a function between
topological spaces to be continuous iff it backwards maps closed sets to closed sets. By the
above-mentioned Prop. 3.6.4, order continuity and Scott continuity coincide. Furthermore,
monotonicity coincides with Alexandroff continuity by Prop. 2.5.5, and all order continuous

functions are d-continuous by Prop. 3.5.6.

The definition of continuity comes in several equivalent shapes:

Theorem 4.5.1 (Continuity) For a function f : X — Y between two topological
spaces, the following statements are equivalent:
(1) The inverse image of every closed set of Y is closed in X.
(2) The inverse image of every open set of Y is open in X.

(3) For every z in X and every environment R of fz, there is an environment R’ of z

such that f[R] C R.
(4) For all subsets A of X, f[cl A] C ¢l f[A] holds.

A function satisfying these properties is called continuous.
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Statement (3) corresponds to the definition of continuity known from real calculus.

Proof:

(1) = (2): If O is open in Y, then coO is closed, whence co(f~1[0]) = f~![co O] is closed
in X by (1), whence f~1[0] is open.

(2) = (3): Let zin X, and let R be an environment of fz by the open set O with fz € O C R.
Then fz € O holds, whence z € f~'[0]. The latter set is open by (2). Hence, it provides
an (open) environment R’ = f=1[0] of z. O C R implies f[R] C R.

(3) = (4): Let x be a point of cl A. We have to show fz € cl f[A]. Applying Prop. 4.2.2,
let R be an environment of faz. By (3), there is an environment R’ of z such that
f[R'] € R. Since z is in cl A, R’ meets A, i.e. there is a point p in R’ N A. Then
fpr € fIR'1N f[A] C RN f[A] follows, i.e. R meets f[A].

(4) = (1): Let B be closed in Y, and let A = f~1[B]. To show that A is closed, we prove
cdA C A. Applying (4), 2 € cl A implies fz € flcl A] C cl f[A] C I B = B, whence
z € f7B] = A. O

Obviously, the identity function and the composition of continuous functions is continuous.
The inverse of a bijective continuous function however need not be continuous. Let X be
the topological space with carrier set {1, 2} where all sets are closed, and let Y be the space
with the same carrier set where only @) and {1, 2} are closed. The function mapping 1 to 1
and 2 to 2 is obviously bijective and continuous, whereas its inverse is not because {1} is not
closed in Y.

With the definition of topological continuity, the Propositions 2.5.5 and 3.6.4 may be re-
formulated:
Proposition 4.5.2
(1) A function between two posets is monotonic iff it is Alexandroff continuous.
(2) A function between two domains is order continuous, iff it is Scott continuous, iff it
is monotonic and d-continuous.

By this proposition and part (4) of Prop. 4.5.1, we obtain

Proposition 4.5.3 If fis an order continuous function between two domains X and Y,

then for all A C X, the inclusions f[A] C f[A] and f[cls A] C cls f[A] hold.

Remember that overlining denotes the d-closure, and ‘cls’ is the Scott closure.

Not only the Scott continuous functions are monotonic, but all continuous functions.

Proposition 4.5.4 Let X and Y be (T0)-spaces. Every continuous f : X — Y is

monotonic in the induced orders.

Proof: By Prop. 2.5.5, a function is monotonic iff the inverse image of every lower cone
in Y is a lower set in X. Now, lower cones in Y are closed in Y since |[{z} = cl{z}, whence
their inverse image is closed in X by continuity. Closed sets are lower sets by Prop. 4.4.1. O
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4.6 Compact sets

Besides open and closed sets, there is another important class of sets in a topological
space: the compact sets. They provide a generalization of finite sets in some sense.

There are several equivalent definitions of compact sets where (1) is the standard definition:
Proposition 4.6.1 (Compact sets)
For a subset K of a topological space X, the following statements are equivalent:

(1) For every set O of open sets with K C [JO, there is a finite subcollection F of O

with K C |JF.

(2) For every C-directed set O of open sets with K C |J O, there is a member O of O
with K C O.

(3) If C is a D-directed set of closed sets that all meet K, then the intersection C meets
K.

In this case, the set K is called compact.

Proof:

(1) = (2) : Let O be a C-directed set of open sets with &' C [JO. By (1), there is a finite
subset F of O such that K C [JF. Since O is directed, there is an upper bound O of F
in 0. K CJF implies K C O.

(2) = (1) : For given O, let 0" = {UF | F Cy O}. Then JO = JO' holds, and O’ is
C-directed. By (2), K C [JO = [JO' implies there is O € O’ such that K C O. Then
K C U F for some finite subset F of O as required.

(2) = (3) : For given D-directed C, let O = {coC' | C € C}. O is a C-directed set of open
sets. If K NNC were empty, then K C co (€ = |J O would hold, whence by (2), there
would be a member O of O such that K C O. Thus, there would be a member C of C,

namely co O, such that K N C = () in contradiction to the precondition.
(3) = (2) : follows the same lines. ]
Topologists often define compactness only for the case K = X. Classically, they then
require the additional property (12), and speak of quasi-compactness if (T2) is not satisfied.

The properties of compact sets are analogous to those of finitary sets as expressed in
Prop. 2.7.2. Indeed, the finitary sets of a poset are just the compact sets of its Alexandroff

space. We now present the properties of compact sets as a sequence of propositions.

Proposition 4.6.2 A set A is compact iff TA is compact.

Proof: A is a subset of a union of open sets iff TA is. This holds because open sets are
upper sets. O
Proposition 4.6.3 The union of two compact sets is compact.

Proof: Let Ky and K3 be the compact sets, and K = K1 U Ky. If K C|J O holds, then
K; C YO follows for all = 1,2. Hence, there are finite collections F; C O with K; C |J F;.
Then, F = F1 U Fy is a finite subset of O with K C | F. |
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There is also some relationship to closed sets:

Proposition 4.6.4 If C is closed and K is compact, then C'N K is compact.

Proof: Let O be the complement of C. If C' N K C |JO for some collection O of open
sets, then K = (CNK)U(ONK)C(CNK)UO CU(OU{O}). Since K is compact, there
is a finite collection F C QO U {0} with K C JF. Let 7' = FNO. Then K C OUYF
holds. This implies CNK C(CNO)U(CNUF)CUF. o

Proposition 4.6.5
If f:X — Y is continuous and K C X is compact, then f[K] C Y is compact.

Proof: Let O be a collection of open sets of Y with f[K] C JO. Then K C U{f~[0]|
O € O} follows. By continuity of f, this is a collection of open sets whence there is a finite

subset F of O with K C J{f~'[0]| O € F}. From this, one finally obtains f[K] C |JF. O

In a general (T0)-space, compact sets need not be closed. However, they possess a closure

property w.r.t. descending directed sets.

Proposition 4.6.6 Let K be a compact set in a (T0)-space X, and let D be a >-directed
set in K. Then D has a lower bound in K.

Proof: Let C ={ld|d € D}. By Prop. 4.4.2, the lower cones |d = cld are closed. Since
d' < d implies |d' C |d, the set C is D-directed. Because of D C K, all members of C meet
K. By Prop. 4.6.1 (3), the intersection (\C meets K. Let z be a point of (\C N K. Then for
all din D, x isin |d, i.e. * < d holds. Thus, z is a lower bound of D in K. a

Applying Zorn’s Lemma (for the dual order), one obtains that there is a minimal element of
K below every point of K. Thus,

Proposition 4.6.7  Let K be a compact set in a (T0)-space X. Then K C T(min K)
holds. If K is a compact upper set, then K = T(min K') follows.

Combining these results with Lemma 3.8.1, one obtains

Proposition 4.6.8
Let X be a domain. Then every compact open set in the Scott space of X is finitary.

Proof: Let K be the compact open set. By Prop. 4.6.7, K = T(min K) holds. We have

to show that min K is finite.

For the following, let K/ = K \ min K. For every element m of min K, the set M = min K\
{m} is a subset of min K, whence O,, = K\ M = K'U{m} is open by Lemma 3.8.1. The sets
memin K(K'U{m}) = Upemin k Om. Since K is
compact, there is a finite subset £ of min K such that K'Umin K = K = J ¢z O. = K'UE.
min K = F follows. O

O cover K because of K = K'Umin K =

The proposition above was shown for Scott spaces only because Lemma 3.8.1 was proved by
means of directed sets.
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4.7 Strongly compact sets

In [Smy78], Smyth used finitely generable sets to define the first upper power construction.
A set 5 is finitely generable iff it is obtained as set of all labels of the infinite border of a
finitarily branching tree with infinite branches only. The nodes of this tree are labeled by
domain elements such that the labels of parents are smaller than the labels of their children.
Intuitively, S is approximated by the sequence of horizontal tree cuts. All these cuts are finite.

This suggests the following definition of the more abstract notion of strong compactness.

Definition 4.7.1 A set 5 in a topological space X is strongly compact iff for all open sets
O with § C O there is a finitary set F with § C F' C O.

Without restriction, one may assume the finitary set I’ to be an upper set, i.e. to be obtained
as upper closure of a finite set.
The name ‘strong compactness’ was chosen since the properties of this notion are analogous

to those of compactness.

Proposition 4.7.2
Every finite set is finitary, every finitary set is strongly compact, and every strongly

compact set is compact.

Proof: The first two claims are trivial.

Let S be strongly compact, and S C |JO where O is a set of open sets. Because the union
is open, too, there is a finite set £ such that S C TE C|JO. Every e in £ is in some open
set O. € 0. Hence, 5 C J.cpTe C Ueer Oe. 0

Remark: In (T1)-spaces where the pre-order degenerates to equality, a set is strongly
compact iff it is finite. Thus, there are compact sets on the real line that are not strongly
compact. The topology of the real line however is not the Scott topology of some domain.

Problem 1 Are there domains where not every Scott compact set is strongly compact?

Next, we present the properties of strongly compact sets. They are analogous to those of

compact sets.

Proposition 4.7.3 A is strongly compact iff TA is so.
Proof: Since open sets are upper sets,and A C TH iff TA C TF. a
Proposition 4.7.4 If A and B are strongly compact, then so is A U B.

Proof: AU B C O open implies A CTF C O and B C TF C O for some finite sets F
and F, whence AUB C (LU F)CO. O

Proposition 4.7.5
If C is closed and K is strongly compact, then C' N K is strongly compact.

Proof: CNK C O where O is open implies K C coC'UQ. By strong compactness, there
is a finitary set F’ such that K C FF C coC' U O. Intersecting by C yields CN K CCNF C
CNO CO. The set C'N Fis finitary by Prop. 2.7.2 since C' is lower. O



68 CHAPTER 4. SET-THEORETIC TOPOLOGY

Proposition 4.7.6 If A is strongly compact in X and f : [X — Y] is continuous, then
f[A] is strongly compact in Y.

Proof: flA] C O implies A C f~1[0] whence A C F C f~1[0] for some finitary F. This
implies f[A] C f[#] C O. The set f[F]is finitary as a monotonic image of the finitary set ¥
by Prop. 2.7.2. |

Prop. 4.6.8 claimed that compact open sets in Scott spaces are finitary. With strongly compact

sets, we can do better:

Proposition 4.7.7 Every strongly compact open set in a (T0)-space X is finitary.

Proof: If S is strongly compact and open, then S C S implies there is a finitary set F
such that S C F C §. a

By Prop. 4.7.2, every finitary set is compact. In Scott spaces, moreover directed intersections

of finitary upper sets result in strongly compact sets.

Proposition 4.7.8 Let X be a domain, and F a D-directed set of finitary upper sets.
Then () F is strongly compact in the Scott topology.

Proof: Let O be an open set such that F C O. By Lemma 3.9.4, there is some F in
F such that ¥ C O. " F C F holds anyway. a

Note that there might also be strongly compact sets which are not obtained as D-directed

intersections of finite upper sets.

4.8 The product domain in topological view

In this section, we assume two given domains X and Y, and investigate the topological
properties of their product domain X X Y. In doing so, we are mainly concerned with the
Scott topologies of X, Y, and X X Y. Thus, we simply write ‘cl’ for the Scott closure instead
of ‘clg ’, say Scott closed instead of closed etc. Asusual, the d-closure is denoted by overlining.

First, we collect some facts we already know:
e The projections 71 : X X Y — X and 73 : X X Y — Y are continuous.

o A function f: X XY — Z is continuous iff for all z in X and y in Y, the functions
Az. f(z,y): X — Z and Ay. f(z,y):Y — Z are continuous.

e For every y in Y, the function 0¥ = Az.(z, y): X — X x Y is continuous. For every
z in X, the function o, = Ay. (z,y): Y — X x Y is continuous.

The first fact is Prop. 3.3.5, and the second one is Prop. 3.3.6. The third fact is derived from
the second one by assuming f=id: X XY —- X x Y.

Next, we consider the effect of Cartesian product to various kinds of sets.

Proposition 4.8.1 If Ain X and B in Y are both lower / upper / finitary / d-closed /
closed / open, then their product A x B has the same property in X x Y.
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Proof: If A and B are lower sets, then [(A x B) = |A X |B = A x B holds by
Prop. 2.2.10, whence A X B is lower. The proof for upper sets is analogous.

If A and B are finitary, then there are finite subsets £ of A and F of B such that A C TFE
and B C TF. Then E X Fis a finite subset of A x B,and AXx BC TEXTF =T(Ex F)
holds by Prop. 2.2.10.

Next, we consider closed sets. Since 7, is continuous, the inverse image 77 '[A] = A x Y is
closed as A is. Similarly, X x B is closed. Thus, their intersection AXx YNX x B=AXx B

is also closed.

The proof for open and d-closed sets is analogous; continuous functions are also d-continuous.O

Despite the topological Theorem of Tychonoff, we cannot prove the compactness of a
product of compact sets since the Scott space of the product domain in general is not the
topological product of the Scott spaces of the factors (see also Def. 4.8.6 below). In contrast
to compactness, we are able to show the strong compactness of a product of two strongly
compact sets (Prop. 4.9.1). This is the first in a long sequence of results we could show for

strongly compact sets, but not for compact sets.

First however we consider how a property of the product of two sets carries over to the factors.

Proposition 4.8.2 Let X and Y be two domains, and let A € X and B C Y be two
non-empty sets. If A x B is lower / upper / finitary / d-closed / closed / open / compact
/ strongly compact in X XY, then both factors A and B have the corresponding property.

Proof: Let b be a member of B. Then a € A holds iff 6°a = (a, b) is in A x B, whence
A= O'b_l[A x B]. Since ¢® is continuous, this proves the claim for lower, upper, d-closed,

closed, and open sets.
For all @ in A, a = my(a, b) holds. Hence, A = m;[A x B] is a continuous image of A X B.
This proves the claim for finitary, strongly compact, and compact sets. a

The next propositions concerns Scott and d-closure in the product.

Proposition 4.8.3 Let X and Y be two domains, and A C X and B C Y. Then
AXx B=Ax B andc(Ax B)=cAxclB hold.

Proof: We show the statement for the Scott closure. The other proof is fully analogous.

cl A and ¢l B are closed, whence their product is closed by Prop. 4.8.1. Thus, A x B C
cl A x cl B implies cl (A x B) C clA X cl B.

For the opposite direction, we use Prop. 4.5.1: for continuous f, f[clS] C cl f[S] holds
for all S. Using o, = Ay.(u, y), one obtains for arbitrary sets U C X and V' C Y the
inclusion U x eV = U,y oulclV] C Uner d(au[V]) € Upep el (U x V) = (U x V).
Analogously, one may show clU x V C ¢l (U x V). Combining both inclusions, one finally
obtains cl A X cl B C cl(A xclB) Cel(cl(Ax B))=c(AXB). O

The Proposition above allows to prove two statements about closure properties of sets w.r.t.
continuous operations.

Proposition 4.8.4 Let X be a domain and A a subset of X.
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(1) If Ais closed w.r.t. a continuous unary operation f : [X — X],i.e. f[A] C 4, then A
and cl A are also closed w.r.t. f.

(2) If Ais closed w.r.t. a continuous binary operation g : [X x X — X],i.e. g[A x A] C A,
then A and cl A are also closed w.r.t. g.

Proof: We show the statements for the Scott closure operator ‘cl’. The statements
for the d-closure operator ‘7’ are shown analogously; remember that all Scott continuous
functions are d-continuous.

(1) By Th. 4.5.1 (4), flcl A] C cl f[A] C el A holds.

(2) By the same statement and Prop. 4.8.3, g[cl A X cl A] = g[el (A x A)] Celg[Ax A] CclA
holds. O

Next, we investigate the general structure of open sets in the product.

Lemma 4.8.5 Let X and Y be two domains. Let O be an open set of X xY and (z, y) a
point of O. Then there are open sets Oy in X and Oz in Y such that (z, y) € O1x{y} C O
and (z,y) € {z} x O, CO.

Proof: For o¥ = Au. (u,y) : [X — X x Y], let Oy = o¥~1[0]. By continuity, this is
an open set in X. By definition of O; and (z,y) € O, (z,y) € 01 x {y} C O follows as
required. a

Instead of the statement of this Lemma, one often would like to be able to conclude
(z,y) € 01 X0z € O. This would characterize the topological product of spaces as topologists
define it. An example in the introductory chapter of [Bar80] however shows that such a strong
statement does not generally hold. Therefore, we define

Definition 4.8.6 A pair of domains X and Y is X-conform iff for every open set O of
X x Y and every point (z, y) of O, there are open sets 01 of X and Oy of Y such that
(l‘,y)601><02g0.

If a pair of domains is x-conform, then the topological Theorem of Tychonoff applies and
one may conclude

Proposition 4.8.7 If X and Y form a X-conform pair of domains, then the product of
a compact set of X and a compact set of Y is compact in X X Y.

We do not include the proof here.

Problem 2 Is the product of compact sets compact again even if the ground domains
are not x-conform?

4.9 The product of strongly compact sets

In contrast to compact sets, we are able to show that strong compactness is preserved by
binary products.

Theorem 4.9.1 The product of strongly compact sets of X and Y is strongly compact
in X x Y (no matter whether X and Y are x-conform or not).
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The theorem is proved by means of some auxiliary lemmas. The first Lemma generalizes
Lemma 4.8.5 from single points y to finitary sets.

Lemma 4.9.2 Let x be a point of X, F' a finitary set of Y, and O an open set of X XY
with {z} x I/ C O. Then there is an open set O’ of X such that z € O’ and O’ x I' C O.

Proof: As I is finitary, there is a finite subset F of F such that ¥ C TF. For all e in
E, (z,e) € O holds. By Lemma 4.8.5, there is an open set O, for every e in F such that
(z,e) € Oc x{e} CO. Let O' =N, Oc (and O" = X if £ is empty). O’ is open as finite
intersection of open sets. z is in O since it is in all sets O..

Let (u, v) be a point of O’ x F. v € F C TF implies there is e in £ such that v > e.
u € 0" C O, implies (u, e) € O, whence also (u, v) € O because (u, v) > (u, €) and O is
upper. O

In the next step, the finitary set is generalized to a strongly compact one.

Lemma 4.9.3 Let x be a point of X, S a strongly compact set of Y, and O an open set
of X x Y with {#} x S C O. Then there are an open set O’ of X and a finitary set F of
Y such that {z} x S CO"x F C 0.

Proof: Using the continuous function o, = Ay.(z, y), the inclusion {z} x 5 C O implies
S C 0;'[0] where the latter set is open. By strong compactness, there is a finitary set #
such that § C F C o, '[0]. Applying o, one obtains {2} x § C {z} x ¥ C O. Lemma 4.9.2
yields an open set O of X such that x € O’ and O’ x F' C O whence the claim follows. O

Now we are able to prove the theorem itself.

Proof: Let A and B be the two strongly compact sets, and assume A x B C O where O
is open. Then for every a in A, {a} x B C O holds, whence by Lemma 4.9.3 there are open
sets O, of X and finitary sets F}, of Y such that {a} x BC O, x I, C O.

Thus, A C J,e4 O, holds whence by strong compactness, there is a finitary set G' such that
A C G CUyea O Let E be afinite subset of G with G C TE. Because of £ C G C [J,e4 O,
for every e in E there is a(e) in A such that e € Oy). Let H = Ueep(Te X Fyey). H is
finitary since it is a finite union of a product of finitary sets. We claim A x B C H C O.
Let (u, v) be a point of A x B. Because of A C G C TF, there is e in F below u, i.e. u € Te.
In addition, {a(e)} x B C Oye) X Fy(ey holds, whence v € B C Fy). Thus, we obtain
(u, v) € Te X Fy(y for some e in F.

If p is a point of H, then p is above a point (e, v) where e in £ and v € Fye)- By € € Oy,
we get (e, v) € Oy X Fy(ey € O. Since O is upper, p is in O, too. O



Chapter 5

Completeness properties

In the next four chapters, we present various classifications of domains. Domains be-
longing to small classes usually have useful additional properties that are not satisfied by
arbitrary domains. If a certain domain class is given, we are also interested in whether it is
closed w.r.t. finite or even infinite products, and w.r.t. function domain formation. A class
that is closed w.r.t. finite products and function domains is called Cartesian closed because
it forms a Cartesian closed full sub-category of the Cartesian closed category of domains and
continuous functions. If C and D are two classes of domains, we denote their intersection by
C&D.

Throughout these chapters, we shall identify a domain with its Scott space. Thus, we shall
apply topological notions directly to a domain. If we refer to closed, open, or compact sets
of a domain, we always mean Scott closed, Scott open, or Scott compact sets. Consequently,
the Scott closure ‘clg’ is abbreviated to ‘cl’.

After having considered some trivial classes in section 5.1, we continue by introducing
some classes characterized by completeness properties. Let P be a possible property of sets,
e.g. finitary or compact. Then a domain X is P-complete if the whole domain X has property
P, and for every two points z and y of X, the set of common upper bounds Tz N Ty has
property P. Some of these completeness properties have already established names which we

also use. In particular, we consider the following classifications:
¢ (Cone) Complete (CC): P is the property to be an upper cone (section 5.3).
¢ Bounded complete (BC): P means either being empty or an upper cone (section 5.2).
¢ Finitarily complete (FC) = property M: P means finitary (section 5.4).
e Strongly compactly complete (SC): P means strongly compact (section 5.5).
¢ Compactly complete (KC): P means compact (section 5.5).

By their definition, these domain classes form an increasing hierarchy. The first three
classifications apply to posets since no directed lubs or topological notions are involved in
their definition. The latter two classifications will be applied to domains only. In the respec-
tive sections of this chapter, we present equivalent definitions of these classes and various

examples.

The defining property of class FC is also known as property M [Jun88]. By Th. 6.4.4, we
shall see that algebraic domains are in SC, iff they are in KC, iff their base has property M.
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5.1 Some trivial classes

The class of all domains is denoted by DOM. As we have already seen, it allows to form

arbitrary products and function domains.

Finite posets are characterized by the finiteness of their carrier set. All finite posets are
domains. Finite products of finite domains are finite, and the function domain of two finite
domains is finite. Hence, the class FIN of finite domains is Cartesian closed.

Discrete posets are characterized by the degeneration of their order: a < b holds iff a
equals b. They consist of a set of uncomparable points. All discrete posets are domains.
Arbitrary products of discrete domains are discrete. If X is an arbitrary domain and Y is
discrete, then [X — Y] is discrete. Thus, the class DIS of discrete domains is Cartesian
closed. By Prop. 4.3.5, there is an equivalent topological characterization of discreteness: a
domain is discrete iff its Scott space is (T1).

The class of domains with least element is denoted by DOM . Similarly, we denote the
class of all domains belonging to some class C and having a least element by C,. The class
DOM | is preserved by arbitrary products and function domains. If (X;);er is a family of
domains with least elements L;, then [];c;X; has the least element (L1;);c;. If X is an
arbitrary domain and Y is a domain with least element L, then [X — Y] has a least element,
namely Az. L. Domains D with least element satisfy the famous Kleene fixed point theorem:
Every continuous function f:[D — D] has a unique least fixed point.

5.2 Bounded completeness

We start the presentation of the completeness classes by BC instead of the smallest class
CC since some facts about CC may be proved using facts about BC.

The class BC of bounded complete domains was investigated early. In connection with
algebraicity, bounded completeness delivers a Cartesian closed class of domains with par-
ticularly nice properties. Bounded complete algebraic domains may also be characterized
alternatively in terms of information systems.

There is some confusion around whether bounded complete domains should contain a
least element or not. (Should every bounded subset have a supremum, or should every non-
empty bounded subset have a supremum?) We decided that bounded complete domains
should possess a least element.

The definition of bounded completeness is presented in form of a proposition claiming
several conditions to be equivalent. It defines bounded complete posets; bounded complete

domains are considered later.
Proposition 5.2.1 (Bounded complete posets)
For a poset P, the following statements are equivalent:
(1) P is an upper cone, and for every two points z and y, the set Tz N Ty is empty or an
upper cone.

(2) P has a least element, and every two points with a common upper bound have a

common least upper bound.
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(3) The set of upper bounds of a finite set is either empty or an upper cone.
(4) Every finite bounded subset of P has a supremum.

Posets with these properties are called bounded complete.

Proof:

(1)=(2): Tz N Ty is empty iff z and y have no common upper bound. Every upper cone
has a least element.

(2) = (4) : The proof is performed by induction on the cardinality of the finite set. The
empty set is bounded since P is not empty. Thus, it has a lub, namely the least element
of P. Singletons trivially have a lub.

If A is a finite set with at least two points and upper bound u, let @ be a point of A and
A" = A\ {a}. A’ is also bounded by u, whence it has a lub by induction hypothesis.
Both || A" and a are below u, whence they have a common upper bound. By (2),

alU||A = |{{a}, Ll A"} exists. By Prop. 2.4.8, | |({e} U A’) = | | A also exists.

(4) = (3) : The finite set is either bounded, then it has a lub z, and the set of its upper
bounds is Tz. Or, the finite set is not bounded, then the set of its upper bounds is
empty.

(3) = (1) : P is the set of upper bounds of . Hence, it is an upper cone. Two points with a
common upper bound form a finite set with a non-empty set of upper bounds. Hence,
this set is an upper cone. |

By the definition above, every finite bounded set has a supremum in a bounded complete
poset. The stronger property that every bounded set has a supremum comes in two equivalent

statements.
Proposition 5.2.2 For a poset P, the following statements are equivalent:

(1) Every bounded subset of P has a supremum.

(2) Every non-empty subset of P has an infimum.

Proof:

(1) = (2): Let A be a non-empty subset of X, and let B be the set of lower bounds of A.
B is bounded by the elements of A, whence it possesses a supremum z by (1). Every
member of A is an upper bound of B, whence it is above the least upper bound z. Thus,

z is a lower bound of A. Since it is above all members of B, it is the greatest lower

bound.
(2) = (1): Let A be a bounded subset of X, and let B be the set of upper bounds of A. B

is not empty since A is bounded, whence it possesses an infimum z by (2). By similar
arguments as above, z is shown to be the supremum of A. a

Posets satisfying the criteria of Prop. 5.2.2 are not necessarily domains. For instance, in
the poset Ng = {0 < 1 < 2 < ---}, every non-empty subset has an infimum. It is however
not a domain since oo is missing.

There are bounded complete posets that however do not satisfy the stronger condition
of Prop. 5.2.2. An example is given by P = {0 < 1 < 2 < --- < [a,b]}, i.e. an infinite
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ascending chain with two incomparable upper bounds. P is bounded complete, but the chain
{0, 1, ...} is bounded without having a lub, and correspondingly, the non-empty set {a, b}
has no infimum.

For domains however, the two groups of conditions are equivalent.
Proposition 5.2.3 (Bounded complete domains)
For a domain X, the statements of Prop. 5.2.1 and Prop. 5.2.2 are equivalent.

The class of bounded complete domains is denoted by BC.

Proof: Let S be an arbitrary set bounded by some point u. Let F be the set of finite
subsets of S, and let D = {||F | F € F} where all lubs exist since all subsets of § are
bounded by u. Set D is directed, since | |} is in D and | |(F} U Fy) is an upper bound of | | F;
and || Fy in D by Prop. 2.4.7. Since X is a domain, || D exists. By Prop. 2.4.8, | |[(UF)
exists. The union of all finite subsets of 5 equals 5, whence | | S exists. O

Examples for bounded complete domains are provided towards the end of the next section.
We now turn to the preservation of BC by products and function domains.

Proposition 5.2.4

Arbitrary products of bounded complete domains are bounded complete.

Proof: Let A be a subset of [[;c; X; bounded by a point u = (u;);er. Let A; = m;[A]
for all 7in [. A; is bounded by u;, whence | | A; exists for all ¢ in /. By Prop. 2.4.10, | |A
exists. a

Proposition 5.2.5 If X and Y are domains, then bounded completeness of Y implies

bounded completeness of [X — Y].

Proof: Let A be a subset of [X — Y] bounded by a function g. For all z in X, the set
{fz | f € A} is bounded by gz. Hence, all these sets possess a supremum. By Lemma 3.4.2,
] A exists. O

5.3 Complete domains

In analogy to the previous section, we first present complete posets and then complete
domains. Because it seems inappropriate to coin posets without lubs of directed sets complete,
we speak of finitely complete posets instead of complete posets.

Proposition 5.3.1 (Finitely complete posets)
For a poset P, the following statements are equivalent:

(1) P is an upper cone, and for every two points z and y, the set of upper cones Tz N Ty
is an upper cone.

(2) P has a least element, and every two points have a common least upper bound.
(3) The set of upper bounds of a finite set is an upper cone.
(4) Every finite subset of P has a supremum.

Posets with these properties are called finitely complete.
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Proof: The proof is a simplified version of that of Prop. 5.2.1. a

In analogy to the conditions of Prop. 5.2.2, we now consider those posets where every
subset has a supremum. In contrast to the situation in the previous section, such posets are

always domains.
Proposition 5.3.2 (Complete domains)
For a poset X, the following statements are equivalent:
(1) X is a finitely complete domain.
(2) All finite and all directed subsets of X have suprema.
(3) Every subset of X has a supremum.
(4) Every subset of X has an infimum.
(5) X is a bounded complete domain with a greatest element.

We call these posets complete domains. The class of complete domains is denoted by CC.

Complete domains are also known as complete lattices.

Proof:

(1) = (5) : If every finite set has a supremum, then more than ever every bounded finite set

has a supremum.

Since X has a least element, and every two points of X have an upper bound, the
whole domain X is directed. By the definition of domains, X has an upper bound that

represents the greatest element of X.

(5) = (4) : In a bounded complete domain, every non-empty set has an infimum. The empty

set also possesses an infimum, namely the greatest element.

(4) = (3) : First, the empty set has an infimum. This represents the greatest element T of
X. Second, every non-empty set has an infimum, whence by Prop. 5.2.2, every bounded

set has a supremum. All sets are bounded by T.
(3) = (2) is trivial.
(2) = (1) : Finitely complete means all finite sets have suprema, and domain means all di-

rected sets have suprema. a
The class CC has the same preservation properties as BC.

Proposition 5.3.3 Arbitrary products of complete domains are complete.

Proposition 5.3.4
If X and Y are domains, then completeness of Y implies completeness of [X — Y].
The proofs are simpler variants of those for the class BC.

In a complete domain, every two points z and y have a supremum z Ly and an infimum
x My. The operation ‘L’ is always continuous, whereas ‘M’ is generally not continuous (see

example 7 below).

Proposition 5.3.5 In a complete domain X, the operation LI : X x X — X is continuous.
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Proof: By Prop. 3.3.6 and commutativity of ‘L1, we only have to show continuity in the
second argument. Let z be a point and D a directed set of X, and let f, = Ay. 2z Uy. Then

ULID) = e Ud]| d € D} = UUsepia, d}) = Li({z} U D) = s ULID = fo(LJ D) holds by
applying Prop. 2.4.8 twice. a
Examples:

1) For any set X, the powerset 2% ordered by ‘C’ is a complete domain.
Ny ={0<1<2<---<o0}isacomplete domain.

(
(2)
(3) The domain N’ of lazy naturals is bounded complete, but not complete.
(4) {T > L < F} is a bounded complete domain. It is not complete.

(5)

The only discrete domain that is bounded complete is the one-point domain 1. 1 is even
complete. The other discrete domains have no least element.

(6) Finite domains need not be bounded complete. The smallest domain with least element
that is not bounded complete is depicted below to the left.

(7) Let X ={p,0,1,..., 00} where 0 < 1 < .-+ < oo and 0 < p < oo holds. X is depicted
below to the right. It is a complete domain where the operation ‘11’ is not continuous.

The directed set D = {0, 1, ...} has lub co. | [{pNd |d € D} = ]{0} = 0 holds, whereas
pN D =phoo=p.

5.4 Finitary completeness or property M

In bounded complete posets, the set of upper bounds of two points is either empty or has
a least element. As a generalization one may require the set of upper bounds to be finitary.
This property is known as property M [Jun88]. We also use the term ‘finitarily complete’.

As usual, there are several equivalent definitions collected in the following proposition.
Proposition 5.4.1 (Finitarily complete)

For a poset P, the following statements are equivalent:

(1) The set of upper bounds of every finite set is finitary.

(2) P is finitary, and for every two points z and y, the set Tz N Ty is finitary.

(3) P is finitary, and the intersection of two finitary upper sets is finitary.

(4) Finite intersections of finitary sets are finitary.

A poset satisfying these conditions is said to have property M. We also say it is finitarily

complete. The class of all domains with property M is called FC.

Note that finite intersections also include empty intersections. Empty intersections always
result in the whole carrier P.
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Proof:

(1) = (2): P is the set of upper bounds of (}, and T2 N Ty is the set of upper bounds of
{z, y}.

(2) = (3): Let A and B be two finitary upper sets. Then there are finite sets £ and F' such
that A = TE and B = TF. Hence, AN B =TENTF = U.cp erp TeN1f is a finite
union of finitary sets by (2). Thus, it is finitary.

(3) = (4) : By induction. The empty intersection is P.

(4) = (1): If E is finite, then the set of upper bounds of F is () .cx Te. Upper cones are
finitary, whence this is a finite intersection of finitary sets. a

Proposition 5.4.2
(1) Every finite poset is finitarily complete.
(2) Every bounded complete poset is finitarily complete.

Proof:

(1) All finite sets are finitary.

(2) By Prop. 5.2.1 (1), the set of upper bounds of a finite set is either empty or an upper
cone, whence finitary in any case. O

The preservation properties of the class F'C are worse than those of CC and BC.

Proposition 5.4.3 If X and Y are in F'C, then sois X x Y.

Proof: Products of finitary sets are finitary by Prop. 4.8.1. Hence, X X Y is finitary.
Furthermore, T(z, y) N T(2', y') = (Tz x Ty) N (T2’ x Ty') = (Te N T2’) x (Ty N Ty') holds.
The final outcome is finitary as product of finitary sets. a
Infinite products and function domains of FC domains are generally not FC.

Example 1: Let X = {a, b} where ¢ and b are incomparable. If [ is an infinite index set,
then Y = [];.; X is infinite and discrete, whence it cannot be finitary.

Example 2: Let X = {[a1,01] < [ag,b2] < -++ < o0}

ay > (19 > (3
A s
b bz bs

The domain X is in FC, but not in BC. For every n in N, the function f : X — X defined
by f(a;) = a; and f(b;) = b; for i < n, and f(a;) = f(b;) = a, for i > n, is minimal in
[X — X]. Hence, [X — X] has an infinite number of minimal points and thus cannot be
finitary.

There are two typical examples of domains not in FC: {[a,b] < -+ < 3 < 2 < 1} and
{[a,b] < [1,2,3,...]}. In both cases, the set Ta N Th is not finitary.
In connection with Rudin’s Lemma, we are able to prove further properties of finitarily

complete domains.
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Proposition 5.4.4 Let X be a domain in FC. A subset S of X is a strongly compact
upper set iff it is the intersection of some D-directed set of finitary upper sets. One such
set is the set of all finitary upper supersets of 5.

Proof: One direction is provided by Prop. 4.7.8. For the opposite direction, let S be a
strongly compact upper set, and let F be the set of all finitary upper supersets of 5. F is
DO-directed by the FC condition. S C [F obviously holds. For the opposite inclusion, we
apply Lemma 4.4.4. If § C O where O is open, then I C O holds for some F in F by strong
compactness. [|F C F C O follows. O

5.5 The classes SC and KC

The class F'C may be further generalized by replacing the finitary sets by strongly compact
sets in its definition. Since strong compactness is a topological notion, we only consider
domains, not general posets.

Proposition 5.5.1 (SC) For a domain X, the following two statements are equivalent:

(1) X is strongly compact, and for every two points 2 and y, the set Tz N Ty is strongly
compact.

(2) X is finitary, and the intersection of two finitary upper sets is strongly compact.

Domains with these properties are called strongly compactly complete. The class of such

domains is denoted by SC.

Proof: Since X is open, X being strongly compact and being finitary is equivalent by
Prop. 4.7.7.

Upper cones are finitary. Conversely, if A and B are finitary upper sets, then there are finite
sets £/ and I’ such that A = TE and B=1F. ANB = U,.cp sep TeNT [ is strongly compact
as a finite union of strongly compact sets. O

In contrast to finitary completeness, we are neither able to derive from SC that the set of
upper bounds of every finite set is strongly compact, nor that the intersection of two strongly

compact upper sets is strongly compact.

The class of compactly complete domains is defined analogously to SC.

Proposition 5.5.2 (KC) For a domain X, the following two statements are equivalent:
(1) X is compact, and for every two points z and y, the set Tz N Ty is compact.
(2) X is finitary, and the intersection of two finitary upper sets is compact.

Domains with these properties are called compactly complete. The class of such domains
is denoted by KC.

Proof: Analogous to that of Prop. 5.5.1 using Prop. 4.6.8 instead of Prop. 4.7.7. a

The class FC is a subclass of SC, and SC is in turn a subclass of KC. The examples of
section 5.4 provide domains in class FC whose infinite product and function domain are not
contained in FC since their whole carrier is not finitary. By part (2) of Prop. 5.5.2, they
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are in KC neither. Thus, neither SC nor KC are closed w.r.t. infinite products and function

domains.

Class SC is however closed w.r.t. finite products:

Proposition 5.5.3 If X and Y are in SC, then their product X x Y is in SC.

Proof: Analogous to the proof of Prop. 5.4.3 using the fact that the product of two
strongly compact sets is strongly compact (Prop. 4.9.1). o

We cannot show an analogous property for KC because the analogue of Prop. 4.9.1 is

missing.

Problem 3 Is the class KC closed w.r.t. finite products?



Chapter 6

Algebraic and continuous domains

In the previous chapter, we presented a hierarchy of properties defined by a common
scheme: from CC to KC. In this chapter, we present two well-known domain classes: algebraic
and continuous domains. We start by introducing the smaller, but more well-known class of
algebraic domains and then consider continuous domains.

The classical definitions of these notions will be shown to be equivalent to purely topo-
logical definitions that could be applied to all (T0)-spaces (Theorems 6.2.5 and 6.7.9). These
results do not occur in the literature as far as I know it. On the other hand, they are funda-
mental and easy to prove such that it is unlikely that they are really new.

Sections 6.1 through 6.5 handle algebraicity. In section 6.1, isolated points are studied
in arbitrary domains. Section 6.2 starts by the usual order-theoretic definition in terms
of isolated points, and derives the equivalent topological definition. In section 6.3, some
examples for algebraic domains are presented. In section 6.4 we show how the completeness
properties of an algebraic domain may be characterized in terms of the base. Section 6.5 then
treats the relations between an algebraic domain and its base: monotonic functions defined on
the base can be uniquely extended to continuous functions on the whole domain (Th. 6.5.1).
Also, the whole domain can be recovered from the base by ideal completion (Th. 6.5.3).

Sections 6.6 through 6.8 handle continuity of domains. Concerning the theory of contin-
uous domains, I owe much to the paper [Law88]. In section 6.6, the way-below relation is
introduced. Section 6.7 first defines continuous domains classically by means of the way-below
relation and then derives the equivalent topological characterization: in every environment
of every point, there is an environment that is an upper cone. In section 6.8, we present
some further properties of continuous domains, and provide some examples for continuous

and non-continuous domains.

6.1 Isolated points

Algebraic domains are characterized by a base from which all domain points can be
generated by directed lubs. The points of this base are required to have a special property
that is investigated in this section.
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The domain X = {p, 0,1, ..., 00} where 0 < 1 < --- < oo and 0 < p < oo was introduced
in section 5.3 as an example for a complete domain where the operation ‘I’ is not continuous.
It suffers from the fact that the point p is below the limit of the directed set D = {0, 1, ...},

but not below any of the members of D.

Definition 6.1.1 A point a in a domain X is isolated (or: finite, or: compact) iff for all
directed sets D C X, the relation @ < || D implies a € | D, i.e. there is an element d in
D such that a < d.
The set of all isolated points of X is denoted by X". Finite sets of isolated points are
called iso-finite.

We adopt the name ‘“isolated’ in order to avoid the name conflict with finite or compact sets.
The name “finite’ is inspired by powersets where the isolated ‘points’ are just the finite sets
(cf. section 6.3). The name ‘compact’ probably was chosen because of the characterization
of compact sets by part (2) of Prop. 4.6.1. As the next proposition shows, there is also some
motivation to call the isolated points ‘open’.

Proposition 6.1.2 A point z is isolated iff the upper cone Tz is Scott open.

Proof: A Scott open set is a d-open upper set. The definition of z being isolated
coincides with statement (3) in Prop. 3.5.5, i.e. z is isolated iff Tz is d-open. O
The upper cone being open implies a further topological property of isolated points.
Proposition 6.1.3 A point z is isolated iff for all sets 5, 2 € cl .S implies z € | 5.
Proof: Let 2 be isolated and 2 € ¢l S. By Prop. 6.1.2, T2 is an open environment of z.
By Prop. 4.2.2, it meets S by a point y. y € Tx implies # < y, whence z is in | 5.
Conversely, let  be a point such that z € cl.S implies z € |5 for all sets 5. Let A = co .
We show A is closed, whence its complement Tz is open and z is isolated by Prop. 6.1.2. Let
y be a point of cl A. Assume g is not in A. Then it is in Tz, i.e. ¥y > x holds. Since cl A

is lower, € cl A follows, whence 2z € |A = A by precondition. 2 € A means z } z — a
contradiction. Thus, cl A = A holds. |

After having considered the topological properties of isolated points, we now turn to their
order-theoretic properties. The following proposition is simple, but sometimes useful.

Proposition 6.1.4 Let D be a directed set whose lub a is isolated. Then a is in D.

Proof: Since a is isolated and below the lub of D by reflexivity, there is some d in D
such that ¢ < d holds. d < a holds since a is an upper bound of D. a
Proposition 6.1.5 If it exists, the lub of an iso-finite set is isolated.

Corollary: If X has a least element L, then L is isolated.

Proof: Let K be an iso-finite set with lub z = [ |#£. By Lemma 2.4.6, Tz = (.cp Te
holds. The claim then follows from Prop. 6.1.2 and the fact that the intersection of a finite
number of Scott open sets is Scott open. Even the intersection of zero open sets is open,
since it is the whole domain.

The corollary holds, since L is the lub of the empty set. A more direct argument is that
TL = X is Scott open. O
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The isolated points of a product are easily characterized.

Proposition 6.1.6 Let X and Y be two domains. (z, y) is isolated in X x Y iff = is
isolated in X and y is isolated in Y. Hence, (X x Y)? = X° x Y.

Proof: We apply Prop. 6.1.2. By Prop. 2.2.10, 1(z, y) = Tz x Ty holds. By Prop. 4.8.1
and 4.8.2, T(z, y) is open iff both Tz and Ty are open. a

We now define a variant of the lower closure that only contains isolated points.

Definition 6.1.7 For points z in a domain X, let |%¢ = {a € X | @ isolated and < z} =
1z N XY be the set of isolated points below z.

Obviously, z < y implies |’z C |"y. The inverse implication is not true in general domains.

6.2 Algebraic domains

An important class of domains is characterized by the fact that every point of theirs may
be reached as a directed lub of isolated points.

Definition 6.2.1 A domain X is algebraic iff for all  in X, there is a directed set of
isolated points with lub 2. The set X of isolated points of an algebraic domain is called

its base. The class of all algebraic domains is denoted by ALG.
An equivalent definition is given by the following proposition:

Proposition 6.2.2 A domain X is algebraic iff for all z in X, the set |z of isolated

points below z is directed with lub x.

Proof: The direction from right to left is trivial. For the opposite direction, assume X
is algebraic, and let z € X. Then there is a directed set D of isolated points with lub z. D
obviously is a subset of |°z. We show D is cofinal in |°z, whence by Prop. 3.1.8, the set |’z
is directed with lub z.

We have to show [z C | D. Let a be in |°z. Then a is isolated and below z i.e. below the

lub of D. By definition of isolated, @ is below some member of D, ie. a € | D. a

The proposition above implies some conclusions about the ¢|°” operator in algebraic domains.

Proposition 6.2.3 For all points # and y in an algebraic domain, |°z C |“y is equivalent
to z < y. Hence, |°z = |%% is equivalent to z = y.

Proof: The second claim follows from the first one be anti-symmetry.

Let z < y. Then every isolated point below z is below y by transitivity. Conversely, let

1% C |%. Then 2z = | || < | ||% = y holds by Prop. 2.4.7. O
In Prop. 6.1.2, we saw that in a domain, an upper cone is open iff its vertex is isolated.

In algebraic domains, arbitrary open sets may be characterized.

Proposition 6.2.4 In an algebraic domain, a set O is open iff there is a set S of isolated
points such that O = 15.
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Proof: Let O be an open set in the algebraic domain X, and let § = O N XY § is a set
of isolated points. S C O implies TS5 C TO = O. For the opposite inclusion, let = be a point
of O. z is the lub of the directed set |°z. Since O is open, there is a in |“z such that a in O.
@ is in S and below z, whence z isin T5.

Conversely, let O = 15 = TU,esi{s} = Uses Ts. By Prop. 6.1.2, the cones Ts are open,
whence their union is. a

The propositions above prepare a characterization of algebraicity in topological terms that
might be applied to arbitrary topological spaces.

Theorem 6.2.5 A domain X is algebraic iff it has the ‘local open upper cone’ property:
for all points z in all open sets O, there is an open upper cone Ty such that z € Ty C O.

Proof: First, let X be algebraic, and let z be a point in an open set Q. z is the lub of
the directed set |"z, whence some member y of |Yz is in O. y < z implies z € Ty, and y € O
implies Ty C O. y being isolated implies Ty is open.

For the opposite direction, assume X satisfies the topological property. Let  be a point of
X. We show |’z is directed with lub z. If @ and b are in |°z, then z is contained in the open
sets Ta and Tb. Hence, z is in the open intersection Ta N Tb. By the precondition, there is
an open upper cone Jc such that z € Te C Ta N Tb. Then c is isolated and below z, whence
cisin |°z. By Te C Tan T, ¢ > a, b holds.

Since all points of |“z are below z, | | |°z <  holds. To show z < | | |"z, we apply Prop. 4.3.1.
Assuming z € O open, we have to show | | |2 € O. By the precondition, z € O implies there
is an open upper cone Ty such that 2 € Ty C O. Then y is in |"z and y is in O, whence

|| {%2 is in O because O is upper. O

Next, we present a proposition which allows to efficiently prove algebraicity and determine
the base.

Proposition 6.2.6 Let X be a domain and B a subset of X such that
(1) all members of B are isolated,
(2) for all z in X, there is a directed subset of B with lub z.
Then X is algebraic and B its base, i.e. B contains all isolated points of P.

Proof: The definition of algebraicity is trivially satisfied. By (1), B C X holds. We
have to show X" C B. Let a be an isolated point of X. By (2), there is a directed set D C B
with lub . By Prop. 6.1.4,a € D C B holds. O

In section 8.4, we shall see that binary products of algebraic domains are algebraic. The
function domain of two algebraic domains is however not generally algebraic again. An

example is provided is section 6.8.

6.3 Examples for algebraic domains

We start by some classes of examples introduced by several propositions.

Proposition 6.3.1 Every finite poset P is an algebraic domain whose base is P itself.
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Proof: By Prop. 3.1.2, every directed set in P contains a greatest element which is the
lub of P. Hence, all directed sets have a lub, i.e. P is a domain. Furthermore, for all directed
sets D, || D € D holds, whence all members of P are isolated. By z = | |{z}, every point of
P is the lub of a directed set. Applying Prop. 6.2.6 to all these facts, P is shown to be an
algebraic domain with base P. a

Proposition 6.3.2 Every discrete poset P is an algebraic domain whose base is P itself.

Proof: Since two distinct points in P have no common upper bound, all directed sets
of P are singletons. All singletons {2} have lub z, whence P is a domain and all its points

are isolated. O

Proposition 6.3.3 If X is any set, then the powerset of X forms an algebraic domain
when ordered by inclusion ‘C’. The isolated points are just the finite sets.

Proof: The powerset is a domain since every set of sets has a lub, namely their union.

Let F be a finite set, and let D be a directed set of sets such that ¥ C |JD. For every e
in I, there is 5. in D such that e € S.. Let S be the upper bound in D of the finite set
{S.|e€ E}. Then £ C S and S € D holds.

Every set S is the union of all its finite subsets. The set of finite subsets of 5 is directed.
Hence, every set is a lub of a directed set of isolated sets. Applying Prop. 6.2.6, we obtain
that the powerset is algebraic and all isolated sets are finite. |

e The domain N§° = {0 < 1 < 2 < -++ < oo} is algebraic. All points except oo are
isolated.

e The domain Nt = {0 < 1 <2< -+ < 00 < oo + 1} is algebraic. Again, all points
except oo are isolated. Point oo + 1 shows that there might be isolated points above
non-isolated points. It also shows that calling the isolated points finite is inappropriate

in this case.

6.4 Algebraicity and completeness

In this section, we investigate how the containment of an algebraic domain D in a com-
pleteness class can be decided by looking at the base D°. We start by considering bounds in
algebraic domains.

In an algebraic domain, there is always an isolated point between an iso-finite set and one

of its upper bounds.

Proposition 6.4.1 Let K be an iso-finite set in an algebraic domain, and let u be an

upper bound of £. Then there is an isolated upper bound of £ below u.

Proof: Forall e € E, e < u =]|]|"u holds. Since e is isolated, there is a point d. in |"u
with e < d.. The set {d. | e € E'} is finite since F is finite, and thus has an upper bound d
in |Yu because |u is directed. Then for all e in F, e < d. < d holds, i.e. d is an upper bound
of k. Since d is in |"u, it is below u. O
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By Lemma 6.1.5, the least upper bound of an iso-finite set in a domain is isolated if it
exists. In an algebraic domain, this statement may be generalized to minimal upper bounds.

Lemma 6.4.2
In an algebraic domain, the minimal upper bounds of an iso-finite set are isolated.

Proof: Let £ be an iso-finite set, and let m be minimal in the set of upper bounds of
E. By Prop. 6.4.1, there is an isolated upper bound « of £ below m. Since m is a minimal
upper bound, m = a is isolated. O

Proposition 6.4.3 Let D be an algebraic domain. Then D and D° have the same
minimal elements, and D = Tmin D holds in D iff DY = Tmin D° holds in DY.

The addition ‘holds in ...” is supplied since the T-operator depends on the underlying poset.

Proof: Every point z of D is the lub of a directed set of isolated points. Hence, there is
an isolated point below every point of z. From this fact, all the statements may be proved.O

The connections between completeness of an algebraic domain and completeness of its base

are given by the following theorem:

Theorem 6.4.4 Let D be an algebraic domain.
CC: D is complete iff the poset D is finitely complete.
BC: D is bounded complete iff the poset D° is bounded complete.
SC: D isin SC, iff it is in KC, iff the poset DV is in FC.

Proof:

BC: Assume D is in BC. Let  be a finite bounded set in DY. Then £ is bounded in D, too,
whence it has a least upper bound z in D. By Prop. 6.1.5, 2 is in D°.

Conversely, assume D% is in BC. Then D has a least element 1, and every two bounded
points of DY have a lub in D®. Every point z of D is the lub of a directed set of isolated
points. Thus, there is at least one member of D® below z, whence L is below 2. Thus,

1 is also the least element of D.

Let 2 and y be two points of D bounded in D. Let D = |z x |Yy. D is directed as
product of two directed sets. Every pair (a, b) in D is bounded in D whence it is also
bounded in DY by Prop. 6.4.1. Thus, a U b exists. The set D' ={aUb| (a,b) € D} is
directed by Prop. 2.4.7. Let z be its lub in D. z = 2 U y may then easily be verified.

CC: The proof is analogous to a simplified version of the proof for BC.

SC: If D is in SC, then it is also in KC. Now assume D is in KC, and we want to show
DY in IFC. First we show DY is finitary. By Prop. 5.5.2, D is finitary. By Prop. 6.4.3,
DY is finitary, too. Let « and b be two points of D’. In D, the set Ta N Tb is open by
Prop. 6.1.2 and compact because of KC. By Prop. 4.6.8, it is finitary in D. Since {a, b}
forms an iso-finite set, the minimal points of Ta N Tb are in DY. Thus, the set of upper
bounds of @ and b in DY is finitary.

Now assume D is in FC, and we want to show D is in SC. D is finitary since D is.
Let x and y be two points of D. Let D = |"z x |"y. D is directed as product of two
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directed sets. For every pair (a, b) in D, the set of common upper bounds of ¢ and b
is finitary in DY, whence Ta N Tb is finitary in D. Thus, using Prop. 2.4.6, one obtains
TeNTy = ﬂaeloz Te N ﬂbeloy T6 = M(a,5)eD Ta N Tb is a D-directed intersection of
finitary sets, whence strongly compact by Prop. 4.7.8. a

By the last statement of the theorem, the domains in KC & ALG are just the domains
whose bases have property M. These domains enjoy many useful properties, whence they were
used in early papers of mine such as [Hec90c, Hec90a]. The nice properties of the domains
in KC & ALG now turned out to depend on KC, not on algebraicity. Fxamples for such
properties are the Lemmas 8.10.1 and 8.10.2, and in connection with power domains, the
theorems 21.5.1 and 22.6.1.

6.5 Continuous extension and ideal completion

In this section, we consider the relation between an algebraic domain and its base a bit
closer. A monotonic function defined on the base may be uniquely extended to a continuous
function on the whole domain. This also holds for embeddings. Two domains with isomorphic
bases are completely isomorphic. From a given non-empty poset P, an algebraic domain may

be constructed whose base is isomorphic to P.

Theorem 6.5.1 (Continuous extension)
Let X be an algebraic domain and Y a domain. For every continuous function f:[X —
Y], the restriction of f to the base X? of X is monotonic. Conversely, for every monotonic
function f9 : X% — Y, there is exactly one continuous extension f : [X — Y], i.e. fis
continuous and equals f when restricted to X°.

Proof: The first claim concerning the restriction of f to X9 is trivial.
First, we show the uniqueness of the continuous extension. If f; and f, are two continuous
functions from X to Y which both equal f° on X°, then with Prop. 6.2.2, fiz = fi(|]|%z) =
Ll f1[1%2] = LU fP[1°] = L £o[1%2] = fo(U1%) = fox holds. This also shows how the contin-
uous extension has to be constructed.
For z in X, we define fz = || f[|%2] = | [{f% | a € |"z}. This is well defined, since |’z is
directed by Prop. 6.2.2, and the image of a directed set by a monotonic function is directed
by Prop. 3.1.4.
To show the monotonicity of f, let 2 < y. Then |%2 C |%y, whence f°[|°z] C f°[|%y], whence
fz < fy by Prop. 2.4.7.
To show the continuity of f, let D be a directed set in X. Then
UJD] = L{fd|de D} = LU /O[] | d € D}

= U/ Usen 1°d] by Prop. 2.4.8

= L/l P by isolatedness

= f(up)
Finally, we have to show fa = fa for points a in X". By definition of f, fa = || f°[{°]

holds. a is an upper bound of |“a, whence fYa is an upper bound of f°[|°a] by monotonicity
of fU. fPais in f9[|%], since @ is in |%a. By Prop. 2.4.3, fOa is the lub of f°[|"a]. 0
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Next, we consider embeddings. If a poset embedding f° : X% — Y is given, its continuous
extension f may not be an embedding. The poset X = N8°+1 is algebraic with base X! =
Nt — {00} ={0,1,..., 00+ 1}. Let Y = N5° and f°: X° — Y be defined by f'n =n
for n € Ng and f(co+ 1) = 0o. This function is an embedding, but its continuous extension
f:X =Y is not since f(oc0) = f(oo + 1) = oo holds.

To ensure that the continuous extension is an embedding, the function f° has to map
base points into isolated points.

Proposition 6.5.2 Let X be an algebraic domain and Y a domain. A continuous func-
tion f : [X — Y] is a domain embedding if its restriction f° : X — Y is a poset
embedding and maps into Y°.

Proof: Let f°: X% — Y be a poset embedding, and let z and z’ be points of X such
that fz < fa' holds, i.e. [ |f°[1°2z] < || f°[{°2']. Let a be a point of |°z. Then fa is in
2], whence fPa < | fO[1%] < | f°[{°2'] follows. Since fPa is in YO, there is a point &
in |Y2' such that f%a < f. Since fY is an embedding, a < b < 2’ holds. Because a < 2
holds for all @ € |z, z = || |z < 2’ follows. a

Finally, we present how to construct an algebraic domain from a given base.

Theorem 6.5.3 (Ideal completion)
Let P be a given non-empty poset, and let ZP be the poset of ideals of P ordered by set
inclusion. Then | : P — ZP is a poset embedding, and ZP is an algebraic domain whose
base is the image of P under ‘|’. Thus, the base of ZP is isomorphic to P.

Proof: For all z in P, the cone |z is an ideal since it is a lower set and directed because
every subset of |z has the upper bound z € |z. The mapping | : P — ZP is a poset
embedding by Prop. 2.2.5. The poset ZP is directed complete by Lemma 3.1.5; the lub of a
directed set of ideals is its union.

Let B ={lz |z € P} CZP. We first show that all members of B are isolated. Let D be
a directed set of ideals, and |z < | |D, i.e. z € |z C | |D. Then, there is I in D such that
xz € I. Since [ is a lower set, |z C [ holds.

Next, we show that all ideals are directed lubs of members of B. Let I be an ideal. Then
I = Uierli} € Uier 14 C 1 holds, since I is a lower set. Because it is directed, (J;c; 7 is a
directed lub of members of B.

By Prop. 6.2.6, ZP is algebraic with base B. a

6.6 The way-below relation

The class of algebraic domains is generalized to the class of continuous domains by gen-
eralizing the concept of isolated points to the way-below relation. We say that a point z is
way-below or essentially below a point y iff every computation converging to a point above y
must eventually produce partial results above .
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Definition 6.6.1 A point z in a domain X is way-below a point y, written = < y, iff for
all directed sets D of X, y < || D implies z € | D.

For points z in X, we write Yz ={y |y < z} and f}z ={y | = < y}.

By comparing the definitions, it is obvious that a point z is isolated iff + < z holds. We

start by proving some simple properties of ‘<.
Proposition 6.6.2 x < y implies z < y. Hence, {Jz C |z and f}z C Tz.

Proof: Let D = {y}. D is a directed set with lub y. z < y implies there is a point d in
D such that @ < d. d = y implies 2 < y. O

Proposition 6.6.3 If 2 <yand y < 2z, then z <« z follows. If x €« y and y < z, then

r < z also follows. Hence, ‘<’ is transitive, |}z is lower, = is upper, x < y implies
Yz C Uy and frz 2 fy.

Proof:

(1) 2<|UD implies y € | D, whence z € | D.

(2) z <D implies y < || D, whence z € | D.

The statements about ‘|}’ and ‘“f}’ are direct conclusions. a

Proposition 6.6.4 If X has a least element L, then L < z holds for all z in X.

Proof: For every directed set DD, L € | D holds since D is not empty. O

6.7 Continuous domains

In a continuous domain, every point is a directed limit of points that are way-below it.

Definition 6.7.1 A domain X is continuous iff for all points x of X, there is a directed
subset D of = with lub . The class of continuous domains is denoted by CONT.

Continuous domains could also have been defined by a different condition.

Proposition 6.7.2
A domain X is continuous iff for all points z of X, the set {}z is directed with lub =z.

Proof: The implication from right to left is trivial. For the opposite implication, let D
be a directed subset of {J with lub z. We show that D is cofinal in {}z. Then |}z is directed
with the same lub z by Prop. 3.1.8.

We have to show {4z C | D. Let u be a member of {Jz. Then v < 2z = || D, whence u € | D

by definition of ‘<. O
Proposition 6.7.3 Every algebraic domain is continuous.

Proof: In an algebraic domain, the set |“z is directed with lub z for every point z. We
show |Yz C Jz. If ais in |"z, then a < a < z holds, whence @ < = by Prop. 6.6.3. a

In continuous domains, the way-below relation satisfies an interpolation property.
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Proposition 6.7.4 (Interpolation) Let X be a continuous domain. For every two
points z and z in X with z < z, there is a point y in X such that z € y < z.

Proof: Since X is continuous, |}z is directed and z = | |{}z holds. By Prop. 6.6.3 and
continuity of X, the set {{la | « € Yz} is C-directed. By Prop. 3.1.5, its union D is directed.
By Prop. 2.4.8, the lub of D equals l—laEU«z L|{a = ||z = z. Because of z € z =[] D, there
is some d in D such that z < d. d is contained in {y for some g in {}z. Hence, z < d < y K =
follows. O

The next results will finally lead to a topological characterization of domain continuity.

Proposition 6.7.5 Let X be a continuous domain, x a point of X and D a directed
subset of X. Then z < | | D implies x < d for some d in D.

Proof: By interpolation, there is a point y in X such that 2 < y < | |D. By y < || D,
there is some d in D such that y < d. Then 2 < y implies = < d. O

The ‘{}’ operator is continuous:

Proposition 6.7.6
For all directed sets D) in a continuous domain, Y(| | D) = Usep Ud holds.

Proof: By Prop. 6.6.3,d < || D implies {}d C {}(|] D), whence ‘D’ holds. Conversely, if

zis in Y(U D), then z < || D, whence z < d for some d in D by Prop. 6.7.5. O
Proposition 6.7.7 Let X be a continuous domain. For every z in X, the set {}z is open.
Proof: 1tz is upper by Prop. 6.6.3. By Prop. 6.7.5, it is d-open. O

The way-below relation may be characterized topologically.

Proposition 6.7.8 In a continuous domain X, x < y holds iff there is an open set O
such that T2 2 O 3> y. The implication from right to left holds in every domain.

Proof: Assume there is an open set O such that Tz O O > y. Let D be directed such
that y < [ |D. y € O implies | | D in O. Since O is open, there is some d in D contained in
0. de O C Tz implies z < d.

Conversely, assume z < y holds in a continuous domain. Then O = {yz is open by Prop. 6.7.7.
z < yimplies y € ffz = 0. O = =z C Tz holds by Prop. 6.6.2. O

Now, we are ready for the topological characterization of domain continuity.

Theorem 6.7.9 A domain X is continuous iff it has the ‘local upper cone’ property: for
every point z in every open set O, there are an open set O’ and a point z’ such that

reO0 C Tz’ CO.

Proof: Assume first X is continuous. Let z be a point in an open set O. | |[{}z =z € O
implies there is some z’ in |}z contained in O. z’ € O implies Tz’ C O. z' € Yz implies
2" <« x, whence there is an open set O’ by Prop. 6.7.8 such that z € O’ C Ta'.

Conversely, let X be a domain satisfying the topological property. Let z be a point of X. We
have to provide a directed subset D of {Jz with lub z.
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Let D be the set of all points u in X such that there is an open set O, with z € O, C Tu.
By the direction of Prop. 6.7.8 that holds for all domains, D is a subset of {z. Since X itself
is open, € X implies there are a point y and an open set O, such that z € O, C Ty. Thus,
D is not empty. Let u and v be two points of D. We look for a common upper bound of u
and v in D. u and » in D implies there are open sets O, and O, such that x € O, C Tu and
z €0, CTv. Then z € O, N O, follows, whence by precondition there are a point w and an
open set O,, such that x € O,, C Tw C O, N Oy. Then wisin D, and Tw C O, C Tu implies
w > w. Similarly, w > v follows.

Now, we know D is directed. We have to show | |D = 2. VFor every din D,z € Oy C Td
holds, whence d < z. | | D < z follows. For the opposite relation, we apply Prop. 4.3.1. Let
z be a point of an open set 0. We have to show | | D € O. By the precondition, there are
a point y and an open set O, such that 2 € O, C Ty C O. y in D and y in O follow. By
y <UD, D € O follows. =

6.8 Further properties and examples

In this section, we present some further properties of continuous domains, and provide
some examples for continuous and non-continuous domains.

We start by a sample domain that is continuous without being algebraic. Let X = [0..1]
be the unit interval of the real line ordered by the usual order such that 0 is least and 1 is
greatest. X forms a complete domain since every subset has a supremum. In X, z < y holds
iff # <yoraz=y=0. Xis continuous since z = | [{y | y < z} holds for all z > 0. It is
however not algebraic because it contains only one isolated point, namely 0, and this single
point is not capable to generate all domain points by directed lubs.

In section 5.3, we presented a complete domain whose binary infimum operation is not

continuous. It was X = {p,0,1,2,..., 00} where0 <1 <2< .- <ocand 0 < p <
holds. This domain cannot be continuous because of the following proposition:

Proposition 6.8.1 Let X be a continuous domain, where every two points x and y have
a greatest lower bound « My. Then M: X x X — X is continuous.

Proof: By Prop. 3.3.6 and commutativity of ‘1", we only have to show a M| |D =

lsep(a M d). Let the point to the left be 2 and the point to the right be y. For every d in

D,and<an]||D holds, whence z > y follows.

For the opposite relation z < y, we apply Prop. 4.3.1. Let z € O for some open set 0. We

have to show y € O.

By Th. 6.7.9, there are a point z’ and an open set O’ such thatz € O' C 12’ C 0. z = aN| | D

in O implies « € O" and | | D € O’ since O is upper. Because O’ is open, some point d of D

isin O'. Then a,d € O’ C Tz’ implies a,d > @', whence a Md > z'. Thus, aNd € Tz’ C O

follows, whence y is in O because it is above a M d. a
In section 8.4, we shall prove that the classes ALG and CONT are closed w.r.t. finite

products. They are however not closed w.r.t. function domain forming. The example for this

is prepared by the following proposition.
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Proposition 6.8.2 All minimal points in a continuous domain are isolated.

Proof: Let x be a minimal point in a continuous domain X. Then {}x is directed and in
particular not empty. Let y be a point of {J. Then y < z holds whence y < z by Prop. 6.6.2.
Since z is minimal, y = 2 follows. Thus, z < z holds, i.e. z is isolated. O

Let X = {[a1,b1] < [ag,bs] <+ < o0}

ay a9 as

by b bs

We already met this domain in section 5.4 as an example of a domain X in class FC
where the function domain [X — X] is not even contained in the larger class KC. Now, we
shall show that X is algebraic whereas [X — X] is not even continuous. Algebraicity of X is
proved easily; all points except co are isolated.

The identity function id : [X — X] is minimal in [X — X]. Let f be a function below
id. Then f(a;) < a1, whence f(ay) = ay. Similarly, f(by) = by holds. Assume as an
induction hypothesis f(a,) = a, and f(b,) = b, hold. Then f(ant1) > f(an) = a, and
flans1) > f(by) = by, hold by monotonicity, and f(any1) < @pgr since f < id. These
relations imply f(a,41) = @p4q1. Similarly, f(b,41) = bp41 is shown. By induction, we obtain
that f and id coincide for all points @, and b,. By monotonicity, f(co) > f(a,) = a, holds
for all n, whence f(o0) = .

Let D be the set of all constant functions Az. ¢ where ¢ < co. D is easily shown to be
directed. Its lub is the function Az.oco. The identity function is below Az. oo, but not below
any function in D. Thus, id is not isolated.

The identity is a minimal element of [X — X] that is not isolated. By Prop. 6.8.2,
[X — X] is not continuous.



Chapter 7

Functions and domain classes

In section 7.1, we introduce two domain classes, the finitely algebraic (also: bifinite,
profinite, or strongly algebraic) and the finitely continuous domains, that are defined by
properties of the function domain. The former class was studied in [Gun87], whereas I learnt
about the latter class from [Law88]. These two classes are inserted in the hierarchy of the
previous two chapters in sections 7.1 and 7.2. In section 7.3, their Cartesian closedness is
shown.

In section 7.4, we define functors and show that locally continuous functors that map
finite domains to finite domains, also preserve finite algebraicity and finite continuity. In
section 7.5, we show that arbitrary functors that preserve algebraicity also preserve continuity
of domains. The proof is done by using retracts that provide a close relationship between

algebraic and continuous domains. I found the notion of retracts in [Law88].

7.1 Finite algebraicity and finite continuity

The classes of finitely algebraic and of finitely continuous domains are defined by approx-

imations of the identity function.
Definition 7.1.1 Let X be a domain. A function f :[X — X]is a deflation iff f < id
holds and f has a finite image f[X]. A function f:[X — X] is idempotent iff fo f = f.

X is finitely continuous iff the identity function id : [X — X] is the lub of a directed set
D of deflations. X is finitely algebraic (or: bifinite, or: profinite) iff the identity is the lub
of a directed set D of idempotent deflations.

The class of all finitely algebraic domains is called F-ALG, and the class of finitely con-
tinuous domains is denoted by F-CONT.

Obviously, F-ALG is a subclass of F-CONT by definition. The names finitely algebraic
and continuous suggest that F-ALG is a subclass of ALG, and F-CONT of CON'T. This is

indeed true as we shall see soon.

Proposition 7.1.2 Every finite poset is a finitely algebraic domain.

93
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Proof: Every finite poset is a domain by Prop. 6.3.1. If X is finite, then the identity
id : [X — X] has finite image. Thus, D = {id} is a directed set of idempotent deflations,
whose lub is id. a

The next Lemma holds for arbitrary domains, not only for finitely continuous ones.

Lemma 7.1.3 Let X be a domain, and f : [X — X] a deflation. Then fz < z holds for
all z in X. If f is furthermore idempotent, then fz is isolated for all z in X.

Proof: We first show fax < x. Let D be a directed set such that @ < | |D. Then
fr < f(UD) = LU f[D] follows by continuity of f. f[D] is a finite directed set, whence
LI f[P] € f[D] by Prop. 3.1.2. Thus, there is d in D such that || f[D] = fd. Hence,
fa <|Jf[P] = fd < d holds for some d in D.

If f is idempotent, then for all 2 in X, fz = f(fz) < fz holds as we just proved. Thus, fz
is isolated. O

Now we are ready to show the inclusions of F-ALG in ALG and F-CONT in CONT.

Proposition 7.1.4 Every finitely algebraic domain is algebraic, and every finitely con-

tinuous domain is continuous.

Proof: Let D be the directed set of deflations approximating identity. For all points z,
r=1ddz = (UD)x = {fz | f € D} holds by Prop. 3.4.2. The set {fz | f € D} is directed
and has lub z. Lemma 7.1.3 shows that it is a subset of {}z in case of F-CONT, and of |°z
in case of F-ALG. a

7.2 Relations to completeness

By Prop. 7.1.4, class F-ALG is a subclass of ALG. In this section, we investigate its
position inside ALG more closely. BC & ALG is a subclass of F-ALG which in turn is a
subclass of SC & ALG. Analogous inclusions hold for F-CONT.

Theorem 7.2.1 Every bounded complete algebraic domain is finitely algebraic. Every

bounded complete continuous domain is finitely continuous.

Proof: We start by showing the statement about F-CONT. Let X be a bounded complete
continuous domain. Then X has a least element L, and [X — X] is also bounded complete.
Let D be the set of all deflations f : [X — X]. In particular, D contains Az. L whose
image is {L}. If f and g are two members of D, then they are bounded by id, whence
h = fUg <idexists in [X — X]. By Prop. 3.4.2, ha = fz U gz holds for all z in X, whence
hX]={ulv |u € f[X], v € g[X]}is finite. Hence, h is in D. Thus, we showed D is directed.
Since all members of D are below identity, | | D < id obviously holds. For all points a in X,
we define an auxiliary function f, mapping fte to a and all other points to L. f, is continuous
by Lemma 3.7.1 since fta is open by Prop. 6.7.7. f, is below identity since a is below all
members of fta. Finally, f,[X] C {L, a} holds. Thus, f, is in D for all ¢ in X.

By continuity of X, we obtain idz = 2 = [ |z = [ {a | 2 € fta} = | {fuzx | z € fta} <
L{fz | f €D} =(UD)x whence id < ||D.
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Now, we turn to the algebraic case. Here, we define D to contain all idempotent deflations
in [X — X]. Az. L is idempotent, whence in D. If both f and ¢ are idempotent and below
identity, then f U g is also idempotent: (fU g)o(fUg) <ido(fUg) = fUg holds, and

conversely (fUg)o(fUg) > fof = fandalso(fUg)o(fUg) > gog = g, whence
(fUg)o(fUg)> fUg. Thus, D is directed.

Again, | |D < id holds obviously, and for the opposite direction, we define some auxiliary
functions. For every isolated point b, let g5 be the function mapping the open set Tb to b
and all other points to L. In particular, this function maps b to b and L to L, whence it is
idempotent. Thus, it is in D.

By algebraicity of X, we obtain idz = = = [||% = | {6 | b € X",z € 16} = [ {gp |
beX% ze b} <|U{fz|feD}=(D)z whence id <[ |D. o

Since there are finite domains which are not bounded complete, the inclusion of BC & ALG
in F-ALG is proper.

Theorem 7.2.2 Every finitely continuous domain is in SC. Hence, F-ALG is a subclass
of SC & ALG, and F-CONT a subclass of SC & CONT.

Proof: We have to show that the whole domain X is finitary and that for every two
points a and b, the set of upper bounds Ta N Tb is strongly compact.

The directed set D approximating identity is not empty. Let f be a member of D. The set
E = f[X] is finite. For all z in X, fz < z holds, whence X C TE. Thus, X is finitary.

Let @ and b be two points and U = Ta N Tb. For all f in D, the image f[U] is finite. For all
zin U and fin D, z > fz € f[U] holds, whence U C 1f[U] for all f in D. Thus, we obtain

UC{1fIU]| f € D}.

Next, we show the opposite inclusion. Let y be a point of the intersection. Then for all f in
D, there is some u in U such that y > fu. By u > a, y > fa follows for all f in D, whence
y > Uep fa = a. Similarly, y > b holds. Together, this means y € U.

Let f < g. Then for y € g[U], y > gu > fu € f[U] holds for some u in U. Hence, f < g
implies Tf[U] 2 1g[U], whence the set {1f[U] | f € D} is D-directed as D is directed.
Thus, U is a D-directed intersection of finitary upper sets, whence it is strongly compact by
Prop. 4.7.8. a

The domain X = {[a1,b] < [ag,bs] < -+ < 0o}, which already occurred in sections 5.4
and 6.8, is in SC & ALG — even in FC & ALG. It is however not finitely algebraic since the
identity is minimal in it as shown in section 6.8. Hence, the identity cannot be the lub of a
directed set of functions with finite image.

7.3 Cartesian closedness

In this section, we show that the classes F-ALG and F-CON'T are Cartesian closed — in
contrast to ALG and CONT. Let X and Y be two domains in F-CONT whose identities are
approximated by Dy and D, respectively. Then let D = {f x g | f € D1, g € Dy} where
‘x’ is the Cartesian combinator of Prop. 3.4.7. It is defined by (f X ¢)(z,y) = (fz, gy).
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The members of D have the correct typing [X x Y — X x Y]. By continuity of ‘x’, | |D =
LUP1 X D2 = idx X idy = idx 4y holds as required.
All members of D have finite image since (f X ¢)[X x Y] C f[X] x g[Y]. This shows that

X xY isin F-CONT again. If f and g are idempotent functions, then f x g is also idempotent
since (f x g)o(fxg)=(fof)x(gog). Thus, F-ALG is also closed w.r.t. product.

Now turning to the function domain, we construct D = {f — ¢ | f € D1, g € D2} where
f—g9g=Xhgohof.If f:[X — X]and ¢g:[Y — Y], then f — g maps functions in [X — Y]
into functions in [X — Y]. Since composition is a continuous operation (Prop. 3.4.6), D
approximates the identity of [X — Y|: (DP)h = (UDP2)oho(|UP1) = id o ho id = h holds
for all A in [X — Y].

Next, we have to show that f — ¢ has finite image. For all functions A, the function
(f — g)h =goho fmaps X first to the finite set f[X], then to A[f[X]] C Y, and finally into
the finite set g[Y]. Hence, only the restriction of goh to the finite function space f[X] — g[Y]
matters, and (f — g)[X — Y] C {po f| ¢ :[fI[X] = ¢[Y]]} is finite. This shows F-CONT
is closed w.r.t. function domain forming.

Finally, we show that f — ¢ is idempotent whenever f and g are idempotent:
(f=9((f=9)h)=(F = g)lgohof)=go(gohofjof=gohof=(f—g)h
This proves that F-ALG is also closed w.r.t. function domains.

Theorem 7.3.1 The classes CC & ALG, BC & ALG, F-ALG, CC & CONT, BC &
CONT, and F-CONT are all Cartesian closed.

Proof: For F-ALG and F-CONT, this was shown above. Since BC & ALG is a subclass of
F-ALG by Th. 7.2.1, it coincides with the class BC & F-ALG. This class is the intersection of
the two Cartesian closed classes BC (Prop. 5.2.4 and 5.2.5) and F-ALG, and hence Cartesian

closed itself. The proof for the remaining classes is analogous. O

7.4 Functors

In this section, we define functors for domains as an instance of a more general categorical
concept. We show that functors which preserve finiteness also preserve finite algebraicity and

finite continuity. In the next section, we shall show that functors preserving ALG also preserve

CONT.

Definition 7.4.1 A functor F defined on a class C of domains maps every domain X in
C to a domain FX, and also maps every function f :[X — Y] where X and Y are in C
into a function Ff : [FX — FY] such that the two functorial properties hold:

(1) For every X in C, F idx = idzx holds.

(2) For every domains X, Y, and Z in C and functions f : [X — Y] and g : [Y — Z],
the equality F(go f) = Fg o Ff holds in [FX — FZ].

The functor F is locally continuous iff the mapping F : [X — Y] — [FX — FY] is
continuous for all domains X and Y in C.
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We already met a functor, namely ideal completion Z where Z f(A) = | f[A] for all ideals
A. T is not locally continuous. The main field of application of the theory developed below is
however the theory of power constructions: every power construction is a locally continuous

functor.

Definition 7.4.2 A functor F is said to map a class C; into a class Cy iff it is defined

on a superclass of Cq, and FX is in Cq for every domain X in Cy.

A functor F is said to preserve a class C iff it maps C into C.

Our goal is to provide a criterion for functors to preserve the classes F-ALG and F-CONT.
The first step is to consider the behavior of a functor operating on functions with finite image.

Proposition 7.4.3 Let F be a functor which preserves the class FIN of finite domains
and is defined on a superclass C of FIN. Then for all domains X and Y in C holds: If
f 1 [X — Y] is a morphism with finite image f[X], then Ff : [FX — FY] has finite
image again.

Proof: Let Z = f[X] be the image of f. It is a domain in the order inherited from Y
since it is finite, and the embedding e : [Z — Y] is continuous. The original morphism f may
be corestricted to f' : [X — Z] such that f = eo f'. Then Ff = F(eo f') = Feo Ff follows.
Ff' maps from FX to FZ, and the latter is finite as F preserves FIN. Thus, the image of
F f is finite because (F f)[FX] C (Fe)[FZ]. o

The claim of the Proposition is needed to prove the following theorem:

Theorem 7.4.4 Let F be alocally continuous functor defined on a superclass of F-CON'T.
If F preserves FIN, then it also preserves F-ALG and F-CONT.

Proof: Let X be a finitely continuous domain. Then, there is a directed set D of
functions from X to X with finite image such that | |D = id. By local continuity of F and
Prop. 7.4.3, F[D] is a directed set of functions from FX to FX with finite image, whose lub
is || F[P] = F(UD) = Fid = id. Thus, FX is finitely continuous again.

If X is finitely algebraic, there is the additional condition fo f = f for all fin D. It implies
FfoFf=F(fof)=Ff, whence FX is finitely algebraic again. O

7.5 Retracts

In this section, we want to prove that a functor preserving ALG also preserves CONT.

The technical means for performing the proof are retracts.

Definition 7.5.1 A domain Y is a retracts of a domain X if there are continuous func-
tions r : [X — Y] and e : [Y — X] such that roe = idy.

A class C is retract closed if all retracts of all domains in C are in C again.

A factor domain X is a retract of a product X XY by means of e = Az.(z, p) and r = m
where p is an arbitrary point of Y. Similarly, Y is a retract of X X Y. A domain Y is also
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retract of [X — Y] by means of e = Ay. Az.y and r = Af. fp where p is an arbitrary point
of X.

We already know several retract closed domain classes.

Proposition 7.5.2 The class DOM | of domains with least element, the class of finitary
domains, the completeness classes CC, BC, FC, SC, and KC, the class DIS of discrete
domains, the class FIN of finite domains, and the classes F-CONT and CONT are retract
closed.

In connection with the remarks above, we get a host of corollaries, e.g. if X X Y is
continuous, then X and Y are continuous, if [X — Y] is continuous, then so is Y, etc.

Proof: Let always Y be a retract of X by means of 7 : [X — Y] and e : [Y — X].
Assuming that X is in the class under consideration, we have to show that Y is also in it.

Least element: Let L be the least element of X. For all ¥ in Y, L < ey holds, whence
r(L) < r(ey) =y holds in Y.

Finitary: Let M be a finite subset of X such that X = TAM. For all y in Y, there is some
m in M such that m < ey holds, whence rm < r(ey) = y holds in Y. Thus, we obtain
Y = Tr[M] where r[M] is finite.

BC: Let a and b be two points of Y bounded by u. Then ea and eb are bounded by eu in
X, whence ea U eb exists. Let ¢ = r(ea U eb). ¢ is an upper bound of ¢ and b since
ea U eb > ea implies ¢ > r(ea) = a. ¢ is the least upper bound of a and b since a,b < u
implies ea U eb < eu, whence ¢ < r(eu) = u.

CC: Analogous.

FC / SC / KC: Y is finitary as shown above. For two points ¢ and b of Y, we claim TanTb =
r[Tea N Teb]. If u is a point of the left hand set, then u > a, b holds, whence eu > ea, eb.
By u = r(eu), u is then in the right hand set. Conversely, if w is in r[Tea N Teb], then
w = rv holds for some v in Tea N Teb. v > ea implies w = rv > r(ea) = a.

The set Ta N Tb is finitary / strongly compact / compact as continuous image by r of
the finitary / strongly compact / compact set Tea N Teb.

DIS: y < 9" in Y implies ey < ey’ in X. Since X is discrete, ey = ey’ follows, whence
y=rley) =rley’) =y

FIN: e[Y] is a subdomain of X that is isomorphic to Y. X being finite implies €[Y] is finite.

F-CONT: Let D be a directed set of deflations approximating the identity of X. We define
D' ={rofoel f € D}. By continuity of composition, D’ is a directed set with lub
LD =ro(UD)oe = roidx oe = idy. All members of D’ have finite image since
PLAeLYT) € rLAX]) s finite.

CONT: We apply the topological criterion of Th. 6.7.9. Let y be a point of an open set O
in Y. By r(ey) = y € O, point ey is in the open set r~1[0]. By continuity of X, there
are an open set O’ and a point z such that ey € O’ C Tz C r~1[0]. First, y is in
e~'[0’]. Second, every point u of e~1[0’] satisfies eu € O’ C Tz, whence eu > x, whence
in turn u = r(eu) > rx. Third, every point v above rz is in O since z is in r~'[O].
Summarizing, we obtain y € e~'[0'] C Trz C O. O
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By the proposition above, any retract of any continuous domain is continuous. Hence,
every retract of any algebraic domain is continuous. The converse of this statement also

holds.
Proposition 7.5.3 Every continuous domain X is a retract of ZX by r : [IX — X],
r(A)=]A, and e: [X — IX], ez = |=.

Thus, every continuous domain is a retract of some algebraic domain.

Proof: ZX is algebraic by Th. 6.5.3.
For every z in X, the set |}z is lower by Prop. 6.6.3 and directed by Prop. 6.7.2. Hence, it

is an ideal. Conversely, every ideal of X has a lub in X since X is a domain. This defines
mapping r. By continuity of X, r(ez) = | |{}z = = holds for all z in X.

For continuity of e, we have to show e(| | D) = | |e[D] for all directed sets D). The left hand
side equals (| | D), and the right hand side is [J;cp {}d. Both sides are equal by Prop. 6.7.6.

For continuity of r, we have to show r(||D) = || 7[D] for all directed sets D of ideals. The
left hand side equals | |{J4ep A, and the right hand side is | |4¢p(L] A). Both sides are equal
by Prop. 2.4.8. a

Now, we return to functors.

Proposition 7.5.4 Let F be a functor defined for two domains X and Y. If Y is a retract
of X, then FY is a retract of FX.

Proof: Y is a retract of X if there are continuous r : [X — Y] and e : [Y — X] with
roe=idy. Then FroFe = F(roe) = Fidy = idry, whence FY is a retract of FX. O

By now, we are able to prove the announced preservation property for ALG and CON'T.

Proposition 7.5.5 Let F be a functor defined on a superclass of CONT. If 7 maps ALG
to CONT, then it preserves CONT.

Proof: If X is continuous, then it is a retract of some algebraic domain Y by Prop. 7.5.3.
Then, FX is a retract of the continuous domain FY by Prop. 7.5.4, whence it is continuous
by Prop. 7.5.2. a

By strengthening the pre-condition, we obtain:

Proposition 7.5.6 Let F be a functor defined on a superclass of CONT. If F preserves
ALG, then it also preserves CON'T.

We shall meet retracts again in the theory of power constructions in section 14.4.



Chapter 8

Large domain classes

In this chapter, we introduce some domain classes that are much larger than the class
CONT of continuous domains. We shall see that for these classes still powerful structural
properties may be shown. All these classes are defined topologically. Hence, they would
primarily provide a classification of (T0)-spaces. By employing the Scott topology as the
standard topology for domains, the space classes induce however domain classes.

We mostly consider domains in this chapter, not topological spaces. The reason is that
we sometimes apply Rudin’s Lemma in the versions Lemma 3.9.3 and 3.9.4 that do not hold
in arbitrary (T0)-spaces.

In sections 8.1 through 8.4, we introduce generalizations of algebraicity and continuity,
namely multi-algebraicity and multi-continuity. A long time, I believed these classifications
to be new. Multi-continuity as defined topologically in this thesis is however equivalent to
the notion of quasicontinuity defined order-theoretically in [GLS83].

The topological notion of sobriety is closely related with upper power domain construc-
tions as pointed out in [Smy83]. Some authors e.g. [Law88| define sobriety via irreducible
closed sets (see section 8.5), whereas others e.g. [Smy78] define it via prime or open filters (see
section 8.6). The equivalence of all three definitions is shown in [HM81] by means of lattice
theory. We present the definitions together with new, more direct proofs of their equivalence
in section 8.7. In section 8.8, we show that all multi-continuous domains are sober. This is

probably a new result since multi-continuity was never considered topologically before.

In section 8.9, we introduce the novel classes K-RD and S-RD characterized by certain
generalizations of Rudin’s Lemma. All sober domains are in K-RD, and K-RD is a subclass
of S-RD. These classes provide the maximal classes where the upper power domains in terms

of (strongly) compact sets make sense as power domains.

In section 8.10, we prove a couple of interesting LLemmas that hold for domains in KC &
K-RD as well as in SC & S-RD. Section 8.11 then presents Johnstone’s non-sober domain
published in [Joh81, Joh82]. This domain is also not in S-RD. Thus, we do not know any
domain that would separate the classes SOB of sober domains, K-RD, and S-RD.

The final section 8.12 summarizes all domain classes introduced in the last four chapters.

100
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8.1 Locality classes

The topological criteria for algebraicity (Th. 6.2.5) and continuity (Th. 6.7.9) deal with
upper cones. They may easily be generalized by replacing the upper cones by finitary, strongly
compact, or compact sets.

Definition 8.1.1 Let X be a domain. X is multi-algebraic iff for all points x in an open
set O, there is a finitary open set F such that x € F C O.

X is locally finitary or multi-continuous iff for all points z in an open set O, there are an
open set O’ and a finitary set /' such that x € O’ C F' C O.

X is locally compact iff for all points z in an open set O, there are an open set O’ and a
compact set K such that 2 € O' C K C O.

The class of all multi-algebraic domains is called M-ALG, and the class of multi-continuous
domains is denoted by M-CONT. L-COMP is the class of locally compact domains.

In the definition of multi-algebraicity, it makes no difference to replace ‘finitary open’ by
‘compact open’ because of Th. 4.6.8. We did not define locally strongly compact domains
since in the situation z € Q' C § C O where S is strongly compact and O is open, there is
a finitary set F' such that § C F C 0. Thus, local strong compactness coincides with local

finitarity.

For multi-algebraic and multi-continuous domains, a degree of multiplicity may be defined.
If F'is a finitary set, then min F is finite. We define the size of F’ to be the cardinality of
min F. For every pair (z, O) of a point z in an open set O, we choose a finitary set F'(z, O)
with minimal size that satisfies the conditions in Def. 8.1.1. The degree of multiplicity of a
domain X is then the supremum of the sizes of the sets F'(z, O). It may be co. Since finitary
sets of size 1 are upper cones, a multi-algebraic domain has degree 1 iff it is algebraic.

By means of the degree, an infinite hierarchy is obtained between ALG and M-ALG, and
between CONT and M-CONT. If we refer to the class of all domains in M-ALG with degree
at most d, then we write M%ALG. The class of all multi-algebraic domains with finite degree
is denoted by M*-ALG. Thus, we obtain ALG = M ALG C M*ALG C --- C M*ALG C
M-ALG. An analogous hierarchy is contained in M-CON'T.

Proposition 8.1.2 M-CONT and all classes M*-CONT as well as M*-CONT are retract
closed. L-COMP is also retract closed.

Proof: We first show the statement for M-CONT. Let Y be a retract of X by means of
r:[X — Y] and e:[Y — X] where roe = idy. Let y be a point in an open set O. By
r(ey) = y € O, the point ey is in r~[0]. As X is multi-continuous, there are an open set
O’ and a finitary upper set /' such that ey € O’ C ' C r~'[0]. First, y is in the open set
e~'[0’]. Second, if u is in e~'[0'], then eu is in O’ C F, whence u = r(eu) is in r[F]. Set
r[F] is finitary by Prop. 2.7.2 (5). Third, if v is in r[F], then v = rw where w € ' C r~'[0],
whence v = rw € O. Thus, we obtain y € e~'[0] C r[F] C O.

If F is finitary, then ' C T(min F') holds. By Prop. 2.6.2 (7), min r[F] C r[min F] follows.
Hence, the size of r[F] is bounded by the size of F. Thus, all the intermediate classes are

retract closed.
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The proof for local compactness is analogous to the proof for multi-continuity. r[K]is compact
by Prop. 4.6.5. a

8.2 Examples for multi-algebraic domains

In this section, we shall provide examples for multi-algebraic domains of any degree. We
shall also meet domains that are not multi-continuous. All the domains presented in this

section will be complete.

For all kin {1,2,..., 00}, we define a domain X; that consists of a least point L, a
greatest point T, and k incomparable ascending chains Aq, ..., Ay where A; is given by
{ain < ajg < a;3 < ---}. All the ascending chains share the same lub T. The domain X3 is

depicted below.

T
a13 0'23 a33
[ B
a1z a22 a32
[ B
ai a1 asy
NS
1

For every k < oo, the domain X is multi-algebraic of degree k. This is because every
non-empty open set contains T and thus also the ends of all k£ chains. The domain X, is
not multi-continuous however since all open sets containing T must contain the ends of all
the infinitely many chains and thus cannot be subset of a finitary set.

As a second series of examples, for all n in {0, 1, 2, ..., 0}, we define a domain Y,, =
{L,ay,ag,as, ..., by, by, ..., by, T} ordered such that L is least, T is greatest, the a-points
form an ascending chain a7 < ag < --- with lub T, and the b-points are incomparable to each
other and to the a-points. The domains Y, differ in the number of b-points they contain.

The domain Y, is depicted below.
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T
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b1 b2 a2
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The domain Yy, which consists of a chain only, is algebraic. All other domains Y, even
Y .., are multi-algebraic of degree 2. Let a point xz be in an open set 0. Then O contains
at least z, T, and some end of the chain of a-points starting at some point a;. The set
F = 1{z, ai} is open no matter what z and &k are. z € F C O holds. Thus, the degree is at
most 2. It is not 1 since by is neither isolated nor a lub of isolated points. These examples
show that the domains in M>-ALG may be arbitrarily complex.

In all the domains X where £ > 1, and Y,, where n > 0, the binary infimum ‘7’ is not
continuous. Prop. 6.8.1 states that ‘T’ is continuous in continuous domains. The examples
above show that this fact cannot be generalized to M-CONT, not even to M2-ALG. One might
believe that the converse of Prop. 6.8.1 holds, i.e. that a complete domain with continuous
‘1’ operation be continuous. This belief is however wrong; we shall meet examples for this

in the theory of upper power constructions.

We have seen examples for multi-algebraic domains of any finite degree and for a domain
that is not multi-algebraic. An example for a multi-algebraic domain of degree oo is provided
now. The domain Z consists of points a;; where 1 <7 < j < co and a special point T. The
points a;; form an infinite number of ascending chains a;; < @; ;41 < + -+ with the common lub
T. All the chains are incomparable except that they rise at a diagonal chain a7 < a9 < -+ -

whose lub is also T. The domain is depicted below; the point T is omitted for simplicity.

14 24 34 Qa4

I S
I
b/

Fvery non-empty open set of Z contains T, and hence some end of the diagonal chain
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from say apr. Furthermore, it then contains some ends of the first £ —1 vertical chains. Thus,
a finitary open set of size k is in it. Conversely, let & = agx be a point of the finitary open
set O = 1{a1k, ..., arr}. There is no finitary open set of size smaller than & between z and

0. Thus, Z is multi-algebraic with unbounded degree of multiplicity.

8.3 The main properties of multi-continuous domains

From the three domain classes defined in the beginning of this chapter, we mainly consider
the class of multi-continuous domains. Local compactness is too general to allow to prove
analogous properties, whereas multi-algebraicity does not allow to prove significantly stronger
statements.

The main theorem about multi-continuous domains provides several criteria equivalent to

multi-continuity. Before we state and prove it, we define some auxiliary notions.

Definition 8.3.1 Let X be a domain. For a set A of X, let F(A) be the set of all finitary
upper environments of A, i.e. the set of all finitary upper sets £’ such that there is an
open set O with A C O C F. For points z, F({z}) is abbreviated by F(z).

Theorem 8.3.2 For a domain X are equivalent:
(1) X is multi-continuous.

(2) For all points z and open sets O of X, z € O implies there is /" in F(z) such that
Fco.

(3) For all points z, the set F(z)is D-directed and () F(z) = Tz holds.

(4) For all compact sets K and open sets O of X, K C O implies there is /' in F(K)
such that ' C O.

(5) For all compact sets I, the set F(K) is D-directed and (F(K) = TK holds.

Statement (3) allows to prove that our notion of multi-continuity is equivalent to the quasi-
continuity of [GLS83].

Proof: Statements (1) and (2) are equivalent by the definitions of multi-continuity and
F(.). The remaining equivalences are shown in the order (2) = (4) = (5) = (3) = (2).

(2) = (4): Let K C O where K is compact and O is open. By (2), for every z in K,
there are a finitary upper set F, and an open set O, such that z € O, C F, C O.
Thus, K C J,ex Or whence by compactness there is a finite set £ C K such that
K C U Oc € F C O where I = J ¢ It is finitary upper and in F(K).

(4) = (5) : K is a subset of the open set X, whence F(K) is not empty by (4). Let F} and F}
be two members of F(K'). Then there are open sets O1 and Oy such that K C O; C F}.
K C 01N0; follows, whence there is a set /" in F(K') by (4) such that K C F C 01N0Oy.
K C F C F; follows, whence F(K) is D-directed.
All members of F(K) are upper supersets of K. Hence, TK C F holds for all F' in
F(K), whence TK C NF(K). For the opposite inclusion N F(K) C TK, we apply
Lemma 4.4.4. Let TK C O for some open set O. We have to show F(K) C O.
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TK C O implies K C O whence by (4) there is /" in F(K) such that /* C O. Thus,
NF(K)C F C O holds.

(5) = (3) is immediate since {z} is compact.

(3)= (2): Let 2 be in an open set O. By (3), NF(z) = T2 C O holds. Since F(z) is a
DO-directed set of finitary upper sets, Rudin’s Lemma 3.9.4 applies and states /' C O for
some /' in F(z). o

As an immediate conclusion of statement (4) of this theorem, one obtains:
Proposition 8.3.3 In a multi-continuous domain every compact set is strongly compact.

For multi-algebraicity, an analogous theorem holds. Instead of F(.), we have to consider
a slightly different set:

Definition 8.3.4  Let X be a domain. For a set A of X, let FO(A) be the set of all
finitary open supersets of A. For points z, FO({z}) is abbreviated by FO(z).

Using this notion, we may state:

Theorem 8.3.5 For a domain X are equivalent:
(1) X is multi-algebraic.

(2) For all points z and open sets O of X, z € O implies there is /' in FO(z) such that
FcCo.

(3) For all points z, the set FO(z) is D-directed and " FO(z) = Tz holds.

(4) For all compact sets K and open sets O of X, K C O implies there is ' in FO(K)
such that #' C O.

(5) For all compact sets K, the set FO(K) is D-directed and (FO(K ) = TK holds.

The proof of this theorem is very similar to that of Th. 8.3.2. One mainly has to replace
‘continuous’ by ‘algebraic’ and ‘F(.)’ by ‘FO(.)’, and to simplify some arguments involving
a finitary set /' and an open set O to arguments involving finitary open sets.

8.4 Multi-continuity and product

Generally, the Scott topology of the product of two domains cannot be directly obtained
from the Scott topologies of the factors. For multi-continuous domains, this is however

possible.
Theorem 8.4.1 Multi-continuous domains are x-conform to each other.
Proof: Let X; and X3 be multi-continuous domains, and let (z, z3) be a point in

an open set O of X; X X3. We have to show that there are open sets O; in X; such that
(z1, 22) €01 x O CO.

By Th. 8.3.2, the sets F(z;) are D-directed sets of finitary upper sets of X;, and " F(z;) = Ta;
holds. Let F = {Fy x F, | F; € F(z;)}. F is also D-directed and consists of finitary upper
sets by Prop. 4.8.1. The intersection of F is T(z1, z3).
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NF = 1(x1, ©2) C O implies F' C O for some F in F by Rudin’s Lemma 3.9.4. F' = F} X I
holds for some F; in F(xz;). Hence, there are open sets O; in X; such that z; € O; C F}.
Thus, we get (21, 22) € O1 x 02 C Fy x F; = F CO. O

Using this theorem, we may show that some subclasses of M-CON'T are closed w.r.t. products.

Theorem 8.4.2
The classes ALG, CONT, M-ALG, and M-CONT are closed w.r.t. finite products.

Proof: Let X; and X; be the factors, and let @ = (1, z3) be a point of some open set

O in X1 x Xo. By Th. 8.4.1, there are open sets O; in X; such that x € 01 x Oy C O, whence

z; in O;.

M-CONT: z; in O; open implies there are open sets O} and finitary sets F; such that z; €
O! C F; C0O;. Hence, z € O} x 04 C I} x Fy C 01 x02 C O holds as required. O} x O}
is open and Fy X Fy is finitary by Prop. 4.8.1.

M-ALG: z; in O; open implies there are open finitary sets F; such that z; € F; C O;. Hence,
x € I X Fy COy X Oy CO holds as required. Fy x I is finitary open by Prop. 4.8.1.

The proofs for ALG and CONT are analogous; one only has to replace the finitary sets by

upper cones. O

8.5 Sobriety in terms of irreducible closed sets

The notion of sobriety is closely related with upper power domain constructions as pointed
out in [Smy83]. Some authors e.g. [Law88] define sobriety via irreducible closed sets, whereas
others e.g. [Smy78] define it via prime filters. The equivalence of both definitions is shown
in [HM81] by means of lattice theory. We present both definitions together with new, more
direct proofs of their equivalence.

We first present the definition by means of irreducible closed sets. As often, there are
several equivalent definitions of this concept.
Proposition 8.5.1 Let X be a topological space. For a closed set C' of X, the following
statements are equivalent.
(1) C = AU B for closed sets A and B implies C = A or C' = B.
(2) C C AU B for closed sets A and B implies C C A or C' C B.
(3) Whenever two open sets meet C', their intersection meets C'.

Closed sets with these properties are called irreducible closed.

Proof: Let C' be a closed set satisfying (1) and let O; and Oz be two open sets with
0;NC # 0. Let C; = C\ O;. The sets C; are closed since they are intersections of C' and
the closed complements of O;. C; # C holds since at least one point of C' is in O;. Since C'
is irreducible, C'y U Cy cannot be (', i.e. there is a point 2 in C' with z € Cy U Cy, whence

mEOlﬂOQOC.



8.6. FILTERS OF OPEN SETS 107

Let C' be a closed set satisfying (3). Let C' C C7UC, for two closed sets Cy and Cy. If O; is the
complement of C;, then O1 N Oy is the complement of C;UCy O C, whence C NO1 N0 = 0.
By the criterion, C'N O; = (§ holds for at least one i in {1, 2}, whence C' C C;.

Let C' = C7UCq. Then C' C C7 Uy holds, whence by (2), C' C C; for some i. C; C C also
holds. a

Proposition 8.5.2 Let f:[X — Y] be continuous. If C is irreducible closed in X, then
cl f[C] is irreducible closed in Y.

Proof: Let cl f[C] € C1UCy. Then C C f=1C1]U f71[C4] follows, whence C' C f=1[C4]
for some k£ in {1, 2}. This inclusion implies f[C] C Cj, whence cl f[C] C C}. O

Closures of singleton sets are irreducible.

Proposition 8.5.3 For all z in X, clz is irreducible closed.

Proof: Let clz C AU B. Then 2 is in one of A and B, say A. A being closed implies
cla C A. a

The class of sober topological spaces is characterized by the converse of the proposition above.

Definition 8.5.4 A topological space is sober iff all non-empty irreducible closed sets

are the closure of a unique point.

Sobriety may be considered a separation property. As such, it is between (T0) and (T2),
but incomparable with (T1).

Proposition 8.5.5 Every sober space satisfies axiom (T0).

Proof: Let clz = cly. Set clz is irreducible closed by Prop. 8.5.3. By sobriety, there is
exactly one point p with clz = clp. Hence, z = y follows. a

Proposition 8.5.6 Every (T2)-space is sober.

Proof: Let C' be an irreducible closed set. Assume there were two different points 4
and z3 in C. By (T2), there would be two disjoint open sets Oy and Oy with z; € O;. Hence,
both open sets meet C', but their intersection does not because it is empty. This would be
a contradiction to Prop. 8.5.1. Thus, the assumption is wrong, i.e. all non-empty irreducible
closed sets are singletons. Hence, they are closures of a unique point. a

Alternatively, sobriety may be considered a completeness property since it states that

certain points exist.

8.6 Filters of open sets

The notion of filters is fundamental in topology. Usually, topological filters are sets of
sets satisfying the properties of the definition below. The filters we are going to define here
however contain only open sets.
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Definition 8.6.1 (Filters) Let X be a topological space. A filter in X is a set O of
open sets satisfying the following properties:

(1) XeO
(2) If O1 and O4 are in O, then so is their intersection O N Os.
(3) If O isin O and O C O’ holds for some open set O’, then O’ is in O.
In domain-theoretic view, a filter is an ideal in the poset (X, D). We distinguish different
classes of filters:
Definition 8.6.2
o A filter O is comprising iff for all open sets O, O D (N O implies O € O.
o A filter O is open iff for all C-directed sets D of open sets, |JD € O implies DNO # 0.
o A filter O is prime iff for all sets § of open sets, |JS € O implies SN O # 0.

The notion ‘open’ coincides with the notion of Scott open sets in the domain (2X, C).
Filters naturally occur as sets of open environments of sets.
Proposition 8.6.3 For every set A C X, the set O(A) = {O open | O 2 A} of open

environments of A is a comprising filter with intersection (Y O(A) = TA. Conversely, if O
is a comprising filter, then (O is an upper set, and O = O((N O) holds.

Proof: A C X holds. A C Oy and A C Oy imply ACO;N0Oy. AC O and O C O’
imply A C O".

NO(A) = TA holds by Lemma 4.4.4. If O D TA, then obviously O D A, i.e. O € O(A).
Thus, O(A) is comprising.

For the converse direction, (O is an upper set as intersection of upper sets. O € O implies
0O D N O. The opposite inclusion is the definition of ‘comprising’. O

The next proposition is as trivial as the previous one.

Proposition 8.6.4 A set K is compact iff O(K) is a comprising open filter. Hence, if

O is a comprising open filter, then () O is a compact upper set.

Proof: The equivalence holds since O(K') being open is just statement (2) of Prop. 4.6.1,
the definition of compactness. The ‘hence’ part is due to Prop. 8.6.3. a

An analogue statement for prime filters is a bit more difficult (and also more useful).

Lemma 8.6.5 If @ is a point, then O(a) is a comprising prime filter. Conversely, if O is
a comprising prime filter, then there is a point @ such that (YO = Ta and thus O = O(a).

Proof: O(a) is prime since a € [JS implies a € O for some O € S.

For the converse statement, let § = {co|z | z € N O}. § is a set of open sets. Assume
NO CUS. Then JS is in O since O is comprising, whence there is M in § with M € O
since O is prime. Hence, M D N O. Remember M = co |z for some 2 € O. For this z,
z ¢ |z would hold.

Thus, (O is not a subset of [JS. This means, there is ¢ in (O with a ¢ S, i.e. for all M
inS,ad M. Hence, for all z € O, ¢ € |z holds, or equivalently z € Ta. Thus, NO C Tea.
Conversely, a € (O and this set being upper implies Ta C (N O. a
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8.7 Filters and sobriety

Filters induce equivalent definitions of sobriety:

Theorem 8.7.1 For a (T0)-space X, the following statements are equivalent:
(1) For every non-empty irreducible closed set C', there is a point ¢ such that C' = cle.
(X is sober.)
(2) Every open filter is comprising.

(3) Every prime filter is comprising.

Proof:

(1) = (2) : Let O be an open filter. Let 0" = {O open | O D N O, O ¢ O} be the set of all
witnesses for () not being comprising. We have to show O’ = {).
Assume (' were not empty. Let D be a C-directed subset of /. We claim D € O'.
UD is certainly open and a superset of () O. If D were in O, then some member of D
would be in O since O is open. Thus, (' is a directed complete poset, a domain.
By Zorn’s Lemma 3.2.2, there is a maximal element M in O'. Let C be the complement
of M. We claim C is irreducible closed. C' is closed as complement of the open set M.
Let C' = C7 U Cy with closed sets C;. By complementing, one obtains M = M; N M,
with open sets M;. M; O M D (O holds. If both My and My were in O, then so would
be their intersection M since O is a filter (condition (2)). Thus, one of M; and My —
say My — is in ('. By maximality of M, My = M holds, whence Cy = C.
Hence, we got an irreducible closed set C'. C' is not empty since otherwise M would be
X contradicting X € O (condition (1) of filters). By (1), there is a point ¢ with C' = clc.
¢ is not in M since M is the complement of C. (YO C M implies ¢ ¢ (] O, i.e. there is
aset O € O with ¢ ¢ O. Hence, cis in coO. This set is closed, whence cle = €' C co 0.
By complementing, O C M follows. By condition (3) of filters, M itself is in O — a
contradiction.

(2) = (3) : Every prime filter is open, and every open filter is comprising by (2).
(3) = (1) : Let C be a non-empty irreducible closed set, and let O = {O open | C N O # 0}.
We show O is a prime filter.
(1) X € O since C # 0.
(2) If O1 and O3 are in O, then so is their intersection O1 N O3 by Prop. 8.5.1.
(3) IfOisin O,i.e. CNO # 0, and O C O’ holds for some open set O’, then CNO" # 0,
whence O’ is in O.
(4) If S is a set of open sets such that C' meets |JS, then C' meets some member of S.
Hence, O is prime.
By precondition (3), O is comprising. By Lemma 8.6.5, there is a point ¢ such that
N O = Te. Let O be the complement of cle. If O were in O, then ¢ € O C O would
imply ¢ & cle. Hence, C N O = 0, whence C C cle.
If U is any open environment of ¢, then (YO = Te¢ C U implies U € O since O is
comprising. Thus, every open environment of ¢ meets C', whence cisinelC' =C. ce
implies cle C C'. Together, C' = cl ¢ follows. O
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8.8 Sober domains

After having established the main theorem about sobriety, we now turn our attention
to sober domains. A domain is sober iff the corresponding Scott space is. The class of
sober domains is called SOB. It is quite large as the following theorem shows. Nevertheless,

non-sober domains exist. We present one in section 8.11.

Theorem 8.8.1 Every multi-continuous domain is sober.

Proof: Let C' be a non-empty irreducible closed set of the multi-continuous domain
X. Let F = U.co F(c). From multi-continuity, we know every set F(c) is D-directed with
intersection Tc. We demonstrate the set F to be D-directed, too.

F is not empty since C' is not empty and every set F(c) is not empty. Let Fy, F, be in F.
By definition, there are open sets 01,0y and points ¢1,¢9 € C with ¢; € O; C F;. Hence,
both open sets 01 and Oy meet C' whence their intersection meets C' because (' is irreducible
closed (Prop. 8.5.1). Thus, there is a point ¢ in C' with ¢ € O; N Oy. By multi-continuity,
there is /' in F(c) C F with F/ C 01 N0y C Fy N Fy. F' is a common lower bound of /)
and fy in F.

F is a D-directed set of upper finitary sets that all meet C'. By Rudin’s Lemma 3.9.3, the
intersection (|F meets C'. Let 2 be a point of C N[ F. Then clz C C holds.

Assume C' were not a subset of clz. Then, there would be a point ¢ in C' lying in co(clz).
By multi-continuity, there is /" in F(c¢) C F with F' C co(clz). F in F implies z € (F C
F C co(clz) — a contradiction.

Hence, C' is a subset of clz, and together, C' = clz follows. a

An analogous proof for locally compact domains is not correct since Rudin’s Lemma is

not generally true if finitary sets are replaced by compact sets (compare section 8.11).

In section 8.2, we presented a domain X, consisting of a least point L, a greatest point
T, and an infinite number of incomparable ascending chains with lub T. This domain is not
multi-continuous, but still sober. If a closed set C' contains infinitely many points of at least
one chain, then it contains T and is a lower cone. Otherwise, it contains only finitely many
points of all chains. If it meets at least two chains, then it is not irreducible, and otherwise,
it is a lower cone.

Proposition 8.8.2 The class SOB is retract closed.

Proof: Let X be sober and Y a retract of X by means of 7 : [X — Y] and e : [Y — X].
If C' is non-empty irreducible closed in Y, then cle[C] is non-empty irreducible closed in X
by Prop. 8.5.2. Hence, there is z in X such that cle[C] = clz = |z. We claim C = [rz.

If ¢ is a point of C, then ec is in e[C] C |z, whence ec < z. Thus, ¢ = r(ec) < ra follows.
Now, we proved C' C |rz.
Assume rz were not in C. Then rz is in co C, whence z is in r~1[co C]. z is also in cle[C]. By

Prop. 4.2.2, the open environment r~![co C']| meets €[C]. Let u be a point of the intersection.
Then ru is both in coC' and in r[e[C]] = C' — a contradiction. rz € C implies |rz C C. O
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It is possible to prove that the product of two x-conform sober domains is sober. We did
however not succeed in proving or disproving the sobriety of the product of arbitrary sober
domains, nor could we generalize Prop. 8.4.1 stating the x-conformity of multi-continuous

domains to sober domains.

Problem 4 Is the product of sober domains sober?

Problem 5 Is there any relation between x-conformity and sobriety?

8.9 The Rudin classes S-RD and K-RD

Rudin’s Lemma in the version of Lemma 3.9.3 or 3.9.4 deals with finitary upper sets.
Analogous statements involving compact or strongly compact sets instead do not generally
hold as we shall see in section 8.11. We now define classes of domains characterized by these

conditions.

Definition 8.9.1 (Rudin classes) The class S-RD of domains is defined by the condi-
tion: for all D-directed sets D of strongly compact upper sets and open sets O, (D C O
implies S C O for some S in D.

The class K-RD of domains is defined analogously by means of compact sets instead of
strongly compact sets.

Equivalent conditions are provided by using closed sets instead of open sets: Let D be a
D-directed set of (strongly) compact upper sets. If all members of D meet a closed set C,
then D meets C. The equivalence is proved by letting C' be the complement of O and vice
versa (cf. the proof of Lemma 3.9.4 from Lemma 3.9.3).

By Lemma 3.9.4, a corresponding class F-R1D) defined by finitary sets contains all domains.
Since strongly compact sets are compact, the class K-RD is a subclass of S-RD. The class
S-RD is very large since it contains both SOB and FC (see below); section 8.11 will however
provide an example of a domain not contained in S-RD.

Theorem 8.9.2 Every sober domain satisfies property K-RD.

Proof: Let X be a sober domain and D a D-directed set of compact upper sets such
that D C O for some open set O. For every K in D, the set O(K) is an open filter by
Prop. 8.6.4, i.e. open in (X, C) and directed in (2X, D). Let O = Ugep O(K). O is again
open in (X, C), and by Prop. 3.1.5, directed in (X, D). Thus O is an open filter. Since
X is sober, O is comprising.

For the open set O, O D ND = N{NO(K) | K € D} = N (Ugep O(K)) = NO holds. Since
O is comprising, O D O implies O € O, i.e. O O K for some K in D. a

Theorem 8.9.3 Every finitarily complete domain is in S-RD.

Proof: For every strongly compact set S let F'(.9) be the set of finitary upper supersets
of §.' By Prop. 5.4.4, F'(S) is D-directed and its intersection is .

' F'(S) contains all finitary upper supersets, whereas F(S) contains the finitary upper environments only.
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Let D be a D-directed set of strongly compact sets. Then {F'(.5) | § € D} forms a C-directed
set of D-directed sets of finitary upper sets. By Prop. 3.1.5, its union F is D-directed. By
set-theoretic arguments, (| F equals (| D. Thus, if (D is a subset of some open set O, then
by Lemma 3.9.4, there is some F' in F such that /" C O. F is contained in F'(.9) for some
in D. For this S, S = NF'(5) C F C O holds. o

The compact sets of domains in K-RD form a domain when ordered by ‘2’

Proposition 8.9.4 Let X be a domain in K-RD (S-RD). Then the intersection of a D-
directed set of (strongly) compact upper sets is (strongly) compact.

Proof: Let D be a D-directed set of strongly compact upper sets in a domain in S-RD.
Let O be an open set with (D C O. By S-RD, there is some § in D with .§ C O. Since 5 is
strongly compact, there is a finitary set /" with fD C 5 C F C O.

Let D be a D-directed set of compact upper sets in a domain in K-RD. Let O be an open
cover of D, i.e. ND C JO. YO is an open set. By K-RD, there is some K in D with
K CJO. As K is compact, there is finite subset F of O with K CUF. ByND C K, F
also covers (| D. |

Proposition 8.9.5 The classes K-RD and S-RD are retract closed.

Proof: Let X be in K-RD and Y a retract of X by meansof r : [ X — Y]and e : [Y — X].
Let K be a D-directed set of compact upper sets of Y such that (K C O for some open set
0. Let K' = {Te[K] | K € K}. K" is a D-directed set of compact upper sets by Prop. 4.6.5
and 4.6.2. If z is in (K', then for all K in K, there is some yx in K such that z > eyx.
re > r(eyx) = yxk € K holds, whence rz € K since K is upper. Thus, ra is in (K.

Now, we obtained MK’ C r~1[NK] C r~10]. Since X is in K-RD, there is some K’ in
K’ such that K’ C r~'[0]. Hence, there is K in K such that e[K] C r=}[Q]. This means,
y=r(ey) € O holds for all yin K,i.e. K CO.

The proof for S-RD is analogous. a

In the region of these large classes, we met a number of open problems:

Problem 6 Are the classes SOB, K-RD, and S-RD different at all?
Problem 7 Are the classes K-RD and S-RD closed w.r.t. products?

Problem 8 Is FC (or any of the smaller classes BC or CC) a subclass of K-RD or of
SOB?

8.10 Combinations of completeness and Rudin classes

In this section, we prove two Lemmas that hold for domains that are in SC & S-RD or
in KC & K-RD. The first of these two classes contains FC as a subclass by Prop. 8.9.3, and
also F-CONT by Prop. 7.2.2 and the inclusions F-CONT C CONT C M-CONT C SOB C
K-RD C S-RD. The classes KC & K-RD and SC & S-RD are not obviously comparable. SC
is a subclass of KC, but conversely K-RD is a subclass of S-RD.

The first Lemma tells that certain lower sets are closed.
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Lemma 8.10.1 Let X be a domain in SC & S-RD or in KC & K-RD. Let F' be a finitary
upper set and C' a closed set of X. Then cl (C'NF) = [(C' N F) holds.

Proof: We present the proof for SC & S-RD. The other proof is analogous.

LHCNF)Cec(CnNF) holds by Prop. 4.4.2. For the opposite inclusion, we have to show that
L(C N F)is Scott closed.

Let D be a directed subset of | (C'N F). Then for every d in D, there is a point 24 in C'N F
above d. Hence, for all d in D, the set 7d N F meets C. The set {{dN F | d € D} is D-
directed since D is directed. By SC, it consists of strongly compact sets only. By S-RD, its
intersection meets ' since all its members meet C'.

Let z be a point in C'NNyep(TdN F). Then z is in C'N F and also in Nyep Td. Thus, z is
an upper bound of D, whence it is above | |D. | |D <z € C'N Fimplies | |D € |[(CN F).O

The Lemma has some interesting corollaries. A particular special case is C' = X. Then
the Lemma tells that | F’ is closed for all finitary upper sets F’. Every upper cone is finitary,
whence | Tz is closed for all points z. In other words, if all members of a directed set D have
a common upper bound with z, then | | D has a common upper bound with z.

The next Lemma tells that the lower closure operator commutes over certain intersections.

Lemma 8.10.2 Let X be a domain in SC & S-RD or in KC & K-RD. Let F be a D-
directed set of finitary upper sets and C a closed set of X. Then |[(Nper(C N F)) =

Proof: Again, we present the proof for SC & S-RD.

For every F'in F, the intersection (g7 C N F is a subset of C'N F. Applying ‘|’, the left
hand side is a subset of |[(C'N F) for all #' in F, whence the inclusion ‘C’ follows.

For the opposite inclusion, let  be a member of the right hand side. Then for all #" in F,
zisin [(C' N F), whence Tz meets C' N F. Or the other way round, for all Fin F, Tz N F
meets C. Since F is D-directed, {Tz N F' | F' € F} is D-directed, too. By SC, it consists of
strongly compact sets only, and by S-RD), its intersection meets C'.

Let y be a point in C' N (per(Tz N F). Hence, y is in both Tz and Nper(C N F). Thus, z
isin [ (Nper(CNF)). O

In the special case C' = X, the Lemma tells | F = (N |[F] for all D-directed sets F of
finitary upper sets. This is a kind of continuity statement for the operation ‘|’. If the finitary
upper sets are restricted to upper cones, we obtain [ T([| D) = Nyep | Td for all directed sets
D.

To show the dependence of the two lemmas on property SC, we present some example
domain. Let X = {ay, ag, a3, ..., @, b1, ba, b3, ..., c}. There is no point b.,. The a-points
form an ascending sequence: a; < ay < +++ < @Gy, Whereas the b-points are incomparable.
Every a-point is below the corresponding b-point: a, < b,. The remaining point ¢ is below
all b-points, but not below any a-point, not even below a.,. The domain is visualized by the

following picture:
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a3y

t

ay

This domain is algebraic. The condition SC is not satisfied since Te N Tay = {by, be, ...}
is an infinite discrete open set, whence it cannot be strongly compact. The set Te is finitary,
but | Tc is not closed since it contains all points a, except as,. The sets Ta, where n < oo
provide a D-directed set of finitary sets. ¢ is in the intersection of the sets | Ta,, but not in
lﬂneN Tan = lag.

The defect of this domain seems to be cured by establishing the additional inequality
¢ < @y The resulting domain is indeed in SC, but no longer algebraic. It is multi-algebraic
of degree 2. Hence, it is in SC & S-RD, and the two Lemmas may be applied.

8.11 A non-sober domain

An example for a non-sober domain was found by Johnstone and published in [Joh81]
and [Joh82]. It is also not in S-RD.

The domain X consists of a least element L, points a;; where 1 <4, j < oo, and points by,
where 1 < k < oo. For every 1, the points a;; form an ascending chain A; = {a;; < a2 < -}
with lub b;. The chains are incomparable to each other. In addition, all points of level
number j, i.e. L; = {a1;, agj, ...}, are below the points b;, b; 41, etc. Hence, the set of upper
bounds of a point a;; is Ta;; = {a;j, @i j41, @i j42, ..., bi, bj, bjt1, bjyo, ...}. The points by
are maximal. Their lower cone is | by = {bp} U{ar; | 1 < j<oo}U{a;; |1 <i<o0,1<5<
E}u{L}.

The whole domain is closed. We show it is irreducible closed. Let X = AU B where A
and B are closed. One of A and B contains an infinite number of b-points. Because level Ly
is below point by, it thus contains an infinite number of levels, whence all levels. Thus, it
also contains all chains A; and so all limit points b;. Summarizing, it contains all of X. Thus,
there is an irreducible closed set that obviously is not a lower cone. The corresponding prime
filter is the set of all non-empty open sets.

Next, we show that X is not in S-RD. The sets By = {bx, bx+1, br+2, ...} are all strongly
compact. For, if By C O for some open set O, then O contains some member of the chain
Apg, say ap; where | > k. The points b;, by4q, etc. are all above az;. Hence, By C Fi =
T{ars, brs1, bpg2, ..., bi_1} C O. The set of all sets By is D-directed and its intersection is
(. 0 is open, whence some B would have to be empty if X were in S-RD. The sets F}; prove
that By may also be reached as D-directed intersection of finitary upper sets, namely the sets
Fi; where [ > k.

Finally, we consider the completeness properties of X. Since we let X contain a least
element, the whole domain is an upper cone. Let z and y be two points of X, and U = TzNTy
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be the set of their common upper bounds. If z < y, then U = Ty is an upper cone. If y = by
for some k, then U C {by} is empty or an upper cone since by is maximal. The interesting
case is * = a;; and y = ay;; where i # /. Let k be the maximum of j and j’. Then
B, C U C {bi, by} U By, holds where the exact value of U depends on the relative sizes of 1,
i, j, and j'. In any case, U is strongly compact. Hence, domain X is in SC, but not in FC.
Thus, X shows that class S-RD is not a superclass of SC.

8.12 The domain hierarchy

In this chapter and the previous ones, many domain classes were introduced. In this
section, we shortly repeat their definitions and provide pictures showing their relationships.
The definitions in the following list are not meant to be mathematically exact since quantifiers
are missing. The domain under consideration is X, z and y are points, O, O1 etc. are open
sets, C' closed sets, F finitary upper sets, S strongly compact sets, and K compact sets.
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DOM

DIS

FIN

cC

BC

FC

5C

KC

F-ALG

F-CONT

ALG

CONT

M-ALG

M-CONT

L-COMP

SOB

K-RD

S-RD

(domains)

discrete

finite

(cone) complete

bounded complete
finitarily complete
strongly compactly complete
compactly complete
finitely algebraic (bifinite)
finitely continuous
algebraic

continuous
multi-algebraic
multi-continuous

locally compact

sober

K-Rudin

S-Rudin

(X,Y x-conform)

CHAPTER 8. LARGE DOMAIN CLASSES

all domains

x < yimplies xz = y

X is finite

X and Tz N Ty are upper cones

X and Tz N Ty are empty or upper cones
X and Tz N Ty are finitary

X and Tz N Ty are strongly compact

X and Tz N Ty are compact

idx is limit of idempotent deflations

idx is limit of deflations

z € O implies z € 0' =Ty C O

z €O impliesz e 0" ClyCO

z € O impliessz € O'=FCO

x € Oimpliesz € O'C FCO

z €O impliesz e O'C K CO

C non-empty irreducible closed = C' =clz
K; D-directed, (N K; C O implies K C O
S; D-directed, N 5; € O implies S, C O

(z, y) € O implies (z,y) € Ox x Oy CO

The following picture shows the relationships among the various classes and the one-point

domain 1. The arrows indicate inclusions. The arrow from KC to DOM is omitted for the

sake of clarity.
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(X-conform) L-COMP DOM

/

M-ALG M-CONT SOB K-RD

S-RD

DIS —— ALG

CONT KC

|

5C

|

FIN FC

f
BC

t
1 cC

F-ALG

F-CONT

As the picture shows, the classes form two almost independent hierarchies: the complete-
ness hierarchy from CC to KC, and another hierarchy from FIN via CONT and SOB to
S-RD. The next picture shows inclusions among combinations of these classes. The com-
pleteness hierarchy is spread along the z-axis, whereas the other hierarchy forms the y-axis.
For simplicity, M-ALG, K-RD, BC, and KC are left off.

5C DOM
cC FC SC & S-RD S-RD
CC & SOB FC & SOB - 5C & SOB SOB
CC & M-CONT — FC & M-CONT » SC & M-CONT — M-CONT
CC & CONT —— FC & F-CONT — F-CONT —— SC & CONT CONT
CC & ALG FC & F-ALG —— F-ALG — SC & ALG ALG
CC & FIN FIN DIS
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Part 11

General power constructions
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This part contains the algebraic theory of power domain constructions. Power construc-
tions are defined by axioms concerning existence and properties of some basic operations.
One might worry about the actual choice of these axioms, but we think that our choice is
quite natural. This opinion is strengthened by the fact that our definition covers the known
power constructions, and allows to characterize them algebraically.

The basic operations and their axioms are presented in chapter 9. The subsequent chap-
ters contain consequences of these axioms i.e. facts that hold for all power domain construc-
tions. In chapter 10, a host of derived operations is defined by means of the basic operations,
and their algebraic properties are studied. Among those, there is a multiplication that makes
the power domain P1 over the one-point domain into a semiring, and the remaining power
domains into P1-modules. The relations between some classifying properties of power con-
structions and of the semiring P1 are studied in chapter 11.

As power constructions are algebraic structures on a higher level, it is possible and useful
to define homomorphisms between power constructions. These power homomorphisms are
introduced in chapter 12. They allow to define initial and final constructions for a given semi-
ring P1. The discussion of the initial construction is prepared by considering R-X-modules
in chapter 13. In chapters 14 and 15, we then prove that initial and final constructions exist
for every semiring, and we derive their basic properties.

Since the concept of a semiring is very general, we thus obtain a host of power domain
constructions. Their number is further increased by various methods to obtain new construc-

tions from given ones.

The core of a power domain is the smallest sub-domain that still admits the power opera-
tions including multiplication. Taking the cores of all power domains of a power construction
is shown to be a power construction again with the same characteristic semiring. Power
constructions whose power domains equal their core, i.e. are minimal, are called reduced. Re-
duced power constructions enjoy many pleasant properties. The core and the notion of being
reduced are studied in chapter 14.

A family of given power constructions may be combined to form a product power con-

struction. In chapter 16, we present the definition of the product and its main properties.
This chapter also deals with the question of factorization of power constructions.



Chapter 9

Specification of power
constructions

In this chapter, we present the algebraic specification of power domain constructions.
Power constructions are algebraic structures on a higher level: they have not just one carrier
set with some operations, but instead map every domain X to a power domain PX (see
section 9.1). The power domains are equipped with special elements playing the role of an
empty set and a binary operation representing set union (section 9.2). These operations
together make the power domains into monoid domains (section 9.3). In addition, there has
to be a singleton map for every ground domain that maps ground domain members into
power domain elements representing formal singletons (section 9.4).

The most complex family of operations connected with a power construction is function
extension. For every two domains X and Y, there has to be a second order function ext that
maps functions from X to PY into functions from PX to PY. The extension functional ext
has to satisfy 7 axioms enumerated in section 9.5.

Section 9.6 shows that the well known powerset construction is a partial power domain
construction that is defined for discretely ordered domains, i.e. sets, only. The final section 9.7

summarizes the specification of power domain constructions.

9.1 Constructions

A power construction is something like a function which applied to a domain X yields
a new domain, the power domain over X. It is not really a function since there is no set of
all domains. There may be total constructions that are applicable to all domains, as well as

partial constructions applicable to a special class of domains only.

Definition 9.1.1 A (domain) construction F : X — FX attaches a domain FX to every
domain X belonging to a distinguished class def F. F is a total construction if def F is

the class of all domains, otherwise a partial one.

122
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A power (domain) construction P is a domain construction satisfying the axioms presented
in the next paragraphs. PX is called the power domain over the ground domain X. The
elements of (the carrier of) PX are called formal sets.

If a power construction P is defined for a class C' = def P, then the power domains PX
are not required to be in C' again.

Often, a power domain cannot be realized concretely as a set of subsets of the ground
domain. Hence the notion of formal sets in contrast to actual sets, i.e. the ordinary subsets
of the ground domain. Formal set operations will be notationally distinguished from actual
set operations by means of additional bars, e.g. Y vs. U.

In the following, the symbol P denotes a generic partial power construction defined for a
class D = def P of domains. We immediately require the class D to contain the one-point-
domain 1 because the power domain P1 plays an important algebraic role.

9.2 Empty set and finite union

As a first requirement, we want the power domain PX to contain a formal empty set and
to provide formal set union. Both the existence of an empty set and the axioms for union
may be subject to discussions.

Nomne of the original power domain constructions contained the empty set. However, they
were sometimes extended by the empty set in later developments. The power constructions
without empty set are briefly considered in section 17.7. For our work, the empty set is
important and cannot be dispensed with.

Mathematical set theory suggests that union be commutative, associative, and idempo-
tent. The last requirement turns out to be the least important one. For the sake of generality,
we omit it as far as possible. Thus, the following results apply for ‘multi-power’ domain con-
structions as well.

For a (generalized) power construction P, all power domains PX have to be equipped
with a commutative and associative operation Y : [PX x PX — PX]. In addition, there has
to be a point 8 in PX which is the neutral element of union ‘Y’. If union is idempotent, it
is a real power construction, and otherwise a multi-power construction.

9.3 Monoid domains

To have generally applicable notions, we define the algebra of domains with empty set

and union in a more abstract setting.

Definition 9.3.1 (Monoid domains and additive maps)
A monoid domain (or simply monoid) (M, +, 0) is a domain M together with an asso-
ciative operation + : [M X M — M] and an element 0 of (the carrier of ) M which is the
neutral element of ‘+’.
The monoid is commutative iff ‘+’ is.
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A map f :[X — Y] between two monoids is additive iff it is a monoid homomorphism,

ie. f(0x) =0y and f(a+b)= fa+ fb hold.

Many authors, including myself in previous papers, call the additive maps linear. How-
ever, the term ‘linear’ is more appropriate for the module homomorphisms introduced in
section 11.1. In many common cases, including the usual power constructions, additivity and

linearity coincide as indicated in section 11.12.

9.4 Singleton sets

Returning to the power construction, we next require a morphism which maps elements
into singleton sets. We denote it by ¢ = {.[} : [X — PX], z — {z[}.

By means of the operations 8 and Y, we may extend {.[} to finite sequences of ground

domain points:

{1} ¥ - Y {lznf} ifn>0
0 ifn=0

{z1, ..., zaf} = {

Because of commutativity and associativity, one is free to permute the n arguments of
{z1, ..., z,[}. If union is idempotent, one additionally might delete and add multiple occur-
rences of elements. Thus {.[} becomes a mapping from finite actual sets to formal sets in this

case.

9.5 Function extension

So far, we required the existence of singletons, empty set, and binary union. Singleton
and union are not yet interrelated by axioms, and there are no axioms yet relating power
domains over different ground domains. Both relationships are established by the extension
functional. It takes a set-valued function defined on points of a ground domain and extends
it to formal sets.

Definition 9.5.1 Let X be a domain in D and Z an arbitrary domain. A function
F:[PX — Z] is an extension of a function f:[X — Z] iff F{z[} = fz holds for all z in
X, or equivalently iff F'or = f.

For every two domains X and Y in D, ezt is a morphism mapping morphisms from X
to PY into morphisms from PX to PY. For every f : [X — PY], the extended function
f = extf should be an additive extension of f. These axioms imply f{zi,..., z,[} =
fri 9 -9 fa, forn > 0.
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~l

PX

PY

We call the ext axioms indicated above primary axioms because their relevance is im-
mediate. In addition, we require some ‘secondary axioms’ which will be stated below as
(Si). (S1) and (S2) specify additivity in the functional argument. In the next section, power
constructions are shown to be functors by means of (S3) and (54).

e lor all domains X, Y in D, there is a morphism ezt =~ : [[X — PY] — [PX — PY]]
with

(P1) fo =090

(P2) F(A 6 B)=(FA) U (TB)

(P3) f{al =fz o fou=f

Together, (P1) through (P3) mean f is an additive extension of f.

(S1) eat (Az.0) A =0 or shortly ezt ® = 8 where § denotes the constant function Az. 8.

(S2) ext (Az. fr Y gz) A= (ext f A) Y (ext g A).
Raising ‘9’ to functions, one may shortly write f & g = f 9 g¢.

(S3) ext (Az. {lzf}) A=A or: T=1d
(S4) For every two morphisms f: [X — PY] and g : [Y — PZ],

) A

ext g (ext f A) = ext (Aa. ext g

(fa
holds for all Ain PX, or: gof=

gof
f 7
PX - PY -~ PZ
L f L g
X Y

Note that we do not require f to be the only morphism satisfying (P1) through (P3) for
given f. However, an important class of power constructions will have this property. For

these constructions, (S1) through (S4) become provable (see section 14.5). That is why we
call them secondary axioms.
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9.6 Examples

Sets may be conceived as discrete domains, and all functions between discrete domains
are continuous. Hence, ordinary is a partial power domain construction defined for discrete
domains.

o Pt X = PX ={A| AC X} ordered discretely for discrete domains X,
¢« 0=10,

e AUB=AUB,

o {o = o,

o cxt fA =], fa.

Union is obviously commutative, associative, and the empty set is its neutral element. The

axioms for extension read as follows:

(P1) Usep fa =10 (P2) Uceaus fe = Usea fa U Upep fb
(P3)  Usegay fz = fa
(Sl) UaEAQ) = @ (S2) UaEA(faUga) = UaEA fa U UaeAga

(S3) UaeA{a} =A (S4) U{gb | b € UaEA fa} = UaEA UbEfa gb

All these equations hold, i.e. P, is a power construction.

ext f is not the only additive extension of f if X is infinite. Another additive extension of
Usea fa if A is finite

Y otherwise

[:X =P, Y is FA:{

An extension functional defined in this manner would however violate axiom (S3).

The empty set and all singletons are finite, and finite unions of finite sets are finite. Hence,

there is another power construction for sets:
Phn X = {A C X | A is finite}

whose operations are the restrictions of the operations above. In this construction, every

function f: X — Pp, Y has a unique additive extension.

The two partial constructions introduced in this section are considered to some more

extent in section 23.5.
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9.7 Summary

A power construction is a tuple (D, P, 0, &, ¢, ~ ) where

e D is a class of domains;
e P maps domains belonging to class D into domains;
e 0 = (0x)xeD with 08y : PX
o U = (HX)XeD with Yx [PXXPX—WPX]
e : = (1x)xep with ¢x : [ X — PX]
( [X = PY] = [PX — PY]

) = exth)X,yED with extyy :

satisfying the axioms (domain indices are dropped!)
(C) AgB=BuY A

(A) AY(BY(O)=(AdB)"gC

(N b A=A80=A4
fo=120
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Chapter 10

Derived operations in a power
construction

The operations as specified in the previous chapter allow to derive many other operations
with useful algebraic properties. We first consider some set operations including function
mapping (10.1), big union (10.2), and Cartesian product (10.3). Function mapping turns the
power construction into a locally continuous functor.

In section 10.4, we concentrate on the power domain P1 over the one-point-domain 1 and
show that it incorporates the inherent logic of the power construction in its operations. In
section 10.5, existential quantification &£ is introduced. Given a formal set and a predicate,
£ intuitively tells whether some member of the set satisfies the predicate. In chapter 15, £
will be used to define power domain constructions in terms of second order predicates. In
section 10.6, other set predicates are derived from &.

Elements of a power domain PX may be multiplied by logical values, i.e. members of
P1 (see section 10.7). Intuitively, multiplication of A by the logical value b results in the
conditional if b then A else . In case X = 1, this operation induces a binary operation
within P1. This operation may be interpreted as conjunction (section 10.8). The algebraic
properties of these products make P1 into a semiring with union as addition, whereas the
power domains become left semiring modules (cf. section 11.1).

Further derived operations are filtering of formal sets through predicates (section 10.9)
and multiplication by logical values from the right (section 10.10). This alternative product
has dual properties to the left product of section 10.7. It makes the power domains into right
semiring modules.

10.1 Mapping of functions over sets

Given a morphism f : [X — Y], it can be composed with the singleton operation to
obtain to f : [X — PY]. The resulting set-valued function can be extended to set arguments.
Thus, we obtain

map =" [[X = Y] — [PX — PY]] f=to7.
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The primary and some secondary axioms of extension may be translated into corresponding

properties of map.

f
(Pl)’ f:e -0 ) PX PY
P2y F(Au B)=(FA) 6 (T B
(P3) Jor=vof or [l =qse) L L
(3) id=id
(54) gof=gof f
X Y
Proof:
(P1) fO=10F(8)=0 by (P1)
(P2) 1mmed1atelyb (P2)
(P3) f IOfOI—IOf by (P3)
(S3) id =10id =17= zd by (S3)
(S4) g —Logoaof Logoaof(I;?))Logof:g/o\f O
The properties (P1)’ through (P3)’ imply fA{|x1, ces ol = {f21, -. ., frul}. The last

two properties show that P becomes a functor by means of map. Since map is continuous
when considered a second order function, this functor is locally continuous. Thus, theo-
rems 7.4.4 and 7.5.6 apply, i.e.

o If P preserves FIN, then it also preserves F-ALG and F-CONT.

o If P preserves ALG, then it also preserves CON'T.

10.2 Big union

If X is in D such that PX is back in D again, the identity
d : [PX — PX] may be extended to a morphism U = P(PX)
id : [P(PX) — PX]. The axioms (P1) through (P3) of

extension imply

(1) Us =8 . v

(2) U(AY B)=UAY UB

() U{Sl = 5 y

whence U {51, ..., %[ =954 -8 5, Thus, U is a PX PX

formal big union of formal sets of formal sets.

10.3 Double extension

Let X, Y, and Z be three domains in D, and let x : [X X Y — PZ] be a binary operation
written in infix notation. By double extension, one obtains

A% B =ext (Aa.ext (\b.axb) B) A and A% B = ext (Ab. ext (Aa.a*b) A) B
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The results are two morphisms %, * : [PX x PY — PZ].

A power construction is symmetric iff A % B = A% B holds for all X,Y,and Z in D,
Ain PX, Bin PY, and x: [ X x Y — PZ]. Power constructions are not automatically

symmetric. Later, we shall meet examples for this.

Our two sample power constructions for discrete domains — set of arbitrary subsets and
set of finite subsets — are both symmetric because of

UU(J,*b:UUa*b

a€A bEB beEB a€A

For two singletons, {lal} * {b} = {lal} * {b} = a * b may be shown using (P3) twice.
Because of (P1) and (P2), ‘%’ is obviously additive in its first argument:

0xB=0 (A Y A)*xB=(A*xB)d (A4, % B)

For additivity in the second argument, (S1) and (5S2) have to be employed in addition because
B appears in the functional argument of the outer occurrence of ext. Thus, we get

AX0=0 A% (B Y By)=(A%B)) Y (A% By)

‘%’ has the same properties; the proofs are however exchanged.

For formal finite sets, one then obtains

{or, el x s gml = ozl o, syl =
(z1xy1) B (Trxy2) Y B (1 %ym) B (zaxy1) Y -+ 8B (T *Ym)

Cartesian product of formal sets is a special instance of double extension. If X and Y are
in D such that X X Y is also in D, then

AX B = ext (Aa.ext (Ab. {(a,b)}) B) A and
AX B = ext (Ab. ext (Aa. {(a,b)}) A) B

are formal Cartesian products.

If the class D where the power construction is defined is closed w.r.t. Cartesian product,
then symmetry may be defined in terms of formal Cartesian products because of the following
proposition:

Proposition 10.3.1 Let X and Y be in D such that X x Y also is in D. Then for all Z
inDand x:[XXY — PZ], Ax B = emt(*)(A; B)and A% B = ert(*)(AgB) hold.

Proof:
ext (%) (AX B) = ext (%) (ext (Ma. ezt (Ab. {(a,b)}) B) A)
) (Aa. ext (x) (ext (Ab.{(a,b)[}) B)) A
) cat (Aa. et (Ab. ext (%) {(a,b)}) B) A
(P3)

ext (Aa. ext (Ab.axb) B) A

The statement about ‘%’ and ‘X’ is proved analogously. O
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Corollary 10.3.2 Let P be a power construction such that D = def P is closed w.r.t.
product, i.e. X, Y in D implies X X Y in D. Then P is symmetric iff for all X, Y in D,
Ain PX,and Bin PY, A X B = A x B holds.

10.4 The logic of power constructions

Each power construction is equipped with an inherent logic. In this section, we present
the domain of logical values together with disjunction and existential quantification. The
corresponding conjunction is defined in section 10.8.

The domain of logical values is obtained by interpreting the power domain P1 where
1 = {o}. It has at least two elements: 6 and {|¢[}, and is equipped with the binary operation
‘d’. We interpret 0 as F, {lof} as T, and ‘g’ as formal disjunction ‘¥’. From the power
axioms, one gets the following properties:

e ‘¥’ is commutative and associative.
e FYa=a¥%¥ F=a forall ain P1.

e In case of a real power construction, one additionally has ¢ ¥ a = a for all @ in P1.

Table of values for a generalized power construction: for a real power construction:
¥ |F T ¥ | F T
FIF T FIF T
T|T ? T|T T

Further statements about 1 beyond the ones above are not possible for generic power
constructions. In particular, one does not know whether there are further logical values
besides T and F, and a ¥ T = T does not generally hold, even for real power constructions.
There is no information about the relative order of F and T; F might be below T, above T,

or incomparable to T.

The two power set constructions — set of arbitrary subsets and set of finite subsets —
both have the same logic: P1 is {, {¢}} or {F, T} with ordinary disjunction.

10.5 Existential quantification

Extension ezt: [[X — PY] — [PX — PY]] is polymorphic over the domains X and Y.
In this section, we consider the special case Y = 1; section 10.7 is concerned with X = 1.

Extension to the one-point domain ez : [[X — P1] — [PX — P1]] ' may be logically
interpreted along the lines of the previous section. It has the following properties:

'This morphism is called ex to distinguish it from the fully polymorphic ext.
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er p
(P1) exp0=F PX P1
(P2) exp(A Y B)=(expA) ¥ (expB)
(P3) ex p{e] = pa
(S1) ex (Az.F)A=F L [
(S2) ex (Az.px ¥ qe)A=(expA) ¥ (ex qA)
(S4) exp(ext fA) = ex (Aa.ex p(fa)) A

X

whence ez f{z1, ..., zu} = fo1 ¥ -+ ¥ fz,. Thus, ez means existential quantification. It

takes a predicate p : [X — P1] and a formal set A and tells whether some member of A
satisfies p. (54) then informally reads: There is z in |J,c 4 fa satisfying p iff there is @ in A
such that there is  in fa satisfying p.

Existential quantification may also be used to translate formal sets into second order
predicates. For this end, we exchange the order of arguments of ez by uncurrying, twisting,
and then currying again. The outcome is a morphism & : [PX — [[X — P1] — P1]] mapping
formal sets into second order predicates. The properties of ex presented above translate easily
into properties of £:

(P1) £6 =Ap.F

(P2) E(AY B)=Ap.(EAp) ¥ (£ Bp)

(P3) €{zlt = Ap.pa

(S4) E(ext fA)=Ap.E A(Xa.E(fa)p)

These results suggest to define a power construction for given domain P1 by (a slight variant
of) PX = [[X — P1] — P1]. This method to obtain power constructions will be presented
and explored in chapter 15.

By (S1), ez (Az.F) A = F holds for all formal sets A. And what about ez (Az.T)? It maps
the empty set to F by (P1), and singletons to T by (P3). Hence, it is a predicate checking

&
&

for non-emptiness — at least in the case of real power constructions with idempotent union.
In case of multi-power constructions, it is better interpreted as cardinality.

o ne=ex(Az.T): [PX — P1]
( ne® =F
( ne(A Y B)=(neA) ¥ (neB)
(P3) nedzf} =T
(S4) ne(ext f A) = ext (ne o f) A
e bor all B in P1, ne B = B.
Proof: Properties (P1) through (P3) are immediate. For (S4), note neoext f = ext T o
ext f = ext (ext T o f) = ext (ne o f) holds by (S4) where T abbreviates Az. T.
The function Az. T = Az.{¢o} on domain 1 coincides with the singleton map ¢ since the only

possible argument is ¢. Thus, ne = ext ¢ = id on P1 because of (S3). o

For a real power construction, T ¥ T = T holds. Then by (P1) through (P3), ne{z1, ..., z,[}
is Tifn>0,and Fif n =0.



10.6. OTHER SET PREDICATES 133

10.6 Other set predicates

Assume P is a real power constructioni.e. A9 A = A, and assume P1 provides a negation
= :[P1 — P1] such that -=F = T and =T = F. (There are real power constructions that do
not admit such a negation.) Then one may define a conjunction by a A b = =(—a ¥ =b). (In

section 10.8, we define a conjunction for every power construction without using negation.)
With these assumptions, one may derive further predicates on formal sets.

o forall : [[X — P1] — [PX — P1]] defined by forall p S = —(ex (Az.~(pz)) 5)

This implies forall p {1, ..., zu[} = pa1 A -+ A pa, for n > 0.
o empty : [PX — P1] defined by empty S = —(ex (Az.T) §) = forall (Az.F) S
T ifn=
Hence, we obtain empty {|z1, ..., z,[} = itn=0
F ifn>0

For the tests of containment, inclusion, and set equality, we need an equality morphism

==:[X x X — P1] given on the ground domain.

o _in_: X X PX — P1] zin B = ex (Nb.z==10b)B
e _C_: [PXxPX—P1] ACBHB = forall (Aa.a in B) A

10.7  Multiplication by a logical value

In this section, we consider extension of a morphism with domain 1, i.e. the instance
ext : [[1 — PX] — [P1 — PX]]. The function space [1 — PX] is isomorphic to PX. Thus,
we get a morphism [PX — [P1 — PX]]. Uncurrying and exchanging arguments leads to
the ‘product’ - : [P1 x PX — PX]. The definition is b -5 = ezt (Xo. §)b. We call this
product external since its left operand is not a member of PX. The axioms of ext imply the

characteristic properties of the product.

Proposition 10.7.1
(P1.) F-5=690

(P2) (avb)-S=(a-5)Y (b-9)

(P3) T.-5=5

(S1) b-0=09

(S2)  b-(S19 852)=(b-51) 8 (b-52)

(S4-)  ext f(b-S)="b-(extfS)

(S4a-) (a-b)-S=a-(b-9)

(SY:) If P is symmetric, then ext(Az.b- fz)S =b-(ext f5)

Algebraists will notice that these properties essentially are the axioms of left modules. This

topic will be further explored in section 11.1.
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Proof:
(P1.) F.5 = ext(Xo.5)0 = 0
(P2)  (a¥b)-5 = ext(Xo.5)(a B b)etc
(P3:) T:5 = ext(Xo. ) {of} = (Ae.5)o =
(S1:)  b-0 = ext(Xo.0)b = 0
(S2:)  b-(5 Y 52) = ext(Xo. 51 Y 53)betc.
(S4-)  ext f(b-S) = ext f(ext(No.5)b)
(S4): = ext (Mo.ext f((No. §)0)) b
= ext (Ao.ext fS)b
= b-(ext f5)
(S4a:) (a-b)-S5 = ext(Xo.5)(a-b)
(S4-): = a-(ext(Xo. 5)b)
=a-(b-9)
(SY:) ext(Az.b- fz)S§ = ext(Az.ext(Xo. fz)b)S
by symmetry: = ext (Mo ext (Az. fz)S)b
= b-(ext f95) o

Interpreted logically, the product -5 resembles the conditional ‘if b then S else 07. At least

for the cases b = T and b = F, product and conditional coincide because of T -5 = 5 and

F-5=08.

10.8 Conjunction

Up to now, the logical domain P1 was only equipped with constants F and T and a
disjunction ‘¥’. We now interpret the external product on P1 as conjunction since a - b
resembles ‘if @ then b else 9’.

A[PLXPL—=Pl,aAb=a-b

The algebraic properties of conjunction are given by the next proposition:

Proposition 10.8.1
e FAD=bAF=F
(a1 ¥ ag) A b= (a1 A b) ¥ (az A D)
A (b1 ¥ by) = (a A b1) ¥ (a A by)
o Neutral element: TAb=b0AT =05

o Associativity: (a A b) Ac=a A (b A ¢c)

e Distributivities:

o If the construction P is symmetric, then ‘A’ is commutative.

Proof:
o F:immediate by (P1-) and (S1:)
¢ Distributivities: (P2.) and (52-)
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o T: T Ab=0>bholds by (P3:). b A T = eat (Xo. {|o[}) b = b holds by (S3).
¢ Associativity is just (S4a-).
o Commutativity: @ A b= ext (Ao.b)a = ext (Xo.b-T)a = using (SY-) O
brext(Ao.T)a=bA(aAaT)=bAa
The axioms of generic power constructions do not allow to derive more algebraic properties for
conjunction. In particular, idempotence of conjunction, the opposite distributivities, and the
laws of absorption do not generally hold. On the other hand, the existing laws are powerful
enough to obtain the following table of values: A |F T
F|F F
TIF T

10.9 Filtering a set through a predicate

We also want to provide an operation that filters a set through a given predicate w.r.t.
the P1-logic. The operation filter : [[X — P1] — [PX — PX]] should be additive in its set
argument as well as in its predicate argument and operate on singletons as one expects i.e.

filterp{z[} = if pa then {zf} else 8 = pz - {z|}

This suggests to define filterp S = ext (Az.px - {zf}) S
Employing the axioms of extension, one immediately gets

(P1f) filterp 0 =10
(P2f) filter p(A Y B) = (filter p A) © (filter p B)
(P3f) filter p {zlt = pz - {J=[}

(S1f) filter (Az.F) S =19

(S2f) filter (p ¥ q) A = (filter p A) Y (filter q A)
(S3f) filter (A\x. T) S =S

(S4f) filter p (b-S)="b-(filter p §) by (S4.).

Property (P3f) implies filter (Az.b) {|lz[} = b-{z[}. One might believe that this equation may
be generalized from singletons to arbitrary sets. However, this is only valid for symmetric

constructions.

(SYf) If P is symmetric then (SYf) filter (Az.b)S=15b-5.
Proof: filter (Az.b) S = ext (Az.b-{z[}) S = b (ext (Az.{z[})S)=b-5 using (SY:) and

then (S3). (SY-) was shown for symmetric constructions only. O

Filtering by a predicate p first and then by a predicate ¢ is intuitively equivalent to filtering
by p A q.

Proposition 10.9.1 (Composition of filter operations)
filter q o filterp = filter (p A q)
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Proof:
filter q o filterp = eat(Az.qa-{z})oext(Ay.py-{yl})
(54) : = ext(Ay.ext (Az.qz - {2}) (py - {lyl}))
(54f) : = ext(Ay.py- (ext (Az.qz - {zf}) {y}))
(P3): = ext(Ay.py-(qy-{yl}))
(Associativity) : = ezt (A\y. (py A qy) - {ly]})

= filter(p A q) O

10.10  Multiplication by a logical value from the right

In section 10.7, we defined a left external product, i.e. multiplication by a logical value
from the left:

([P1x PX — PX], b5 = ext(Xo.5)b

In the previous section, we saw that filter (Az.b).S does not generally coincide with b -5
except in the symmetric case. The idea is now to write filtering by a constant predicate as a
right product.

r=-:[PXxP1l—PX], 5 b= filter (Az.b)S

We want to use the same operation symbol ‘-’ for left and right product. The following

proposition assures that this may be safely done even in the case X = 1.

Proposition 10.10.1 For all @, bin P1,a-;,b = a-gb holds.

Proof:
a-rb = filter(Az.b)a = filter (Az.b) (a1, T)
(S4f) - = a-p filter(Az.0)T
T={c},(P3f): = a1, (b:1,T) = a-b

O

The algebraic properties of the right product are analogous to that of the left product. In
the following, capital letters range over PX and small letters over P1.
Proposition 10.10.2

(1) S-F=1#0

(2) S-(avb)=(5a) (5b)

(3) §-T=S5

(4)0-b=090

(5) (518 52)-b=(51-b) Y (52-b)

(6) ext(Aa. fa-b)S = (ext f5) b

(7) S-(a-b)=(5-a)-b

(8) (a-8)-b=a-(5-b)



10.10. MULTIPLICATION BY A LOGICAL VALUE FROM THE RIGHT 137

(9) a-{zft = {zf} -a

(10) If P is symmetric, then a- 5 =5"-a

Proof: For a constant b in P1, we abbreviate Az.b by b.
(1) S-F = filter ES = 0 by (S1f)

(2) §:(a¥b) = filter(Az.a ¥ b) S Use (S2f)
(3) S-T = filter TS = 5 by (S3f)

(4) 0:b = filterb® = 0 by (P1f)
(5)
(6)

5 (51 d 52) b = ﬁlteT‘Q(Sl Y 52) Use (P2f)
6 (ext fS)-b = ext(Ae.b-{z})(ext f59)
(S4) : = ext(Ay. ext (Az.b-{z[}) (fy)) S
= ext(Ny. filter b(fy)) S = ext(Ay.(fy)-b) S

(7) S(a-b) = filter(a ~b)S using Prop. 10.9.1
= filterb (filteraS) = (S-a)-b
(8) (a-9)-b = (ext(No.S)a) b

(6): = ext(Xo. S b)a = a-(5-b)
(9) {zl} - = filtera{zy = a-{z[} by (P3f)

(10) @+ S = S -ais just a re-formulation of (SYf) which holds for symmetric constructions.O

In the general non-symmetric case, left factors may be drawn off the set argument of
ext by (S4-), and right factors may be drawn off the functional argument by part (6) of the
proposition above. Unless @ -5 = 5 - a holds, it is impossible to draw right factors off the set
argument and left factors off the functional argument.



Chapter 11

The characteristic semiring

In the previous chapter, we saw that the power domain P1 becomes a semiring with
addition being union, 0 the empty set, 1 a singleton, and multiplication derived from exten-
sion. We call this semiring the characteristic semiring of the power domain construction P.
In this chapter, we study the relation between a power construction and its semiring. We
introduce certain classifications of power constructions and investigate to what extent these

classifications are determined by properties of the characteristic semiring.

Section 11.1 contains the definitions of the algebraic concepts of semirings, left and right
modules, and linearity of functions. In section 11.2, we present examples of power construc-
tions and their semirings. In particular, the semirings of the known power constructions are
presented. The notion of characteristic semiring is generalized in section 11.3. The charac-
teristic semiring of P need no longer be identical to P1, but may also be isomorphic to P1
if the isomorphism is assumed to be fixed. In section 11.4, we then consider the effect of the

power operations to finite linear combinations in the P1-modules PX.

In section 11.5, power domain constructions are called real iff union is idempotent in
all power domains. This property is equivalent to 1 + 1 = 1 in the characteristic semiring.
The next section 11.6 compares symmetric constructions where two extensions commute,
commutative constructions where the product by a logical value commutes, and constructions
with commutative characteristic semiring. In section 11.7, constructions are studied where
linear maps on the power domains are uniquely determined by their values on singletons.

In section 11.8, all power constructions are classified into four principal classes according
to whether the singletons are incomparable to the empty set, strictly below the empty set,
strictly above the empty set, or equal to the empty set. These classes correspond to semiring

classes where 0 and 1 are incomparable, 1 < 0,1 > 0, or 1 = 0 respectively holds.

In section 11.9, criteria are found for the singleton map being an embedding of the ground
domain into the power domain. Section 11.10 shows that even if the ground domain and its
image under the singleton map are not isomorphic, this image may be taken as an alternative

ground domain.

All modules belonging to proper rings are shown to be discrete in section 11.11. Thus
power constructions P with P1 being a ring are degenerated from the point of view of domain

138
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theory. The final section 11.12 investigates additive semirings characterized by the fact that

all additive functions between their modules are linear.

11.1  Semirings and modules

The host of algebraic properties of power constructions may be described in terms of

well-known algebraic structures.

Definition 11.1.1 (Semiring)
A semiring domain or shortly semiring (R, +, 0, -, 1) is a domain R with elements 0 and
1, and continuous operations +,- : [R x R — R] such that (R, 4+, 0) is a commutative

4

monoid, (R, -, 1) is a monoid, and multiplication ‘-’ is additive in both arguments, i.e.

a-0=0-a=0 a-(by+b3)=(a b))+ (a-by) (a1 + az)-b=1(ay-b)+ (az-b)
The semiring is commutative iff its multiplication is, and it is idempotent iff its addition
is, i.e. a + a = a holds.
A semiring homomorphism h : [R — R'] between two semirings is a continuous mapping
that preserves the semiring operations:

h(a4+b)=ha+hbd h(0)=10 h(a-b)=ha-hb h(l)=1
The power domain P1 is such a semiring with 0 = F = 0, a+b =a ¥ b = a U b,

1=T=A{¢}},and a-b=a A b= ext(Ao.b)a as shown in the previous sections.

Semirings are generalizations of both rings and distributive lattices. These in turn are
generalizations of fields and Boolean algebras. Hence, both the notations (R, +, 0, -, 1) of the
definition above and (R, ¥, F, A, T) as used in the previous sections seem to be adequate.

When semiring domains are considered which are lattices, there is a high risk to confuse

the order ‘<’ of the domain and the lattice order ‘C’ defined by a4+ b = b. Generally, there is
no relation between these two orders. In special cases only, they are equal or just opposite.

Definition 11.1.2 (Modules)
Let R = (R, +,0, -, 1) be a semiring domain and M = (M, +, 0) be a commutative
monoid domain. (R, M, +)is a (left) module iff

i [Rx M — M]

a-0p =0p a-(B1+ By)=(a-By)+ (a-By)
Op-A =0 (a1 +az) - B=(a1-B)+(ay-B)
lr-A=A a-(b-C)=(a-b)-C

We also say ‘M is a (left) R-module’.

Let My and M; be two (left) R-modules. A morphism f:[M; — Ms]is (left) linear iff
F(A+B)=fA+fB and f(r-A)=r fA

(R, M, ) is a right module iff

1 [M x R— M]
A-0p = 0n A (by 4 by) = (A-by)+ (A by)

Alp=A (Ab)-c=A-(b-c)
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We also say ‘M is a right R-module’.
Let My and M3 be two right R-modules. A morphism f: [M; — M| is right linear iff

f(A+B)=fA+ fB and f(A-r)=fA-r

We assume left modules as the standard; thus, the word ‘left’ may be omitted. Right
modules do not become left modules by simply twisting the arguments. The very last equation
of right modules becomes ¢ (b-A) = (b-c)- A by twisting. Thus, a right B-module is a left
R'-module where R is R with multiplication twisted. For commutative semirings however,
the notions of left and right module coincide.

Particularly prominent modules are those over a field; they are called vector spaces. The
notion of linearity is drawn from there.

The most important results of the previous sections may be summarized to

Theorem 11.1.3 Let P be a power construction and let
+=4: [PX x PX — PX]
0=0: PX
= Ma, ). ext(Mo.S)a: [P1x PX — PX]

1 ={of}: 1

Then P1 with these operations is a semiring domain, and PX is a P1l-module for all
domains X. For f : [X — PY], the extension f : [PX — PY]is linear, and fo:. = f
holds.

The semiring P1 is called the characteristic semiring of the power construction P. Gen-
eralizing a bit, a power construction P is said to have characteristic semiring R iff P1 and R

are isomorphic semirings where the isomorphism is assumed to be fixed (cf. section 11.3).

Different power constructions may have the same characteristic semiring. For instance,
the construction of the set of all subsets and the construction of the set of finite subsets for

the class of discrete domains both have characteristic semiring {0, 1} with 14+ 1 = 1.

Conversely, one may wonder whether there is a power construction for every given semi-
ring. The answer is yes; in chapters 14 and 15, two distinguished constructions with given
semiring are presented.

11.2 Examples for characteristic semirings

In this section, we informally present some examples for power constructions and their
characteristic semirings.

o The lower power construction has characteristic semiring {0 < 1}, or logically {F < T}
where T ¥ T = T. In this logic, F is unstable because it may become T while the
computation proceeds. Thus, F actually means ‘don’t know’ since only positive answers

are reliable.

o The upper power construction has the dual semiring {1 < 0}, or logically {T < F}.
Here, T is unstable and may change to F in the course of a computation. Only negative
answers are reliable.
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e The convex or Plotkin power construction has semiring {0, 1} with 1 + 1 = 1. The
elements are not comparable. Logically, T and F are both stable here. The semiring
is discrete, whence computations with logical result cannot proceed. They have im-
mediately to decide whether the result is T or F, and cannot change their ‘opinion’
afterwards.

The constructions of the set of all subsets and of the set of finite subsets have the same
characteristic semiring as Plotkin’s construction. Indeed, the construction of finite
subsets is just a special instance of Plotkin’s.

The three examples above show the importance of the empty set in our algebraic theory.
Without empty set resp. 0, all three semirings would collapse to {1} and could not be distin-
guished.

e A power construction with a more reasonable logic should have the Boolean domain
B = {L,F, T} as semiring. Such constructions are called set domain constructions
in [Hec90c]. The interpretation of L is ‘I do not (yet) know’. Computations with logical

results start in this state which may change to F or T if the computation proceeds.

The sandwich power construction [BDWS8S| or big set domain construction [Hec90c]
and the mized power construction [Gun89b, Gun90] or small set domain construction
[Hec90c] both have characteristic semiring B with parallel conjunction and disjunction.

o Multi-power domain constructions containing formal multi-sets should have the natural
numbers as their semiring. There are several ways how to arrange the naturals to form
a semiring domain:

- Ny ={0<1<2< .. < oo} with addition extended by n + co = oo and

multiplication extended by 0-00 =0 and n 00 = oo for n > 0.
— The order dual N2 = {0 > 1> 2> - > oo} of the semiring above.

— ‘o0’ is not needed here. Thus, N = {0 > 1 > 2 > ---} with usual arithmetic is
also a semiring domain.

— No =10, 1, 2, ...} with usual arithmetic and discrete order.

— The flat domain N; = {1,0,1,2,...} with usual arithmetic extended by
n+Ll=1,0-L=0,and n-L =1 forn>0.

— The domain of ‘lazy naturals’.

— The only multi-power construction that was ever proposed occurs in [Bro82] and
is defined for algebraic ground domains. It excludes the empty set as many other
proposals do. If the empty set is added properly, then the characteristic semiring
becomes {0,1 <2< 3 < -+ < o0}, i.e. 0 is totally uncomparable as in Plotkin’s
construction, and the remaining numbers form an infinite ascending chain.

e In [Mai85], discrete probabilistic non-determinism is modeled by a power construction
with characteristic semiring R3® — the non-negative reals including infinity ordered as
usual with ordinary addition and multiplication.

o In [Mai85] again, oracle non-determinism is modeled by a construction whose semiring
is the power set of a fixed set. The power set is ordered by inclusion ‘C’, addition is
union, and multiplication is intersection.
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o A third construction in [Mai85] models ephemeral non-determinism. Its semiring is the
so-called tropical semiring T = {tg < t1 < 13 < +++ <t} Where &y + tp = oy (n, 1)
0=ts, tn -ty = tyyr, and 1 = 1g, i.e. addition in T is minimum, and multiplication in

T is arithmetic addition.

11.3 Power constructions with semirings

It is generally useful not to stick to the fact that the characteristic semiring be exactly
P1. It is better to be more flexible and let the characteristic semiring be some isomorphic

copy of P1. In this case, it is important to fix an isomorphism.

Definition 11.3.1 A tuple (P, R, ¢) is a power construction with semiring R, or shortly
an R-construction, iff P is a power construction, R a semiring, and ¢ : [R — P1] is a

semiring isomorphism.

If R allows non-trivial automorphisms, then there are several different isomorphisms between
P1 and R. Hence, we fix an isomorphism in the definition. The importance of this fixing will
be seen in the subsequent chapters. Nevertheless, we shall mostly use the sloppy notation ‘P
is an R-construction’ without explicitly mentioning the fixed isomorphism ¢ : [R — P1].

Various derived power operations involved the power domain P1 in their functionality.
By means of the isomorphisms ¢ and ¢~!, they may be turned into operations involving
R instead. For the sake of clarity, we mark the original operations by an asterisk in the

following, and denote the original products by ‘«’.

[R x PX — PX] r-A=prxA
: [PX x R — PX] A-r=Axepr
er : [X — R] — [PX — R]] exp =@ loex*(pop)
ne : [PX — R] ne = ¢~ o ne*
& [PX=[X— Rl - R]] EAp=¢™ (7 A(pop))
filter : [[X — R] — [PX — PX]] filter p = filter* (¢ o p)

These new operations enjoy the same algebraic properties as the original operations. The
proofs may be performed by simple equational reasoning. In the sequel, we shall mostly use

the new operations.

11.4 Finite linear combinations

In section 9.4, we already defined finite formal sets in a power domain PX by {z1, ..., z,[} =
{z1[} © - - Y {z,[}. This notion may be generalized by employing multiplication. If P is an
R-construction, we define finite linear combinations in a power domain PX by

{ro-an, oo anf =l o0 {anf

where the coefficients r; are in R and the points z; are in X.
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The coefficients indicate the degree of membership of the corresponding point in the
formal set. A coefficient 0 = F at some point z means this point is not in the formal set,
whereas 1 = T means it is. Other coefficients have other meanings depending on the structure
of R. For instance, if R = {1, F, T}, then a coefficient L denotes an uncertain membership
because of L < T and L < F.

We now show how the power operations act on such finite linear combinations.

= Al
o {aff = {1-2f

o {ri -z, oo FYs Yy e S U} = T, T T, S Y, ey S U}
o ext f{ri -z, ...,rn-xpf} = - fr1 8- Yy fo,

o map f{r1 -z, ..., xnll = {ric fra, oo e fral)

o E{riay, o anl = Apo(rr Apar) ¥ ¥ (ry A pay)

o s {lryzy, ozl = (s )z, o, (80Ts) 2}

o {ri-ay, .., anlbes = {(res) o, (T 8) af)

o filterp{ri -z, ...;7mn-xul} = {(ri-pzi)-z1, .., (T prn) -l

. {|r1-w1,...,Tn-wn|};ﬂ51-y1,...,sm-ym|} = {(ri s;) (z,9;) |1 <i<n, 1<j<mf}
. {|r1-w1,...,Tn-wn|};{]51-y1,...,sm-ym|} = {(sj ri) (z;,9;) |1 <i<n, 1<j<mf}

The equation for the right product is due to Prop. 10.10.2 (9): {jz[} - s = s - {|z[}. Hence,
the left product operates from the outside, whereas the right product operates at the inside.

The formulae for the Cartesian products are derived by

r {I DX (s Jol) = ent (Aa.eat (AbA(a, H)) (- {yD)) (r- o)
54- = et (Aa. et (Ab.{|(a, 0)}) (s {y[})) {J=[}
wext (Ab.A(z, b)) (s - {yl})

w5 et (Ab (2, )} {lyl}

w5 Az, 9t

-3

-

AAA/_\/_\
(W]
T ~— \_/

(l
<

and

T {l |})§( Alyl) = et (Ab.ext (Aa.{(a, D)) (r-{2[})) (s - {lyl})
54- = s-ext (Ab.ext (Aa.{(a, b)}}) (v -{lz[})) {y]}
P -ext (Aa.{|(a, y)[}) (r-{z[})

S44): creext (Aa.{(a, y)}) {z[}

P3 {2, y)l

w
= — T \_/

[
»

»

o~ o~~~

|
@

In our opinion, these results show that %’ is more natural than ‘x.

According to the algebraic laws of the power operations, syntactically different linear
combinations may yield equal values, e.g. {{r -z, s-y[} = {{s -y, r -2}, {0 -z, s- y} = {s-y[},
and {r -z, s zf} = {(r+ s) - z[} hold.

In addition, there are equalities among linear combinations that cannot be explained by
algebraic laws only. They result from constraints due to monotonicity. Assume for instance
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that R be a semiring where 141 = 1 holds. Then in every R-powerdomain, z < y < z implies
{lz, 9, 2[} = {le, 2[} because of {jz, 2[} = {Jz, z, 2} < {z, y, 2} < {z, 2, 2} = {=, 2]}
Besides the finite linear combinations, a power domain usually contains limits of directed
sets of these. These limits cannot always be conceived as infinite linear combinations. Worse,
many power domains contain ‘junk elements’ that are neither finite linear combinations nor
limits of these. Power domains that do not contain junk are called reduced; this topic is

further explored in chapter 14.

11.5 Real power constructions

The subsequent sections are devoted to the definition and investigation of various classes
of power constructions characterized by additional properties. We always try to attribute
these properties to the characteristic semiring.

A real power construction is characterized by the additional property A & A = A for all
A in PX for all domains X in D. An equivalent criterion is 1 + 1 = 1 in the characteristic
semiring P1 since this is a special instance of the general property, and on the other hand,
it implies A A=1-A81-A=(1+1)-A=1-A= A. Hence, it is sufficient to consider
P1 to decide whether union in all power domains PX is idempotent.

11.6 Symmetry and commutativity

We first repeat the definitions and introduce a new notion in between:

Definition 11.6.1 Let P be a power construction.

o P is symmetric iff for all domains X, Y, and Z in D, and all A in PX, B in PY,
and x: [X xY — PZ]:

ext (Aa. ext (A\b.axb) B) A = ext (Ab. ext (Aa.axb) A) B
o P is commutative iff for all domains Y in D and all ¢ in P1 and B in PY:
a-B=DB-a
e Pl is commutative iff for all ¢, bin P1: a-b=0b-a
Obviously, commutativity of the characteristic semiring is a special instance of commutativity

of the construction. The relation between symmetry and commutativity of P is clarified by

expanding left and right multiplication:

a-B = ext(Xo. B)a = ext(Xo.ext (Ab. {b}) B)a by (S3)
B-a = ext(Ab.a-{b[}) B = ext(Ab.ext(Xo.{b]})a)B

Thus, commutativity is a special instance of symmetry where X = 1, Y = Z, and oxb = {b[}.

Symmetry implies commutativity of 7 which in turn implies commutativity of P1. The
opposite implications seem to be false in general; we do not know of examples for this however.
The next section provides a special case where they are true.
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11.7 Unique extensions

A power construction P has unique linear extensions iff for all linear functions Fy, £y :
[PX — PY], F1 ov = Fy 0 implies Fy = Fy. In other words, two linear functions that
coincide for singletons are equal. P has unique additive extensions iff two additive functions
that coincide for singletons are equal. Since all linear functions are additive, the property of

having unique additive extensions implies unique linear extensions.

Proposition 11.7.1 A power construction with unique linear extensions is symmetric
iff its characteristic semiring is commutative. A power construction with unique additive

extensions is symmetric.

Proof: For the first statement, we only need to prove the symmetry of the power con-
struction in the case of commutative semiring R; the opposite implication was already handled
in the previous section. The proof is done in two steps:

e In the first step, we claim
ext (Az.r- fr)=AA.r-ext f A
The left hand function is linear as an extension. The right hand function is linear only
because of the commutativity of R. A linear factor at A has to be moved across r:

(M.r-extfA) (s A) = reetf(s-A)=r-s-extfA
= srrextfA=s-(AM.r-ext fA)A
Both functions map a singleton {|af} to r - fa, whence they are equal.

e Next, we claim
ext (Aa. ext (Ab. axb) B) = AA. ext (Ab. ext (Aa.axb) A) B

Both functions are linear; the function to the right because of the equation proved in
the first step. Both functions map a singleton {|a[} to ext (Ab.a xb) B.

For the second statement, we only have to show commutativity of P1, then the first statement
applies. For all @ in P1, we claim Az.a -2 = Az.z - a where z ranges over P1. Because of
distributivity, both functions are additive. Applied to the only singleton {o[} = 1, they both
yield a. Hence, they are equal. |

11.8 The four kinds of power constructions

According to the relations between empty set and singletons, one may distinguish among
four kinds of power constructions: the lower kind where the empty set is strictly below all
singletons, the upper kind where it is strictly above, the degenerated kind where all singletons
are empty, and the separated kind where the empty set is uncomparable to all singletons.
The following propositions show that it is impossible that some singletons are strictly below
0 whereas others are not. The reason is that the four kinds are completely determined by the
characteristic semiring; they correspond to the cases 0 < 1,0 > 1,0 = 1, and incomparability

of 0 and 1.

Proposition 11.8.1 For power constructions, the following statements are equivalent:
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(1) There is a domain X in D and a point z in X with {z[} = 0.
(2) In P1, 0 =1 holds.

(3) For all domains X in D and all A in PX, A = 0 holds.

(4) All P1-modules are isomorphic to {0}.

Proof:

(1) = (2): ne{z[} =1 and ne 6 = 0.

(2)=(1): Let X=1and 2z =¢. 0 =0 and 1 = {<f} hold.

(2)=>(4): A=1-A=0-A=0

(4) = (3) = (2) is obvious. o

Let the degenerated power construction be defined by PX = {0} for all domains X.
Trivially, this is a symmetric real power construction. Prop. 11.8.1 shows that it is the only
construction where {|z[} = 8 is possible for some 2 in some X.

Proposition 11.8.2 For power constructions, the following statements are equivalent:

(1) There is a domain X in D and a point  in X with 8 < {z[}.

(2) In P1, 0 <1 holds.

(3) For all domains X in D and all A in PX, 8 < A holds.

(4) In all P1-modules, 0 is the least element.

The dual equivalence obtained by replacing ‘<’ by ‘>’ and ‘least’ by ‘greatest’ also holds.

Proof:

(1) = (2): 0 < {z[} implies 0 = ne 0 < ne {z[} = 1.

(2)=(1): Let X=1and 2z =¢. 8 =0 <1 ={of} holds.

(2)=(4): 0=0-A<1-A=4

(4) = (3) = (2) is obvious o

11.9 Faithful power constructions

Definition 11.9.1 A power domain construction P is faithful iff for all domains X in D
the map ¢ : X — PX is an embedding, i.e. {{z[} < {2'[} implies z < 2. P is injective iff ¢
is injective for all domains X in D.

If P is a faithful construction, then X may be considered a subdomain of PX. There is a
useful criterion for faithfulness:

Lemma 11.9.2 Let P be a power construction defined for a class D. If there is a domain
Y in D such that PY is not discrete, then P is faithful.

Here, being discrete means a < b implies @ = b. Hence, a domain is not discrete iff there are
points @ and b with @ < b in it.
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Proof: Let Y be a (fixed) domain such that PY is not discrete. Let B and B’ be two
fixed members of PY with B < B'.

Let X be an arbitrary domain in D, and let z and 2’ be two points of X such that {Jz[} < {2’}
holds. We have to show z < z’. Applying Prop. 4.3.1, let O be an open set with z € O.
Then we must show 2’ € O.

B ifueO
B otherwise

Let f: X — PY be defined by fu = {

f is continuous by Lemma 3.7.1, and may be extended to the continuous function f: [PX —

PY]. z € O implies f{z[} = fz = B’. By monotonicity of f, fz' = f{z'[} > f{z[} = B’

holds. f is able to produce only the two values B and B’, whence fz’ = B’ follows, i.e. 2/ is

in 0. O
By this theorem, a total power construction is not faithful iff all power domains PX are

discrete.

The non-discrete power domain PY may well be P1. Thus, we obtain

Corollary 11.9.3
A power domain construction with a non-discrete characteristic semiring is faithful.

The final theorem tells that being injective and being faithful is almost the same.

Theorem 11.9.4 Let P be a power construction that is defined for at least one non-

discrete domain X. Then, the following statements are equivalent:

(1) P is faithful.

(2) P is injective.
(3) PX is not discrete.
(4) There is a domain Y in D such that PY is not discrete.

Proof:

(1) = (2): Every embedding is injective.

2) = (3): Let @ and b be two points of X with a < b. By monotonicit alt < {6} holds.
p y Y

The two singletons are different because of injectivity. Thus, {|laf} < {6} holds, and PX
is not discrete.

(3) = (4): is obvious; let Y = X.
(4) = (1): Immediately by Lemma 11.9.2. O

11.10 Ground domains as sub-domains of power domains

If P is a faithful power construction, then power domains PX contain an isomorphic
image of the ground domain X as a sub-domain. If P is not faithful, then this statement is
wrong. Even in this case however, PX contains a sub-domain Y such that PX is isomorphic
to PY. The alternative ground domain Y is the image of X in PX.
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Theorem 11.10.1 Let X be a ground domain and P a power domain construction de-
fined for X. Then the image Y = ¢[X] of X by the singleton mapping is a sub-domain of
PX and the two power domains PX and PY are isomorphic by a Pl-linear mapping.

Proof: If P is faithful, then Y is isomorphic to X by ¢, whence it is a sub-domain of PX.
Otherwise, the power domain PX is discrete by Lemma 11.9.2, whence Y is also discrete and
a sub-domain of PX.

Let 1x : [X — PX] and vy : [Y — PY] be the two singleton mappings. :x may be
co-restricted to a surjective mapping e : [X — Y]. By composition with ¢y, one obtains
f=1yoe:[X — PY]. The natural inclusion map of Y into PX is denoted by ¢ : [Y — PX].
Extension yields a pair of functions f : [PX — PY] and 7 : [PY — PX]. We show that f
and g are inverse to each other.

One part of the proof is fairly easy:

ﬁof(il)ﬁofzgowoe(?)goe:ﬁ(g) idpx

using the equation goe = 1x.

Similarly, fog = fo g holds by (S4). If we are able to prove fog = 1y, then fog = idpy
follows by (S3).
Let y be a point of Y. Then y = ez holds for some z in X, and f(gy) = f(g(ex)) =

flxz)= fz =1y (ex) =1y y follows. O

11.11  Modules over rings

A ring is a semiring that has a member —1 such that 1 4+ (—1) = 0 holds. One might
believe that power constructions whose characteristic semiring is a ring have particularly
nice properties. Because we consider domains and continuous operations, the contrary is
true however.

Proposition 11.11.1 If R is a ring, then every R-module is discrete.

Hence, power constructions with a characteristic ring cannot be faithful if they are defined
for some non-discrete ground domain.

Proof: Let M be an R-module where R is a ring. Then for all cin M, ¢+ (—-1)-¢c =
(14(=1))-¢=0-c=0 holds.

Now assume a < b holds for some points ¢ and b of M. By monotonicity of the external
product, (=1)-a < (—1)-b follows. By monotonicity of addition, we obtain a4+ b+ (—1)-a <
a+ b+ (—1)-b. By the equation above, the left hand side equals b and the right hand side
equals a. Thus, a < b implies b < a, whence a = b. a

11.12 Additive semirings

Modules M over a semiring R were defined as commutative monoids with an external
product. A morphism f : [M; — M;] between two R-modules is additive iff f(0) = 0 and
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fla+b)= fa+ fb, and linear iff f(a+b) = fa+ fband f(r-a) =r- fa. Every linear
map is additive by f(0) = f(0-0)=0-f0 = 0. The opposite implication not being generally
true, it however holds for many common cases. We attribute this property to the semiring

and define:

Definition 11.12.1 A semiring domain R is additive iff all additive morphisms between
any two R-modules are linear.

The quantification over all additive morphisms makes this notion depend on the underlying
domains. There are semirings where continuity is necessary to derive linearity from additivity.
Some examples will clarify the situation:
o A semiring R with carrier {0, 1} with any order is additive since f(0-z) = f(0)=0=
0 - fz holds by additivity of f, and also f(1-2)= fz =1- fz holds anyway.
e NP ={0<1<2< < oo} with usual addition and multiplication extended by

n+ oo = oo for all n, and 0-00 =0, and n - 00 = oo for all n > 0 becomes a semiring
domain. It is additive since f(n-z)=n- fz may be shown by induction for n < oo:
f(n+1)-2)=f(n-a+2)=f(n-a)+ fo=n-fo+ fo=(n+1) fo
and follows from continuity of f and ‘" in case n = oc.
The monotonic, but non-continuous map
0 if
g:Ng” — N7, gn= e
oo ifn=o
is additive, but not linear because of g (00 -1) = g(00) = o0, but co-g(1) =00 -0=0.
o The ‘tropical semiring’ is T = {fp < t; < -++ < too} With ¢, + tx = ;s (n,k)> 0 = too,
tp +tg = tptk, and 1 = t5. The operation of doubling d(%,) = t3., is continuous and
additive, but not linear since d (1 - t1) = d(t2) = tq, whereas t1 - d(t1) = t1 - t2 = 3.
Hence, the tropical semiring is not additive.
Proposition 11.12.2 (Consequences of additivity)

(1) Every additive semiring is commutative.

(2) A power construction with additive characteristic semiring is commutative.

Proof: We show only (2); the proof of (1) is similar.

Let S be a member of PX for some X in D. The map f = Ar.S-r: [P1 — PX] is additive,
whence linear because of additivity of P1. Thus,

Sr=8-(r-)=f(r-H)=r-f()=r-(S-1)=r-8 O



Chapter 12

Power homomorphisms

Homomorphisms between algebraic structures are mappings preserving all operations of
these structures. Power constructions may be considered algebraic structures on a higher

level. Thus, it is also possible and useful to define corresponding homomorphisms.

Power homomorphisms are defined in section 12.1. In section 12.2, power isomorphisms
are considered. In section 12.3, the behavior of the derived power operations under power
homomorphisms is studied. It turns out that power homomorphisms are usually not linear.
The linear ones are investigated in section 12.4. They can be used to define initial and final
power constructions (section 12.5). A power construction with semiring R is initial iff there
is exactly one linear power homomorphism from it to every other construction with semiring
R. Finality is the dual notion. The existence of initial and final power constructions for every
semiring is shown in chapters 14 and 15 respectively.

12.1 Definition

A power homomorphism H : P-—-Q between two power constructions P and Q with
def P C def Q is a “family’ of morphisms H = (Hx)x ¢ 4t p : [PX — QX] commuting over
all power operations, i.e.

150
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¢ The empty set in PX is mapped to the empty set in QX:
HB = 8.

e The image of a union is the union of the images: Hof
H(A Y B)=(HA) Y (HB). ;
This axiom and the previous one together mean H is ad-
ditive. \ Hof

¢ Singletons in PX are mapped to singletons in QX: Q
H{z[tp = {z[tq, or:  Houp =1q.

o let f:[X — PY]. Then Ho f : [X — QY], and H H
H(extp fA) = extg(H o f)(HA) has to hold for all A
in PX. This axiom may also be written H o (extp f) = PX
exto(H o f) o H (see the figure to the right). 4

Obviously, there is an identity power homomorphism [ : PP

QY

~l

PY

where all morphisms Ix are identities. Furthermore, two power

homomorphisms G : P—=Q and H : Q=R may be composed f

‘pointwise’, i.e. (H o G)x = Hx o Gx. It is easy to show that

the outcome is again a power homomorphism H o G : P=>R.

12.2 Power isomorphisms

A power isomorphism between two constructions P and Q is a family of isomorphisms
H = Hx : [PX — QX] such that both (Hx)x ¢ 4o p and (H)_(l)xedefQ are power homo-
morphisms. Hence, two isomorphic constructions are defined for the same class of domains.

In contrast to continuity, the inverse of a bijective power homomorphism is again a power
homomorphism.

Proposition 12.2.1 Let H : P--Q be a power homomorphism such that the individual
maps Hx : [PX — OX] are all bijective, and their inverses are monotonic. Then H is a
power isomorphism.

Proof: The inverses are continuous by Prop. 2.5.3. They satisfy the axioms of a power
homomorphism:

o H7Y(0g) = H™'(H(0p)) = 0p.

e H™Y (AW B) = H 'Y (H(HT'A))Q (H(H™'B))) = H-'(H(H™'A Y H™'B)) =
H™'AY H™'B.

o H Wzl = H™'(H{z[p) = {z]».

e Hloextof = H 'oextg(HoH 'of)oHoH ' =H 'oHoextg(H 'of)oH ! =
exto(H 1o fyoH™! O
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12.3 Some properties of power homomorphisms

Since power homomorphisms preserve all basic power operations, it is not surprising that
they also preserve the derived operations.

Proposition 12.3.1 Let H : P Q be a power homomorphism.

(1) Let f:[X — Y]. Then H o (mappf)= (mapgf)o H : [PX — QY] (see the figure).
(2) Let b be in P1 and S in PX. Then H(b-S)= Hb-HS and H(S-b)=HS - Hb.
(3) Hy:[P1 — Q1] is a semiring homomorphism.
(4) Let p:[X — P1] and A in PX. Then H (filterp p A) = filtero (H o p) (H A). Using
composition, one may also write H o (filterp p) = (filtero (H op))o H.
mapg |
QX QY
L L
f
H X Y H
L L
mapy f
PX PY

In categorical terms, (1) means H is a natural transformation between the functors P and

Q.
Proof:
(1) Ho(mapp f) = Hol(extp (tpof))
(extg (Hotpo f))o H
(extg (tgo f))o H
(mapg f)o H
(2) H(b-5)= H(ext (Xo.5)b) = ext (Xo. HS) (Hb) = (Hb)-(HS)
(4) H(filterpA) = H(ext(Az.pz-{zf}p)A)
= ext(Az. H(pz - {z}p)) (HA)
(2) — et O H(pa)- {zho) (HA)
= filter(Hop)(HA)
(2) H(S-b)= H(filter (A\x.b) S) = filter (\x. Hb) (HS)= (HS)- (Hb)

(3) Hq respects + = &, 0 =0, and 1 = {o[} by the definition of power homomorphisms. It
respects " by (2). O



12.4. LINEAR POWER HOMOMORPHISMS 153

12.4 Linear power homomorphisms

In the following, we want to compare power constructions with the same characteristic
semiring by means of power homomorphisms. For fixed semiring, the notion of linearity of a

power homomorphism makes sense.

Definition 12.4.1 Let (P, R, ¢) and (P', R, ¢') be two power constructions with the
same characteristic semiring. A power homomorphism H : P—=Q is called linear iff the
morphisms Hx : [PX — P'X] are R-linear.

Remember that we always fix a semiring isomorphism ¢ : [R — P1] when considering a

power construction P with semiring R.

Linearity of the morphisms is not a matter of course. Prop. 12.3.1 (2) tells H(b- 5) =
Hb- HS instead for b in P1. From this, it becomes evident that a power homomorphism is
linear iff it acts on R as an identity.

Proposition 12.4.2 Let (P, R, ¢) and (P’, R, ¢') be two power constructions with the
same characteristic semiring. A power homomorphism H : P @ is linear iff the compo-
sition '~ o Hy 0 ¢ : [R — R] is the identity.

Proof: To be sufficiently distinctive, we denote the product with members of P1 and
P’1 by ‘+’ in this proof.

Let H be a linear power homomorphism. Then for all r in R,

@M H(er)) = @ HHy(er*{o})) {[} is neutral in P1
= @ N Hy(r-{o]})) R-product ‘-’ defined by ¢
@ N(r - Hi{o) H is linear
@' * {o}") H is power homomorphism
= ¢ =1
Conversely,
H(r-S)=H(por+8)=H(or)« HS = @' "(H(er))-HS =r-HS
holds applying the definition of ‘-’ in terms of ‘x’. a

Hence, if R allows non-trivial automorphisms there are non-linear power homomorphisms

besides the linear ones.

12.5 Initial and final constructions

Initial and final power constructions are defined relative to the characteristic semiring by
means of linear power homomorphisms. Without the assumption of linearity, their existence
could not be guaranteed.

A construction P is initial if for all constructions @ with the same characteristic semiring
there is exactly one linear power homomorphism P— Q. Finality is dual. The exact definitions
however are more complex. To prevent a construction from being initial simply because it is
almost undefined, we concentrate on total constructions defined for all domains.
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Definition 12.5.1
A total power construction (P, R, ¢)is initial for semiring R if for all total R-constructions
(Q, R, ¢') there is exactly one linear power homomorphism H : P=Q.
A total power construction (P, R, ¢) is final for semiring R if for all R-constructions

(Q, R, ¢') there is exactly one linear power homomorphism H : Q—=7P.

These definitions imply the existence and uniqueness of an initial and a final construction
for every given semiring domain R, as pointed out in chapters 14.5 and 15. If the definitions
did not refer to linear power homomorphisms, there would be no initial and final constructions
for semirings with non-trivial automorphisms.

Next, we state some simple properties of initial and final constructions.

Proposition 12.5.2 If P is isomorphic to an initial (a final) power construction P’ for

R, then P is also an initial (a final) power construction for R.

Proposition 12.5.3 For given semiring R, initial and final power constructions are
unique up to isomorphism.
Note that this proposition does not claim the existence of initial and final constructions.

The proofs of the propositions are done by standard algebraic arguments — provided that

‘isomorphic’ is understood as isomorphic by a linear power isomorphism.

The main result is the following theorem:
Theorem 12.5.4 For every semiring R, initial and final power constructions exist.

In chapter 14, we demonstrate the initial construction. Chapter 15 is then devoted to the
final construction. Before introducing the initial construction, we first investigate the theory
of R-X-modules because the results of this theory are used when considering the initial

construction.



Chapter 13

R-X-Modules

Before introducing the initial and final power constructions for a semiring R, we consider
R-X-modules in this chapter. R-X-modules are R-modules together with a map from X.
Power domains are R-X-modules by the singleton map. The theory of R-X-modules allows
to prove a host of theorems that are applied to the theory of power domain constructions in

the next chapter.

The chapter starts by the definition of R-X-modules and R-X-linear maps in section 13.1.
In section 13.2, we introduce the core of an R-X-module as its least subset that still admits
all operations. R-X-modules that coincide with their core are called reduced. They have
particularly nice properties, which are presented in section 13.3. An R-X-module is free
iff there is a unique R-X-linear map to every other R-X-module. The existence of free R-
X-modules is generally shown in section 13.5. Section 13.6 then provides a more explicit
construction of the free R-X-module in case of algebraic R and X.

13.1 Definition

An R-X-module is an R-module together with a mapping from X to it.

Definition 13.1.1 An R-X-module M is a pair M = (M, n) of an R-module domain M
and a morphism 7 : [X — M].
A morphism f : (M, n) — (M',n') is R-X-linear iff f : [M — M'] is R-linear and
fon=n' ie f(nz)=nz forall z in X.

We already met examples for such R-X-modules and R-X-linear mappings. If H : P=-Q
is a linear power homomorphism between two power constructions with the same semiring
R, then for every ground domain X, the instance Hyx is an R-X-linear mapping between
the two R-X-modules (PX, tp) and (9X, tg). If f:[X — PY], then the extension ezt f
is R-X-linear between the R-X-modules (PX, ) and (PY, f) since ext f ot = f. Thus,
the R-X-modules with R-X-linear mappings provide a common abstraction of extension and

power homomorphisms.

In the sequel, we need some more definitions.

155
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Definition 13.1.2 Let M = (M, n) where M = (M, 4,0, -) is an R-module. A subset
S of (the carrier of) M is called an R-X-submodule of M iff

(1) nzisin S for all z € X, i.e. n[X] C S.
2) 0isin §.

3) If @ and b are in 9, then so is a + b.
4
5

(2)
(3)
(4) If ¢ isin S, then r-ais in S for all r € R.

(5) S is a subdomain of M, i.e.if D is a directed subset of S, then the limit of D w.r.t.
M isin S.

By definition, .5 may be assumed to be an R-X-module again, and the natural inclusion
map e :5 — M is an R-X-linear morphism.

13.2 The core of an R-X-module

It is easily verified that the intersection of a family of R-X-submodules of a fixed R-X-
module is again an R-X-submodule. Hence, the R-X-submodules form a complete lattice,
and there is a least R-X-submodule for every given R-X-module M. We call it the core M*

of M. In the following, we develop a more explicit description of the core.

Theorem 13.2.1
If M = (M, n)is an R-X-module, then its core is given by M® = M# where

M# ={rinz1+-+r,nx, | n €Ny, €R, 2, € X}
and B is the least d-closed superset of B.
The size of M€ is bounded by |[M¢| < o(IR|XT),
The proof of the theorem is split into a sequence of propositions and their proofs.

Proposition 13.2.2 M# satisfies the properties (1) through (4) of Def. 13.1.2.

Proof:

(1) nz = 1+ na implies n[X] C M#.
(2) riomzy4+ -+ 1y nz, =0in case n = 0.

(3) Obvious.

(4) re(riommid -t nzn) = (ror) et (70T 0T, O
Proposition 13.2.3 IM#| < | R|IX]

Proof: Because of 7 -pz 4+ r'-nz = (r + ') - nz, one can arrange rq -z + -+ Ty - NIy
such that every z in X occurs at most once. Those z that do not occur may be added as
0-z. Thus, [M#| < |X — R| = |R|XI. -

Proposition 13.2.4 M# satisfies properties (1) through (5) of Def. 13.1.2, i.e. it is an
R-X-submodule of M.
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Proof: (1) and (2) hold because of Prop. 13.2.2 and M# C M#. Property (3) for M#
means this set is closed w.r.t. the binary continuous operation ‘+’, whence M# is also closed
w.r.t. ‘4’ by Prop. 4.8.4 (2).

For r € R, let p, : [M — M] be given by p,m = r-m. Property (4) for M# means this
set is closed w.r.t. the unary continuous operation p,, whence M# is also closed w.r.t. p, by
Prop. 4.8.4 (1) for all 7. o

Proposition 13.2.5 M*® = M#

Proof: By Prop. 13.2.4, M# is an R-X-submodule of M. Since MF¢ is the least such set,
M¢ C M# holds. Conversely, M¢ being d-closed and M# C M¢ implies M# C M¢. O

Proposition 13.2.6 |Me| < 2(|R||X|)

Proof: By Prop. 13.2.3, [M#| < |R|®I holds, and Prop. 3.5.9 yields |B| < 2/7l, o

13.3 Reduced R-X-modules

Definition 13.3.1 An R-X-module is reduced iff it coincides with its core.

Equivalently, an R-X-module is reduced iff it does not allow proper R-X-submodules.

For every R-X-module M, the core M¢ is reduced. Hence, every R-X-module contains a
reduced R-X-submodule.

Reduced R-X-modules enjoy many interesting properties listed in the sequel.
Lemma 13.3.2 Let M = (M, n) be a reduced R-X-module, and M’ an R-module. If

F,G : [M — M'] are two R-linear morphisms with F(nz) < G(nz) for all € X, then
F < G holds.

Proof: Let S = {a € M | Fa < Ga}. We show that S satisfies the properties of
Def. 13.1.2 whence S = M follows because M admits no proper R-X-submodules.

(1) For z € X, pz is in § since F(nz) < G(nz).

(2) F(0)=0p=G(0) whence 0 € 5.

(3) Let a,be S. Then F(a+b)=Fa+ Fb<Ga+ Gb= G (a+Db).
(4) Leta€ Sand r € R. Then F(r-a)=r-Fa<r-Ga=G(r-a).
(5)

Let D be a directed subset of § with limit @ w.r.t. M. Thenforalld € D, F'd < Gd < Ga
holds, whence Fa < Ga by continuity of F. a

5

The Lemma allows several conclusions:

Proposition 13.3.3 In Lemma 13.3.2, ‘<’ may be replaced by ‘=
Let M = (M, n) be a reduced R-X-module, and M’ an R-module. If F,G : [M — M’']
are two R-linear morphisms with F(nz) = G(nz) for all 2 € X, then F' = ¢ holds.

Proof: By anti-symmetry: ¢ = biff « < b and b < a. a

As a special instance of this proposition, one obtains:
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Proposition 13.3.4 If M is a reduced R-X-module, then there is at most one R-X-linear
mapping from M to any other R-X-module M.

Proof: If ¥ and G are two R-X-linear morphisms, then they are in particular linear,
and F(nvz) = nype = G(nve) holds for all z in X. O
Proposition 13.3.5 If the semiring R has a least element Lp and X has a least element

1x, then every reduced R-X-module M = (M, n) has a least element, namely Lr-n(Lx).

Proof: Let S={a€eM|a>_Lr n(lx)}

(1) Let z € X. Then nz =1-nz > Lp-n(Llx).

(2) 0=0-n(1x) > Lr n(Llx).

(3) Let a,be S. Thena+b> Lp-n(lx)+Lr n(lx)=(Lr+Lr) n(Llx) > Lr-n(Llx).
(4) Forr€e Randa € S,r-a>r-Lp-n(lx)> Lr -n(lx).

(5) S is obviously closed w.r.t. limits of directed sets in M.

Hence, 5 satisfies the conditions of Def. 13.1.2. Thus, S = M holds. a
The following Lemma will be needed in the next chapter.

Lemma 13.3.6 Let M = (M, n) and M’ = (M’, ') be two R-X-modules, and " : [M —
M'] an R-linear morphism that maps all points nz into the core of M'. If M is reduced,
then F maps all points of M into the core of M.

Proof: Let S={a e M | FA € M'“}. We show that S satisfies conditions (1) through
5) of Def. 13.1.2. This implies S = M whence the claim of the proposition follows.

1) F(nmz) € M'C by precondition.

2) F(0)=0eM".

3) If @ and b are in S, then F(a+b) = Fa+ Fbisin M.

4) If aisin S, then F(r-a)=r.Fa € M'".

5) If D is a directed set in S, then F(||D)=|]F[D] € M. ]

o~~~ o~ o~ o~

13.4 Free R-X-modules

By Prop. 13.3.4, there is at most one R-X-linear mapping from every reduced R-X-
module. In this section, we consider an even more special class of R-X-modules.

Definition 13.4.1 An R-X-module F is free iff for every R-X-module M, there is exactly
one R-X-linear morphism from F to M.

The existence of free R-X-modules is shown in section 13.5. For algebraic R and X, a more
explicit construction is provided in section 13.6. In this section, we study the properties of
free R-X-modules.

Proposition 13.4.2 All free R-X-modules are isomorphic to each other.
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Proof: Let F; and F5 be two free B-X-modules. Then there are R-X-linear morphisms
fi:F1 — Fs and f5 : Fo — Fy. Their composition fs o fi is an R-X-linear morphism from
F; to itself. Identity is another such. By uniqueness, fy o f1 = id follows. The dual equation

f1 0 fo = id is shown analogously. a
Proposition 13.4.3 Every free R-X-module is reduced.

Proof:
Let F be a free R-X-module and S an R-X-submodule of F. We have to show 5 = F.

The embedding ¢ : 5 — F is R-X-linear since S is an R-X-submodule. Since F is free, there
is an R-X-linear morphism ¢ : [F — S]. The composition € o { is R-X-linear and maps F to
itself as the identity does. By freedom, eo( = id holds. Hence, forevery yin F,y = ¢(Cy) € 5
holds. O

If F is a free R-X-module, then for every morphism f : [X — M] from X to some R-
module M, there is a unique R-X-linear extension f : [F — (M, f)] to the R-X-module
(M, f). Thus, ‘= itself is a function from [X — M] to [F — M].

Theorem 13.4.4 If F is a free R-X-module, then for every R-module M, the mapping
T [X — M] — [F — M] as introduced above is continuous.

Proof: ‘=’ is monotonic by Lemma 13.3.2 telling that f < g implies f < 7.

Now, we show the continuity of ‘™ . Let 1 be the morphism from X to F. Let D be a directed
set of morphisms from X to M, and let f be its limit. We have to show f = Lsep d. The
function on the right hand side is R-linear by continuity of ‘4’ and ‘.’. It maps nz to fx by
continuity of application and d(nz) = d z. By uniqueness, it thus equals f. a

In the special case X = 1, R itself is a free R-X-module:
Proposition 13.4.5 (R, Az.1)is a free R-1-module.

Proof: Let M = (M, 1) be an R-1-module. Let f:[R — M] be given by f(r)=1r-no.
This mapping is R-linear because of the module axioms. For instance, f(r-7') = (r-7')-no =
r-(r'-mo)=r- f(r') holds. fis R-1-linear since f((Az.1)o)= f(1)=1-no=rno.

Let I’ be an arbitrary R-1-linear map from (R, Az.1) to M. Then F'(r) = F(r-1)=r-F (1) =
r-F((Az.1)o)=r-no= f(r) holds, i.e. f is unique. O

13.5 Existence of free modules

In this section, we show the existence of the free R-X-module for arbitrary semiring
domains R and ground domains X. The proof follows the lines of [Hoo87] who proved the
existence of the free commutative idempotent monoid over X. Hoofman used the categorical
Freyd Adjoint Functor Theorem. We avoid its usage for the sake of a slightly more explicit
construction. Qur proof looks much simpler than that of Hoofman because we apply the
notion of R-X-modules.

We first construct the so-called solution set required by the Adjoint Functor Theorem.
Instead of applying this theorem after verifying its remaining preconditions and thus obtaining
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the mere existence of the free module, we present a simple explicit construction based on the

solution set.

The problem with the class of all B-X-modules is that it is not a set. The problem is
solved by providing a set of R-X-modules {M; | ¢ € I} that may be used as representatives
for all R-X-modules.

|R|IX

Let ¢ be the cardinal number 2 l), and let C' be a set of cardinality ¢. From C, we

construct the set

D= [J{A}x(AxA=2)x (AxA—A)Xx Ax (RxA— A)x (X — A)
Acc

where 2 = {0, 1}. Next, let I be the set of all tuples (A, <, 4,0, -, f) in D such that
A = (A, <) is a domain, M = (A, +,0, ) is an R-module domain, and f : X — A is
continuous, i.e. (M, f)is an R-X-module. By construction, I contains isomorphic copies of
all R-X-modules up to cardinality ¢. Indexing I by itself, we obtain a family (M,;);e; of
R-X-modules.

Now let M = (M, f) be an arbitrary R-X-module. Let M¢® be the core of M and
e : [M°® — M] the natural inclusion. Note that e is R-X-linear.

By Th. 13.2.1, [IM°| < 2(|R||X|) = ¢ holds. Hence, there is an isomorphic copy M; of M*
in I. Let ¢ : [M; — M°] be the R-X-linear isomorphism between M; and M°".

Given the ‘solution set” (M;);c1, it is now easy to construct the free module. Let P =
[I;e; M;. The operations in P are defined as follows:

o a <biff a; <b; forall 72in I,
a+b=(a;+ by,

o r-a=(r-a;)es forrin R,

o nz = (n;x)er for € X.
It is not difficult to see that all these functions are continuous, and make P into an R-X-

module. The projections m; : [P — M| are R-X-linear.

Finally, let F be the core of P. Then the inclusion p : F — P is R-X-linear. Summarizing,
we get for each R-X-module M the following chain of R-X-linear mappings for some i:

Thus, we get an R-X-linear map f from F to every R-X-module M. f is unique since F is
reduced (Prop. 13.3.3).

13.6 Free modules in the algebraic case

A more explicit construction of the free R-X-module is possible at least in the case of
structurally algebraic semiring R and algebraic domain X.
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In this section, we construct the free R-X-module from a structurally algebraic semiring
domain R and an algebraic ground domain X. We first build up an unordered set of finite
linear combinations from the bases R and X°. This set is then pre-ordered and finally

completed to an algebraic domain.

Definition 13.6.1 A semiring domain R is structurally algebraic if it is algebraic and its
base R contains 0 and 1 and is closed w.r.t. 4+’ and .

Examples:

o Every finite and every discrete semiring domain R is structurally algebraic since R® = R
holds in these cases.

o N is structurally algebraic since sum and product of finite numbers are finite.

e The tropical semiring T is algebraic but not structurally algebraic since 1, is the neutral
element of its addition.

e The powerset of an infinite set X ordered by inclusion with union as addition and
intersection as multiplication is algebraic by Prop. 6.3.3, but not structurally algebraic
since 1 = X is infinite.

Now, let R be a fixed structurally algebraic semiring and X a fixed algebraic ground domain.

As a first step, we consider the set X of finite linear combinations over X°.

Definition 13.6.2 For functions a : X° — R let |a| = {z € X" | az # 0}. Then
X ={a:X%—= R%||a| is finite}.
X consists of arbitrary functions; it is not restricted to continuous or even monotonic func-
tions. For the moment, no order is assumed for X. The elements of X stand for finite linear
combinations over X° where a z is the coefficient of z. Consequently, the following operations
are defined in X:
e 0=Az.0. Itisin X since |0 = 0.
eatf=Xr.az+pz. |at | Clalul|s| holds.

erta=Az.r-azforre R’ |r*alClal holds.

1 ifa=
a = Az. { BEEY forae XO |7a| = {a} holds.

0 otherwise

o Let (M, f)be an R-X-module. Then let f: X — M be defined by fa = Ycelaj@T fT.
The operations (and X itself) are well defined because R is structurally algebraic. The sum
in fo may also be assumed to range over z € X" since ax is 0 outside of |a|.
fis R-X-linear, i.e. is a linear extension of f:

o flatf)=Y(az+pa) fr=Yaz fe+ S pa fr=fat fB

using commutativity and associativity of ‘+’ in M.

o fN(rfa):Z(r-am)-f:v:r-Zam-fx:r-fa

o f(ia)=3(ta)z- fr=1-fa= fa

Function f is unique with these properties since |a| = {a1,...,z,} implies
a=azx "tz ¥ Faz, iz,

The next step is pre-ordering X. Let ‘<’ the least binary relation in X with the following

properties:
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(1) a X a

(2) fa < pand <7, then a < 7.

(3) If <z’ in XY, then 7z < 72/

(4) fa <o’ and B < B, then a ¥ 3 < o' F 3.
(5) fr<7'in R® and o < &', then r *a < 7' * o'

More formally, ‘<’ is the intersection of all subsets of X x X with the indicated properties.
One easily verifies that the intersection then also has these properties.

‘<" is a pre-order by (1) and (2), and the operations 7, ‘F’, and ‘%’ are monotonic by (3)
through (5). The extended functions f are also monotonic.
Proof:
For fixed f : [X — M], define a relation ‘<;” in X by a <y g iff fa < f3. Then ‘<’
obviously is reflexive and transitive, and it also satisfies the properties (3) through (5) above:
(3) 2 < 2’ implies f~(Ta’) =fz < fa' = f(?fm’), whence 1z <5 72’
(4) J(aF B) = fat JB < Jo' + J5' = J(o' + )
(5) f(ria)=r-fa<r . fo' = F(r'a)
Since ‘<" is the least relation with these properties, a < g implies a < 3, i.e. f~a < fﬂ a

As a next step, we turn the pre-ordered set X into the poset X~ by forming classes w.r.t.
the equivalence relation ‘a < # and 8 < a’. All operations of X may also be defined for X~
because they are monotonic. The resulting operations on X * are monotonic again.

As final step, let X be the ideal completion of the poset X*. Hence, X is an algebraic
domain whose base is isomorphic to X*. All the monotonic functions F : X* x X* — )A(*,
TLROx X* = )2'*, and f: X* = M for every f : [X — M] have unique continuous
extensions 4+ : [X x X — X],-: [Rx X — X], and f: [X — M] for every f:[X — M].
These operations possess the necessary algebraic properties such as associativity and linearity
because they are inherited from the base. The linear extension f of f on X is unique because
X trivially is a reduced R-X-module. Thus, X is the free R-X-module.

The results above allow to state the following theorem:

Theorem 13.6.3 If R is a structurally algebraic semiring domain and X is algebraic,
then the free R-X-module is algebraic.

Problem 9 What happens if R is algebraic without being structurally algebraic?

Proposition 13.6.4 If R and X are discrete, then so is the free R-X-module. It equals

X , the set of finite R-linear combinations over X.

Proof: Discrete semirings are structurally algebraic. Consider the set X. We claim
a=piff a = 0.
a = (§ implies a < § by reflexivity. For the opposite direction, note that the relation ‘=

Y
satisfies the properties (1) through (5) of ‘<’. In proving this, discreteness of X is needed for
(3), and discreteness of R for (5). Hence, X is a discrete poset and coincides with its ideal

completion. O
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Proposition 13.6.5 If R and X are finite, then so is the free R-X-module. It equals

)A(*, the poset of equivalence classes of R-linear combinations over X.

Proof: Finite semirings are structurally algebraic. Because the restriction that |«| be
finite is satisfied always, X is the set of all functions from X to R. This set is finite. Thus,

X* is also finite, whence it is isomorphic to its ideal completion. a



Chapter 14

Sub-constructions, reduced and
initial constructions

In this chapter, we consider some notions that were already introduced and investigated
for R-X-modules in the previous chapter. Here, we abstract from the ground domain X and

apply the notions to power constructions.

A power construction Q is a sub-construction of P if the power domains QX are subsets of
PX such that Q inherits all operations of P (see section 14.1). Sub-constructions of P may or
may not have the same characteristic semiring as . The core is the least sub-construction
of P with the same semiring (section 14.2). Reduced power constructions coincide with
their core, whence they do not possess proper sub-constructions with the same characteristic
semiring. Their properties are investigated in sections 14.3 and 14.4. The initial power
construction for semiring R is introduced in section 14.5. It results from mapping every
ground domain X to the free R-X-module. If R’ is a sub-semiring of P1, then there is
a greatest sub-construction of P that has characteristic semiring R’. In section 14.6, this
sub-construction is explicitly characterized in terms of formal existential quantification on P.

If P is an R-construction, then the power domains PX induce R-X-modules (PX, tx).
In the sequel, we always refer to this R-X-module when saying PX is reduced or PX and
QX are isomorphic. Consequently, isomorphisms between two power domains PX and QX
are R-X-linear maps.

14.1 Sub-constructions

Let P be a given power construction. Q is called a sub-construction of P iff @ maps ground
domains X into subsets of PX such that

o OX is closed w.r.t. lubs of directed sets,

e 0 € OX,

o If Aand B arein QX, then A Y B isin QX,

{z[} is in QX for all z in X,

If f:[X— QY] and Ain QX, then ext f Aisin QY.

164
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In shorter terms, QX is closed w.r.t. all power operations of P.
Q is obviously a power construction since the validity of the power axioms for @ is inherited

from P. By the same argument, one concludes

Proposition 14.1.1

If P is commutative / symmetric / faithful, then every sub-construction of P is so.

One easily verifies that the intersection of a family of sub-constructions of a power con-
struction P is again a sub-construction of P, if we define (N;c; Qi)X = N;c;(Q:X). Hence,
the sub-constructions of P form a complete lattice.

Sub-semirings are defined analogously to sub-constructions.
Definition 14.1.2
Let (R, +, 0, -, 1) be a semiring domain. A subset R’ of R is a sub-semiring of R iff
(1) 01isin R/;
(2) if @ and b are in R’, then a + b is in R';
(3) 1isin R/;
(4)
(5) if D is a directed set in R’ with limit = w.r.t. R, then z is in R'.

if @ and b are in R, then a - bis in R’;

Because the operations in the characteristic semiring are derived from the power operations,
the semiring of a sub-construction Q of P is a sub-semiring of the semiring of P. Similarly,
the semiring of an intersection of sub-constructions is the intersection of the semirings of the
sub-constructions. In section 14.6, a method is presented to obtain a sub-construction for
every given semiring.

The sub-constructions with the same characteristic semiring attract special interest.

Proposition 14.1.3 Let Q be a sub-construction of a power construction P. Then Q1 =
P1 holds iff all power domains QX are closed w.r.t. P1-multiplication.

Proof: Assume Q1 = P1 holds. Let A be in QX and r in P1, whence it is also in Q1.
Extension yields r - A = ext (Ao. A)r in QX by the definition of sub-constructions.

If all power domains @X are closed w.r.t. P1-multiplication, then in particular Q1 is so.
Hence, for all 7 in P1, r = r-1is in Q1 since 1 is in Q1. O

If Q is a sub-construction of P, then the natural inclusion maps Fx : X — PX yield a
power homomorphism F : Q=P. If Q moreover has the same characteristic semiring as P,
then F is a linear power homomorphism.

14.2 The core of a power construction

Let P be a power construction with characteristic semiring R. Then the power domains
PX form R-X-modules together with the singleton mappings ¢ : [X — PX]. We denote the
core of (PX, ¢) by (P°X, ¢) and show that P induces a power domain construction with the
same characteristic semiring as P.
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The operations 0, ‘8’ and {.[} obviously cut down to operations for P¢ because P°X was
defined to allow these operations together with R-multiplication. We only have to provide
an extension satisfying the power axioms.

For every f : [X — P°Y], the linear extension ezxtp f maps singletons {z[} of P°X
into P°Y since extp{z|} = fz. Hence by Lemma 13.3.6, extp f maps all members of P°X
to P°Y. Thus, the extension of P cuts down to the extension of P°. It satisfies the power
axioms because extp did. Because the power operations for P¢ are derived from those of P by
restriction and corestriction, the embeddings F : P°X — PX form a power homomorphism.

P°1 equals P1 since every member b of P1 equals b- {|o[}, whence b € P°1. Thus, P° has
the same characteristic semiring as P.

If Q is another sub-construction of P with semiring P1, then the power domains (9X, ¢)
form R-X-submodules of (PX, ¢) by the definition of sub-constructions and by Prop. 14.1.3.
Hence, P°X C QX holds for all ground domains X. Thus, P°¢ is the least sub-construction
of P that still has characteristic semiring P1.

Let P and Q be two power constructions with the same characteristic semiring. For every
power homomorphism H : P=Q, H{z[}p = {z[}o is in Q°X. If H is linear, then H cuts
down to a power homomorphism H¢: P°-Q° by Lemma 13.3.6.

All results of this section are collected in the following theorem:
Theorem 14.2.1 For every power construction P, the core P is the least sub-construc-

tion of P with the same characteristic semiring. The embeddings of the cores P°X into

the power domains PX provide a linear power homomorphism £ : P¢=P.

For every linear power homomorphism H : P—=@Q, there is a linear homomorphism H° :
P Q° with o HS = HCo F.

14.3 Reduced power constructions

Definition 14.3.1 A power construction is reduced iff it coincides with its core.

For every power construction P, the core P°¢ is reduced. Hence, every power construction

contains a reduced sub-construction.

Since the core construction P° maps ground domains X to the core modules (PX, ¢)%, a
power construction is reduced iff all R-X-modules (PX, ) are reduced. Thus, all results of
the previous chapter about reduced R-X-modules apply.

Proposition 14.3.2 Let P be a reduced R-construction, X a ground domain, and M an
R-module. Two linear morphisms F, G : [PX — M] that coincide on singletons are equal.

Proof: If F,G :[PX — M] are two linear morphisms that coincide on singletons, i.e.
Fov=Gou,then I and G induce two R-X-linear morphisms from (PX, ¢) to (M, I" 0¢).
By Prop. 13.3.3, I/ = G follows. a

Furthermore, we obtain the following properties:

Proposition 14.3.3
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(1) Reduced power constructions have unique linear extensions.
(2) Every reduced power construction with a commutative semiring is symmetric.

(3) Every reduced power construction with finite semiring preserves FIN, F-ALG, and
F-CONT.

(4) Let P be a reduced power construction with a semiring B that has a least element
Lp. If X has a least element Lx, then PX has a least element, namely Lp-{Lx][}.

Proof:

(1) By Prop. 14.3.2 in case M = PY.

(2) From (1) by Prop. 11.7.1.

(3) Since (PX, ¢) is reduced, its cardinality is bounded by 2|R||X| by Th. 13.2.1. Hence, PX

is finite if R and X are finite, i.e. P preserves FIN. Preservation of F-ALG and F-CONT
is then due to Th. 7.4.4.

(4) directly follows from Prop. 13.3.5. ]

Finally, we investigate the behavior of reduced power constructions w.r.t. power homomor-
phisms. First, linear power homomorphisms are nothing else but families of linear mappings.

Proposition 14.3.4 Let P be a reduced power construction for semiring R, and Q a
power construction with the same semiring. If Lx : [PX — QX] is a family of linear
mappings indexed by domains X such that Lx{z[}p = {|z[}o holds for every z in every
X, then L : P—=-Q is a linear power homomorphism.

Proof: We only have to show Lo (extp f) = extg (Lo f)o L. Since L and all extensions
are linear, both sides are linear morphisms from PX to QY. They coincide on singletons:

L(extp f{z[}p) = L(fz) and extg (Lo f)(L{z}p) = extg (Lo f){ato = L(fz) hold. By
Prop. 14.3.2, both sides are equal. a

Proposition 14.3.5 Let P be a reduced power construction, and Q an arbitrary power
construction with the same semiring as P.

(1) There is at most one linear power homomorphism P-=-Q.

(2) For every linear power homomorphism H : P-=-Q, there is a unique linear power
homomorphism H' : P--Q° such that F o H' = H where E : Q°>Q is the natural
inclusion.

Proof:

(1) Let Hy and Hy be two linear power homomorphisms from P to Q. Then for every ground
domain X, the mappings H; and Hy are linear and coincide for singletons: Hi{|z[}p =

{z[}o = Ha{z[}», whence they are equal by Prop. 14.3.2.
(2) H'is the power homomorphism H°¢ of Prop. 14.2.1. It is unique because of (1). O
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14.4 Reduced constructions and retracts

In section 7.5, we introduced the notion of retracts. A domain Y is a retract of a domain
X iff there are morphisms r : [X — Y] and e : [Y — X] with r o e = idy. Theorem 7.5.3

stated that every continuous domain is a retract of some algebraic domain.

In this section, we show two theorems about retracts. The first theorem states that re-
ducedness carries over to retracts, whereas the second theorem handles isomorphisms between

power domains of different power constructions.

Theorem 14.4.1 Let P be an R-construction defined for two domains X and Y where
Y is a retract of X. If PX is reduced, then PY is reduced, too.

Proof: Let S be an R-X-submodule of the R-X-module (PY, ty). We have to show
S =PY. The two morphisms r : [X — Y] and e : [Y — X] are raised to R = mapr : [PX —
PY] and £ = mape : [PY — PX]. These mappings are linear and satisfy R o £ = idpx
because of the properties of ‘map’. Let T = R™'[S] be the inverse image of S in PX. We
show that 7" is an R-X-submodule of PX.

1) For z in X, R{z[} = {|rz[} € S holds, whence {z[} is in 7.

2) Bisin T by RO=0¢€ 5.

4

(1)
(2)
(3) If Aand B arein T, then A Y BalsoisinT by R(AY B)=RA Y RBe€S.
(4) Similarly, A in T implies 7+ A in T for all r in R.

(5)

5) T is d-closed by Prop. 3.5.6 since 5 is d-closed.

Since PX is reduced, T equals PX. If A is an arbitrary member of PY, then KA is in
PX =T, whence A= R(EA)isin S. Thus, S equals PY. O

The Theorem immediately implies the following corollary:

Corollary 14.4.2
Let P be a power construction defined for continuous domains. If PX is reduced for all

algebraic domains X, then PY is also reduced for all continuous domains Y.
Now we turn to isomorphisms between power constructions.

Theorem 14.4.3
Let P and Q be two power constructions with the same semiring R defined for two domains
X and Y where Y is a retract of X. If the power domains PX and QX are reduced and
isomorphic, then the power domains PY and QY are also reduced and isomorphic.

Proof: The retract mappings r : [X — Y] and e : [Y — X], and the pair of isomorphisms
¢ : [PX — 9X] and ¥ : [QX — PX] induce the following diagram of mappings:
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mapp T
PX PY
mapp €
X Y
T
| ¥ X Y al |
€
LQ X LQ Y
map or !
9).¢ Q
mapge

Here, o and (3 are given by a = mapgr o ¢ o mappe and 3 = mappr o) o mapge. Both a
and 3 are R-linear as compositions of R-linear maps. They are also R-X-linear:

@ O L'P,Y = mapQ’r 0 @omappe o LP,Y
= mapQTO@OLP’XOE
mapQT (0] LQ,X. o€

Loy oroe

= LQ,Y

The R-X-linearity of 3, i.e. Botgy = tpy, is shown analogously. The composition 3 o a
forms an R-X-linear map from PY to itself. Identity is another such map. By Th. 14.4.1,
PY is reduced. By Prop. 13.3.4, 3 o @ = id follows. Analogously, a o § = id is shown. a

Corollary 14.4.4 If P and Q are two power constructions defined for continuous domains
such that PX and OX are reduced and isomorphic for all algebraic ground domains X,

then PY and QY are also reduced and isomorphic for all continuous ground domains Y.

14.5 Initial constructions

In this section, the existence of the initial construction for given semiring R is shown
and its properties are studied. The idea to consider initial power constructions dates back
to [HP79]. Hoofman [Hoo87] showed the existence of the initial construction for semiring
{0, 1}. Main [Mai85] then proposed initial constructions for some fancy semirings as indicated
in section 11.2. In contrast to our work, he requires the singleton mapping to be strict
without telling exactly why. Our singleton mappings are generally non-strict as indicated by
Prop. 13.3.5 and 15.7.4. The singleton maps of mixed and sandwich power domain are also
non-strict.

For every domain X and every semiring R, there is a free R-X-module R ® X. The
construction X — R X is the initial power construction for semiring R as will be shown in
the sequel.

Principally, ‘the’ free R-X-module is only determined up to isomorphism. Henceforth, we
assume that R ® X is a fixed member of the class of all free R-X-modules. In the special
case X = 1, one may choose R ® 1 = R by Prop. 13.4.5.
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Theorem 14.5.1
Let R be a semiring. The power construction P defined by PX = R ¢ X is an initial
power construction for semiring R. The a priori given external product of the modules

PX coincides with the external product derived from the power operations. P is reduced.

Proof: We first show that P is a power construction. Empty set and union are given by
the module operations: @ = 0 and AY B = A+ B. Singleton is the morphism n : [X — RO®X],
i.e. {z[} = nz. For every f:[X — PY], the extension ezt is given by the unique R-X-linear
map from R ® X to (PY, f). Function ezt is continuous by Theorem 13.4.4. We have to
demonstrate that it satisfies the power axioms.
The primary axioms of extension are satisfied by definition of ext. Linearity of ext f im-
plies additivity, i.e. (P1) and (P2), and ext f o = f is (P3). The secondary axioms are
consequences of the uniqueness of the extended map (cf. Prop. 14.3.2).
(S1) ext (Aa. 0) = AA. 0

The function to the right is linear and maps singletons to 8. The function to the left

behaves equally, whence they are equal.
(52) ext (Az. fr Y ga)=AA.ext fAY extg A

Both functions are linear, and both map a singleton {laf} to fa Y ga. Note that commu-

tativity of the addition in a module is required to prove the additivity of the function p to

the right because p(AY B) = fA+fB+gA+gB, whereas pA & pB = fA+gA+ fB+gB.
(S3) ext L = id

Again, both sides are linear and coincide on singletons since both map {af} to {af}.
(S4) extgoext f = ext(extgo f)

Once more, both sides are linear — the left hand side as composition of linear maps.

They both map a singleton {|af} to ezt g (fa).
Next, we show that the primarily given external product of the R-module PX coincides with
the derived external product of the power construction. The latter is denoted by ‘x’ for the
moment.

rx A = ext(Xo. A)r = ext(Xo. A)(r-1)
= r-ext(XAo. A)(no)=r-A

At the line break, the linearity of extended maps is used.
The power construction P is reduced since all power domains PX are reduced by Prop. 13.4.3.

To show initiality of P, let Q be another power construction with characteristic semiring R.
We have to demonstrate the existence of a unique linear power homomorphism H : P-Q.

For every domain X, (QX, tg) is an R-X-module. Since (PX, tp) is a free R-X-module,
there is a (unique) R-linear morphism H : [PX — OX] with H o tp = 1. By linearity, H is
additive, i.e. H9 = 0 and H(AY B) = HA Y H B hold. Since P is reduced, these properties
allow to apply Prop. 14.3.4, whence H : P-=Q is a linear power homomorphism. It is unique
by Prop. 14.3.5 since P is reduced. a

Since the initial power construction is reduced, it enjoys all properties of reduced power
constructions as enumerated in the previous section. In addition, we are able to prove some
more properties:
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Theorem 14.5.2 If R is structurally algebraic, then the initial power construction for R
preserves ALG and CONT.

Proof: Preservation of ALG is due to Th. 13.6.3. Preservation of CONT follows from
Prop. 7.5.6. a

Lemma 14.5.3

If there is a non-discrete R-module, then the initial construction for R is faithful.

Proof: The proof is analogous to that of Lemma 11.9.2. One only has to replace the
non-discrete power domain PY by the non-discrete R-module. a

14.6 Existential restriction of power constructions

So far, we mainly considered sub-constructions of P with characteristic semiring P1.
The least such construction is given by the core P°¢. In this section, we consider a different
problem. Given a specific sub-semiring R’ of P1, we derive sub-constructions of P with just
this characteristic semiring. The principal method to do this is existential restriction.

Let P be an R-construction. According to section 11.3, existential quantification may be
defined w.r.t. R and then has type £ : [PX — [[X — R] — R]]. The existential restriction of
PX now is defined as the set of all those formal sets where quantification may be restricted
to result in a second order predicate in [[X — R'] — R'].

Definition 14.6.1
Let R be a semiring with a sub-semiring R’, and let P be an R-construction. Then we

define for all ground domains X the ewistential restriction of PX to R':
PX={AePX|Vp:[X—=R]:EApec R'}
In the following, we verify that P’ is a power construction with characteristic semiring R'.

e £0p=0¢€ R implies 0 € P'X.

o If A and B are in P'X, then for all p : [X — R'], EAp and EBp are in R’, whence
E(AY B)p=EAp+EBpisin R'.

o For zin X and p: [X — R'], {z[}p=pz isin R'. Hence, {z[} is in P'X for all z in
X.

o Tet f:[X — P'Y]and A € P’X. We have to show ezt f A in P'Y.
Forallp:[Y — R'],E (ext fA)p=EA(Xa.E(fa)p) holds by the results of section 10.5.
fa € P'Y implies £(fa)p € R'. Thus, (Aa.E(fa)p) : [X — R'], whence the value of
the whole term is in R’.

e Finally, we have to verify that P’X is a sub-domain of PX. Let (A;);c; be a directed
family of members of P'X with limit A. Then for all p : [X — R'], &(Liec; Ai)p =
Ll;cr(EA;p) € R’ by continuity of €.

Thus, the power operations of P imply power operations for P’ by restriction and co-
restriction. The power axioms thus are directly inherited from P. Note that we only used

parts (1), (2), and (5) of the definition of sub-semirings so far.
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Next, we show P'1 = R’. For p: [l — R] and « € R = P1, we may simplify Eap =
ext (Ao.po)a = a-po. Hence, P’L = {a € PL |Vp:[1l — R]:Eap€e R} ={a€R|
Vr € R':a-r € R'}. This set is a subset of R/, sincea € P'1 and 1 € R/ implies a = a-1 € R'.
Conversely, if v’ is in R’, then for all 7 in R’, v’ - r is in R', whence 7’ is in P'1.

Thus, P'1 = R’ is proven. Here, we needed the remaining parts (3) and (4) of the
definition of sub-semirings.

If Q is an arbitrary sub-construction of P with Q1 = R’, then QX C P’'X holds for all
ground domains X since existential quantification in @ maps Q1-predicates to Q1.

Summarizing, we obtain

Theorem 14.6.2 If P is an R-construction, and R’ is a sub-semiring of R, then the
existential restriction P’ of P to semiring R’ is the greatest sub-construction of P with

semiring R’. The core of P’ is the least sub-construction of P with semiring R'.

In the special case R’ = R, the existential restriction of P is P itself. Since the existential
restriction P’ is a sub-construction of P, it is commutative, symmetric, or faithful whenever

P is so. It however need not be reduced even if P is; section 22.1 provides an example.

Let H : P--Q be a linear power homomorphism between two R-constructions, and let R’
be a sub-semiring of R. Does H cut down to a power homomorphism between the existential
restrictions P’ and Q' of P and Q?

The answer is yes. We only need to show HA € QX for A € P'X. Linear power
homomorphisms act as identity on the characteristic semiring by Prop. 12.4.2. Hence, for all

p:[X—= RN, E(HA)p=ext(Hop)(HA)= H (extpA)=EAp € R holds. Thus, we obtain

Proposition 14.6.3 Let R be a semiring with sub-semiring R’, and let © be the method
of existential restriction to R’. Then every R-linear power homomorphism H : P-Q

between two R-constructions P and Q cuts down to an R’-linear power homomorphism
He® :Pc=Q°.



Chapter 15

Final power constructions

In contrast to the initial power construction, the final one may be explicitly constructed.
As indicated in section 10.5, existential quantification leads to a mapping &£ from PX to
[[X — P1] — P1] for every power construction P. This suggests to define PX as [X —
R] — R]if R = P1 is given. The equations in section 10.5 also indicate how to define the

power operations.

One has to prove that these operations satisfy the axioms of chapter 9, and that the derived
semiring P1 is isomorphic to the original semiring R. For proving the axioms, the outer,
second order mappings have to be additive, and for proving the isomorphism between P1
and R, they even have to be right linear. Thus, the actual definition is PX = [[X — R] thp R].

The main theorem about the final power construction for semiring R and its power op-
erations is presented in section 15.1. The proof of the main theorem is spread over the
subsequent 4 sections. In section 15.6, the derived operations of the final power construction
are computed. Properties of the final construction such as preservation of domain classes are
studied in section 15.7. Linear functions on final power domains are not generally uniquely
determined by their values on singletons. In section 15.8, we present a necessary and sufficient
criterion for this. The core of the final construction is briefly looked at in section 15.9.

15.1 The main theorem

Let R be a given semiring, and let X and Y be two right R-modules. Remember a
mapping F : [X — Y] is right linear iff F(z + 2') = Fa 4+ Fz2' and F(z -r) = Fz - r for all
z,2' € X and r € R. The set {F : [X — Y] | F is right linear } is denoted by [X rhip Y].
Ordered as subset of [X — Y], it becomes a domain because the lub of a directed set of linear

functions is linear again by continuity of application, sum, and external product.

Every semiring R becomes a right R-module in a canonical way. For given domain X,
the function space [X — R] also becomes a right R-module by defining f-r = Az. (fz)-r.

Thus, the notation [[X — R] iy R] makes sense and denotes a domain.

Theorem 15.1.1 The final power construction belonging to a given semiring R is defined
by (P, R, ¢) where PX = P?X = [[X — R] hp R]. Tts operations are defined by

173



174 CHAPTER 15. FINAL POWER CONSTRUCTIONS

0=2MXg.0

e AY B=M\g.Ag+ Byg

{z[} = A\g.gz for z € X.

ext fA = Ag. A(Xa. fag) for f:[X — PY]and A € PX.

The isomorphism ¢ : [R — P1] is given by ¢ (r) = Ag.r - go. Its inverse is ¥ (A) =
A(Xo. 1).

To understand the definition of ez, note that @ ranges over X. Then @ in X and f :
[X — PY]imply fa € PY = [[Y — R] mhip R]. g ranges over [Y — R], whence fag € R and
Aa. fag : [X — R]. Thus, A € PX = [[X — R] iy R] implies A(X...) € R.

The proof of the theorem proceeds in four steps: First, it is shown that the power opera-
tions defined above always create right linear maps when applied to such maps. Second, the
validity of the power axioms is shown by A-conversions. Third, an isomorphism between P1
and R is established. Fourth, the power construction 77? is demonstrated to be final. These

steps are done in the next four sections.

15.2 Proof step 1: Right linearity

In this section, we show that the power operations defined above always preserve right
linearity.
e 0=1)g.0
Additive: 0(g+¢')=0=04+0=0g+0¢
Linear: 0(g-r)=0=0-r=(0g)-r
e AY B=MAg.Ag+ By
Additive : (A Y B)(g+4¢') = A(g+¢)+B(g+9g') = Ag+ Ag'+ Bg+ By’
= Ag+Bg+ A9+ By = (AY B)g+(AG B)g
Note that for the equality at the line break, commutativity of ‘+’ is needed, which is
ensured by the definition of semirings.
Linear : (Ag B)(g-r) = A(g-r)+B(g-r) = (Ag)-r+(Bg)-r
= (Ag+Bg)-r = (Ad B)g-r
o {z[} = A\g.gu for z € X.
Additive: {z} (9+9') =(9+9)z=gz+g'w={zf g+ {z[t ¢
Linear: {2t (g-r)=(g9 )z =(g92) - r=({zltg)-r
o ext fA=MXg. A(Xa. fag) for f:[X — PY]and A € PX.
Here, the linearity of fa and A is used.
Linear :  (ext fA)(g-7)=A(Xa. fa(g-T))
= A(Xa.(fag-r)) = A((Aa. fag) - T)
= (A(Xa. fag))-r = ((ext fA)g)-r
Additivity is shown analogously.
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15.3 Proof step 2: The power axioms

In this section, we prove the validity of the power axioms for the new construction.

By the definition A Y B = A\g. Ag + By, the operation ‘g’ trivially is commutative,
associative, and has neutral element 0 = Ag.0. The axioms of extension are less easy to

prove.
Def.: ext f A= Ap. A(Xa. fap)
(P1) ext f0 = Ap. 0 (Aa. fap) = Ap.0 =0
(P2) ext f(AY B) = Ap.(AY B)(Aa. fap)
= Ap.A(Xa. fap) + B (Xa. fap)
= etfAUY extfB

3. {2} (\a. fap)
= Ap.(Aa. fap)z
= Ap.fap = fu
(S1) ext(Az.0)A = Ap.A(Xa.(Az.0)ap)
= Ap.A(Xa.0p)
Ap. A(Xa.0)
= Ap.0 =19
At the last line break, the additivity of A is used.
(S2) ext (fUg)A = Ap.A(Xa.(f Y g)ap)
= Ap.A(Xa.(fa Y ga)p)
Ap. A(Xa. fap + gap) using additivity of A here
Ap. A(Xa. fap) + A (Xa. gap)
= extfAY extgA
(S3) exttA = Ap. A(Xa.wap) = Ap. A(Aa. {al} p)
= Ap.A(Xa.pa) = Ap.Ap = A
(S4) The claim is ext go ext f = ext (extgo f), or extg(ext fA) = ext(Az.extg(fz))A
ext g (ext fA) = Ap.(ext f A)(Ab. gbp)
= Ap.(Aq. A(Xa. faq)) (Ab. gbp)
= Ap. A(Xa. fa(Nb. gbp))
ext (Az.extg(fz)) A = Ap. A(Xa.(Az.extg(fz))ap)
= Ap. A(Xa.(extg(fa))p)
= Ap. A(Aa. (Ag. (fa) (Ab. gbq)) p)
= Ap. A(Xa. fa(Xb. gbp))

(P3)  eat f{zt

o~ o~~~ o~

15.4 Proof step 3: The characteristic semiring

In this section, we show the power domain P1 and the original semiring R to be isomor-
phic. To this end, we first consider how the semiring operations in P1 are defined.
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o Pl =[1—R"™Eg

o 0 =0 = Ap.0

o A+ B = AY B = Ap.Ap+ Bp

. 1 = {off = Ap.po

o A-B = ext(Ao. B)A = Ap. A(Xa.(Xo. B)ap)
= Ap. A(Xa. Bp)
= Ap. A(Xo. Bp)

For the last equality, note that a ranges over 1.

There is one obvious choice for a mapping ¥ : [P1 — R], namely )4 = A (AXo.1). This
mapping is a semiring homomorphism:

o (0) = (Ap.0)(Mo.1) = 0

. Y (A+ B) = (Ap. Ap+ Bp) (Ae.1) = vA+ B
. P (1) = (Ap.po)(Ao.1) = (Mo 1)o =1
. P (A-B) = (Ap. A(Xo. Bp)) (Xo. 1)

A (Xo. B(Xo. 1))
= A(Xo.¥B) = A(Xo.1-9B) use right linearity of A now
= A(Xo.1)-¥B = pA-YB
As announced in the introduction of this chapter, right linearity of the second order functions

in PX is needed here. With left linearity, the result would be ¥ (A - B) = ¥ B - ¥ A instead.

The mapping @ is shown to be an isomorphism by specifying its inverse. Let ¢ : [R — P1]
be defined by @r = Ap.r - po. The second order mapping r is right linear in p because

er(p+p) = r-(p+p)o = r-(potp'o) = r-potr-po = or(p)+er(p)
r(p-a) = r-(p-a)o = r-(po-a) = (r-po)-a = @r(p)-a

@ is the inverse of 1 since

P(er) = (Ap.r-po)(Ao.l) = r-(Ao.l)o =71 =7
¢ (PA) = Ap.ypA-po
= Ap.A(Xo.1)-po and by right linearity of A

= Ap.A(Xo.1:po)
= Ap.A(Xo.po) = Ap.Ap = A

15.5 Proof step 4: Finality

Let (Q, R, p) be an arbitrary power construction with semiring R and let (P, R, ¢)
be the existential construction for B. We have to construct a linear power homomorphism
H : Q=P and then show it is unique. H is given by existential quantification & : [QX —

[X — R] hip R]] as defined in section 11.3.
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Existential quantification in @ would map functions in [X — Q1] into elements of Q1. It
can be used to define H if semiring elements can be translated into elements of Q1 and vice
versa by means of p and p~!. Hence we define for A in QX

HA = p.p™" (extg(pop) A)

Here, p ranges over [X — R], whence pop : [X — Q1]. Thus, (exig(pop)A)is in O1,
whence its value by p~!isin R. Hence, H : [OX — [[X — R] — R]].
Adopting this definition of H, we have to show that H A is right linear, that H is a linear

power homomorphism, and finally that H is unique. We tackle these statements one by one.

HA(py + p2) equals p~t (ext (po (p1 + p2)) A). Using additivity of p~! and p, and axiom
(S2), the operator ‘4’ may be moved to the outermost level.

HA(p-r) = p~'(ext(po(Az.pz-7))A)
= p~Hext((pop)-pr)A) use Prop. 10.10.2, (6) now
= p~'((ext(pop)A)-pr)
= p~'(ext(pop)A)-p~ (pr) = (HAp)-r

Now the right linearity of H A has been proved. Next, we show that H is a power homomor-
phism:

_ P1 _
o HOg = Ap.p l(ext(pop)eg)(:))\p.p L(0)=Ap.0=0p

. H(AY B) = Mp.p~'(ext(pop)(A G B))
= Ap.p~ ' (ext(pop)A) Y p~! (ext(pop)B) = HA Y HB

-1

using axiom (P2) and additivity of p~' at the equality sign in the middle.

o H{zlo = p.p (eat(pop)fala) = Ap.p7 (p(pa)) = Ap.pa = {Jal}p
. H(ext fA) = Ap.p~'(ext(pop)(extfA))

(

(54) (Az.ext (pop)(fz))A)
(
(

€T
1

=" Ap.p~
Ap-p~ Az.p(p~! (ext (pop)(fr))))A)

U ext
(ext
Ap.p~" (ext (Az.p (H (fz)p)) A)
Ap. HA(Az. H ( z)p)

= Ap.HA(Az.(Ho f)zp)

= extp(Hof)(HA)

Now we know H is a power homomorphism. To show its linearity, we have to prove
W (Hy(pr)) = r for all » € R by Prop. 12.4.2 where ¢» = AS. 5 (Ao. 1) is the isomorphism
from P1 to R.

Y(Hy(pr)) = (Ap.p~t(extg(pop)(pr))) (Ao. 1)
= p ' (extg(po(reo.1))(pr))
=/ ~ (extg (Ao {Joltg) (pr)) since p (1) = {Jolto
o) = v
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The last property to be shown is that H is the only linear power homomorphism from Q

to P. Let G be another linear power homomorphism. Then 1 o G o p = idg holds.

HA = Ap.p~'(eatg(pop)A)
= Ap. 9 (Gq(extg(pop)A)) since p~! =10 Gy
= Ap.¢(extp (Gropop)(GA)) because G is a power homomorphism

Ap. (extp (Y=o p) (GA)) (Mo 1)  since Grop =1~ and 5 = S (Ao 1)
Ap. (GA) (Az. (=L op)z(No. 1)) by definition of extp

= Ap. (GA) (Az. ¥ (v~ (pa))) since S(Ao. 1) =S

= Mp.GA(Mz.pz) = Ap.GAp = GA

Now, the theorem is completely proved.

15.6

Derived operations

The definition of the existential construction provides realizations for the principal power

operations in terms of higher order functions. The derived operations may also be expressed

in functional form.

UA=extid A= Ap. A(Xa.idap) = Ap. A(Xa.ap)

map fA =

ext (Lo f) A

Ap. A(Xa.(vo f)ap)
Ap- A(Aa.{ fal} p)
Ap- A(Aa. p(fa))
Ap-A(po f)

Existential quantification & : PX — [[X — R] — R] in terms of the semiring R

instead of P1 is simply given by EAp = Ap. The reason is that £ is a linear power

homomorphism from P to P as we saw in the previous section. Identity also is a linear

power homomorphism. Because of the uniqueness result of the previous section, they

coincide.

ne A=EA(Az.1) = A(Az. 1)

As indicated in section 11.3, the external product is defined for elements of R by means

of ¢.

r-A = ext(Xo. A)(er)

Ap.

(
(¢or) (Aa.(Xo. A)ap)

Ap. (Ag. 7 qo) (Aa. Ap)
Ap. 7 - (Aa. Ap) o
= Ap.r-Ap

refa) =

Ap.r-Alzlfp = Ap.r-pz
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e Similar to the external product, we define filter for mappings f : [X — R] instead of
f:[X = P1].
filter fA = ext(Az. fz-{z[}) A
= Ap. A(Xa. (Az. fo-{zf}) ap)
Ap. A(Aa. (fa - fal) p)
= Ap. A(Xa.(Ng. fa-qa)p)
= Ap.A(Xa. fa-pa)
) A-r = filter(Az.7)A
Ap. A(Aa.(Az.7r)a-pa)
= Ap.A(Xa.r-pa)
Strangely, both r - A and A - r denote an expression where r is a left factor. The difference

rlin

is that with PX = [[X — R] — R], the left product r - A operates at the outer occurrence

of R, whereas the right product A - r operates at the inner occurrence.

Proposition 15.6.1
If the semiring R is commutative, then the construction 73? is commutative.

Proof: A-r = Ap.A(Aa.7 - pa)
by commutativity of R: = Ap.A(Xa.pa-r)
by right linearity of A: = Ap.A(Xa.pa)-r
by commutativity of R: = Ap.r-Ap=r-A a

Concerning symmetry, one has to show A X B=AxBforall Ain PX and B in PY
because of Cor. 10.3.2.

AX B = ext(Ma.ext (\b.{(a, b)}) B) A
Ap. A (Aa. ext (Nb. {(a, b)[}) B p)

= Ap. A (Da. B (Mb. {(a, b)[} p))
= Ap.A(Xa. B (Ab.p(a,b)))

and analogously
AX B = Ap. B (Mb. A (Aa.p(a, b))

The usual equational reasoning does not help in proving A XB=AXB.

Problem 10 Is 77? symmetric whenever R is commutative?

15.7 Further properties

This section is a collection of some simple properties of the final construction.

Proposition 15.7.1 If R is discrete, then P?X is discrete for all domains X.
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Proof: PfX is [X — R] = hip R] ordered pointwise, i.e. A < B iff Ap < Bp in R for all
p:[X — R]. 0

Proposition 15.7.2 The final construction P? is faithful iff R is non-discrete.

Proof: If R is non-discrete, then P? is faithful by Cor. 11.9.3. If R is discrete, then P?X
is discrete even for non-discrete domains X. Hence, embeddings from non-discrete domains
X into P?X are impossible. a

Proposition 15.7.3 If R is finite, then 77? preserves FIN, F-ALG, and F-CONT.

Proof: If R and X are finite, then sois [X — R] — iy R]. According to Th. 7.4.4, P then

maps finitely algebraic (continuous) domains into finitely algebraic (continuous) domams. a

Problem 11 If R and X are finitely algebraic (R not necessarily being finite), is P?X
finitely algebraic?

Problem 12 If R and X are algebraic, is P?X algebraic?

Proposition 15.7.4 If R and X have least elements Lp and Lx, then P?X has a least
element, namely Lp-{Lxl}.

Proof: We have to show Ap > (Lp - {Lx[})p for all A : [[X — R] hy R] and all
p: [ X — R].
Ap = A(dz.pz) > A(Az.p(lx))
= AQw.1p(ix)) = A(A2.1) p(lx)
2 Lr-p(lx) = Lr-{Llxlp = (Lr-{Lx})p 0
Because of its definition in terms of existential quantification, one might believe that the
existential restriction of a final construction for R is a final construction for R’. However
this is not true as we shall see in section 23.4. There are two reasons for this. First, two
distinct second order predicates in [[X — R] hip R] may produce equal results for predicates
in [X — R']. They are then still different in the restriction of the final construction for R, but
equal in [X — R'] ™' R']. Second, there may be additional members in [[X — R] ' R/]
that cannot be obtained by restricting predicates in [[X — R] thp R].
Despite of this general result, we also meet examples for semirings R and R’ where the

existential restriction of the final construction for R is final for R’ — see Th. 23.3.1.

15.8 Unique extensions in final power constructions

Given a power construction P and two domains X and Y, one is interested whether
mappings f : [X — PY] have a unique linear extension f : [PX — PY]. This means,
whenever F; and Fy are linear morphisms from PX to PY, does Fy ot = Fy o imply

This useful property is not generally true, not even for final constructions. An example
for this will be given in section 23.5. However, there is a nice criterion telling that the target

domain Y does not matter; one may substitute 1 for it.
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Proposition 15.8.1 Let R be an arbitrary semiring domain. For a fixed domain X, the
following statements are equivalent:
(1) For every domain Y, Fy ot = Fy o implies Iy = F; for all linear morphisms £y, Fy :
[PEX — PEY].
(2) Gh ot =Gyoimplies Gh = Gy for all linear morphisms G, Gy : [P?X — 73?1].
In (2), P?l may be replaced by R using the isomorphisms ¢ and .

Proof: Abbreviating 73? by P, let F} and F, be two linear maps from PX to PY with
Fior= Fyour. We have to show Fy = Fy,i.e. F1Ap= FyApforall Ain PX and p:[Y — R].
For every mapping p : [Y — R], the composite pop maps from Y to P1, whence its extension
maps from PY to P1. Let G; = ext (¢ o p)o F;. Then Gy and G2 are linear mappings from
PX to P1 with Gy o1 = Gy 0t By (2), Gy = G5 holds, whence G1Aq = G3Aq for all A in
PX and ¢ : [1L — R]. We use this equation for the special case ¢ = Ao. 1.
GiAq = ext(pop)(F;A)q

= (KA (Az.(pop)zq) by the definition of ext

= BAQw (6 (p2) (M. 1))

= FAQz.¥(e(pr))) = FiAp
Hence, G1Aq = GyAqimplies F1Ap = FyAp. a

15.9 The core of the final construction

Since the final construction need not have unique extensions, it moreover need not be
reduced. In this section, we want to consider its core. Being reduced, this core has properties
superior to those of the final construction itself. It is symmetric whenever the characteristic
semiring is commutative, and it always has unique extensions. Algebraically, it may be
characterized as follows:

Proposition 15.9.1
The core of the final construction is final among the reduced constructions.

Proof: Let P be the final construction for semiring R and P€ its core, and let Q be
a reduced construction with semiring R. Since Py is final, there is a linear power homo-
morphism H : Q=Py. By Prop. 14.2.1, it cuts down to a linear power homomorphism
He¢: Q= Q°5P° This linear homomorphism is unique by Prop. 14.3.5. a

In contrast to this, the initial construction is always reduced by Prop. 13.4.3. Thus, it is

not only initial among all constructions, but also initial among the reduced ones.

In the final construction, all power operations and hence all derived operations are repre-
sentable in terms of A-expressions involving the semiring operations as constants. Hence, the
operations of the final construction may be implemented in a functional language that only
has to provide the semiring operations as primitives (usually, these are not sequential). If
this implementation is done as an abstract data type that only allows the power operations
and nothing else, then the core of the final construction is obtained. This is because the core
cannot be left by the power operations including recursion.



Chapter 16

Products of power constructions

The previous chapters showed the existence of three distinguished power constructions
for every semiring: the initial construction, the final construction, and the core of the fi-
nal construction.! Now we are going to present a method that allows to produce a power

construction [[P; with semiring [] R; from given R;-constructions P;.

The investigation of the product construction is prepared by investigating products of
simpler but related algebraic structures such as modules and semirings in section 16.1. The
product construction is then introduced in section 16.2. It is shown that it forms a cate-
gorical product in the category of power domain constructions and power homomorphisms.
In section 16.3, we prove that the product of final constructions for semirings R; is final for
Hie[ R;.

In the remainder of the chapter, we restrict ourselves to binary products. Section 16.4
provides some theory for modules: an R; X Rs-module is always isomorphic to a product
of an Ri-module and an Rs-module, or more concisely: an Ry X Rg-module may always be
factorized. This result is used to prove that core formation, reducedness, and initiality of
power constructions commute over binary products (section 16.5). In section 16.6, we state
and prove a necessary and sufficient criterion for the ability to factorize Ry X Ry-constructions.
This criterion holds for large classes of power constructions, e.g. for reduced ones. The final
section 16.7 then studies the factorization of linear power homomorphisms.

16.1 Products of algebraic structures

In this section, we consider the products of various algebraic structures we are concerned
with: monoids, modules, and semirings. Products of power constructions are then considered

in the next section.
Let (M;);er be a family of monoids, and let M = [];c; M; = {(m;)icr | m; € M; Vi€ I}

be its Cartesian product. M may be given a monoid structure by defining 0 = (0;);er and
(a;)icr + (bi)ier = (@i + b;)icr. This operation is continuous by Prop. 3.3.5. The algebraic

'For particular semirings, two or three of these constructions may well coincide.

182
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laws of associativity and neutrality are obviously satisfied. M is commutative / idempotent
iff all M; are so.

For each k € I, there is an out-going map 7 : M — My given by projection onto
dimension k, i.e. mg ((m;)ier) = my. All these mappings are continuous and additive. For
m ifi=k

each k € I, there is also an in-going map ny : My — M defined by (nym); = )
0  otherwise

These mappings are also continuous and additive.

Turning to semirings, let R be the Cartesian product of the family (R;);c;. By the
definitions 1 = (1;);er and (a;)ier - (bi)ier = (a; - b;)icr, R becomes a semiring domain. The
projections m; are semiring homomorphisms whereas the injections 7 are not. This is because
Nk (1x) # 1; the remaining requirements hold: 7y (0x) = 0, (e + b) = nx (a) + 7% (b), and
Ml 8) = 1k (@) - 71 ().

Finally, let (R;);cr be a family of semirings and (M, );cr a family of commutative monoids
such that for all 2 in I, M; is an R;-module. Let R be the product semiring and M the
product monoid. M becomes an R-module by defining (r;)ier + (m;)icr = (i - mi)ier. The
‘small’ modules M}, also become R-modules by the definition r-m = 7 (r)-m for r € R
and m € M. With this definition, both the projection w; : M — M}y and the injection

1 : My — M become R-linear. For the injection, this is proved by

( ) TL M TEL M m
r-m) = = = r- = 7r- m
Mk 0; re e 0; 0; Nk

where the upper line is the component in dimension & whereas the lower line stands for all

other components ¢ # k.

All these products are also products in a categorical sense. For morphisms f; : [X — M,],
there is a unique f :[X — M] such that m; 0 f = f; for all 7 in 1. This function f is additive

/ linear / a semiring homomorphism iff the functions f; are so for all ¢ in I.

16.2 The product power construction

After the preliminaries about semirings and modules, we now turn to the power construc-
tions themselves. Let (P;);cr be a family of power constructions. Then define P = [[;c; P;
by PX = [[;c; PiX for all ground domains X. The power operations in P are defined ‘point-
wise’:

o 0 =(0;)icr
(Ai)ier © (Bi)ier = (Ai Y Bi)ier
{z[} = ({z[}i)ier for all z in X

For f: [X — PY]let f; = m;o f. Then ext f(A;)icr = (ext; fi A;)icr where ext; denotes
the extension functional of P;.
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The verification of the power axioms for P is straightforward. For instance, (54) is shown as
follows:

ext f(extg A) = (ext; fimi(extg A))icr

ext; fi(ext; gi A;))ier

ext; (Ax. ext; fi (g:x))A:)ier
ext; (Az.m;(ext f(gz)))As)ier
= ext(Mz.ext f(gz)) A

o~~~ o~

The definition of extension directly implies 7; o ext f = ext; (m; o f) o m;. Together with
simple conclusions from the other definitions, one obtains a power homomorphism 7, : PPy,
for every k in I. In contrast to this, the injections 1 do not create a power homomorphism
since ng{ z[}x has component 0 in all dimensions except k, whereas {|z[} has component {z[};
in every dimension 7.

Let H; : Q=P; be a family of power homomorphisms. Then define H by H(A;)icr =
(H;A;)ier. Then H; = m; o H holds. H is a power homomorphism:
HOg = (Hi0g)ier = (8i)icr = Op
H(A g B) = (HZ(A¢ J Bi))iel = (HZ'A d HiB)ieI etc.
H{zlto = (H{z[t@)ier = ({zti)ier = {=li»
H(extg fA) = (Hi(extg fA))ier = (exti(H; o f)(H;A))ier = extp(H o f)(HA) since
Hiof=mmo0Hof.
H is unique with m; 0 H = H;. If H' is another one, then m;(H'A) = H;A = 7;( H A) holds
for all 7in I and A in QX, whence H' = H.

Now, we determine the characteristic semiring of P. Let R; = P;1 be the characteristic
semirings of the factors. Then the characteristic semiring of P has carrier R = [[;c; ;. The
operations in R are defined by

¢ 0=0=(0;)icr = (0;)icr

s at+b=ay b= (a; Y b;icr = (a;i +b;)icr

o 1=Alof} = ({lofi)ier = (1i)ier

o a-b=ext(No.b)a= (ext;(Ao. b;)a;)icr = (a; - b;)ier
Hence, the characteristic semiring of P is the product of the semirings of P; in the sense
of the previous section. Similarly, one shows that the B-module PX is the product of the
R;-modules P;X.

Summarizing, we obtain the following theorem:

Theorem 16.2.1 For every family (P;)icr of power constructions with semirings R;,
there is a product construction P = [[;o; P; with semiring B = [[;.; R;. For every kin I,
there is a power homomorphism 7 : P—==P. For every family of power homomorphisms

H; : Q — P;, there is a unique H : Q=P with 7, 0 H = H}, for all k in 1.

Since all power operations and hence all derived operations are defined componentwise,
the following facts become obvious:
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Proposition 16.2.2
(1) The product [[;c; P; is commutative iff all factors are commutative.
(2) The product is symmetric iff all factors are.

(3) If at least one factor is faithful, then the whole product is faithful.

The remainder of the chapter is concerned with more advanced questions, e.g. is the
product of reduced / initial / final constructions reduced / initial / final again? Is the core
of the product the product of the cores? Is it possible to factorize any power construction
with a product semiring? The first question to attack is that of finality.

16.3 Product and finality

This section is concerned with final power constructions. The goal is to prove that
the product of final constructions P; for semirings R; is final for the product semiring R =
[Tics Ri. For this, let P = [];c; P; and let Q be the final construction for R,i.e. 9X = [[X —

R] Ty R]. Since Q is final, there is a (unique) linear power homomorphism & : P—Q defined
by EA = Ap.extp A for A in PX. Hence, EA = Ap. (ext; p; Ai)ier = Ap. (E; Ai pi)ier where
&; is the unique linear power homomorphism from P; to itself, i.e. is the identity. Thus,
EA = Ap. (A;pi)ier. We have to show that & is a power isomorphism. By Prop. 12.2.1, it

suffices to show that £ is a surjective embedding.

Assume €A < EB holds for A, B € PX. Yorall £ € [ and all ¢ : [X — Ry, let
p=mnsoq:[X —= R]. EA < EB implies (A;p;)ict = EAp < EBp = (Bipi)ics- This in
particular holds for dimension k. Thus, A;q < By q holds for all k in I and ¢ : [X — Ry],
whence A < By for all k£, whence A < B.

For surjectivity, let P : [X — RB] ™ R]. Then let P, : [X — R;] ™ R,] be defined by
P; = Aq. m; (P (m; 0 q)). This mapping obviously is additive. Right linearity is shown by the

following derivation where r € R;:

mi(P(nio(g-r)=mi(P((niog) (nir))=mi(P(nioq) mi(nir)=mi(P(niogq))r

Thus, A = (P;)ier is a member of PX. We claim £A = P.
EAp = (Pipi)ier = (mi (P (niop;i)))ier holds where p; = m; o p. Note that n(m;r) =r-n; 1;
holds for all  in R. Thus,

mi(P(miomiop)) = m(P(p-nli)) = m(Pp-mily)
= 1 (Pp) mi(n;15) = 7 (Pp)-1; = 7 (Pp)

whence (7; (P (n; 0 p;)))icr = Pp.

Up to now, we proved the following theorem:

Theorem 16.3.1 If P, are final power constructions for the semirings R; for all ¢ € I,
then the product [[;c; P; is a final construction for the product [[;c; R;.
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16.4 Factorization of modules

Before attacking the remaining questions, we have to consider the product of module
domains a bit closer. Thereby, we concentrate on finite products; most of the following
results do not hold or are open for infinite ones. Since binary products may be iterated
to obtain any desired finite product, we moreover restrict ourselves to products of just two
objects.

Let Ry and Ry be two semirings with product R = Ry x Ry. The projections are given in
this special case by m;(r1, 72) = r;, and the injections by nyr = (7, 0) and ner = (0, 7). If it
seems appropriate, we also write (r;);er instead of (71, ro) where I is understood as {1, 2}.

Given an Ri-module M; and an Ry-module M,, the product M; x My is an R-module.
We now investigate the opposite direction: given an R-module M, is it possible to find R;-
modules M; such that M is isomorphic to My x My?

The product R = Ry X Ry contains two particularly interesting elements: e; = (1, 0)
and ey = (0, 1). They commute with every other semiring element and enjoy the properties

€161 =€1,€y €3 =¢€9,€e1 -3 =0,and e; + ey = 1.

Proposition 16.4.1
Let M be an R-module. For m in M, the following statements are equivalent:
(1) There is an z in M such that e; - 2 = m.
(2) es-m=m

(3) e3-m=0

Proof:
(H=>@B):ream=ey-e7:2=0-2=0
3)=2):m=1-m=(e1+e) m=e-m+0
(2) = (1): Let z = m. O
After these preliminaries, we define
o My={ey-z|eeM}={meM|es-m=m}={meM]|ey-m=0}
and analogously M.
Proposition 16.4.2 If M, is equipped with the order and the operations of M, then it

is an R-module domain. By the definition r * m = nyr-m for r € Ry and m € M., it also

becomes an R;-module.

Proof:
For the first part, we have to show that My is closed w.r.t. 0, ‘4+’, -, and directed limits.

e ¢3-0=0, whence 0 € M;

o Ifa,be My, theney-(a+b)=ey-a+ey-b=0+0=0

o Ifre Rand m € My, theney-(r-m)=r-(ea-m)=r-0=0

o If D is a directed set in My, then ey - (L1 D) = [Ugep(e2-d) = [zep0=10
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The necessary algebraic properties are inherited from M.

To demonstrate that My is an Kqi-module, we only have to verify the module axioms. Since
7 is additive and multiplicative, the only problem is with the axiom 1; x m = m. It holds
because 19y * m = n117 - m = e; - m = m holds for all m € M,. (]

Since both M; are R;-modules, their product M; x My becomes an R-module with mul-
tiplication defined as in section 16.1. This multiplication looks like

(11, 72) * (M, m2) (Tl*ml, T * M)
( mTy - my, N2T2 - 2)
= ((7‘ 0)-ma, (0, r2) - m2) and by (0, r2) = (0, 72) - €2
((r1, 0) - mq 4+ (0, rg) - ma, (r1, 0) - mg + (0, 72) - Mm3)
(

(7'1, 7‘2) my, (7’1, 7‘2) ’ m2)

whence 7 (mq, mg) = (r-mq, 7 - ma).
Next, we claim that M and My x M; are isomorphic R-modules. Let o : [M — My X Ms)

be defined by az = (e; -z, ez - x). By definition of M;, the result really is in My x My, and
the mapping obviously is continuous. Additivity is simple. For linearity note that

a(r-z)=(ey-r-z,eg-1-2)=(r e -z, r-€3-2)=r4(e;-,e3-2) =r*az

using that both e; commute over all semiring elements.

In the opposite direction, let 3 : [M; X My — M] be defined by 3 (my, my) = my + ma.
It is continuous because of the continuity of ‘+’. For linearity, the commutativity of addition

in modules is needed:
o B(zity, zatye) =21ty +22+ty2 =21+ 22+ y1 +y2 = B(21, 22) + B(y1, v2)
o B(r+(my,mg))=0(r-my,r-mg)=7r-my+r-mg=r-p(my, msy)
a and  are inverses of each other:
o flax)=[F(er 2, e3-2)=€-x+ey-x=(e1+e) z=1-2=2
o a(f(my, my)) = a(my 4+ my) = (e1-(m1+my), ey (m1 +my))
= (e1-m1 + €1 ma, €3 - my + €2 - ma) = (M1, M3)
Summarizing all results, we proved the following theorem:
Theorem 16.4.3
Every (R; x Rz)-module may be factorized into an R;-module and an Ry-module.

Or more exactly: For every (Ry X Rz)-module M, there is an Ri-module M; and an
Ry-module My such that M and M; X My are isomorphic R-modules.

This factorization is unique up to isomorphism.

The last statement is proved below.

From modules, we now turn to the corresponding arrows, i.e. to linear morphisms. Let
My and M{ be two Rqi-modules, and let My and M) be two Ry-modules. Then the products
M = My XMy and M" = M| x M} are R-modules. A pair of R;-linear mappings f; : [M; — M/]
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may be combined to a R-linear f :[M — M'] defined by f(z,y) = (frz, f2x). We denote
J by fi X fa.

Conversely, let f:[M — M'] be a linear morphism. Then f(z,0) = f((1,0) (z,0)) =
(1,0) - f(z, 0) holds, i.e. the Mj-component of f(z,0) is 0, i.e. there is a function f; such
that f(z,0) = (fiz, 0). f; may explicitly built by composition: f; = m; o f o ;. Hence, it
is continuous. Additivity is also immediate. f; is Ri-linear because of

filri-z) =m (f(r-2,0)) =7 (f((r1,0) - (2, 0))) = ™1 ((r, 0) - (12, 0)) = 71+ frz

Obviously, an Ry-linear function f; with f(0, y) = (0, foy) also exists.
Finally, fi x f2 is f because of

F(z,y)=f((z,0)4+(0,9)) = f(z,0)+ f(0,y) = (frz, 0) + (0, foy) = (frz, fay)

It is not difficult to see that f; X fo is an isomorphism iff f; and fy are. This proves the
uniqueness in the theorem above: if My x M; is isomorphic to M| x M} by fi X fo, then M;
and M/ are isomorphic by f;.

Summarizing, we obtain:

Theorem 16.4.4 Let My and M{ be Ri-modules and M, and M} Ry-modules. Then
for every pair of R;-linear functions f; : [M; — M/], there is an R-linear function f; x fy :
[My; x My — M{ x M}] defined by (f1 x f2)(z,y) = (fiz, foy). Conversely, for every
R-linear f : [My x My — Mj x M}], there are R;-linear functions f; : [M; — M/] such
that f = f1 X fo.

16.5 Product, core, and initiality

This section is concerned with the relations between finite products, core formation, and
initiality. The first result is

Theorem 16.5.1 The core of the product of two power constructions equals the product
of their cores: (P1 x P3)¢ = P] X Pj

Proof: For every ground domain X, (P{X x P5X, {.}}) is an R-X-submodule of P1X x
P X = (P x P2)X. Since C = (P1 x P2)°X is the least such submodule, C' C P{X x P5X

immediately follows.

Now let §1 = {A C P1X | (4, 02) € C}. We show that 7 is an R-X-submodule of
(P1X, Al.[)-

(1) {2l € S, since ({21, 82) = (11, 02) - ({2 ], {2l2) = €1 - {2} € C.

(2) 01 € 51, since (01, 02) =0 € C.

(3) If A,B € 57, then (AY B, 8y)=(A4,02) 8 (B, 0;) € C.

(4) If ry € Ry and A € Sy, then (71 A, 02) = (71, 02) - (4, 02) € C.

(5) If D is a directed set in Sy, then (LD, 03) = | lsep(d, 82) € C.
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Since P{X is the least such sub-module, P{X C 5y follows. Similarly, P5X C S5 holds for

an analogous set 5.

Finally, let (A4, Ag) be in P;X x P5;X. Then, (A1, Ay) € 51 X 93, whence both (Ay, 83) and
(81, Ag)arein C'. Thisimplies (A1, A3) = (A1, 02)Y (01, Az)in C. Thus, Pi{XxP5X C C.O

From this theorem, we obtain the following corollary:

Theorem 16.5.2 The product P1x Py is reduced iff both factors P; and Py are reduced.

Proof: If both P; are reduced, then (P1 X P2)° = P{ x P5 = P1 X Pq, whence the

product is reduced.

Conversely, assume Py X P; is reduced. For all X, P{X x P;X is an R-X-submodule of
P1X x PyX. Since the product is reduced, P{X x P;X = P1X x P;X follows, whence
/Pi = Pl. a

This section is concluded by investigating initiality.

Theorem 16.5.3
If Py is initial for Ry and P, initial for Ry, then Py x P, is initial for R X Rs.

Proof: By the results of chapter 14.5, we have to show that P1X x P,X is a free R-X-
module where R = Ry X Ry. Let P =P x Ps.

Let M be an R-module, and f :[X — M] a morphism. By Th. 16.4.3, there are R;-modules
M; such that M is isomorphic to My x My. (In the following, we do not explicitly write down
these isomorphisms.) By projection, f splits into morphisms f; : [X — M;]. Since P;X is a
free R;-X-module, there are R;-linear mappings F; : [P;X — M;] with F; o1; = f;. These
mappings may be combined to an R-linear map F : [PX — M]. F is an extension of f
because of F{z[} = (Fi{lz[}:)icr = (fiz)icr = fx.

Initial constructions are reduced. By Th. 16.5.2, P is also reduced, whence F is unique by
Prop. 14.3.2. a

16.6 Factorization of power constructions

In section 16.4, we saw that every (R; X Rg)-module and every (R; X R3)-linear map
uniquely factorize into R;-modules resp. R;-linear maps. We now investigate to what extent
these results hold for power constructions and linear power homomorphisms.

Let R = Ry X Ry be a product semiring and let P be a power construction for R. For every
X, PXis an R-module. By Th. 16.4.3, it may uniquely be factorized into an Ri-module P;X
and an Ry-module PyX. These modules are given by P, X = {e; - A | A € PX}. Members
of P1X are equivalently characterized by e; - A = A or e - A = 0 by Prop. 16.4.1. PX and
P1X x Py X are isomorphic by means of A = (e1- A, e2- A) and (A1, Az) = A1 Y Az. The
question now is whether P; are power constructions and whether a and  are inverse power

isomorphisms.
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Let us check whether Py is a power construction. For all X, P;X is a domain equipped
with 0 and ‘Y’. We define {z[}1 = €1 - {Jz[}. For f:[X — P1Y] and A in P1X, we simply
define exty f A = ext f A. The result is indeed in P;Y, since

er-ext fA=extf(e;-A)=extfA

Thus, P¢ inherits all power operations of P except singleton that has a new definition. Hence,
all power axioms that do not involve singleton are valid. The only critical axioms are (P3)
and (53).
o cxt fllalty = ext fler - {alt) = er-ext f{z]} = e fo = fa
since fx is in P1X.
o ext(Az. {azflh) A=ext(Az.ep - {z}) A=A e
where the last equation is given by the definition of the external product from the right
in section 10.10.
Unfortunately, the factor appears on the wrong side such that one cannot simplify to
the desired result A. Remember that A = e; - B holds for some B € PX since A is in
P1X. Thus, one would need the equation ey - B -e; = €1 - B for all B in PX.

Nevertheless, we now check whether a implies a power homomorphism. If so, then o and
are inverse power isomorphisms by Prop. 12.2.1. We know « is linear, whence it respects 0
and ‘g’. Singleton and extension remain to be checked.
e aflol = (e1 - Jab), ez - Jal}) = ({oba, Jbs)
This is the desired outcome.
o afext fA)= (e -ext fA)er
On the other hand,
extp, xp, (o f)(aA) = (ext;(e;- f)(e;i- A))icr = (e; - ext (e; - f) A)ier
As with (S3), there is a problem here: the factor e; at the function f appears on the
wrong side. Left factors at the functional argument of ext cannot generally drawn out,
only right factors. A slight generalization of the property needed to prove (S3) helps
here, namely e;- B = B-¢; for all B € PX. This equation implies ¢;- B-e; = ¢;-¢;- B =
e; + B, and also
(677 -ext (677 . f) A)ie[ = (ei - ext (f . 62') A)qfei = (677 - ext fA . 67;)7;61 = (677 - ext f A)ie[
This is the desired result.
Before formulating the concluding theorem, we consider the additional conditions we need a
bit closer. It seems as if we needed both e; - B = B-e; and e5+ B = B.ey. However, it suffices

to explicitly demand only one of these because the other one then holds automatically:

For Bin PX,e;-B =B -e; and e3 - B = B - ey are equivalent.
Proof: e-B=e-B-1=e3-B-(e1+e)=¢€r-e1-Btey-B-eg=ey-B-ey=
B-er-estey-B-eg=(e1+ey)-B-ea=DB-ey O
Hence, only e; - B = B - e; has to hold to allow factorization. Conversely, if P may be

factorized, then in P1X x P2 X, both left and right multiplication operate componentwise,
whence

er-B=(1,0)(By, By) = (By, 03) = (By, By)-(1,0) = B - ey
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A linear power homomorphism is also right linear, whence this equation carries over to P.

Thus, we obtain the following

Theorem 16.6.1 Let P be a power domain construction for semiring R; X Rq. There
are power constructions Py for B; and P, for Ry such that P is isomorphic to Py x Py

by a linear power isomorphism, if and only if (1,0)- B = B - (1, 0) holds for all B in all
power domains PX.
Or in short terms: a power construction for Ry X Ry can be factorized if and only if (1, 0)

commutes over all its formal sets.

It might well be possible that all power constructions for R x R satisfy the criterion and
hence may be factorized. However we cannot prove this such that it is an open problem.

At least, we are able to conclude some interesting corollaries:

Corollary 16.6.2 Every commutative power construction P for Ry X Ry can be factor-
ized. The resulting factors are commutative again. If P is even symmetric then the factors

are symmetric too.
Proof: The first statement is immediate. The remaining ones hold by Prop. 16.2.2. O

Corollary 16.6.3
If R = Rq X Ry is additive, then every power construction for R can be factorized.

Proof: By Prop. 11.12.2, every power construction for an additive semiring is commutative.O

Corollary 16.6.4 Every reduced power construction for Ry X Ry can be factorized. The

resulting factors are reduced again.

Proof: Consider the two functions Fp, Fr : [PX — PX] defined by F,A = e - A and
FrA = A -eq. Both functions obviously are additive. Fr is linear:

Fr(r-A)y=(r-A)-es=r-(A-e1)=71-FRrA
Fy, is linear since e; commutes over all semiring elements:
Fr(r-A)y=e1-r-A=r-e1-A=r-F,A
Fr, and FR coincide for singletons by Prop. 10.10.2 (9). Thus, they are equal by Prop. 14.3.2.
The factors are reduced by Prop. 16.5.2. a

16.7 Factorization of linear power homomorphisms

The goal of this section is to derive a theorem analogous to Th. 16.4.4. This theorem
claimed that all linear functions between products of modules can be factorized into linear
functions between the factors.

Let Py and P} be power constructions with semiring Ry, and let P2 and P} be power
constructions with semiring Ry. Then P = Py x Py and P’ = P} x P}, are power constructions
with semiring R = Ry X Rs.
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Let H; : P;—P" be two linear power homomorphisms. Then define H = Hy x Hy : P>Q
by H (A1, Ag) = (H1A1, HaAjy). Since the power operations are defined componentwise, H
is easily proved to be a linear power homomorphism.

Conversely, if a linear power homomorphism H : P--P’ is given, it can be split into two
families of R;-linear mappings H; : P,—P} such that H = Hy; x Hy by Th. 16.4.4. We have
to show that both H; are power homomorphisms.

o Hiflzlhy = m (H ({21, 02)) = m (H (1, 0) - ({21, {2l}2))) = 7 ((1,0) - H{z[}) =
™1 (1, 0) - {=[}) = {=[1
Here, linearity of H is used.

o Hy(exty f1 Ay)) = mi (H (exty fL Ay, 02)) = w1 (H (ext; fi Ai)ier)
where fo = Az.05 and Ay = 05. Applying the corresponding property of H, one obtains
the desired result.

Summarizing, one gets

Theorem 16.7.1 Let P; and P} be power constructions with semiring Ry and Py and P,
power constructions with semiring Ro. Then for every pair of R;-linear power homomor-
phisms H; : P;—=P%, thereis an R-linear power homomorphism Hy X Hy : P1xPy—=P) x P
defined by (Hy x Hy) (A1, A2) = (H1Aq, HyAg). Conversely, for every R-linear power
homomorphism H : Py x Py—=P) x P}, there are R;-linear power homomorphisms
H; : P;=P’ such that H = Hy x Hs.
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Special power constructions
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In this part, we investigate how the five known power constructions — lower, upper,
convex, mixed, and sandwich power construction — fit into the general algebraic framework.
All these constructions have small semirings with at most 3 elements that share many common
properties: their addition and multiplication is idempotent, they are all additive, and their
modules may be described without referring to multiplication.

The three classical power constructions have two-valued semirings: L = {0 < 1} belongs
to the lower construction, U = {1 < 0} belongs to the upper one, and C = {0, 1} belongs to
the convex one. The semiring of the mixed and sandwich construction is B = {1 < [0, 1]}
with parallel disjunction as addition and parallel conjunction as multiplication.

To obtain a system of semirings that is better suited for our purposes, we also consider the
semiring B = {[0, 1] < T} that is dual to B, and the ‘double’ semiring D = {L < [0, 1] < T}.
C is a sub-semiring of both B and its dual B, and B and B are sub-semirings of D. Thus, we
are able to apply our results about sub-constructions of chapter 14. The ‘double’ semiring
D is the product of L and U such that our results about product and factorization of power
constructions (Ch. 16) can be applied.

In chapter 17, we investigate the structure of the modules of these semirings. We show
that all these modules may be characterized without referring to multiplication. In particular,

C-modules are commutative idempotent monoids, and B-modules are Gunter’s mix algebras

defined in [Gun89b, Gun90].

Chapter 18 is devoted to the L-constructions. We show that there is a standard L-
construction £ that is both initial and final. Tt coincides with the well known lower power

construction in terms of Scott closed sets.

Chapter 19 deals with U-constructions. For sober ground domains, the final U-construc-
tion {f s is shown to be equivalent to the topological construction Uy in terms of compact up-
per sets. The initiality of this construction could however be shown for continuous ground do-

mains only. Thus, one has to carefully distinguish between ¢/ ; and the initial U-construction

U;.

In chapter 20, a sub-construction U, of U is identified. For sober ground domains, it
is equivalent to a topological construction Us in terms of strongly compact upper sets. All
these constructions i ¢, U, and U; could not be proved to be isomorphic, although we do not
know any ground domain where they differ.? For continuous ground domains only, Uy, Uy,
U;, U, and Us all coincide such that one may speak of a standard upper power construction.

The remainder of chapter 20 is devoted to the proof of two theorems about the commuting
of the standard lower construction £ and the upper constructions s and U, respectively.
Both theorems coincide for continuous ground domains, and largely generalize the result of
[FM90] where the commuting of £ and I/ was shown for bounded complete algebraic ground
domains using information systems. The proofs of our two theorems are completely different
from each other and from the proof in [FM90]. The commuting of £ and Us is shown by
topological arguments for Us-conform ground domains, whereas the commuting of £ and U;
is shown by algebraic methods for all ground domains.

2Meanwhile, we found a domain where U; differs from the other ones.
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In chapter 21, we investigate the final D-construction D and its sub-constructions that
are obtained by existential restriction to the sub-semirings B, B, and C of D. The restriction
to B is §, the sandwich power construction.

As the mixed power construction M is a sub-construction of S, it should also be found
among the sub-constructions of D. In chapter 22, we present the conditions M and M that
define the sub-construction M and its dual M. Moreover, the intersection of M and M yields
a sub-construction C of D that coincides with Plotkin’s construction in case of continuous

ground domains.

Chapter 23 contains some remarks about B- and C-constructions. § preserves bounded
completeness, whereas M and C do not. In case of continuous ground domains, M is the
initial B-construction, and C the initial C-construction. § is the final B-construction, whereas

the final C-construction is degenerated and not among the sub-constructions of D.

The final chapter 24 introduces sandwich algebras and shows that sandwich power do-
mains are free sandwich algebras if the ground domain is algebraic. I found this result before
the algebraic theory of power domain constructions was fully developed. In contrast to many
other results, it could not be merged into the general theory and is still standing for its own.



Chapter 17

Small semirings and their modules

In this chapter, we study the small semirings L, U, C, B, B, and D and the structure of

the corresponding modules.

In section 17.2, we consider the modules of the three two-point semirings L, U, and C.
C-modules are just commutative idempotent monoids. In these CI monoids, a logical order
may be derived from addition by defining « C y iff + + y = y. This order is studied in
section 17.3. Section 17.4 is concerned with the modules of the semirings B, B, and D. In
particular, these three semirings are shown to be additive, and B-modules are proved to be
equivalent to the mix algebras of [Gun89b, Gun90]. Every B-module contains a U-module

in a canonical way as shown in section 17.5.

We then leave the modules and turn to power constructions. In section 17.6, the general
properties of power constructions for the small semirings are enumerated as they follow from
the results of Part II.

The power domains belonging to the three semirings L, U, and C with carrier set {0, 1}
may be split into an ‘empty part’ around the empty set and a ‘non-empty part’ containing all
singletons and closed w.r.t. union, extension, and limits (section 17.7). It is this non-empty
part that was proposed in most of the original papers about the classical power domain

constructions.

17.1 The considered semirings

The characteristic semiring of the lower power constructionisL = {0 < 1} where 14+1 = 1.
In logical interpretation, L contains F and T where F is below T. Computationally, this means
that a partial computation resulting in F may change this value to T if it proceeds. Hence,
only computations resulting in T are terminated, whereas F means non-termination.

The characteristic semiring of the classical upper power construction of Smyth is U =
{1 <0} where 1+ 1 =1. Logically, T is below F in this semiring. Hence, only computations

resulting in F are terminated, whereas T signals non-termination.

The characteristic semiring of the convexr power construction of Plotkin is C = {0, 1}
where 1 + 1 = 1 and the two values are incomparable. Logically, T and F are both stable
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here. The semiring is discrete, whence computations with logical result cannot proceed. They
have immediately to decide whether the result is T or F, and cannot change their ‘opinion’
afterwards.

A power construction with a more reasonable logic should have the Boolean domain
B = {1 < [F, T]} as semiring. Such constructions are called set domain constructions
in [Hec90c]. The interpretation of L is ‘I do not (yet) know’. Computations with logical
results start in this state which may change to F or T if the computation proceeds.

The sandwich power construction [BDWS8S] or big set domain construction [Hec90c| and
the mized power construction [Gun89b, Gun90] or small set domain construction [Hec90c]
both have characteristic semiring B with parallel conjunction and disjunction.

Besides the semirings L, U, C, and B, we also consider the ‘double semiring’ D = L x U.
The motivation to consider D is that the Boolean semiring B is a sub-semiring of D.

The semiring D = L x U = {0 < 1} x {1 < 0} has four elements ordered as follows:

(1,0) W

/N /N

(0, 0) (1, 1) F T

NS NS

(0, 1) 1

The picture to the left shows a representation of D in terms of pairs of members of
the lower and upper semiring. The picture to the right shows a logical interpretation of D.
(0, 0), the neutral element of addition logically becomes F, the neutral element of disjunction.
Correspondingly, (1, 1) is interpreted as T. The least element L denotes a state of ignorance.
Every computation starts with L, and this result may be refined to either T or F when
the computation proceeds. In contrast, W denotes a state of inconsistency: a computation

returning W subsumes both T and F.

We now present tables for the semiring operations in D. On the left hand side, they are
depicted in terms of pairs, whereas on the right hand side, the logical interpretation is used.

+ |(0,1) (0,0) (1,1) (1,0) vIiL F T W
(0,1) | (0,1) (0,1) (1,1) (1,1) LlL L T T
(0,0)|(0,1) (0,0) (1,1) (1,0) FIL F T W
(1, 1) | (1, 1) (1,1) (1,1) (1,1) T|IT T T T
(1,0) | (1,1) (1,0) (1,1) (1,0) W|T W T W

(0,1) (0,0) (1,1) (1,0) AlL F T W
(0,1) | (0,1) (0,0) (0,1) (0,0) L|L F L F
(0,0) | (0,0) (0,0) (0,0) (0,0) FI|F F F F
(1,1) | (0,1) (0,0) (1,1) (1,0) T|L F T W
(1,0) | (0,0) (0,0) (1,0) (1,0) W|F F W W
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Considering the right hand tables, one sees that the Boolean semiring B = {L, F, T}
with parallel disjunction and conjunction is a sub-semiring of D. Another sub-semiring of
D is B = {F, T, W}. Tables for its operations look like tables for the operations of B if
L is replaced by W. From a domain-theoretic viewpoint, B is just the dual of B. Another
sub-semiring of D is C = {F, T}, the intersection of B and B.

In contrast to L and U, D admits negation. The continuous operation — : [D — D]
exchanges the values of F and T, and maps L and W to itself. Hence, the sub-semirings B,

B, and C are closed not only w.r.t. disjunction and conjunction, but also w.r.t. negation.

The six semirings L, U, C, B, B, and D are connected by semiring homomorphisms as
indicated by the following figure:

The homomorphisms from C to B and B, and those from B and B to D are embeddings.
The homomorphisms from D to L and U on the other hand are projections. All these
homomorphisms are unique since the values of 0 and 1 are prescribed, and L and W have to
be mapped to common lower resp. upper bounds of 0 and 1.

If ¢ : [R — R'] is a semiring homomorphism and (M, R/, -) is an R’-module, then M may
be turned into an R-module (M, R, *) by the definition r + m = ¢r - m. Thus, all L- and
U-modules are also D-modules, all D-modules are B-modules as well as B-modules, and B-

and B-modules in turn are C-modules.

In all semirings R we consider in this chapter, 1+1 = 1 holds, whence m4+m = 1-m+1-m =
(141)-m =1-m = m holds for all members m of all modules. Hence, all R-modules are
commutative idempotent monoids, or shortly CI monoids.

17.2 L-, U-, and C-modules

The three two-valued semirings L, U, and C are all additive, i.e. all additive mappings
between their modules are linear. The reason is that linearity of an additive function f may
be shown by case analysis:

o F(0-m)=F(0)=0=0-](m)

o f(1-m)=f(m)=1-](m)

The modules of the two-valued semirings may be characterized without referring to mul-
tiplication:
Proposition 17.2.1

C: M is a C-module iff it is a CI monoid.

L : M is an L-module iff it is a CI monoid and 0 is its least element.
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U: M is a U-module iff it is a CI monoid and 0 is its greatest element.

Proof: All modules are commutative monoids. As pointed out above, all L-, U-, and
C-modules are CI monoids. In the L-case, 0 is least by m = 1-m > 0-m = 0. Analogously,

0 is greatest in U-modules.

Conversely, let M be a given CI monoid. A multiplication may be defined by 1-m = m
and 0 -m = 0. This multiplication is monotonic in its left operand because of the additional
axioms m > 0 and m < 0 in the cases L and U respectively. Since C, L, and U are finite,
multiplication is continuous by Prop. 3.3.3. The module axioms (r+4s)-m = r-m+s-m and
(r-s)-m =r-(s-m) may be verified by case analysis r,s € {0, 1}. Idempotence is needed

for the additive axiom in case r = s = 1. O
L- and U-modules may be characterized even without referring to addition.

Proposition 17.2.2

L : In every L-module, 0 is the least element and a + b is the least upper bound of «
and b. Conversely, every domain X with a least element L and a least upper bound

z U y for every two points is an L-module.
In shorter terms: L-modules are just the complete domains, i.e. those in CC.

U : In every U-module, 0 is the greatest element and a + b is the greatest lower bound
of a and b. Conversely, every domain X with a greatest element T and a continuous

greatest lower bound operation A(z, y).z My is a U-module.

Proof: We first consider the case of the semiring L. By Prop. 17.2.1, 0 is the least
element of an L-module M. From 0 < b,a = a+ 0 < a + b follows. Similarly, 0 < @ implies
b<a+b. Thus, a + b is an upper bound of @ and b. Let u be an arbitrary upper bound.
Then a + b < u + u = u holds.

Thus, M is a domain with least element and least upper bound of every two points. Hence

it is complete by Prop. 5.3.1.

Conversely, let X be a complete domain. The operation ‘LI’ in a complete domain is commu-
tative, associative, idempotent, and has neutral element L. It is continuous by Prop. 5.3.5.
Hence, (X, U, L) is a CI monoid with least element L. By Prop. 17.2.1, it is an L-module.

The proof for U-modules is analogous. Because the operation ‘I’ may not be continuous, its
continuity has to be explicitly stated. a

By this proposition, every lower power construction £ creates complete domains £X only.
Thus, it preserves completeness (CC), bounded completeness (BC), FC, SC, and KC.

17.3 The logical order of CI monoids

All modules considered in this part of the thesis belong to one of the semirings L, U,
D, B, B, or C. Hence, they are all C-modules i.e. CI monoids. Besides the a priori given
domain order, CI monoids admit the definition of an alternative order ‘C’ that is derived

from addition.
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Definition 17.3.1 Let (M, +,0) be a CI monoid domain. Then we define a C b iff
a+b=1>b. We call ‘C’ the logical order of M.

Proposition 17.3.2 The logical order of a CI monoid (M, +, 0) is indeed an order. 0 is
its least element, and a + b is the logical least upper bound of a and b.

Proof:

¢ Reflexivity: a C a holds by idempotence a 4+ a = a.

o Transitivity: a Cband bC cimply a+b=band b+c=c¢,whence a+c=a+(b+¢)=
(a+b)+ec=b+c=c,ie.alec.

o Antisymmetry: e Cband bC aimply b=a+b=0+ a = a.
o Least element: 0 C b follows from 0 + b = b.

Upper bound: Idempotence implies a + (¢ +b) = (a + @)+ b = a+ b, whence a C a + b.
By commutativity, b C a + b holds.

Least upper bound: Assume a C wand b C u. Then (a+b)+u =a+(b+u) = a+u = u,
whence a + b C u. O

By the proposition above, addition and neutral element of a CI monoid are uniquely
determined by the logical order. Hence, a CI monoid may be described by providing its
logical order instead of a table of values for its addition.

The addition of semiring L for instance is described by 0 < 1and 0C 1, U by 1 < 0 and
0C1,Chby[0,1]]and0C 1,Bby L <[F, T]and FC L C T. A strict disjunction would
be characterized by F C T C L instead. The additive part of semiring D is described by
1L <[F,T]<Wand FC[L, W]CT.

In ordinary CI monoids, the logical order ‘C’ and the domain order ‘<’ are totally unre-
lated. In special cases, there is an relation.

Proposition 17.3.3

L: A CI monoid is an L-module iff domain order and logical order coincide (a C b iff

a <b).
U : A CI monoid is a U-module iff domain order and logical order are opposite (a C b
iff @ > b).
Proof: If the orders coincide, then 0 is the least element w.r.t. ‘<’, whence the monoid is

an L-module by Prop. 17.2.2. If the orders are opposite, then 0 is greatest w.r.t. ‘<’, whence
the monoid is a U-module.

Conversely, in an L-module, addition is supremum, whence ¢+ b = b is equivalent to allb = b,
i.e. @ < b. In U-modules, one gets aM b =1b,i.e. a > b. a

A function f between two CI monoids is logically monotonic iff « C b implies fa C fb.
Proposition 17.3.4
(1) Addition is logically monotonic, i.e. ¢ C a’ and b C b' imply a + bC o’ +b'.

(2) Every additive function is logically monotonic.
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Proof:
(D) (a+b)+(d+b0)=(a+d)+(b+b)=0d+V
(2) a+b=>bimplies fa+ fb= f(a+b)=fb O

CI monoids are generally not logical domains, i.e. the logical supremum of a logically
directed set may not exist. Even if directed logical suprema exist, they may not be preserved
by additive functions. Thus, additive (domain) continuous functions need not be ‘logically

continuous’.

The semirings L, U, C, D, B, and B have some special features in common. In all of
these, multiplication is CI and @ + 1 = 1 holds, i.e. 1 is logically a greatest element. Due
to the distributive laws and Prop. 17.3.4, multiplication in R as well as in all R-modules is
logically monotonic. Hence, ¢+ m C 1+-m = m holds in all R-modules. Within R, v C a,b

implies u = u-uC a-b,i.e. a-bis the logical greatest lower bound of a and b.

Proposition 17.3.5 Let R be any of the semirings L, U, C, B, B, and D. Then
0 CErC 1 holds for all » in R. For every two points a and b of R, a + b is the logical least
upper bound, and a - b the logical greatest lower bound of a and 6. In all R-modules M,
r-m C m holds for all » in R and m in M.

17.4 D-, B-, and B-modules

This section is concerned with a characterization of D-, B-, and B-modules that does
not employ multiplication. Furthermore, we show that all additive functions between these
modules are linear, i.e. D, B, and B are additive semirings.

Because of the sub-semiring relations, every D-module is also a B-module and a B-

module, and these modules in turn are C-modules. C-modules are just CI monoids by
Prop. 17.2.1.

In B-modules M, we define a function _7 : [M — M] by A? = 1L - A. Among others, ‘7’
has the following properties:

(1) A7=1-A<1-A=4

(2) A7=1-A<0-4=0

(3) A4 A?7=1-A41L-A=(1+L1L)-A=1-A=A

(4) (A+B)?’=1L-(A+B)=1-A+1-B=A7+ B?

In B-modules, we define a function _! by A! = W - A. It has properties analogous to those
of ‘7.

These facts motivate the following definition:

Definition 17.4.1 Let M be a CI monoid domain. A function _? : [M — M] is a lower
approzimation iff it satisfies the following axioms:

(A1) A7< A (A2) A2 <0
(A3) A+A7> A (A4) (A4 B)? < A2+ B?
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A function _!:[M — M]is an upper approzimation iff it satisfies
(A1) A'> A (A2) Al>0
(A3) A+ A< A (A4) (A+ B)! > Al'+ B!

In comparison to the properties of AA. L - A and AA. W - A derived above, axioms (3)
and (4) are weaker since the equality sign is replaced by ‘<’ or ‘>’. In fact, the opposite
inequations are redundant since they may be derived from the given axioms. These axioms
are independent as some examples show.

For every axiom (Ai), there is a CI monoid M; with an additional continuous operation
_7:[M; — M;] such that all axioms except (A1) are satisfied.

(1) Example M; is given by the CI monoid ({L < T}, U, L). Ifidentity is chosen for ‘?’, then
the axioms (A2) through (A4) are satisfied whereas (A1) is not because T? = T £ 0= 1

(2) Example M; is given by the CI monoid ({L < T}, M, T) with the definition A? = T for
all A. Then the axioms (A1), (A3), and (A4) hold because T is the neutral element of
M;. (A2) is violated because L7 =T £ 1.

(3) Example Mj is given by the same CI monoid as My, but defining A? = 1 for all A. Then
the axioms (A1) and (A2) hold because L is the least element of Mj3. (A4) holds because
of idempotence. (A3) is violated since T+ T? =TMNL =1 #T.

(4) Example M, is more complex since we need four elements. The domain order is {1 <
[0, 0] < T} and the logical order is {0 C L C O C T}. A little thought shows that the
addition defined by this logical order is (domain) monotonic, whence continuous.

The operation ‘?’ is defined by mapping T and 0 to 0, and L and O to L. In shorter

terms, A? is the greatest lower bound of 0 and A. Hence, (A1) and (A2) immediately

hold, and (A3) is easily verified. However (A4) fails since (O 4+ T)? = T? = 0, whereas
0?74+ T?=1+40=1

In the sequel, we study the general properties of a lower approximation _? in a CI monoid

M.

Al

A3

(A1) A7< A (A2) A7 <0

(A3) A4 A7 > A (Ad) (A + B)? < AT+ B?
A2

(T1) A+ B7< A sinceA—I—B7<A+O£A

(T2) A+ A7=A by (A3) and (T1)

(T3) 02=0 since 0 20+ 0?7 2 0?

(T4)

(T5)

) Al g T1
AT = AT since A?? < A7 = AT+ AT < AT

AT =A iff A<L0

A2
Proof: ‘=’ AM 47C0 w2 A AL a7 Cor 2N Ay

(T6) X <0and X < A iff X < A? i.e. A7 is the greatest lower bound of 0 and A.
Proof: ‘=’ X < 0 implies X = X? by (T5). X < A implies X? < A? by monotonicity
of ‘7. Together, X < A? follows. ‘<=’ by (A1) and (A2).

(T7) (A+ B)? = AT+ B"

Proof: ‘<’ is (A4). ‘>’ is deduced by (T6) from A? + B? < 0 (by (A2) and (N)) and
AT+ B?< A+ B (by (A1)).
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(T8) The three statements A < A+ B and A? < B? and A? < B are equivalent.

1
Proof: (1)=(2): A?<(A+B)?E

2 A1
(2)=(3): AT<BI<B
3
3)=>(1): AZA4+A7<A+B
(T9) X <0and X < Aand A+ X > A iff X = A?

Proof: ‘<’ is immediate by (A1), (A2), and (A3).
‘=" X <0and X < Aimply X < A? by (T6). A+ X > A implies A? < X by (T8).

A‘7-|—B7<B7

(T10) Every CI monoid with a lower approximation _? is a B-module.

Proof: We define0-A=10,1-A= A,and L-A = A?. By (Al) and (A2), this operation

is monotonic in its B-argument, whence it is continuous.

r-0=0: ('T3)

r-(A+B)=r-A+4r-B: (T7)

0-A=0: immediate

(r+s)-A=r-A+s-A: by neutrality if » = 0 or s = 0, by idempotence if r = s,
and by (T2)if r =1 and s = L or vice versa.

1-A=A: immediate

re(s-A)=(r-s)- A the only difficult case r = s = L is handled by (T4).

(T11) Let M and M’ be two CI monoids with lower approximations _? and _?’ respectively.
Then every additive morphism f: [M — M'] satisfies f(A?) = (fA)?.

Proof: For all A € M, A7 < 0, A? < A, and A + A? > A hold by the axioms of ‘?’.
These statements imply f(A?) <0, f(A?) < fA, and fA+ f(A?) > fA respectively.
By (T9), f(A?) = (fA)? follows.

In [Gun89b, Gun90], Gunter defined miz algebras by an axiom system consisting of (T7),
(T4), (T2), (A1), and (T1). Because (T1) implies (A2) by choosing A = 0 and (T2) implies
(A3) and (T7) implies (A4), his mix theory is equivalent with our theory of CI monoids with
a lower approximation, and Gunter’s mix algebras are just B-modules.

(T9) is a particularly interesting theorem. It implies that the operation ‘7’ is uniquely
determined, i.e. for a given CI monoid, there is at most one choice for a lower approximation
‘7. By ('T6), the only candidate for ‘?”is AA.0M A. Thus, to verify that a given CI monoid M
is a B-module, one has to check that for all A in M 0N A exists, that the operation AA.0M A
is continuous and satisfies axioms (A3) and (A4). By the choice A? = 01 A, axioms (A1)
and (A2) are obviously satisfied.

Translated into the language of B-modules, f(A?) = (fA)? reads f(L-A) = L - fA.
Hence, (T11) means B is additive because the corresponding statements for 0 and 1 are
trivial.

Since the axioms of upper approximations are just dual to those for lower ones, dual
theorems hold for them, e.g. 0! = 0 and A!! = A!l. Hence, A! is the least upper bound of 0
and A by the dual of (T6), there is at most one upper approximation in a given CI monoid by
(T9), and B-modules are just CI monoids with an upper approximation. The dual of (T11)
states that B is additive.
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Finally, we investigate how lower and upper approximations interact. In a CI monoid M
with both a lower and an upper approximation ‘?’ resp. ‘!, the following facts hold:

(F1) Al7=A7"=0
By (A2), A!? <0 holds. By (A2), monotonicity of ‘?’, and (7°1), A!? > 07 = 0 holds.
A?! = 0 is shown analogously.

(F2) A7+ Al = A
Employing first (A1) and (A1) and then (A3) and (A3), we obtain A7+ A! < A+ A < A
and A7+ Al> A7+ A > A,

(F3) Every CI monoid with both a lower and an upper approximation _7 resp. _!is a
D-module.

The proof is similar to that of (T10). Some new arguments are needed: (F'1) proves
r-(s-A)=(r-s)-Ain case r = L and s = W or vice versa since L -W = 0. (F2)
proves (r+s)-A=71-A+ s+ A in the same case since L + W = 1.

(F4) Additivity of D may be shown by combining (T11) and its dual.

The results of this section are summarized to the following theorem:

Theorem 17.4.2

(1) B-modules are CI monoids with a lower approximation.

(

2)
(3) D-modules are CI monoids with both a lower and an upper approximation.
4)

(

As mentioned towards the end of section 17.1, all L- and U-modules are also D-modules.

B-modules are CI monoids with an upper approximation.

All the semirings B, B, and D are additive.

In case of an L-module M, the approximations are defined by m? = 0 and m! = m, whereas
in case of a U-module, they are given by m? = m and m! = 0.

17.5 The U-module contained in a B-module

Since the semiring D is the product of L and U, every D-module is isomorphic to the
product of some L-module and some U-module by Th. 16.4.3. We now investigate whether
every B-module may be embedded into the product of an L- and a U-module.

If M =(M, +,0,7)is a B-module with its lower approximation ‘?’, then one may define
the subset

M?={m?|meM}={meM|m?=m}={meM|m<0}

The last equality is given by (T5) m? = m iff m < 0, whereas the first equality is given by
(T4) m?? = m.
The subset M? contains 0 and is closed w.r.t. addition since a,b < 0 implies ¢ + b <

0+ 0=0. Thus, M? is a sub-monoid of M. It is a U-module since 0 is its greatest element.
The mapping _7 : [M — M?] is additive by (T3) and (T7).
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By dual arguments, every B-module M contains a sub-monoid M! that is the image of
the additive mapping ‘V’. Because of M! = {m € M | m > 0}, the sub-monoid M! is an
L-module.

If a D-module M is given, then M is isomorphic to M! x M? by means of the pair of
additive isomorphisms am = (m!, m?) and §(a, b) = a + b. In fact, this result is only a

special instance of Th. 16.4.3.

Since every D-module is isomorphic to a product of an L-module and a U-module, one
might believe that every B-module be isomorphic to a sub-monoid of such a product. This
is however wrong as an example shows.

Let M = {1 < 0 < T} where addition is given by L+2 = 24+ L = 1, 0+2 = 240 = z, and
x4+ 2 = z for all z in M. By case analysis, one may easily verify that M is a B-module with
1?7 =1 and 0?7 = T? = 0. Assume there are an L-module M; and a U-module M, such that
there is an additive embedding e : [M — M;j x Ms]. Then e (0) = (0, 0) holds. Since 0 is least
in My, e(L)=1(0,b) follows for some b in M;. Dually, e(T) = (a, 0) holds for some a in M;
since 0 is greatest in M;. By additivity, (0,b) =e(L)=e(L)+e(T)=(0, b)+(a, 0) = (a, b)
follows, whence ¢ = 0, i.e. e(T) =¢e(0) = (0, 0). Thus, e is not an embedding.

The B-module M of the example above cannot be obtained as a power domain for any
ground domain X and any B-construction P. The reason is the linear mapping ne : [PX —
B], which maps singletons {z[} to 1. Since X is not empty, every power domain PX contains
at least one singleton. The example module M however does not admit any mapping to B
whose range contains 1 since additive maps from M to B have to map 0 to 0, whence by

monotonicity T is mapped to 0 and L to 0 or L.
Hence, the discussion leaves open the following question:

Problem 13 Can every power domain obtained by a B-construction be embedded into

a product of an L-module and a U-module?

17.6 General properties of power constructions for the small
semirings

Part Il of the thesis allows to state some general remarks that are valid for all power
constructions with characteristic semiring in R = {L, U, C, B, B, D}. All these semirings
are obviously finite, commutative, and idempotent. They are all additive as shown in the
previous sections. All semirings except C are non-discrete, and all except C and B have a
least element. Hence, we obtain the following statements for all R in R:

(1) All R-constructions are idempotent (A &8 A = A) by section 11.5.

(2) All R-constructions are commutative (r- A = A-r) by Prop. 11.12.2.
(3) All reduced R-constructions are symmetric by Prop. 14.3.3 (2).
(4)

4) For R # C: all R-constructions are faithful ({|z[} < {y[} = = < y) by Cor. 11.9.3. The
initial C-construction is also faithful by Prop. 14.5.3 because L provides a non-discrete
C-module.

The final C-construction and its core are not faithful by Prop. 15.7.2.
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(5) All reduced and all final R-constructions preserve FIN, F-ALG, and F-CONT by the
Propositions 14.3.3 (3) and 15.7.3.

(6) All initial R-constructions preserve ALG and CONT by Th. 14.5.2.

(7) ¥Yor R € {L, U, B, D}: all reduced and all final R-constructions yield power domains
with a least element whenever the ground domain has a least element by Prop. 14.3.3 (4)
and Prop. 15.7.4.

(8) The product of an L- and a U-construction results in a D-construction by Prop. 16.2.1.
Conversely, every D-construction may be factorized into an L- and a U-construction by

Cor. 16.6.3.

For all semirings R in R, there are final constructions 73?, their cores P, and initial
constructions P, Besides these 18 constructions, some more constructions are obtained by
restricting the D-constructions to the sub-semirings B, B, and C according to Th. 14.6.2.
From the general theory, we only know the isomorphisms P]Ic) = P}‘ X PU, PP = 735‘ X PP,
and P,P = P,L-L X P,}J by the theorems 16.3.1, 16.5.1, and 16.5.3. The next chapters are
devoted to the investigation of this host of power constructions and the task of finding more
relations among them. For instance, we shall see 73}‘ = Pg‘ = PZ-L and the coincidence of
73)]«3 and the existential restriction of 73)]? to B. Furthermore, we try to identify the known
constructions among this set of constructions. Before doing so, we conclude this chapter by
considering the role of the empty set in the power domains with two-valued semiring more

closely.

17.7 The two parts of a power domain for L, U, or C

For this section, let P be an arbitrary power construction with a two-valued semiring R,
i.e. Ris L, U, or C. The power domains PX are shown to fall into two disjoint parts, one
containing the empty set, and the other one containing all singletons.

From section 10.5, we know the predicate of non-emptiness. ne is a linear morphism from
PX to the characteristic semiring R for all domains X. We refer to section 10.5 for its further

properties. The semirings L, U, and C all have the same carrier set {0, 1}. Hence, we may

define P°X = ne='[0] and P'X = ne~'[1].

Proposition 17.7.1

(1) Both P'X and P'X are closed w.r.t. directed lubs.

(2) 0 is in PYX.

(3) {=[} is in P'X for all z in X.

(4) Both P°X and P'X are closed w.r.t. union ‘g’

(5) Both PY and P! admit extension: If f:[X — PY] and A is in P'X, then ezt f A is
in P*X for ¢ =0, 1.

(6) In case R = C: If Ais in P°X and B in P'X, then A and B are incomparable.

Proof:
(1) If D is a directed set in P*X, then ne (|| D) = | |ne[D] = | {i} = i.
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2) ned = 0.

3) ne{zf} = 1.

4) Tf A and B are in P'X, then ne(A & B) = ne A4 ne B =i+ i = i by idempotence.

5) ne(ext fA) = ext(Az.ne(fz)) A= ext(Az.i)A = ext(Az.1-i)A =ext(Az.1)A i =
neA-i=1i-1=1

(6) If A were below B, then 0 = ne A < ne B = 1 would hold. Analogously, A is not above

B.

(
(
(
(

Whereas PYX contains nothing interesting than the empty set, P'X is almost a power
domain; the only thing missing is the empty set. Because both PYX and P'X are non-empty
and their respective elements are incomparable in case R = C, C-powerdomains never have
a least element as a whole. P'X may however have a least element.

Proposition 17.7.2 Let P be reduced. Then P°X = {8} holds, and P'X has a least

element, namely { L[}, whenever X has a least element L.

Proof:

(1) Let S = {8} UP'X. We show that S satisfies the properties of Def. 13.1.2. Then the
core of PX, which is PX itself, is a subset of §.

(1) {z} e P'XCS.
(2) 0 €S.

(3) If A and B are in P'X, then A ¥ B is also in it. If Ais @ and B is in S, then
AY B=DB¢cS. Same for B = 0.

(4) If Aisin S, then 7- A is 0 or A. In any case, it is in 5.
(5) Let D be a directed subset of §.

Case L : Either D = {8} holds, or it contains a member of P*X. Then | |D is in
P1X since this set is upper.

Case U : Either D C P'X holds, then Prop. 17.7.1 (5) is employed. Or D contains
0, the greatest element of PX. Then | | D = 0 holds.

Case C: D is a subset of either {8} or P'X because these two subsets of S have

respectively uncomparable elements.
In any case, | | D is in S.

(2) Let S ={0}UT, where T = {A € P'X | A > {L[}}. Again, we show that $ satisfies the
core properties.

(1) {l=z[} > {L[} since z > L.
(2) B €S.

(3) If Aand B arein T, then A QY B > {L[} ¥ {{L[} = {{L[|} holds by idempotence. If
one of A and B is 8, then A & B is the other one.

(4) r-Ais B or A.
(5) The proof is similar to the proof of statement (5) in part (1). O

After having considered reduced constructions, we now turn to the final ones.
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Proposition 17.7.3 Let P be final for the semiring R in {C, L, U}. Then P°X = {0}
holds for all ground domains X.

Proof: For all P : [[X — R] add R], neP = ex(Az.1) P = P(Az.1) holds. Hence, we

have to show that P (Az.1) = 0 implies P = 0,i.e. Pp =0 for all p: [X — R].
From 1 = 1+ for all r in R, we conclude 0 = P(Az.1)= P(Az.14+pz)=P(Az.1)+ Pp=
0 4+ Pp = Pp using additivity. a

In the literature, one often finds power constructions without empty set, i.e. P' instead
of P. Plotkin’s construction for instance is the non-empty part of PZC. In case of semiring C,
reduced power constructions P are particularly ugly because their power domains contain 0
as a completely uncomparable point. The non-empty construction P! then has the advantage
to deliver power domains with least element whenever the ground domain has a least element.

For our general algebraic theory of power constructions however as developed in part II,
the empty set cannot be dispensed with. Without the empty set, the characteristic semiring
cannot be found since P'1 = {1} holds without difference for all lower, upper, and convex
power constructions.



Chapter 18

Lower power constructions

This chapter is concerned with the lower power constructions, i.e. the constructions with
semiring L = {0 < 1}. We start by considering the final lower construction £. By Th. 15.1.1,
it is given in terms of second order predicates. In the course of sections 18.1 and 18.2, we
translate it into terms of open grills. The usual representation in terms of Scott closed sets
is shown to be isomorphic in section 18.3. It provides enough structure to prove initiality of
L (section 18.5). The domain theoretic properties are studied in the final section 18.6.

18.1 The final lower construction in terms of predicates

According to Th. 15.1.1, the final construction for semiring L is given in predicative form
by £;X = [[X — L] riip L]. By additivity of L, every additive map between two L-modules

is linear, and we obtain L¢X =[[X — L] adgd L].
As a domain, L has the carrier 2 = {1 < T}. Addition in L is least upper bound ‘U’ and
0is L. Hence, one may also write LiX =[[X — 2] = 2]

indicating at the arrow what operations have to be preserved by the second order predicates.

In section 3.7, we showed that the domain QX of open sets of X ordered by inclusion is

isomorphic to the function space [X — 2]. The isomorphism is given by

T if:
OEQXHpO:/\m.{ ifze0 and

1 otherwise
peX =2l = 0p=p7 ! [T]={zeX|pz=T}

Its properties are summarized in the following table:

QX ‘ re0 ‘
X — 2] ‘ pr=T ‘

v [ on | e | X
u ]| xer | aT

IA[IN

Thus, Q(2X) is isomorphic to [[X — 2] — 2] by means of £EO = Ap.ppO,, or more elaborated

T ifp YTl O

. and its inverse eP={0]|Ppo =T}
1 otherwise

5(’):/\p.{

210
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Hence, £X corresponds to a subset of Q(2X). P (Az.L) = L has to hold which translates
into 0 ¢ G where G is the open set of open sets corresponding to P. In addition, P(pUgq) =
PpU Pq has to hold, or equivalently P(pUgq)= T iff Pp=T or Pq= T. This translates
intoOUO" € Giff O € Gor O € G. The implication from right to left always holds since G
is an upper set because it is open. Hence, only the implication from left to right matters. In
analogy to a topological notion, we call open sets with these properties grills.

18.2 The lower power construction in terms of grills

An open grill of X is an open set G in QX satisfying the two grill properties:

(1) @is not in G,

(2) Let O and O’ be open sets in X. If O UO’ is in G, then at least one of O and O’ is in G.
Let £LrX be the poset of open grills of X ordered by inclusion.

Theorem 18.2.1 LX and L1 X are isomorphic for all ground domains X. The power

operations for LrX are given by the following table:
add

LX [X — L] = L] LrX
A<B Vp:Ap< Bp ACRB
un Ap. Upep Dp up
4 Ap. 0 0
AY B Ap. Ap+ Bp AUB
{l=[} Ap. px O(z)={0 |z €0}
ext f A Ap. A(Az. fap) {0]{z|0 € fz} € A}
Proof: Isomorphism and order are already known. One easily verifies that arbitrary

unions of open grills are open grills again. Hence, |JD is the lub of the directed set D.
0=¢p(Ap.0)={0|(Ap.- L)po=T} =10
AYBB=¢p(Ap.EAp+EBp)={0 | EApoUEBpo =T} ={0|0€AorOc B} =AUB
{2 =0 (Ap.p2)={0|poz =T} ={0]2 €0} =0O(x)
ext fA = @(Ap.EA(Az.E(fx)p))
= {0 [&A(Az.E(fz)po) = T}
{0 [ (A E(fx)po)~[T] € A}
{0 [{z | E(fz)po =T} € A}
_ {0|{r|O€frtea} C

Summarizing, we see that the lower power domain in terms of open grills is quite unhandy,
and the realization of the power operations, in particular of extension, is quite complex.
Fortunately, we need neither show the continuity of ext f nor the validity of the power axioms
for Lr since the isomorphism gives this for free.
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Next, we derive formulae for some of the derived operations in Lr.

£X [X — L] “4 1] LrX

map f A Ap. A(po f) {0]7'[0] € A}

EAp Ap EAp=1 iff p7'[1]€ A

ne A A(Az.1) neA=1iff Xec A iff A#0

filter g A Ap. A(q-p) {0 ¢ '[1]n 0O € A}

UA Ap. A(Aa.ap) {O|{z € LrX |0 €cua}ec A}

AX B Ap. A(Xa. B (M\b.p(a, b)) {0 {a|{b|(a,b)€ O} € B} € A}

AXB Ap. B(Mb. A(Ma.p(a, b)) {01{b|{a|(a,b)c O} e A} e B}
Proof:

map fA = ext(tof)A

{0 [{z [0 € O(fz)} € A}
{O[{z|fzeO}e A}

= {0]f7'[0] € 4}

Abusing notation, one could write the last set as (f~')"'[A].

The statement about £ holds because of the correspondence between QX and [X — L]. For
ne, note that (Az.1)7'[1] = X. Obviously, X is not contained in ® = (. Conversely, if A # 0,

then A contains X because A is an upper set.

filter g A

ext (Az.qu - {z[}) A
= {0 [{z]0 e (g2 O(2))} € A}

Note that gz - O =0 if gz = 0, and = O if gz = 1.

UA

= {O|{z]qz=1N0€O(z)} € A}
= {O]{z|qz=1A2€0}c A}
= {0]¢ 1IN0 € A}

extid A
{0e X [{X eLrX|0O€e X} A}

ext (Aa. ext (Ab. {(a, b)[}) B) A

{0 1{a]| O € ext(Ab.{(a, b)]}) B} € A}

{0 [{a] O c{0"[{b] 0" € {(a, b)}} € B} € A}
{01{a]O0€{0"|{b](a,b)c O} € B} € A}
{0 {a]{b](a,b) € O} € B} € A}

AX B is handled analogously. |

Looking at the formulae for AX Band AX B , it is not obvious whether they always equal

or are sometimes different. We shall however see below that £ is symmetric.
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18.3 The lower power construction in terms of closed sets

In this section, we show that the common lower power construction in terms of closed
sets is isomorphic to L X.

Proposition 18.3.1
LrX is isomorphic to the poset LoX of closed sets of X ordered by inclusion.

Proof: Given a closed set C, let G(C') be the set of all open sets of X that meet C'. G(C)
obviously does not contain (). If an open set O meets C, then every superset of O does so;
hence, G(C') is an upper set of open sets. If a union of open sets meets C, then at least one
of its constituents meets C'. Thus, G(C) is in particular open and satisfies the implication
involving O U Q. Summarizing, G(C') is an open grill for all closed sets C' of X.

The larger a closed set is, the more open sets meet it. Hence, C' C C’ implies G(C') C
G(C"). Conversely, assume G(C') C G(C’) holds, and let ¢ be a point in C'. Then every
open environment of ¢ is in G(C’), i.e. meets C’. Thus, ¢ is in <l C’ = C' by Prop. 4.2.2.
Summarizing, C' C C’ holds iff G(C') C G(C").

Finally, we have to show that the mapping G(.) is surjective. Let G be an open grill. Let U
be the union of all open sets of X that are not in G, and let C' be its complement. U is open
as union of open sets, whence C' is closed. We claim G = G(C').

The set S = {O open | O ¢ G} is directed: It is not empty since @ is in it, and 0,0’ ¢ G
implies OUO' ¢ G. If U, the union of the directed set S, were in G, then one of the members
of § would be in G as G is open. Thus, U is not in G.

If an open set O meets C, then O is not a subset of U. Thus, O U U is a proper superset of
U. Hence, it is in G since U is the union of all open sets not in G. OUU € Gand U € G
imply O € G.

If O does not meet C', then O is a subset of U. If O were in G, then U were in G, too, as G
is an upper set. The last two paragraphs together show G(C) = G. a

After establishing this isomorphism, we translate the power operations into terms of closed

sets.

Theorem 18.3.2
The final lower power construction Ly is isomorphic to the power construction Lo given

by

(1) LcX ={C C X | Cis Scott closed} ordered by inclusion ‘C’,
(2) Lier Ai = el U;es Ai - where ‘cl” denotes Scott closure,
(3) =0,
(4) AY B=AUB,
(5) {lzl} = Lz,
(6) ext fA=[]f[A] =clU[[A] = cl Usea fo.
Proof:

(1) The isomorphism is already known (Prop. 18.3.1).
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(2) Because cl [J;c; A; is the least closed superset of (J;c; 4.
(3) GB)={0|ONB#0}=0=0r.
(4) An open set meets AU B iff it meets A or meets B. Hence, G(AU B) = G(A)UG(B) =
G(A) Yr G(B).
(5) An open set meets |z iff it contains z, since it is upper. Hence, G(|lz) = {0 |z € O} =
{lzlr.
(6) By Prop. 4.2.3, an open set meets cl S iff it meets 5. Hence,
G USAD = {010nUSA] # 0}
= {0]FacA:0n fa#0}
{0|3ae A:0€G(fa)}
{01AN{a|O0€G(fa)} # 0}
= {0[{a]0 € G(fa)} € G(A)}
= eatr (G(-)o f) (G(A))
Here, we have to make sure that {a | O € G(fa)} is open. It is the inverse image by f of
the open set {C' € L&Y |0 € G(C)} ={C"|ONnC"# B}
These equations show that G(.) becomes a power isomorphism if the operations for closed

sets are chosen as in the theorem. ]

18.4 Derived operations

In this section, explicit formulae in terms of closed sets are presented for the derived

power operations. These formulae all look quite natural.
e 0=10,
e AU B=AUB,
{z} = |z,
Combining union and singleton, one obtains {|z1, ..., z,[} = [{z1, ..., z,}.
ext fA =clU,cq fa.
map f A = ext (Az. {fz[}) A
= o Usead (fa)
= cl | f[A] by Prop. 2.2.8
= cl f[A] by Prop. 3.6.3 (1)
e The big union is given by
UA=ext(Az.z) A=clU,cpa=cUA
¢ The formal Cartesian product coincides with the mathematical one:
AX B = ext(Na.ext (Ab.{(a, b)}) B) A
= lealben L {(a, 0)}
Ueeaxns L {c}

- CIUCEAXBLC
= cd|(AxB) = Ax B
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The very last equation holds because the product of closed sets is closed again by
Prop. 4.8.1. A x B also results in A X B, whence £ is symmetric.
¢ External left and right product coincide and are given by 0- A =0 and 1- A = A.

o For the filter operation, let p : [X — L] be a predicate.

filter p A = ext (Aa.pa-{al}) A = cdU,ca(pa-la)
= cdU{lalaceA,pa=1} = cl{ac A|pa=1} = cd(Anp~'[1])

-1

By continuity of p, the set p~'[1] is open. Hence, the closure operator cannot be

omitted.
e Let p: [X — L] be a predicate. Then
EAp = extpA = U pa

Identifying () with 0 and {o} with 1, the set |J,c4 pa is empty iff pa = 0 for all a in A,
and it is {o} iff there is @ in A with pa = 1. The closure operator is not needed since
both  and {o} are closed. Hence,
1 ifdaceA:pa=1
EAp = if Ja ' pa
0 otherwise
This result again justifies the view of £ as existential quantification.
e The non-empty predicate also is named properly in this case:
1 ifA#D
0 otherwise

neA:é'A()\m.l):{

18.5 Initiality of L

Our next goal is to prove that the final construction for semiring L is also initial. To this
end, we prove that the lower power domains in terms of closed sets are free L-X-modules.

Theorem 18.5.1 The final power construction for semiring L is also initial.

Proof: Let £LX be the lower power domain over X in terms of closed sets. As a power

domain, it is an L-module.

Let f: [X — M] be a morphism from X to some L-module M. Because M is a complete
domain, one may define fA = L| f[A] for every subset A of X. We show three main properties
of f.

(1) f(lz) = f= follows from the monotonicity of f.

(2) f(Uier Ai) = Uier FA:

Proof:  f(Uier A) = UflUicr A = UUier fIA] = Uier U fIA] = Uier fA;

Hence, f is in particular linear and monotonic w.r.t. ‘C’.
(3) f(clA)= fA forall ACX.
>’ follows from cl A D A. For the opposite direction, let y = fA, and assume there is

z € cl A with fx £ y. Then fz is in the open set O = M \ |y. By continuity of f,
O’ = f~'[0] is an open environment of z. Since z is in the closure of A, O’ meets A, i.e.
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there is @ in A with fa € O, i.e. fa £ y =] f[A]. This contradiction implies fz < y for
all z € cl A, whence f(clA) < y.
Now, we restrict f to f : £X — M. f is still linear and satisfies f{z} = fz by (1). It is
continuous because
_ . 3) » 2) 7
FlA) = fdUA) D fuan 2 uia;
Let Fy, Fy : [LX — M] be two linear extensions of a morphism f:[X — M]. Then Fy and
Fy coincide for cones |x. By linearity, they thus also coincide for all sets | /" where £ is

finite. If C' is an arbitrary closed set, then D = {|F | F' is a finite subset of C'} is directed
and has union (and thus limit) C'. Hence, F; = F, holds by continuity. O

18.6 Domain-theoretic properties

We already know that £X is a complete domain no matter what X is, and that £ preserves
finiteness, algebraicity, and continuity. Hence, it also preserves all classes between algebraic
and complete algebraic domains, e.g. the class of bounded complete algebraic domains and
the class of finitely algebraic domains. In section 20.5, we show that £ also preserves multi-

algebraicity and multi-continuity.

Although we know that £X is algebraic whenever X is, we do not know the base. It is
provided by the following theorem:

Theorem 18.6.1 Let X be an algebraic domain with base X°. Then £X is algebraic
with base {| F'| FF Cy X°}.

Proof: First, we show that the sets | F* with I C; X are isolated. They are closed by
Prop. 3.6.3 (2).

Let " be a finite subset of X°, and let | C | |;c; Ci = ¢l U;er Ci- Since I consists of isolated
points, I’ C |J;c; C; follows by Prop. 6.1.3. Since £’ is finite, there is £ in I with #* C C by
Prop. 6.3.3. C}, being lower implies | F* C (.

Now, we show that every closed set is the lub of a directed set of isolated closed sets. For

given closed set C, let
D={lr|rc;CnXx’%
We claim C' = <l J7D.
The set D is directed because of | Fy U | Fy = | (F7 U Fy). The inclusion ‘2’ certainly holds,

because I C ' and C'is closed. For the opposite inclusion, let z be a point of C'. Since X is
algebraic, there is a directed set D’ C X with z = | | D’. For every d in D', {d} Cy C N X"
holds, whence D' C D C cl |JD. Because cl [JD is closed, z is a point of it. a



Chapter 19

Upper power constructions

This chapter is concerned with the upper power constructions, i.e. the constructions
with semiring U = {1 < 0}. Although this semiring looks as simple as the lower semiring
L = {0 < 1}, the situation here is much more complex. The theory is considerably harder
than in the lower case, and nevertheless produces weaker results. For instance, we do not
know whether initial and final upper power construction coincide.! There is some evidence

that they do not; we shall provide hints at the appropriate places.

Again, we start by considering the final U-construction. Its original form in terms of
second order predicates is translated into terms of open filters in section 19.1. If the ground
domain X is sober, then /X may be translated further into a representation by compact upper
sets (section 19.2). The domain-theoretic properties of these power domains are studied in
section 19.3. In section 19.4, we attempt to prove the initiality of the final construction .
In doing so, we point out why we did not succeed in finding a general proof such that a proof

for continuous ground domains is the only result.

19.1 The upper construction !/; in terms of open filters

According to Th. 15.1.1, the final construction for semiring U is given in predicative form
rlin

by ;X = [[X — U] — U]. By additivity of U, every additive map between two U-modules
is linear, and we obtain UX =[[X — U] add U].

The carrier domain of U is 2 = {L < T}. It coincides with that of L. In contrast to L,
addition in U is ‘1’ and 0 is T. Hence, one may also write I ;X = [[X — 2] iy 2] indicating

at the arrow what operations have to be preserved by the second order predicates.

Appealing again to the correspondence between predicates and open sets, I/ X is isomor-
phic to a subset of Q(QX). P(Az.T) = T in [[X — U] — U] corresponds to X € F in
Q(QX) where F is the set of open sets corresponding to P. In addition, P (pNg) = PpNPq
has to hold, or equivalently P(pMngq) = T iff Pp = T and Pq = T. This translates into
ONO' € Fiff O € F and O’ € F. The implication from left to right always holds since F is
an upper set because it is open. Hence, only the opposite implication matters. Comparing

"Meanwhile, they are shown to be different.

217
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these two properties of F with Def. 8.6.1, one sees that i/ ;X corresponds to the set of open
filters of X.

Open filters are open >-directed sets in the domain (22X, C) of open sets of X. The poset
of all open filters of X ordered by inclusion ‘C’ is denoted by U5 X.

Arbitrary unions of open sets are open, and directed unions of directed sets are directed
by Prop. 3.1.5. Hence, the union of a directed set of open filters is an open filter. This makes

UsX a domain with limits given by union. The isomorphism between i/ ;X and /4 X is given
by

. and its inverse eP={0]|Ppo =T}
1 otherwise

T if p~'T
5(’):)\]).{ ifp=(T]e 0

as pointed out in section 18.1.

Theorem 19.1.1 Uy X and UeX are isomorphic for all ground domains X. The power
operations for g X are given by the following table:

Ux [X — U] “4 U] UsX

A<B Vp:Ap< Bp ACB

LID Ap. Upep Dp up

0 Ap. 0 Qx

AY B Ap. Ap+ Bp ANB

el Ap.px O(z)={0 |z €0}

ext f A Ap. A(Az. fzp) {0]{z]0 € fz} € A}
Proof: The facts about order and limits are already known.

0=¢(Ap.0)={0 | (Ap. T)po = T} = QX.
AYB=p(Ap.EAp+EBp)={0 | EApoNEBpo =T} ={0|0 € Aand O € B} = ANB

The formulae for the operations {.[} and ezt and their proofs look exactly as those in
Th. 18.2.1. ]

Next, we derive formulae for some of the derived operation in Ug.

Ux [X — U] “4 U] UpX

map f A Ap. A(po f) {0| f7'[0] € A}

EAp Ap EAp=0 iff p~l[0]e A

ne A A(Az.1) neA=0iff e A iff A=9

filter ¢ A Ap. A(q-p) {0 | ¢ '[0]UO € A}

UA Ap. A(Aa.ap) {0 {2z €UsX |0 €2} e A}

AXB Ap. A(Ma. B (Ab. p(a, b)) {0 {a|{b]|(a, b) € O} € B} € A}

AX B Ap. B(\b. A(Aa.p(a, b)) {01{b|{a|(a,b)c0}e A} e B}
Proof: The formulae for map, U, ‘;’, and ‘X’ equal those in Lr. Their proofs are similar

to those in section 18.2.
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The statement about & holds because of the correspondence between QX and [X — U]. For
ne, note that (Az.1)7'[0] = 0. Obviously, () is contained in 8 = QX. Conversely, if {) is in A,
then all open sets O with O O () are in A, and these are all.
filterq A = ext(Az.qu-{z}) A
= {0[{z|0€(gz O(z))} € A}
Note that gz - O = QX if gz = 0, and = O if gz = 1.
= {O]|{z]qz=0Vv0e€O)}eA}
= {0|{z|qz=0Vvze0}e A}
= {0]¢7'[0]UO € 4} O

Looking at the formulae for AXBand AXB , it is not obvious whether they always equal

or are sometimes different.
Problem: Is the power construction ¢ = Uy symmetric?

Summarizing, we see that the upper power domain U3 X is quite unhandy, and the re-
alization of the power operations, in particular of extension, is quite complex. In the next
sections, we demonstrate that one can do better for the large class of sober domains. The

final upper power domain may be represented in terms of compact sets for this class.

19.2 The upper construction U in terms of compact upper

sets

Following [Smy83], we define the upper power domain in terms of compact upper sets in
this section. Unfortunately, this approach does not work out for all domains. The class of
allowed domains however is quite large; it contains all sober domains and hence all continuous

ones.

For an arbitrary domain X, let UxX be the set of all compact upper sets of X. For every
compact set K, the set of open environments of K is an open filter by Prop. 8.6.3. Thus,
there is a mapping O(.) : UxX — UeX. By Prop. 4.4.4, for every two compact upper sets
K and K', K D K’ is equivalent to O(K) C O(K'). Since we ordered U$X by ‘C’, we have
to order UxX by ‘2’. Then we obtain that O(.) : Ux X — UsX has the property K < K’
iff O(K) < O(K'). Unfortunately, O(.) is not always surjective.

Proposition 19.2.1 UrX and UeX are isomorphic by O(.) iff X is sober.

Proof: By Th. 8.7.1, X is sober iff every open filter is comprising.
If UxX and UpX are isomorphic by O(.), then every open filter I equals O(K) for some

compact upper set K. Hence, it is comprising.

Conversely, if every open filter is comprising, then every open filter O equals O(N O), and
N O is a compact upper set by Prop. 8.6.3. a
Since there are non-sober domains, /g X and U4 X are not isomorphic for all domains X.

To analyze the topology of Uy X, we employ the following Lemma.
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Lemma 19.2.2 Let X be sober and O an open set of X. Then K(0) = {K € UrgX |
K C O} is open in UrX.

Proof: K(O) is an upper set since K > K’ implies K C K' C O.

By Th. 8.9.2, all sober domains have property K-RD. If D is a D-directed set of compact
upper sets with | |D in K(0O), i.e. [P C O, then D C O follows since K D [ |D for all K
in D. By property K-RD, there is some K in D such that K C O, i.e. K € K(O). O

In the case of sober ground domains, we may translate the power operations of Ug into the

language of compact sets.

Theorem 19.2.3 Let X and Y be two sober ground domains. Then the power domain

Ur X described below is isomorphic to the final U-powerdomain over X.

1) UrX is the set of all compact upper sets of X ordered by K < K’ iff K D K’

2) UK = NK for directed sets K in UrX.
3) 0 =0

) A B=AUB

)

(
(
(
(4
(5) {2z} = 72 for all z € X.

(6) If f:[X — UxY]is continuous and A is in Ux X, then ext f A = J,c4 fa = U f[A].

All these operations are well defined and continuous.

Proof:
(1) follows from the discussion at the beginning of this section.
(2) Every sober domain has property K-RD by Th. 8.9.2. In domains with property K-

RD, intersections of D-directed sets of compact upper sets are compact upper sets by
Prop. 8.9.4. Hence, (K is in UrX. It is the supremum of K by set-theoretic arguments.

(3) The empty set is a compact upper set. O(0) = QX = 04 holds.

(4) AUB is compact by Prop. 4.6.3. If O is an open set in O(AUB), then O D AUB 2 A, B
holds, whence O is in O(A) N O(B). Conversely, if O is in the intersection, then O 2 A
and O D B implies O D AU B. Thus, we get O(AUB) = O(A)NO(B) = O(A) & O(B)
by Th. 19.1.1.

(5) Tz is a compact upper set, and O(Tz) = O(z) = {z[}s holds.

(6) Let f:[X — Ur Y] be continuous and A in UxX.

OWUSIA) = {0€0Y [Uses fa CO)
{0€QY |[Vae A: faC O}
{0eQY |AC{z]|fz CO}}
= {0eQY |[{zeX |0 €O(fz)} € O(A)}
The set {z | f= C O} is open because it is the inverse image of the open set K£(O) by the

continuous function f.

The set O(UJ f[A]) is an open filter since we just demonstrated that it may be represented
as exte (O(.) o f) (O(A)). Hence, | f[A] is a compact upper set by Prop. 8.6.3. o
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A direct topological proof of the compactness of |J f[A] is also possible, but would be
much more tedious. The same remark is valid for a direct proof of the continuity of ezt f :
U X — UgY. Both proofs are unnecessary because one may use that ext f : UeX — Us Y
is well-defined and continuous. These facts are in turn inherited from the well-definedness
and continuity of the operations in the final power construction defined in terms of functions

of higher order.

The advantage of Ux over Ug is that the operations look simpler. The main reason is

that no longer sets of sets are considered, but simply sets of ground domain points.
Hence, the derived operations also become simpler:
o If X is sober such that Ui X is sober again, then UA = ezt id A = |Jid[A] = |J A.
Thus, UA = |J A.
o Let f:[X — Y] where both X and Y are sober. Then map fA = ext(vo f)A =
Useallfalt = Usea Tfa = TU,ea{fa} = TF[A]
Thus, map f A = 1 f[A].
e Ior p: [X — U] where X is sober, ezpA = 1iff J,eq fa = {of} = {o} iff da € A :
fa = {o}.
Thus, ex p A = 1 iff there is @ in A with pa = 1.
e Hence, ne A = 1 iff there is ¢ in A with (Az.1)a = 1. This is equivalent to A # 0.
o Let p: [X — U] where X is sober. Then filterp A = ext (Aa.pa-{al}) A=
Usea(pa-1a) = Usea pa=i Ta = T{a € A[pa =1} =T(Anp~'[1])
Thus, filterpA=1{a € A|pa =1}.
o Let x: [X XY — UiZ], where all three of X, Y, and Z are sober. Then
A% B = ext(Ma. ext(Ab.axb)B)A
Uaca ezt (Ab.axb) B

Usea Upepaxb
= U, neaxpaxb
= U*[A x B]

A% B gives the same result, whence the final #/-construction becomes symmetric when
restricted to the class of sober domains.

o If X and Y are sober such that X X Y is sober too, then A XB=AXB =
U(a,b)eAxB{Kav b)} = 7(A x B) = A x B since the product of upper sets is an up-
per set.

The upper power construction in terms of compact upper sets Ux admits considerably

simpler definitions of the basic and derived power operations than the final power construction
Ug. This simplicity allows to prove the symmetry of Ux in contrast to ide where we did not

succeed in proving or disproving symmetry.

Concerning sobriety and Ux, we were not able to answer the following question:

Problem 14 If X is sober, is then Ux X sober again?
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19.3 Domain-theoretic properties of {/; and Ux

In this section, we investigate how the final U-construction I/ copes with algebraicity and
continuity.

Theorem 19.3.1 If X is multi-algebraic, then Ux X is algebraic. Its base is the set of
all finitary open sets of X.

Proof: Finitary open sets A of X are isolated points in UxX since their upper cone
{K| K > A} =K(A) is open in UgX by Lemma 19.2.2.

Let K be a compact upper set and let D = FO(K ) be the set of all finitary open supersets
of K. By Th. 8.3.5, D is directed in UxX and its intersection (limit) is K. ]

From the theorem, we may derive:

Corollary 19.3.2 If X is algebraic, then UxX is algebraic with base {TF# | " C; X°}.

Proof: By Th. 6.2.4, the open sets in an algebraic domain X are just the sets T5 where
S C XO Hence, the finitary open sets are just the sets T/ where [ is a finite subset of the
base. a

For continuity, a similar theorem holds.

Theorem 19.3.3 If X is multi-continuous, then Ui X is reduced and continuous.

Proof: Let K € O where O is open in UgX. If F(K) is the set of finitary upper
environments of K, then we know from Th. 8.3.2 that F(K) is D-directed with intersection
(limit) K. Since O is open, there is some F' in F(K) such that /' € O. F in F(K ) implies
K C O C F for some open set O of X. By Lemma 19.2.2, K(O) is open in UrX.

First, K is in K(O). Second, B € K(O) implies BC O C F,i.e. B> F. Thus, K(0) C 1{F}
holds. Third, ¥’ € O implies T{#} C 0. Summarizing, we obtain K € K(0) C T{F<} C O as
required for continuity.

As mentioned above, every K in Ur X is the limit of a directed set of finitary upper sets. A

finitary upper set T{e1, ..., e,} is in the core of UxX since it equals {ey, ..., e,[}. Thus,
every K in UxgX is in the core. O

The theorem leaves open the question:

Problem 15 Is the final U-construction reduced for all ground domains (or at least for

all sober ground domains)?

19.4 The initial upper power construction /;

In this section, we try to prove the initiality of the final U-construction. Unfortunately,
we are not able to perform the proof for a class of ground domains larger than CONT.
On the other hand, we do not know of any counterexample such that the situation is quite

unsatisfactory.?

?Meanwhile, such a counterexample was found.
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In order to point out clearly where continuity is required in our proof, we start with an
arbitrary domain and restrict it to a more special class when needed.

Let X be an arbitrary ground domain. We try to prove that /X is initial, i.e. that it is a
free U-X-module. To this end, let (M, M, T) be an arbitrary U-module, and let f : [X — M]
be a morphism. We have to provide a linear map f : [UX — M] with for = f and then
show its uniqueness.

At first, we define a function f’ on finite subsets of X:
o For finite sets E, let f'{e1, ..., e,} = fer M---1 fe,.
This function is well defined because ‘717 is commutative and associative, and has a neutral

element 0 in M that can be taken as the result of applying f' to (. f’ has the following
properties:

(1) f(®)=0

(2) f'(AU B) = f'AN f'B for all finite sets A and B.

(3) f'{z} = fz for all z in X.

(4) If TA D 1B, then f’A < f'B for all finite sets A and B.

Properties (1) and (3) are obvious. For (2), idempotence of ‘1" is needed since some operands
occurring once in f'(A U B) may occur twice in f'A 1 f'B. The precondition of (4) means
B C TA, whence for all bin B, there is a(b) in A with b > a(b). By monotonicity of f,
J'B = Myep fb > Miep f(a(b)) holds. By idempotence of ‘1", the last term equals Myeqp) fa.
By adding the remaining elements of A, the last term can only become smaller. Hence, it is
above Mycyq fa = f'A.

Because of property (4), TA = TB 1mphes f'A = f'B. Hence, f’' implies a function f

mapping all finitary upper sets of X into M. f is defined by f(TE) f'E for finite sets .
Properties (1) through (4) of f’ directly translate into corresponding properties of f:

(1) f(@) =0
(2) (A UB) = fAN fB for all finitary upper sets A and B.

(3) f(1e) = fa

(4) If A D B, then fA < FB for all finitary upper sets A and B.

The next step should be the extension of f to all of YX. The problem with this is that
we do not know much about the structure of #X in general. If X is sober however, X is
isomorphic to U X

Let K be a compact upper set in X. There are several completely different approaches to
define fK. First, one could consider the set F'K of all values fA where A is a finitary upper
subset of K. F is downward directed since A, B C K implies AU B C K, and f(AU B) is
the greatest lower bound of fA and fB. Since A C K means A > K in YX, all members of
FK are above the value fK to be defined. All this suggests to define fK to be the greatest
lower bound of F'K. Unfortunately, we do not know whether such a greatest lower bound

exists, and if so, whether f is continuous.

A second approach considers the set FFK of all values fA where A is a finitary upper
superset of K. Since A O K means A < K in X, all members of K are below the value
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fK to be defined. Unfortunately, we do not know in general whether £ K contains any point
at all.

If we assume X to be multi-continuous, then K is strongly compact by Prop. 8.3.3, and
there is a finitary upper superset A of K in every environment of K. Hence, the set # K is
not empty, and one may guess that it well approximates fK. All this suggests to define fK
as the least upper bound of F K. However, we cannot generally prove the existence of such

a least upper bound, because we cannot prove /'K to be directed.

In the third approach, we consider the set /'K of all values fA where A is a finitary upper
environment of K. To be more precise, let (K ) be the set of all finitary upper sets A such

that there is an open set O with K C O C A. We first investigate this set more closely and

-~

then turn to FK = f[F(K)] C M.

Proposition 19.4.1 Let X be a sober domain. For all compact upper sets K of X, let
F(K) be the set of all finitary upper environments of K. Then

(1) 0 is in F(0).
2 f(f(l U l(g) = {Al U A2 | A1 € f(l&rz)}

)
)

3) K D K’ implies F(K) C F(K").

4) Let K be a directed set in Ui X. Then F(NK) = Ugex F(K).
)

(

(

(

(5) If X is multi-continuous, then for all K in UxX, the set F(K) is directed in UrgX
and F(K) = K holds.

Proof:
(1) 0 is a finitary upper open superset of {.

(2) Let A be a member of the left hand side. Then there is some open set O with Ky U Ky C
O C A. This implies K; C O C A, whence A is in both F(K;) and F(K3). Because of
A= AUA, Ais a member of the right hand side.

Conversely, if A is in the set on the right, then there are finitary upper sets A; and open
sets O; such that K; C O; C A;. This implies K1 UK, C 07 U02 C AU Ay = A.

(3) If K C O C A for some open O, then K’ C K C O C A.
(4) The union is a subset of F((\K) because of (3) and & D MK for all K in K.

Assume (K C O C A for some open set O. Because sober domains are in K-RD, there
is some K in K with K C O. Hence, A is in F(K).

(5) By Th. 8.3.2. O

-~

We now define K = f[F(K)]. If the ground domain is multi-continuous, F(K) is
directed, whence F'K is directed, too, by monotonicity of f Hence, the set /'K has a least
upper bound in M. Thus, we can define fK = LI FK. We have to show that this function is
continuous, additive, and f(Tz) = fz holds.
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By property (1) of F(K), the value T = f is in F(0), whence f(@) = T. Using property
(2) and continuity of ‘M’ in M, one obtains

(K UKy = |UFIF(K, UK,

= U{f(AuAg) | A € F(K))

UA{FAm FAz | Av € F(K))

= UA{FA | A e F(EDINL{FA2 | Ay € F(K2)}

= f_ffl M f_I(Q
By property (3) of the Lemma, K < K’ implies F(K) C F(K'), whence f[F(K)] C
FIF(K")]. By Prop. 2.4.7, fK < fK' follows. Hence, f is monotonic.
Continuity of f is shown using part (4) of the Lemma. Let K be a directed set in Ux X.

fnkK)

U FIFNK) = U fUkex F(K)] ]
= UUkex FIF(K)] = Urex UFIF(K)] = Urex FK

Finally, we have to show f(Tz) = fz for all z in X. For all A in F(Tz), A D Tz holds,
whence fA C f(Tac) = fa. Thus, f(Tz) = Uf[]—"(Tac)] < fa follows.

For the opposite direction, we assume fz € O for some open set O, and have to show
f(Tz) € O by Lemma 4.3.1. fz € O implies z € O’ = f~1[0]. By continuity of f, O’ is an
open environment of z. By multi-continuity, there are a finite set # and an open set O” with
z€O0"CTE CO'. Thus, TF is in F(Tz), and fe € O holds for all e in £. Unfortunately,

this does not generally imply f(TFE) = M.ecg fe € O. Thus, the proof cannot be completed.

o~

If X is even continuous, then the set £ may be assumed to be a singleton. Thus, f(TF) =
feisin O, whence f(T2) =[] f[F(12)]is in O, and the proof is completed.
Summarizing, we obtain

Theorem 19.4.2 For continuous ground domain X, initial and final upper power domain

over X (and thus all reduced upper power domains over X) coincide.

As indicated at the beginning of this section, this theorem is not as general as one might
wish. We saw that the corresponding proof for multi-continuous ground domain only fails in

proving f(1z) > fa.



Chapter 20

More about L- and U-constructions

In this chapter, we present some more results about L- and U-constructions. According to
the (non-)results of the previous chapter, one has to carefully distinguish between the initial
U-construction ¢; and the final U-construction ¢/;. In particular, it is possible that #/; is
not reduced. Indeed, we were able to identify a sub-construction U of ¢ s (section 20.1). For
sober ground domains, its power domains may be represented in terms of strongly compact
sets UsX. Unfortunately, we were not able to prove that I/, is a proper sub-construction of
Usg.

For sober ground domains, ¢/ ;X and Ux X, and also ¢/, X and UsX are isomorphic. In
section 20.2, we identify the maximal domain of definition of Ux and Us and show that they
are partial power constructions of their own independent from whether they coincide with
Uy and U, respectively. The properties of Ug are investigated in sections 20.3 and 20.4. The
analysis of the topology of UsX leads to the class of Ug-conform domains that contains all
multi-continuous domains.

In section 20.5, we show by topological reasoning that LUsX and UsLX are isomorphic
for all Us-conform ground domains X. In the final section 20.6, we then show by algebraic
reasoning that LU;X and U;LX are isomorphic for all ground domains X. Both results
largely generalize the paper [FM90] where the isomorphism was shown for bounded complete

algebraic domains X using information systems.

20.1 The U-construction l/; in terms of strong filters

Since we were not able to show the final U-construction ¢/ to be reduced, there might
be some sub-constructions of /;. Indeed, we found a sub-construction ¢, defined in terms

of strong filters. It is open whether ¢y and U, coincide for all ground domains.

For sober ground domains, open filters correspond one-to-one to compact upper sets. The
strong filters are defined such that they correspond to strongly compact upper sets.

Definition 20.1.1 An open filter F is strong iff for all O in F, there is a finite set £ C O
such that O(F) C F.

226
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In the sequel, we verify that the power operations of Uy = Ug preserve the ‘strength’ of
filters, i.e. that the strong filters induce a sub-construction U, of ;. The power operations
of Uy are given by Th. 19.1.1 in terms of filters. Remember that open filters are open sets
of open sets of X that contain X and are closed w.r.t. intersection. They are ordered by set
inclusion.

o If D is a directed set of open filters, then | |D is |JD. Assume all members of D are
strong. If O is in YD, then O is in F for some F in D. Since F is strong, there is a
finite set # C O such that O(£) C F CUD.

o 0 is given by QX = O(0) and {z[} by O({z}). We generalize both cases to O(£) for
finite set F.

If Oisin O(F), then £ C O and O(F) C O(L£) hold. Hence, all open filters O(E) for
finite I are strong.

e bor two filters Fq1 and Fy, F1 & Fq is given by Fq N Fy. If O is a member of this
intersection, then O € F; holds for ¢« = 1,2. If the filters F; are strong, then there are
finite sets £; C O such that O(F;) C F;. E = E;U Es is a finite subset of O. Let O be
a member of O(F). Then O’ O E D E; follows for i = 1,2, whence O' € O(E;) C F;,
ie. O e FinFsy.

o Tor f:[X — U;Y] and A in U X, ext f Ais given by B={0 |{z| O € fa} € A}. If
O isin B, then O’ = {z | O € fa} is in A. Since A is strong, there is a finite subset
E'" of O" such that O(E') C A. By E' C O, set O is in fe for all e € E'. Since fe is
strong, there are finite sets F. C O such that O(F.) C fe. The union F' = Ueep: Fe of
these sets is a finite subset of O.

We have to show O(F) C B. Let P be a member of O(F). P O F D F. for all e in
E' implies P € O(F.) C fe. Hence, P/ = {z | P € fz} is a superset of F’, whence
P' e O(E'") C A. Thus, P isin B.

The arguments above prove the following theorem:

Theorem 20.1.2 The strong filters form a sub-construction U, of Uy.

The next proposition shows that strong filters are to open filters as strongly compact sets are

to compact sets.

Proposition 20.1.3
Let K be a compact upper set. Then O(K) is a strong filter iff K is strongly compact.

Proof: O(K) is strong iff VO € O(K)3IE C; O : O(F) C O(K).
By definition of O(.), O € O(K) is equivalent to K C O. By Lemma 4.4.4, O(K) C O(K) is
equivalent to T+ D K. Hence, we get the equivalent formula

VO DO K dF finite: K CTECO

This is the definition of strong compactness. a

By Prop. 19.2.1, we know that ¢ ;X and UgX are isomorphic iff X is sober. Here, Ug X is
the set of all compact upper sets of X.

Proposition 20.1.4 If X is sober, then U ;X is isomorphic to the set U/sX of all strongly
compact upper sets of X ordered by inverse inclusion ‘D’.
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Proof: We have to show surjectivity of O(.) : UsX — U,X. If F is a strong filter,
then by sobriety 7 = O(K) holds for some compact set K. By Prop. 20.1.3, K is strongly
compact. O

In contrast to Prop. 19.2.1, we cannot show the equivalence to sobriety here. Thus, the
following question remains open:

Problem 16 Is sobriety equivalent to U X = UsX?

The two constructions i y and f; coincide for multi-continuous ground domains by Prop. 8.3.3.
We do however not know whether they always coincide.

Problem 17 For which domains are all open filters strong?

The construction ¥, is intuitively ‘more reduced’ than the larger construction ¢/ ;. From U,
we know reducedness for multi-continuous ground domains only; by Th. 8.3.2, K = N F(K)
holds in this case. U, is known to be reduced for domains in FC & SOB in addition since
every strongly compact set is a directed intersection of finitary upper sets by Prop. 5.4.4.

Problem 18 For what ground domains X is U ;X reduced?

20.2 The topological U-constructions I/ and g

In case of a sober ground domain X, the final U-powerdomain f ;X is isomorphic to the
U-powerdomain Ux X in terms of compact upper sets. For non-sober X, if ;X and Ux X are
not isomorphic but Ux X might still define a U-construction. We show however that UxrX
is not useful for all domains X. Instead, we show that it forms a sub-powerdomain of /X
just for the class K-RD of domains with the K-Rudin property.

Analogously, one may consider the set UsX of strongly compact upper sets. It forms a
sub-powerdomain of & ;X for domains in S-RD.

We know that the mapping O(.) : UxX — UsX cuts down to O(.) : UsX — UX by
Prop. 20.1.3. K < K’ is equivalent to O(K) C O(K'). Hence, UxX is isomorphic to a
subdomain of U ;X by O(.) iff UxX is a domain and O(.) is continuous.

Definition 20.2.1
A domain X is Ug -admitting iff U X is a domain and O(.) : UxgX — U ;X is continuous.
A domain X is Ug-admitting iff UsX is a domain and O(.) : UsX — U ;X is continuous.

There are some equivalent formulations of the Ux-admitting property:

Theorem 20.2.2 For a domain X, the following statements are equivalent:
(1) X is Uk-admitting.
(2) UrX is a domain, and for all open sets O in X, theset K(O) = {K € UxX | K C O}
is open in UxX.

(3) For every open set O in X and every directed set K in UxX, O O (K implies there
is some K in K with O O K. This is property K-RD.
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In this case, the limit of a directed set K in UrX is its intersection K.

An analogous statement holds for Us-admitting, S-RD, and strongly compact sets.
In the sequel, part (3) will be the main instrument to cope with when investigating UxX.

Proof: We start by deriving (3) from (1). Assume X is Ug-admitting, and let K be a
directed set in it. Then K has a limit K, and (KX D K holds because ‘D’ is the order in
U X. By continuity of O(.), O(K) = Usex O(A) holds. Let O be an open set in X with
O DNK. Then K CNK C O whence O € O(K). Thus, there is A in K with O € O(A) i.e.
0D A.

The fact | |K = N K follows from (3) because of Prop. 8.9.4.

Now, we show the equivalence of (2) and (3). The set K£(O) occurring in (2) is always an
upper set in Ug since K < K’ and K € K(O) imply K’ C K C O, whence K’ € K(O).
Hence, K(O) is open iff | | C O implies A C O for some A in K. (3) directly implies this,
since | |JK = N K. Conversely, if (2) holds, then K C O implies | |K C O and further A C O
for some A in K.

Finally, we show that (3) implies (1). (3) implies the addition, i.e. | |K exists and is () K.
Thus, Uy X is a domain. For continuity of O(.), we have to show O(NK) = Uyex O(A). ‘D’
holds since A C O implies VK C A C O. ‘C’ holds by (3): if N\K C O, then A C O for some
AeK.

The proof for strong compactness is completely analogous. We did not use the specific

properties of compact sets in the proof above. a

If X is Ux-admitting, then Ux X is isomorphic to a sub-domain of U6 X by O(.). This sub-
domain is closed w.r.t. the power operations in 4 X. Hence, UxX may also be considered
an upper power domain over X if the operations in O[UxX] C UgX are translated back into

operations in UxX.

Theorem 20.2.3 Uk is a partial upper power construction defined for the class K-RD
of all Ux-admitting domains. The power domains and operations are given by

(1) UxgX is the set of all compact upper sets of X.

(2) K <K'iff K O K'

(3) UK =K for directed sets K in UxgX.

(4) 6=0

(5) A B=AUB

(6) {z[} = 7o for all z € X.

(7) If f:[X — UxY]is continuous and A is in Ux X, then ext f A =,c4 fa = U f[A].

All these operations are well defined and continuous.

Us is also a partial power construction. It is defined for the class S-RD of all Ug-admitting
domains. The power operations are like those above.

Proof: The proof of Th. 19.2.3 did not make specific use of sobriety or compactness.
Hence, it may also be taken to prove the theorem at hand. O
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Now, we turn to the completeness properties of U X and UsX.

Theorem 20.2.4 If X is in KC & K-RD, then UxX is in CC. If X is in SC & S-RD,
then UsX is in CC.

Proof: We show the statement for Ux. The statement for Us is shown analogously.

Property KC means that the whole of X is compact and the intersection of two upper cones
is compact. We have to show that /X has a least element and lubs of every two points.
Obviously, X itself is the least element.

For every two points a and b of X, let a xb = Ta N Tb. By KC, ‘+’is a map from X x X to
UX. It is continuous because Ta N T[] D = Nyep(Ta N Td) holds. By double extension, we
get A A B = ext(Aa. ext (Ab.a xb) B) A. Well-definedness of the power operations in UxgX
yields compactness of A A B. Weclaim A A B = AN B,i.e. A A B is the least upper bound
of A and B.

By Th. 19.2.3, A A& B = U,caUsep Ta N Tb holds. If z is a member of this set, then z is
above some point a of A and also above some b of B. Hence, z is in AN B. Conversely, if y
is a point of the intersection, then y is in both A and B, and y in Ty N Ty holds. |

By this proposition, initial and final U-construction preserve the classes BC & ALG and BC
& CONT since they coincide with Uk and Us for continuous ground domains.
We were not able to decide whether the constructions Ux and Us may be iterated:

Problem 19 If X is Ux-admitting, is then UxX Ug-admitting again? If X is Us-
admitting, is then UsX Ug-admitting again?

20.3 Open sets and additive functions in s

In this section, we state and prove some properties of the U-construction Us in terms of
strongly compact upper sets. It is defined for the class S-RD of Us-admitting domains.

By Th. 20.2.2, the sets Kg(0) = {S € UsX | S C O} are open in UsX if O is open in
X. In the next Lemma, we characterize all open sets of UsX that are obtained by Ks(.).

Lemma 20.3.1 Let X be Us-admitting. For a subset O of UsX, the following two
statements are equivalent:
(1) There is an open set O of X such that O = Ks(O).

(2) O is open and closed w.r.t. binary union.

Proof: The sets Kg(O) are open by Th. 20.2.2. They are closed w.r.t. union since
51,99 C O implies 57 U Sy C O.

Let conversely O be an open set of UsX that is closed w.r.t. union. Let O = .71[O0] =
{z € X | T2 € O}. O is open as inverse image of O by ¢. We claim O = Ks(0).

Let § be in O. z in § implies Tz C S5, ie. S < Tz. Hence, Tz is in O, whence z is in
0. Thus, 5 C O holds. Conversely, 5 C O implies S C TE C O for some finite set £ by
strong compactness. By TFE C O, every e in F is in O, whence Te € O for all e in F. Thus,
52> TE =U.cp Te € O because O is closed w.r.t. finite union. O
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Since we used strong compactness explicitly in this proof, an analogous proof for Ug is
impossible. We may however prove a similar criterion where ‘binary union’ is replaced by
‘arbitrary union’. This criterion would not be quite useful however.

The criterion for Us may be used to show that Us has unique additive extensions.

Lemma 20.3.2 Let X and Y be two Ug-admitting domains. If F': [UsX — UsY] is
additive, then 'S = N{FA | A € F'(5)} holds for all § in UsX where F'(9) is the set
of all finitary upper supersets of §.

Proof: If AD S, then FA D FS. Thus, F'S is a subset of the intersection.

Conversely, we have to show 7' = N{FA | A € F'(5)} C FS. Applying Lemma 4.4.4, we
have to show that #5 C O implies 1" C O for all open sets O of Y. Let £S5 C O. Then £S5 is
in Ks(0), whence S is in the open set O = F'7'[Ks(0)]. Ois closed w.r.t. binary union since
I is additive: A, B € O implies FA, FB € K5(0), whence (AU B) = FAUFB € Ks(0),
whence AU B € . By Lemma 20.3.1, there is some open set O’ of X such that O = Kg(0’).
S C O'implies S C A C O’ for some finitary upper set A by strong compactness of 5. A C O’
means F'A C O, whence T' C O. O

The Lemma shows that additive morphisms from UsX to UsY only depend on their values
on finitary upper sets. Thus, we get

Theorem 20.3.3 Let X and Y be two Us-admitting domains. If F,G : [UsX — UsY]
are two additive functions with £ ot = G o, then F = G follows.

Proof: The precondition means F(Tz) = G(Tz) for all z in X. By additivity, A = GA
holds for all finitary upper sets A. By Lemma 20.3.2, IS = G5 follows for all S in UsX. O

An analogous theorem for Ux could not be proved.

20.4 s and domain classes

In this section, we consider the relations between s and the domain classes of (multi-)
algebraicity and (multi-)continuity. We also introduce a novel class, the class of Us-conform

domains.

Theorem 20.4.1 Let X be Us-admitting.
(1) UsX is algebraic iff X is multi-algebraic.
(2) UsX is continuous iff X is multi-continuous.

Hence, Us preserves ALG, M-ALG, CONT, and M-CONT.

Proof: The implications from right to left are already provided by Th. 19.3.1 and
Th. 19.3.3. These two theorems were formulated for x. For multi-continuous X, UrX
and UgX coincide by Prop. 8.3.3.

Let now UsX be continuous. Let x be a point of an open set O of X. Then Tz € Kg(O)
whence by continuity of UsX there are an open set O of UsX and a member A of UsX such
that Tz € O C 1{A} C Ks(0). Let O’ = .71[O]. By continuity of ¢, O’ is an open set of X.
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First, 1o = Tz € O implies z € O'. Second, y € O’ means Ty € O C 1{A}, whence Ty > A,
ie. Ty C A. Thus, we obtain O’ C A. Third, T{A} C Ks(O) implies A € Ks(O), whence
A C 0. Summarizing, we obtain x € O’ C A C O. A being strongly compact implies the
existence of a finitary set I’ such that we finally get z € O’ C A C I C O.

Finally, let UsX be algebraic. Let & be a point of an open set O of X. Then Tz € Ks(O)
whence by algebraicity of UsX there is a member A of UsX such that T{A} is open in UsX
and Tz € T{A} C Ks(0). A point ¢ isin Aiff Ta C Aiff Ta > Aiff Ta € T{A}. Thus, A =
t7HT{A}] is open in X. Since it is also strongly compact, it is finitary. Tz € 1{A} C Ks(O)
implies 2 € A C O as required. O

Us-admission allows to map open sets of the ground domain to open sets of the power
domain by means of Kg(.) (see Th. 20.2.2). If even the contrary is possible we speak of
Us-conformity.

Definition 20.4.2 A domain X is Ug-conform iff it is Ug-admitting, and for all S € O
where O is an open set of UsX, there is an open set O in X such that $ € Ks(0) C O.

Topologically speaking, Ug-conformity means that the Scott topology of UsX has as a base
the sets Ks(O) where O is open in X.

Theorem 20.4.3 Every multi-continuous domain is Ug-conform.

Proof:

Every multi-continuous domain is in S-RD, i.e. Ug-admitting. For Ug-conformity, let A € O
where O is open in UgX. From Th. 8.3.2, we know that A is the supremum of the directed
set F(A) of finitary upper environments of A. Since O is open, there is some F' € F(A)
with F/ € O. From F € F(A), we get an open set O with A C O C F. Then A € Ks(O)
holds, and B € Ks(O) implies B C O C F,i.e. B > F, whence B € 0. Thus, we obtain
A€ K(0)Co. O

Problem 20 If X is Ug-conform, is then UgX again Ug-conform?

Problem 21 What are the relations between Ug-conformity and sobriety?

20.5 £ and Us may be exchanged

In [FM90], it was shown that /(LX) and £(UX) are isomorphic for bounded complete
algebraic ground domains X. The longish proof was done by means of the theory of informa-
tion systems. We were able to largely generalize this statement up to the class of Ug-conform
domains using Usg for U. Our proof is still longish, but completely differs from the proof in
[FM90] in that it is done by topological means. In section 20.6, we shall show by algebraic
means that £ and the initial U-construction ; may also be exchanged.

Theorem 20.5.1 If X'is Ug-conform, then UsLX and LUsX are isomorphic.

Before we are going to prove this theorem, we note that it allows to elegantly prove the
preservation of M-ALG and M-CONT under L.
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Theorem 20.5.2 L preserves M-ALG and M-CONT.

Proof: If X is multi-algebraic, then it is Ug-conform by Th. 20.4.3, and thus Th. 20.5.1
applies. UgX is algebraic by Th. 20.4.1, whence LUsX is algebraic by Th. 18.6.1. By
isomorphism, UsLX is algebraic, too, and by Th. 20.4.1, £X is multi-algebraic. The proof
for M-CONT is analogous. O

The proof of Th. 20.5.1 proceeds in several steps. The precondition of -conformity' is
not needed until the very last step. Hence, we start by assuming that X is only ¢/-admitting.
Then, LUX is a domain. In contrast, YLX is a domain even for arbitrary X since £X is
complete and complete domains are {f-admitting by Th. 8.9.3.

Step 1: A monotonic function ¢ : UYLX — LUX

For a strongly compact upper set K of £LX, we define oK = {K e UX |CNK #QVC € K}.
We have to show that ¢K is a closed subset of UYX. It is a lower set since K’ < K means

K' D K, and thus, C N K # () implies C' N K’ # 0.

Let (K;)ier be a directed family in K. If we assume ;o7 K; € @K, then there is a member
C of K such that C'NN;c; K; = 0. Hence, ;1 K C coC holds, whence K C coC' for some
k € I by U-admission. Here, the closedness of C' was used. K C co(C means Ky N C = 0,
whence K, is not in K. Because of this contradiction, (;c; K; is in K.

K < K'means K D K. If K isin K, then K meets all members of K, and thus it also meets
all members of K'. Thus, K < K" implies oK < @K'.

Step 2: A monotonic function ¥ : LUX — ULX

For a closed set C of UX, we define ¢/C = {C € LX | KNC # B VK € C}.2 We have to show
that ¢C is a strongly compact upper set of £LX.

For a strongly compact upper set K, we define ¢/(K) = {C € LX | KN C # 0}. We first
show ¢/(K) € ULX and later conclude C € ULX.

We claim %' = mapiz.® Since the latter maps from UX to ULX, we get '(K) € ULX.
map 1z K = 1(ez[K]) = T{lz | # € K} holds. Let C' be a member of this set. Then C' > |z,
ie. C 2 |z, for some z € K, whence z € C'N K. Conversely, assume there is some z in
C N K. Then |z C C since C is closed, whence €' > |z where z € K.

Now, ¥C = Ngee ¥'(K) holds. Since £X is complete, YL X is also complete by Th. 20.2.4,
and all suprema are given by intersection. Hence, arbitrary intersections of members of /LX

are back in Y/£X again.

C < C" means C C C'. Thus, whenever a set A meets all members of C’, then it meets all
members of C. Hence, ¥C' C 9C holds, i.e. ¥'C < C’. Thus, 7 is monotonic.

Step 3: Relations between ¢ and %

Let K be a member of /£LX, and let C' in turn be a member of K. By definition of ¢, C
meets all members of K. By definition of ¢, C'is then in ¥(¢K). Thus, we get K C ¥(¢K),
or in terms of order K > ¥(¢K), or by abstraction 1o ¢ < id.

'We drop the index ‘S’ of Us in this proof.
*Interestingly, the definitions ¢ and % only differ in the domain and co-domain.
This was the way I found the mapping 4. The mapping ¢ may be analogously derived.
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Analogously, C C ¢(¥C) holds for all C in LUX. This means C < ¢(¢C), whence ¢ ot > id.
As an aside, this means that ¢ is an upper adjoint and preserves all infima, whereas 9 is a
lower adjoint and preserves all suprema, i.e. it is in particular continuous.

The two relations ¥ o ¢ < id and o > id imply potpop = (pop)oe > ¢ and
pohpop=wo(hoy)< ¢, whence pohop = . Similarly, 1o ¢ o1 = 1 holds. In Step 4,
we show that ¢ is injective, whence @ o ¥ 0 ¢ = ¢ implies ¥ o ¢ = id. In the final Step 5, we

show that ) is injective, too, whence also ¢ o 1 = id.
Step 4: ¢ is injective: pK < K’ implies £ < K’

Let K and K’ be two strongly compact upper sets of LX. pK < oK’ means K C pK'. We
have to conclude K < K', i.e. K D K. Applying Lemma 4.4.4, we assume K C O where O is
an open set of £X, and have to show K’ C O.

Since K is strongly compact, K C (O implies there is a finitary set F in £X such that
K CF C Q. As F is finitary, there is a finite set £ of closed sets k4, ..., I, such that
F =1&. We show K’ C F, whence K’ C O immediately follows by F C O.

Let C' be a member of K’. C is closed, whence its complement O = co(C is open. The
sets O; = co F; are also open. With these notions, we first show an auxiliary property:
K(O) C K(O1)U-+-UK(O,). This property will later be used to show that there is some k
such that O C Op. By complementing, this implies C' D F},i.e. C' > F} for some k, whence
cCelé&=F.

Proof of £(O) C K(O1)U ---UK(Oy):

Let K be a member of K(O), i.e. a strongly compact upper subset of O. Then K does not
meet O’s complement C', whence K is not in ¢K’. Thus, K is neither in ©K because of the
precondition @K C ¢K’. Hence, there is a member A of K such that AN K = . Because of
K C 7€, there is some F; in £ such that A > F;, i.e. A D E;. Hence, F; N K = () also holds,
whence K C Oy, i.e. K € K(O;).

Proof of O C O, for some k:

Assume O € Oy for all k. Then for all k there is some z; in O with z; ¢ Of. Let
K = 1{z1, ..., z,} C O. By finiteness, this is a strongly compact set. Hence, K € K(O),
whence there is some 7 such that X C O;, i.e. in particular z; € K C O;. Thus, we derived a

contradiction.

Step 4 is now concluded. Notice that we did not use U-conformity so far, i.e. all results
proved till now are valid for general ¢/-admitting ground domains X.

Step 5: 9 is injective: ¥C < ¥C" implies C < ('

Let C and C' be two closed sets of UX. ¥C < ¥C" means C D ¥C’. We have to conclude
C<(Cie.CCC.

Let K be in C, and assume K is not in C’. Then K is in the complement O of C'. Since O is
open in UX, there is an open set O of X such that K € K(O) C O by U-conformity. K C O
implies K NcoO = (). Hence, coO is not in ¥C, whence it is in ¥C’ neither. This means
there is some K’ € C' such that K'NcoO = (. Thus, K’ C O, whence K’ € K(0) C O
contradicting K’ € C'. 0



20.6. L ANDU; MAY BE EXCHANGED 235

20.6 L and U/; may be exchanged

In this section, we investigate algebraic structures that are both L- and U-modules. The
theory of these structures helps to prove that the initial L-construction £ and the initial U-
construction Y = U; commute for every ground domain X. In contrast to the proof for £ and
Us in the previous section, this proof will be mainly performed by algebraic methods. Thus,
it has a completely different structure. The proved theorem is also unrelated to Th. 20.5.1
unless somebody succeeds in proving Us to be initial.

The proof of LUX = /LX is done by introducing the algebraic theory of L-U-modules and
showing that both LUX and ULX are free L-U-modules over X. L-U-modules are domains
that are L-modules as well as U-modules such that the respective additions distribute over

each other.

Definition 20.6.1 A domain M is an L-U-module iff
(1) There are a least element L and a least upper bound a Ub for every two points a and
b.
(2) There are a greatest element T and a greatest lower bound aMb for every two points
@ and b. The operation ‘I’ is continuous.
(3) aU(byMby)=(aUby)N(alby)and aM(by Uby) = (amMby)U (al by) hold for all a,
b1, by in M.
An L-U-X-module is a pair (M, 7) of an L-U-module M and a morphism 7 : [X — M].
A function f:[M — M'] between two L-U-modules is L-U-linear iff it is both L-linear
and U-linear, ie. f(L) =1, f(T)=T, f(aUb) = fal fb, and f(aMb) = fan fb hold.
A function f between two L-U-X-modules (M, ) and (M/, n') is L-U-X-linear iff in
addition fon = 7' holds.
By Prop. 17.2.2, part (1) of the definition states that M be an L-module, whereas part
(2) requires it to be a U-module. Continuity of ‘L/” need not be explicitly required because of
Prop. 5.3.5. The two distributivities in (3) are equivalent to each other as known from lattice

theory. Thus, one need only check one of them in every case. The definitions involving X

are analogues of the definition of R-X-modules.

We start the development of the L-U-theory by two theorems about the generation of
L-U-modules.

Theorem 20.6.2 If X is a U-module, then £X is an L-U-module and the singleton map
is U-linear, i.e. {{T[} = T and {a M b} = {af} 1 {6} hold.

Proof: We use the explicit representation of £X in terms of closed sets. {T[} = | T =X
is the greatest element of £X.

From M : [X x X — X], we get the operation ‘A’ by double extension:
AADB ext (Aa. ext (Ab. {lan b[}) B) A
= cdUseacl Upep LaTTd)

cl Usea Upep {aT1 b}
cd{anblaec A, be B}
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We claim that the latter set equals AN B. If aisin A and bin B, then aMbisin AN B since

A and B are lower. Conversely, if z is in AN B, then z is in both A and B, and z = z Mz
holds.

Thus, we derived A & B = AN B = AN B. The reason for this derivation was to show
continuity of ‘1" in £X. The operators ‘I’ = ‘N’ and ‘L’ = ‘U’ distribute by set theory.
{la[} & {b[} = {la M b]} holds because ‘A’ is the double extension of ‘M. ]

The next theorem is the dual of Th. 20.6.2. Its proof is more complex since the initial U-
powerdomains X are not known explicitly in general.

Theorem 20.6.3 If X is an L-module, then &#X is an L-U-module and the singleton
map is L-linear, i.e. {L[} = L and {Ja U b} = {|af} U {b[} hold.
Proof: By Prop. 14.3.3 (4), UX has a least element, namely Ly-{Lx[} = 1-{L} = {L[}.
By double extension, we raise the operation ‘LI’ of X to
A A B =ext(Aa.ext(Nb.{aUb}) B) A
Then {laf} A {|b} = {je U b} holds, and ‘A’ is additive in both arguments. Thus, we are done
when A A B = AU B is proved. Additivity of ‘A’ implies the distributive laws in connection
with ‘Y’ = ‘17",
We show A A& B = AU B in four steps.
Step1l: A B>B

AA B >  ext(Ma.ext(Mb.{b]}) B)A
(53)

=" ext(Ma.B)A
> ext(Aa. B){L[}
) Na.B)L = B

Step2: ArB>A
AAaB > ext(Xa.ext(Mb.{al})B)A

> ext(Aa.ext (Ab. {lal}) {L]}) A
B ot (Aa. {al}) A
(53)

= A
Step 3: A A=A
We show that the set S = {A € UX | A A A = A} admits all U-X-module operations,
whence S = UX follows by reducedness of UX.
e Oisin S, since 8 A 0 =ext(...)0 =0 holds by (P1).
o All singletons are in § because of {c[} A {c[} = {cU e[} = {c[}.
¢ Limits of directed subsets of S are in .5 by continuity of ‘A ’.
Let A and B be two members of §. By additivity of ‘A’, we obtain
(A B)R(AYB) = (ARA)LYB(ARB)Y (BARA)Y (BADB)
= AY(AAB)Y(BAA)YB
Since ‘Y’ is greatest lower bound* and we already showed A < A A B and B< B A A,
the result simplifies to A & B. Thus, A Y B is back in 5 again.

*Tt is this argument that makes the proof specific for L- and U-constructions.
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Step4: AR B=AUB.

By A A B > A, B, the formal set A & B is an upper bound of A and B. If both A and B
are below some (', then A & B < (' A C = C follows from monotonicity of ‘A’ and step 3.0

At next, we show that extension preserves linearity of the opposite kind.

Theorem 20.6.4

(1) Let X be a U-module, M an L-U-module, and f : [X — M] a U-linear map. Then
its (unique) extension f :[£X — M] is L-U-linear.

(2) Let X be an L-module, M an L-U-module, and f : [X — M] an L-linear map. Then
its (unique) extension f: [YX — M] is L-U-linear.

Proof: We start by proving (1). As an extension generated by £, f is L-linear, i.e.
f(L)= 1 and f(AU B) = f(A)U f(B) hold.

By U-linearity of f, we get f{{T[} = f(T) = T. The last equation to show is f(AM B) =
fATI fB. Let F be defined by F(A, B) = f(AN B) and G by G(A, B) = fAN fB. By
Th. 20.6.2, £LX is an L-U-module as M is. By the distributive law in part (3) of the definition
of L-U-modules, ‘M’ is L-linear in both arguments, whence both #” and G are L-linear in both

arguments. They coincide for singletons:

F{al n{b}) = Fan b} by U-linearity of {|.
= f(amb) since f extends f
= fan fb by U-linearity of f
= f{laly 0 {00

Thus, £ and G coincide by initiality of L.

Now, part (1) is completely proved. Part (2) may be proved analogously since the proof of
part (1) is completely algebraic, i.e. it does not involve any order-theoretic or topological
arguments. O

After these preliminaries, we now come to the main theorem.

Theorem 20.6.5

(1) For every ground domain X, (LUX, ¢z 0 1y) is an initial L-U-X-module, i.e. there is
exactly one L-U-X-linear map to every L-U-X-module.

(2) For every ground domain X, (ULX, yy o tg) is also an initial L-U-X-module.

(3) For every ground domain X, the iterated power domains LU/X and ULX are isomor-
phic by an L-U-linear morphism that maps {{{z[}u[}z to {{lz[}c[}z-

Proof: We first show (1). Let (M, f) be a given L-U-X-module. Then f: [X — M]
holds. Since M is a U-module, there is a U-linear extension f: [UX — M]. Since M is also
an L-module, there is an extension f : [LUX — M] of f By Th. 20.6.4, f is L-U-linear.
Because of its generation by extending twice, f otz 01y = fo 1zt = f holds. Hence, f is
L-U-X-linear from (LUX, 1z 0 1z4) to (M, f).

Let £ and F5 be two such L-U-X-linear maps, i.e. £; 0t 01y = f holds. We have to show
Fy = Fy. Let F! = F; 01z. The mapping ¢z is U-linear by Th. 20.6.2. Thus, F/ are two
U-linear maps from UX to M with F/ o 4y = f. By initiality of #, F| = F} follows. Thus,
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Fy and Fy are two L-linear maps from LUX to M with Fy ot = Fy 0. By initiality of £,
F = F; follows.

Part (2) is proved analogously. Parts (1) and (2) together imply part (3). O



Chapter 21

Subconstructions of the final
D-construction

In this chapter, we investigate the sub-constructions of the final D-construction D. Exis-
tential restriction to the three sub-semirings B, B, and C of D gives us three sub-construc-
tions, which we call S, S, and 7 respectively. The name S was chosen since S generalizes
the sandwich power construction of Buneman [BDWS8S8] that is defined for algebraic ground
domain only. S belongs to B as S belongs to B. The name 7 has no deeper meaning except
that the letter ‘7" is the successor of ‘S’.

The topics of the chapter are prepared by studying the logical properties of predicates
with values in D in section 21.1. Then, the final D-construction D and its operations are
translated into topological terms in section 21.2 for sober ground domains.

S, the existential restriction of D to B is introduced algebraically in section 21.3. In
the case of sober ground domains, it is translated into topological terms in section 21.4. Its
defining condition, the sandwich condition, can be drastically simplified provided the ground
domain is in the class KC & M-CONT (see section 21.5). The sandwich power domains for
algebraic ground domains are studied in section 21.6.

In section 21.7, the dual sandwich construction S is introduced as the existential restric-
tion of D to the semiring B. In case of sober ground domains, its defining condition is
translated into the language of topology and largely simplified. The restriction 7 to semiring

C and intersections of all these sub-constructions of D are dealt with in the final section 21.8.

21.1 D-predicates

By Th. 16.3.1, the final D-construction D is isomorphic to the product of the final L-

construction £ and the final U-construction i/:

DX =[[X = D] “¥D]=[[X - L] ““ L] x [[X — U] “4 U]

Although the second equality is only an isomorphism, we do not write down the isomorphisms
explicitly for simplification. Instead, we directly apply pairs of functions to pairs of predicates
subsuming an equality (P", PY) (p", pV) = (Pp", PUpY).

239
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Due to the equation D = L x U, the predicate domains [X — D] and [X — L] x [X — U]
are also isomorphic. Again, we assume equality here, i.e. a pair (pL, pU) in [X — L]x[X — U]
may be directly applied to a point z resulting in (p”, p¥)z = (p"=, pVz).

In section 17.1, we mentioned negation - : [D — D] that maps F to T, T to F, and L
and W to themselves. In terms of L x U, (0, 0) is mapped to (1, 1) and vice versa, whereas
(0, 1) and (1, 0) are mapped to themselves. Assuming two operations -, : [L — U] and
= : [U — L] which both exchange 0 and 1, one obtains —(I, u) = (-yu, —~1l). Note that —,
and -y are inverse order isomorphisms between L = {0 < 1} and U = {1 < 0}.

The operations —7, and -y may also be used to convert L-predicates into U-predicates
and vice versa. For a given L-predicate p : [X — L], p = -y op : [X — U] provides a
U-predicate. Conversely, a U-predicate ¢ : [X — U] is transformed into the L-predicate
G=-yoq:[X — L]. De Morgan’s formulae p; + p; = p1 - pz and pj - pa = p1 + p3 are easily
verified for two L-predicates p; and py as well as for two U-predicates. The negation of a
D-predicate (p, q) : [ X — D] = [X — L] X [X — U] then becomes —(p, q) = (¢, D).

21.2 D in topological terms

By Th. 16.3.1, the final D-construction D is the product of £ and U. For sober ground
domain, we know topological representations of £ and . Hence, D may also be represented
in topological terms:

e DX is the set of all pairs (C, K') of a closed subset C' of X with a compact upper set
K of X.

(C,K)<(C',K'") iff CCC"and K D K.

o The limit of a directed family (C;, K;)ier is (cl Ujer Cis Nier Ki)-
0=(0,0)

(C,K)y (C',K')=(CuC', KUK")

{zl} = (lz, T2)

o For f:[X — DY], ext f A= (cl U f[AF], U fUIAY)).

For extension and the derived operations below, we adopt the convention to denote the
lower component of a pair A by A” and the upper component by AY. Similarly, a function

f:[X — DY] is identified with a pair (f*, fV):[X — LY] x [X — UY].
o map f A = (cl fF[AF], 177[AY])

e AXB=AXxB=(AFx BL, AV x BU)
This equation shows that D becomes symmetric when restricted to a class of domains
closed w.r.t. Cartesian product and contained in the class of sober domains. The largest

such class we know of is the class of multi-continuous domains by Prop. 8.4.2 and

Th. 8.8.1.
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(C,K) ifr=T

) (0, 0) ifr=F

re (G, K) = 0, K) ifr=1
(c,0) ifr=W

For the last two cases, remember L = (1, 0) and W = (0, 1).
. filter p A (c{ae A" | pPa=1}, T{a € AV | pY a = 1})
= (c{ae At |pa>T} T{a€ AY [pa < T})

21.3 S — the existential restriction of D to B

Since B is a sub-semiring of D, we know from Th. 14.6.2 that the construction S defined by
e SX={AeDX|Vpe[X —B]: Ap € B}
is a power construction with characteristic semiring B. In Th. 21.6.4 below, we shall see that
S is a generalization of the sandwich power construction defined in [BDWS8S]| for algebraic
ground domains and investigated further in [Gun89b, Gun90, Hec90c, Hec90a]. In anticipa-
tion of the theorem, we chose the abbreviation § and call the domain SX sandwich power
domain and its elements sandwiches. Consequently, the condition restricting DX to SX is
called sandwich condition or shorter condition 5. Since DX is isomorphic to the product

LX x UX, we sometimes call its elements pairs.

We start the investigation of § by illustrating the location of SX inside of DX:

Proposition 21.3.1
SX is a closed subset of DX. Hence, every pair below a sandwich is a sandwich.

Proof: The sandwich power domain is characterized by the condition Ap € B for all
p:[X — B]. Let A’ < A. Then for all p: [X — B], A’p < Ap holds. Since B is a lower
set in D, Ap € B implies A’p € B. Thus, §X is a lower set in DX. It is closed since it is a
sub-domain. Or more directly: since (| |;c; 4i)p = [l;c7(Aip) and B is closed in D. O

In the sequel, we shall transform the sandwich condition gradually. We start by turning the

universal quantification into an existential one.

Vpe[X—=B]:ApeB if Vpe[X—=D]:(VzeX:pzeB)= Ape B)
iff Vpe[X—=D]:(Ap=W=3FzeX:pz=W)

This formula may be interpreted such that SX consists of all consistent second order predi-
cates in DX. A consistent second order predicate does not create inconsistencies by itself. If
it results in an inconsistency (Ap = W), then its argument already was inconsistent (pz = W

for some z).

By splitting the pairs into components, we obtain further by W = (1, 0):

iff  Vple[X = L], pY € [X = U]:
(AP pl =1 and AVpY =0= 3z e X:plar=1and pYz =0)
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Renaming p” into p and p¥ into ¢, the conclusion looks like pz = 1 and gz = 0 for some z. It
may be more elegantly formulated. Negating ¢, one gets pz = 1 and gz = 1 for some z. Both
p and ¢ are L-predicates and thus may be multiplied. We equivalently obtain (p-§)z =1
for some z, or p- ¢ # 0 where 0 is the constant L-predicate Az.0. Thus, we finally get for

(AL, AY) in DX:
Proposition 21.3.2
, eSX i p:|X—=L],q: X —=U]|: p=1an qg =0 implies p-g#0
Al AYY € X iff VY Al d AY | q

21.4 S in topological terms

In this section, we first want to represent S in terms of open grills and filters. In case of a
sober ground domain, we then translate the grills into closed sets and the filters into compact
upper sets.

For the translation into grills and filters, we use the condition in the form
(Alpl =1and AVpY =0= Tz e X :pPz=1and pY 2 = 0)
Translating 0 and 1 into L and T, we obtain
(Alpl =T and AV p" =T =Tz eX:pla=Tandp"z=T)

since Ty, =1 and Ty = 0.

Let G be the open grill belonging to A" and © the open filter belonging to AY. To
complete the translation to set notation, we represent the predicates p” and pU by open sets
O" and OY. Then p”z = T means = € OF, and same for OV. Similarly, A"p"” = T means
0" € G, and AVpY = T becomes OV € . Hence, we obtain

(G, 0)e SX iff VO, 0V e QX:
(OFeGand OV € 0 =3z € X:2 € O and z € OY)
iff YOreg, 0YVe0:0n0OY 490

Formulating this in English words, one obtains

Proposition 21.4.1 The sandwich power domain $X over some ground domain X is
isomorphic to the set of all pairs (G, Q) of an open grill and an open filter of X where
every member of G meets all members of O.

For sober ground domain X, one can go one step further and translate the open filters into

compact upper sets K. The translation of open grills into closed sets C' is always possible.

O € G becomes C N O # (), and OV € O becomes K C OY.

Hence, the restriction translates into: for all open sets O and OV, if C meets O and
K C OY then OF meets QY. For fixed C' and OV, the following holds:
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Every open set meeting C' meets OV
iff  every open environment of every point of C' meets OV
iff  every point of C' is in the closure of OV by Prop. 4.2.2
iff CCcdoV

Hence, one obtains

Theorem 21.4.2 The sandwich power domain SX over a sober ground domain X is
isomorphic to the set of all pairs (C, K') of a closed set C' and a compact upper set K
such that for all open sets O with K C O the inclusion C' C ¢l O holds. Order and power
operations are inherited from D (see section 21.2).

Two remarks seem to be appropriate. First, the condition ‘K C O implies C' C cl O’
looks quite strange, and it is not obvious how it could have been found without considering
the second order predicates. Thus, this strange topological condition is motivated by a
natural condition on second order predicates. Second, if we had defined a power domain
construction directly as in the theorem above, we would have been forced to verify that each
power operation respects the topological criterion. This would have been a non-trivial task,
in particular for the extension functional.

Before we investigate the restriction ‘K C O implies C' C ¢l O’ more closely in the next
section, we briefly consider existential quantification in SX.
o ecxpA = (exp pP AL, exypY AY) for p: [X — BJ.
The pair on the right hand side denotes a Boolean. We want to translate this expression

into ordinary Boolean notation.

The result is T = (1, 1) iff exy, pP A" = 1. The second component does not matter
because (1, 0) is not a legal Boolean. The equation ezy, p“ A" = 1 in turn is equivalent
to the existence of z € AL such that plz = 1. For this z, p¥2 cannot be 0 since 0 is
not a legal Boolean. Thus, pPz = 1 is equivalent to pz = T.
Similarly, the result is F = (0, 0) iff ezy pUAY = 0. This in turn is equivalent to the
non-existence of x € A” such that p"z = 1, i.e. pYz is 0 for all € AY. Since (1, 0) is
not a legal Boolean, this is equivalent to pz = F.

T f3uecAl:pu=T
Thus,ezp A=< F ifVoecAV:pv=F

1 otherwise
The sandwich condition guarantees that the first two cases exclude each other.

e The formula for ne is derived from that for ex:
T if AL #£0

neA=ex (M. T)A=¢ F if AV =90

1 otherwise

21.5 Simplification of the sandwich condition

In this section, we try to simplify the restriction ‘K C O open implies C' C ¢l O’ for pairs
(C, K) of a closed and a compact upper set. A drastic simplification of this condition is



244 CHAPTER 21. SUBCONSTRUCTIONS OF THE FINAL D-CONSTRUCTION

achieved for a special class of ground domains. An example is presented showing that general
simplification is impossible however.

Theorem 21.5.1 Let X be a multi-continuous domain in class KC. Then for all closed

(' C X and all compact upper sets K C X, the following two statements are equivalent:
(1) The sandwich condition: If K C O for some open set O, then C C clO.
(2) C C LK.

Property KC was introduced by Prop. 5.5.2 and means that the intersection of two upper
cones is compact. All finitely continuous domains are continuous and satisfy this condition
(Prop. 7.2.2), i.e. they are covered by the theorem above.

Proof: If ¢ C | K holds, then K C O implies C C | K C |O CclO.

The opposite direction is much more difficult. A multi-continuous domain is sober, whence in
K-RD. Thus, the pre-condition X in KC & K-RD of the lemmas 8.10.1 and 8.10.2 is satisfied.

Let C be a closed set and K be a compact upper set satisfying the sandwich condition. Let
F be the set of all finitary upper sets F such that there is an open set O with K C O C F.
From Th. 8.3.2, we know that F is a D-directed set whose intersection is K .

For all sets ' € F, K C O C F holds, whence C' C clO C cl F follows from the sandwich
condition. Lemma 8.10.1 implies cl ¥ = | F if X is chosen as the closed set in the Lemma.
Hence, C'C Nperd ¥ = | Nper I = L K applying Lemma 8.10.2. O

Property KC is important for the validity of the theorem. Without it, the theorem
does not hold even for algebraic ground domains. Consider the following example. Let
X = {ay, ag, as, ..., G, b1, by, b3, ..., c¢}. There is no point by,. The a-points form an
ascending sequence: a1 < agy < +++ < @, Whereas the b-points are incomparable. Fvery
a-point is below the corresponding b-point: a, < b,. The remaining point ¢ is below all
b-points, but not below any a-point, not even below a,,. The domain is visualized by the
following picture:

c aq

This domain is algebraic. Property KC is not satisfied since TeN Ta; = {by, by, ...} is an
infinite discrete open set covered by the infinite number of open sets {b;}, whence it is not
compact. (Interestingly, the additional inequality ¢ < a,, would establish property KC, but
would destroy algebraicity on the other hand.) Let C'= |¢ = {c} and let K = Tay = {@s}.
(' and K satisfy the sandwich condition although €' C | K, i.e. ¢ < @y does not hold. Every
open set with K C O, i.e. ay, € O, contains some point a,, with n < co. Hence, it contains b,
because it is an upper set, whence ¢ is in |O by ¢ < b,. Thus, ¢ is more than ever in ¢l 0.O
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21.6 S for algebraic ground domains

For algebraic ground domain, the sandwich power domain is shown to be algebraic again.
The sandwich condition looks particularly simple for its isolated points. This allows to show
that our sandwich power domain generalizes the sandwich power domain of [BDWSS].

If X is algebraic, then both £X and /X are algebraic. Their bases are given by the sets
of all | #” and T# respectively for finite subsets of XY. By Prop. 8.4.2, DX is algebraic, and
by Prop. 6.1.6, its base is the set of all pairs (| %, TF') where 2 and I are finite subsets of
X0, These pairs are also isolated in SX provided they satisfy the sandwich condition because
S$X is a sub-domain of DX. Every point in DX is the directed limit of such pairs. Since all
pairs below a sandwich are sandwiches again by Prop. 21.3.1, every point of §X is the limit
of a directed set of isolated sandwiches. Thus, we obtain

Proposition 21.6.1
The sandwich power domain over an algebraic ground domain is algebraic. Its base is the
set of all sandwiches (| £, TF) where £ and [ are finite subsets of X°.

The sandwich criterion simplifies drastically for such isolated pairs:

Lemma 21.6.2 Let X be a domain. If £ and F are finite sets of isolated points of X,
then (| £, TF) satisfies the sandwich condition iff £ C |TF.

Proof: Assume £ C |TF. Then for every O D TF, [EC |[TF C |J]O C clO holds.

For the opposite, note that T# is open since £ consists of isolated points. Thus, the sandwich
condition implies £ C | E C clTF. Since E consists of isolated points, Prop. 6.1.3 yields
EC|TF. a

The representation of the base of SX may even be further simplified choosing suitable sets
F and F.

Lemma 21.6.3 Let X be algebraic and let £ and /' be finite subsets of X% with # C
LTF. Then there is a finite subset F” of X° with 1/ = T/’ and £ C |},

Proof: Since K C |[TF, for every e € I there is some point 2z, € X and some point
fe € F such that e < z. > f.. By Prop. 6.4.1, the points z. may be assumed to be in the
base X". With £ = {z. | e € E}, we define }' = E'U F. E'is a finite subset of XY,
whence F' also is. All points e in E are below z. in F’, whence £ C | I follows. TF C TF’
immediately follows from F C F’. For the opposite inclusion, z. is above f. for all e in F,
whence E' C TF whence F' C TF. O

Summarizing, we obtain the following theorem:

Theorem 21.6.4 For algebraic ground domain X, our sandwich power domain over X
is algebraic and coincides with the sandwich power domain of [BDWS88] and [Gun89b,
Gun90]. Its base is the set of all pairs (| £, TF) with 2 C |[TF, or equivalently the set of
all pairs (| F, 1F) with £ C | F, where in both cases F and F are finite subsets of X".

Proof: For the comparison with the sandwich power domain in [BDW88, Gun89b,
Gun90] notice that the authors of these papers write the sandwiches the other way round,
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i.e. the lower set to the right. Correcting this and translating notation, the paper [Gun89b]
defines the sandwich power domain to be the ideal completion of all pairs (E, F') of finite
subsets of X° such that there is a finite subset G of X° with £ C |G and G C TF. This
directly implies £ C |TF, and conversely, G may be chosen as the set E’ in the proof of
Lemma 21.6.3. These pairs are pre-ordered by (F, F') < (E', F')iff |[E C |E"and TF 2 TF".
Hence, the poset of equivalence classes of this pre-ordered set is just our base as presented in
the theorem. O

Since the existential restriction to B of the final double power construction properly
generalizes the sandwich power construction to all domains, we are allowed to denote it by
S as we have already done throughout the preceding sections.

21.7 S — the existential restriction to B

Instead of restricting D to the semiring B = {1, F, T}, we may also restrict it to the dual
semiring B = {F, T, W}. The result is denoted by S. By Th. 14.6.2, it is defined by

e SX={AeDX|Vpe[X —B]: Apec B}
It is a power construction with characteristic semiring B. In contrast to S, this construction

was never proposed in the literature. Hence, there is no established name for its members.

We sometimes call them dual sandwiches. The condition restricting D to S is called condition

S.
We start the investigation of S by illustrating the location of SX inside of DX:

Proposition 21.7.1 SX is an upper subset of DX. Hence, every pair above a dual
sandwich is a dual sandwich.

Proof: Let A < A’ where A is in SX. Then for all p : [X — B], Ap < A’p holds. Since
B is an upper set in D, Ap € B implies A’p € B. Thus, SX is an upper set in DX. a

Condition § for A = (AF, AY) may be transformed as follows:
Vpe X —=B]:ApeB iff Vpe[X—=D]:(Adp=1L=TzcX:pr=1)

This formula may be interpreted such that SX consists of all omniscient second order predi-
cates of DX. An omniscient second order predicate does not create ignorance by itself. If it
results in a state of ignorance, (Ap = L), then its argument already did not know everything

(pz = L for some z).

By splitting the pairs into components, we obtain further by L = (0, 1):

iff  vpl e [X —L],pY € [X = U]:
(Alpt =0and AVpYV =1 =Fz e X:plz=0and p 2 = 1)

In transforming further, we employ the same trick as we did for condition S. Renaming p”
into p and pU into ¢, the conclusion pz = 0 and gz = 1 for some = is equivalent to p-q # 0
in terms of U-predicates. Thus, we finally get for (A", AY) in DX:
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Proposition 21.7.2
(A, AV e SX iff Vp:[X — L], ¢:[X — U]: (A" p=0and AY ¢ = 1 implies p - q # 0)

Next, we go on to open grills G and open filters (). We use the condition
(A"p" =0and AVpV =12z e X:pPz=0and p" z =1)

The predicates p” and pU are replaced by open sets OF and OV. All atomic components of

the formula above are just negations of the corresponding components in case of the condition
S. Hence

(G,0)eSX iff VO 0YecQX:
(O ¢ Gand OV ¢ 0= 3z e X 2¢OV and z ¢ OY)
iff VO, oY € QX :
(OFuoY=X=0legGor 0V € 0)

For sober ground domain X, we translate the open filters ) into compact upper sets K,
and the open grills G into closed sets C'. For pairs (C, K) of a closed set and a compact
upper set, condition S then becomes

OFuoV=X=Cno"#0or k COY

We claim that the last implication is equivalent to ‘C' C OV = K C OY’. Let C C OY, and
let O" be the complement of C'. Then C N O = § holds, and C C OV implies OF UOY = X.
By condition S, one may conclude K C OY.

Conversely, assume O*UOY = X and CNO" = §. Then C = CNX = Cn(0"UOY) = CNOY,
whence C C OV. By the new condition, K C O follows.

We now simplified S to the condition that C' C O implies K C O for all open sets O. By
Lemma 4.4.4, this is equivalent to X C 1C.

Theorem 21.7.3 The sandwich power domain SX over a sober ground domain X is
isomorphic to the set of all pairs (C, K) of a closed set C' and a compact upper set K such
that K C TC holds. Order and power operations are inherited from D (see section 21.2).

The inherent asymmetry of domains effects that condition S may always be simplified to
K C 17C. Condition S however can be simplified to the comparable form C' C | K in special
cases only.

An isolated pair (| F, TF) where E and F are finite subsets of X° is a dual sandwich iff
F C 1] E. Later, we shall see that SX is algebraic whenever X is algebraic. The proof of this
claim is postponed to section 22.10 where it is handled together with some other algebraicity

proofs.

21.8 7 and some intersections

The third sub-semiring C of D also gives rise to a sub-construction of D. We call it 7

this name has no deeper meaning. 7 is defined by
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e 7TX={PeDX|Vpe[X—=C]:PpeC}
From Th. 14.6.2, we know that 7 is a power construction with characteristic semiring C. We

do not transform the defining condition of 7 further since the outcome would not be very
interesting.

Since the intersection of sub-constructions is a sub-construction again, we obtain some
more sub-constructions of D by intersecting S, S, and 7. We denote them by § = §n S,

ST =8n7,and 7S = 7 N S.The intersection of all three is SS because of the following
inclusion statement:

Proposition 21.8.1 For all ground domains X, SSX C 7X holds.

Proof: Let A be in S§X, and let p: [X — C]. Then pis also in [X — B] and [X — B],
whence Apisin both B and B as A is in both X and SX. Thus, Ap € C. O

The mutual inclusions of these power constructions are visualized by the following diagram.

ST

N

The dotted lines separate the constructions with different characteristic semirings. D has
semiring D, § has B, S has B, and the constructions 7, S7, 78, and SS have semiring C.
All these constructions are shown to be different in section 22.8.



Chapter 22

The conditions M and M

In the previous chapter, we introduced all sub-constructions of the final D-construction
D that are obtained by existential restriction to sub-semirings of D and intersection. In this
chapter, we present some smaller sub-constructions of D characterized by additional logical
conditions on the second order predicates. The need for smaller constructions is also due to

the fact that the sandwich construction and its dual are not reduced (see section 22.1).

The additional logical conditions are prepared by studying the notions of lower and upper
implication of D-predicates in section 22.2. In section 22.3, we establish the logical condi-
tions M and M on second order predicates and show that they induce two power domain

constructions that we call M and M.

The defining condition M of the construction M is transformed in section 22.4, translated
into topological terms in section 22.5 for sober ground domains, and drastically simplified
in section 22.6 for ground domains in KC & M-CONT. The dual mixed construction M is

considered algebraically and topologically in section 22.7.

By intersecting the sub-constructions of D introduced so far, we obtain some more sub-
constructions. All these 14 sub-constructions are summarized in section 22.8 and shown to

be different even for small finite ground domains.

The most interesting sub-construction that is obtained by intersection is C, the intersection
of M and M. In section 22.9, we show that every member of MX is a union of a member
of CX and a member of MX that is below the empty set.

The case of an algebraic ground domain is considered in section 22.10. In this case, § is the
known sandwich construction of [BDWS88], M the mixed construction of [Gun89b, Gun90],
and C Plotkin’s construction of [Plo76].

22.1 Are sandwich power domains reduced?

We now start to investigate the question whether the sandwich power construction is
reduced, and if not what its core is. One reason for being not reduced could be the fact that
the sandwich power construction is the existential restriction of the final D-construction that
in turn is built using the final U-construction. If /¢ happens to be not reduced (an open

249
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question), then this could make the sandwich power construction non-reduced. The effect
would however be small; we know that ¢/ ;X is reduced for multi-continuous X.

Independently from this uncertain effect, a second reason for ‘junk’ in the sandwich power
domains could be the weakness of the sandwich condition. The condition was derived as the
weakest possible condition that lets existential quantification w.r.t. B be well defined. There
might well be stronger conditions that are also respected by all power operations. This is
indeed true; we shall soon meet such a stronger condition.

To be precise, sandwich power domains are generally not reduced, not even for the simplest
ground domains. As an example, we consider the ground domain 2 = {1 < T}. Since this
domain is finite, all lower sets are closed, and all upper sets are compact. Hence, both £2
and U2 contain 3 elements, and therefore, D2 has 9 elements. They are listed in the following
table. The order is such that the lower left corner contains the least element, and elements
increase when going to the right or upward.

0 =9 - -
1 {7} L-ATh * {7
uz {L,Th o Ly {L {L T
0 {t3 {4 T}
L2 —

The two places marked by ‘=’ do not contain sandwiches. Since 2 is finite, Th. 21.5.1
holds, and (C, K) is a sandwich iff C' C | K. This is not true if K is empty and C' is not
empty. Hence, the sandwich power domain §2 has 7 elements. From these, 6 can be built up
using the power operations 0, ‘g’, and ‘-’, as indicated in the table. The remaining sandwich
S = ({L}, {T}) at position ‘+’ cannot be built such way. It is neither 0 nor {|z[} nor L - {z[}
for some z since all these sandwiches occur on other positions in the table. It also cannot be
built by union: if A & B = ({1}, {T}), then A" U BY = {1} holds. Hence, one of these,
say AY, equals {1}. Because of AY U BY = {T}, AY C {T} holds. AY cannot be empty,
because ({L}, 0) is not a sandwich. Hence A = ({L}, {T}) = 5. Because all is finite, S can
neither be obtained as limit of a directed set of the remaining 6 sandwiches. Thus, S is not
in the core of §2.

Summarizing, we found that $2 has 7 elements, whereas its core only has 6. The un-
reachable sandwich $ is characterized by the fact that its lower part is not empty, but does
not meet its upper part.

Unfortunately, there is no easy way to see what condition distinguishes the 6 sandwiches
in the core from the one not in the core. By studying various sandwich power domains for
more complex ground domains, the correct condition was found. We call it miz condition or
condition M because Th. 22.10.3 will show that it restricts the sandwich power domain to
the mized power domain defined in [Gun89b, Gun90] for algebraic ground domains.
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22.2 Lower and upper implication for D-predicates

The definition of condition M and its dual, condition M is prepared by investigating the

logic of D more closely.

To obtain a concise presentation, we always work with D-predicates [X — D] in the sequel
where X is an arbitrary domain. All results are valid for D itself also since D is isomorphic

o [1 — DJ]. [X — D] is isomorphic to [X — L] x [X — U], whence ¢ in [X — D] may be

written as pair (a”, aV).

4

In addition to the logical operations of disjunction ‘4’, conjunction ‘’, and negation ‘=,

we introduce a kind of difference: ¢ —b = a--b. It is mainly used as a notational abbreviation.

The following relations are easily verified:

Proposition 22.2.1 For all D-predicates a and b:
(1) (a + b =a¥ 4+ b" and (a + b)Y = aV + Y
(2) (a-b)" =a” " and (a-b)Y = a¥ . Y
(3) (ma)’ = a¥ and (-a)V = o& (cf. section 21.1)
(4) (a—b)L = al b7 and (a— b)Y = a¥ - bL.
Statement (4) is an immediate consequence of statements (2) and (3). It shows that

difference ‘=’ combines the lower and upper components of its arguments. This property

explains the usage of difference in condition M and M as will be seen below.
The next proposition claims the equivalence of various conditions. They are coined as
lower and upper implication.
Proposition 22.2.2 For D-predicates, the following equivalences hold:
(1) a® < b% iff a + b < b. In this case, we say that a and b are in the relation of lower
implication WL
(2) aV > bV iff a + b > b. In this case, we say that a and b are in the relation of upper
implication W,
Proof:

(1) By part (1) of Prop. 22.2.1, a + b < b holds iff «” + 6% < b and aV +bY < Y. Since the
inequality involving ‘U’ is a tautology, it can be dropped. Hence, a+b < biff a”+b" < bP.
This inequality is equivalent to a®” < b’

(2) By part (1) of Prop. 22.2.1, a4 b > b holds iff a” + 6% > b" and a¥ +bY > Y. Here, the
inequality with ‘L’ is a tautology. a¥ + ¥ > bV is equivalent to a¥ > bU. O
Lower and upper implication enjoy some properties that are needed in the next section.
Proposition 22.2.3 Let X = L or U in the following.
(1) The relation X7 is reflexive and transitive.
(2) Ifaisd andbnﬁb’, thena-l—bnﬁa’-l—b’.
(3) (a+b)—(d +b) 2 (a—a')+ (b— V).
(4)

4) If P is an additive second order predicate, then a X b implies Pa X Po.
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(5) If (a;)ier and (b;)icr are directed families of D-predicates with a; X b; for all i € I,
X

(6) L-a £ 1 . b no matter what D-predicates @ and b are. Similarly, W - a CW b,

Proof:

(1) Immediate by definition.

(2) o < a'" and BT < b'" implies (a + b)F = a” 4+ b- < o' + 0" = (a’ + V)", The proof for
W2 s similarly simple.

(3) For ‘%% ((a+b) — (a/ + 0)E = (a& + b5) - a¥ + b7 = (a" + ") - ¥ -V = (aF -0V -
b’U) 1+ (b[‘ ca'l -b’U) < (a[‘ . a’U) 1 (bL . b’U) — (a _ a’)L + (b _ b')L — ((a _ a') + (b _ b’))L.
Here, ‘<’ holds since p - ¢ < p holds for L-predicates p and ¢. The proof for s
analogous; here, ‘>’ holds since p - ¢ > p holds for U-predicates.

(4) For “o: a & b implies a + b < b, whence Pa + Pb = P(a+b)< Pb,ie. Pa L Pb. The
proof for 27 is similar.

(5) We use the equivalence a b iff ol < bELIf (a;)ier is directed, then (al);cr is directed,
too. al < bF implies (| ic; ai)® = Lieral < Lies 0F = (Lies 0)". The proof for s
analogous.

(6) (L-a)*=0-a” =0 and also (L -b)" = 0. Similarly, (W-a)” =0-a" = 0. o

22.3 The conditions M and M

After the preliminaries of the previous section, we are now able to define the conditions
M and M:

Definition 22.3.1
A in DX satisfies condition M iff Ap — Agq LA (p — q) for all predicates p, ¢ : [X — D].

A in DX satisfies condition M iff Ap — Agq Ay (p — ¢) for all predicates p, ¢ : [ X — D].

These definitions may seem to be ad hoc and badly motivated. We shall however see
in Th. 22.10.3 that condition M restricts the final D-powerdomain DX to the mixed power
domain MX of [Gun89b, Gun90] if the ground domain X is algebraic, and further restricting
MX by means of condition M results in Plotkin’s power construction.

In order to establish the power constructions MX and MX, we have to show that the
power operations preserve the restrictions. Using the generic Prop. 22.2.3, the proofs for M
and M are completely analogous. We formulate it for M.

e 0 =Ap.0, whence Op—0¢g=0—-0=0 = 0(p — q). By reflexivity of lower and upper

implication (Prop. 22.2.3 (1)), 8 € MX and § € MX follow.

o {z} = Ap.pa, whence {zltp—{zll ¢ =pr — gz =(p-g)z = {=z[} (p — 0).

pr—qz = (p—q)x holds since all logical operations are defined pointwise on predicates.
Reflexivity again yields the desired result.
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e lor A, B in MX,

(A B)p—(AY B)q (Ap+ Bp)—(Aq+ Bg)

(Ap—Aq)+(Bp— Bgq) by Prop. 22.2.3 (3)
Alp-9)+B(p-9)

since A, B in MX by Prop. 22.2.3 (2)

(A8 B)(p-q)

o For f:[X — MY] and A in MX,

(ext fA)p— (ext fA)q A(Az. fzp) — A(Az. fzq)

A(Ax. fep — faq) since A in MX

A(Az. fz(p—q))
since fo in MX by Prop. 22.2.3 (4); A is additive

= (extfA)(p—q)

o If (A;)icr is a directed family in MX, then both (A;p — A;q)icr and (A; (p — q))ier
are directed families with A;p — A;q & A(p—q) for all i € I. By Prop. 22.2.3 (5),
Ap—Agq & A(p — q) follows where A = | |;c; A;.

I= I=

SIS

e Finally, we show two facts about the external product: L - A satisfies M for all A in
DX — even those that do not satisfy M. Analogously, W - A satisfies M for all A.

The first statement holds since L-Ap— 1 -Ag= L1L-Ap--(L - Aq) LA (p—gq) by
Prop. 22.2.3 (6).

22.4 M — the mixed power domain construction

In this section, we investigate the power domain construction derived from DX by means
of condition M. We abbreviate this construction by M since it will turn out to be a general-
ization of Gunter’s mixed power domain construction [Gun89b, Gun90] that was defined for
algebraic ground domains only. Hence, we chose the names condition M or miz condition.
The elements of MX are called mizes.

MX = {P:[[X - D] “Y'D]|Vp, g€ [X— D]: Pp— Pg& P(p—q)}

In the previous section, we have proved that M is a power domain construction. Its charac-
teristic semiring is B since it contains all three of T = {jof}, F = 0, and L = L - {¢[}, and
since it does not contain W because the mix condition implies the sandwich condition as we
shall see below.

In the sequel, we want to translate the mix condition into topological terms. This is done
in analogy to the sandwich power construction. The first step leads to pairs of open grills
and open filters, and the second step to pairs of closed sets and compact upper sets. In the
course of this translation, we also prove that condition M implies condition 5, i.e. the mixed
power domains are subsets of the sandwich power domains.
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Let p = (p", pY) and ¢ = (¢, ¢V) be two predicates. For A = (A" AY), the mix
condition may then be transformed using the facts collected in Prop. 22.2.1.

Ap—AqE A(p—q) iff (Ap—Aq)" < (A(p—q))’

iff (Ap-Ag)l=1=(A(p-q)" =1
iff  APpP AV =12 AV V) =1
iff  Alpl=1and AYV¢Y =0 = AM(p" V) =1

Thus, we finally obtain:

Proposition 22.4.1
(A AY) e MX iff
Vp:[X = L), ¢:[X = U]: A'p =1 and AVq = 0 implies A(p-§) =1

From this equivalence, one may easily conclude MX C SX. The precondition APp = 1
and AV¢ = 0 of the sandwich condition in the form of Prop. 21.3.2 equals that of the mix
condition. By the mix condition, A*(p-§) = 1 follows. If p-§ were 0, then A*(p-§) =0
would hold because of additivity of AL, Thus, the mix condition implies p-§ # 0.

22.5 M in topological terms

In this section, we translate condition M into topological terms. At first, we translate the
predicates to open sets. p becomes O and ¢ becomes OV. Then p-§ = p M § corresponds
to O’ N OY. The lower second order predicate A" is translated into an open grill G, and the
upper one into an open filter @. We remember A¥p = 1= TifF OV € G, and AV¢g=0=T
iff OV € ©. Thus, we obtain

(G, 0) e MX iff VO" €G, 0V c¢0:0"n0O" €¢

For sober ground domain X, one can go one step further and translate the open grills G
into closed sets C', and the open filters O into compact upper sets K. O € G then becomes
CNO #0,and O" € O becomes K C O'. Hence, the mix condition translates into:
for all open sets O and O’ if C' meets O and K C O’ then CNO N O’ # (.

For fixed C' and O’ the following holds:

Every open set meeting C' meets C' N O’
iff  every open environment of every point of C' meets C' N O’
iff  every point of C is in the closure of C' N O’ by Prop. 4.2.2
iff CCe(CnNO).

Hence, one obtains

Theorem 22.5.1 The mixed power domain MX over a sober ground domain X is iso-
morphic to the set of all pairs (C, K) of a closed set C' and a compact upper set K such
that for all open sets O with K C O the inclusion C' C ¢l (C'N O) holds. The order is
given by (C, K) < (C', K")iff C C C" and K D K'. The power operations are defined as
in DX (see 21.2).
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22.6 Simplification of the mix condition

In this section, we investigate the mix restriction ‘6 C O open implies C' C cl(C N OY
for pairs (C, K) of a closed and a compact upper set. As with the sandwich condition, we
present a drastic simplification for a special class of ground domains.

Theorem 22.6.1 Let X be a multi-continuous domain in class KC. Then for all closed
C C X and all compact upper sets K C X, the following two statements are equivalent:

(1) The mix condition: If K C O for some open set O, then C' C I (C'NO).
(2) C C L(CNK).

Condition KC was introduced by Prop. 5.5.2 and means that the intersection of two upper
cones is compact. All finitely continuous domains are continuous and satisfy this condition
(Prop. 7.2.2), i.e. they are covered by the theorem above.

Proof: If ¢ C [(CNK)holds, then K C O implies C' C [(CNK) C [(CNO) C cl(CNO).

As pointed out in the proof of Th. 21.5.1, the preconditions of the lemmas 8.10.1 and 8.10.2
are satisfied.

Let C' be a closed set and K a compact upper set satisfying the mix condition. Let F be
the set of all finitary upper sets £’ such that there is an open set O with K C O C F. From
Th. 8.3.2, we know that F is a D-directed set whose intersection is K.

For all sets " € F, K C O C I holds, whence C C cl(CNO) C cl(C N F) follows from the
mix condition. Lemma 8.10.1 implies <l (C'N F) = |[(C' N F). Hence, C C Nper L(CNF) =
JNper(CNF) = |(CNK) applying Lemma 8.10.2. O

In contrast to the situation with the sandwich power domain, we do not know whether
condition KC is important for the validity of the theorem. The example following Th. 21.5.1

does not matter here since the sandwich occurring in it does not satisfy the mix condition.

22.7 M — the dual mixed power domain construction

In this section, we investigate the power domain construction M derived from D by means
of condition M. The elements of MX are called dual mizes. In section 22.3, we have proved
that M is a power domain construction. Its characteristic semiring is B since it contains all
three of T = {lo[}, F = 8, and W = W - {|o[}, and condition M implies condition S as we shall
see below.

Let p = (p", pY) and ¢ = (¢%, ¢¥) be two predicates. For A = (AF AY), the condition
may then be transformed using the facts collected in Prop. 22.2.1.

Ap—Aqg& A(p—q) iff (Ap—AqV > (A(p—q)”
iff (Ap—Aq)Uzli(A(p—qlezl

it AVpYAlgh =1 AV gPy =1
iff  AYpU =1and AV¢" = 0= AYV(pY - ¢l) =1

Thus, we finally obtain:
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Proposition 22.7.1
(AE, AY) € MX iff
Vp:[X = U], q:[X = L]: AVp =1and Alq = 0 implies AY(p-§) =1

From this equivalence, one may easily conclude MX C SX. If p-§ were 0, then AY(p-q) =0
would hold by additivity.

The transformation of condition M proceeds by translating the predicates to open sets.
p becomes OV and ¢ becomes O”. Then p-§ = p U corresponds to OY U O". The lower
second order predicate A% is translated into an open grill G, and the upper one into an open
filter O. All equations in the formula above are just negations of those in Prop. 22.4.1. Thus,
we obtain

(G, 0O)e MX iff OFdGandOY¢gO=0Fu0Y¢O0O
if OofuoVeO0=0"ecGorOVcO

For sober ground domain X, we translate open grills G into closed sets C' and open filters
O into compact upper sets K.

(C,K)e MX iff KCO"uOY=CnO"#0or KCOY

Let C’ be the complement of C. Then we claim that the condition above is equivalent to
‘K CC'UO = K CO’. The old condition implies the new one since C N C’ = () and C" is
open. The new condition implies the old one since C' N O = @ implies O C C’" whence
K Cotuovccruol.

To simplify further, note that K C C’ U O is equivalent to C' N K C O. Thus, we obtain
(C, K) e MX iff Cn K C O implies K C O for all open sets O. By Lemma 4.4.4, this is
equivalent to K C T(C'N K).

Theorem 22.7.2 The dual mixed power domain MX over a sober ground domain X is

isomorphic to the set of all pairs (C, K) of a closed set C' and a compact upper set K
such that K C 1(C N K) holds.

22.8 Other sub-constructions of D

The final D-construction D has 5 ‘atomic’ sub-constructions obtained by restricting D
using the conditions S, S, M, M, and T. The resulting constructions S and M have semiring
B, whereas the dual constructions S and M have semiring B, and 7 has semiring C. For all
ground domains X, the inclusions MX C X, MX C SX and SXNSX C 7X hold.

Further sub-constructions of D result from intersections of the constructions above. Be-
cause of the subset relations, 8 constructions are obtained. The most interesting one is
C = M N M because it coincides with Plotkin’s power construction for algebraic ground
domains.

The relative order of the constructions is indicated by the following diagram where the
arrows denote subset relations. All constructions below 7 have semiring C, M and § have
semiring B, M and S have B, and D has D (see the dotted lines).
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Examples that all these constructions differ are obtained when using the simple ground
domain X = {a < b > ¢ < d}. For finite ground domains, the simple formulae for conditions
S and M apply. A pair (C, K) satisfies § iff C C | K, Siff K C 1C, M iff C C |[(CNK),
and M iff K C 1(C n K). Since X admits only two predicates [X — C], namely Az.F and
Az. T, one easily deduces (C, K) € TX iff both C' and K are not empty or else C' = K = 0.

o ({a},{a, b})is in CX.
({a, b, ¢}, {b, d}) is in MSX, but not in MX.
({a, ¢}, {b, ¢, d}) is in SMX, but not in MX.
({a}, {b}) is in SSX, but neither in MX nor in MX.
e ({a},{a, b, d})is in MTX, but not in SX.
(
(
(
(

e ({a, ¢, d}, {d})is in TMX, but not in SX.
0, {d}) is in MX, but neither in 7X nor in SX.
{a}, 0) is in MX, but neither in 7X nor in §X.

e ({a}, {d})is in TX, but neither in SX nor in SX.

22.9 The M-C-Theorem

Our next effort in this chapter is the derivation of a strong relation between the sub-
constructions M and C of the final D-construction D.

Theorem 22.9.1 For every ground domain X holds: For every m in MX, there is some
¢ in CX such that m = m? 4 e.

Proof: Let m = (L, U) where L is in the final L-powerdomain £X and U is in the final
U-powerdomain #X. Then m? = L -m =(0,1)-(L, U) = (0, U) holds.

Let S be the set of all L-predicates p with Lp = 0. 0is in .S by additivity of L. If p; and py
are in S, then py + pg isin S by L(p1 + p2) = Lp1 + Lpz = 0+ 0 = 0. Since addition in L
is least upper bound, this shows that 5 is directed. Let s be its supremum. By continuity,

L s =0 holds.
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The L-predicate s induces a U-predicate 5. Let U’ = filter 5U. Since 1 is least in U, 5 > 1
holds, whence U’ > filter 1U = U follows. In U-powerdomains, union is greatest lower
bound, whence U Y U’ = U. Thus, with ¢ = (L, U’), we obtainm? Je¢= (0, U) 8 (L, U") =
(08 L, U Y U")=(L,U)=m as required.

We still have to show ¢ in CX. (filter5U)q = U (5 q) holds as computed in section 15.6. To
show condition M for ¢ = (L, U’), we have to derive L (p-§) =1 from Lp=1and U'¢q=0.
The precondition implies Lp =1 and U (5 ¢) = 0. Since m = (L, U) satisfies condition M,
we conclude 1 = L(p-5-¢)=L(p-(s+Q))=L(p-s)+L(p- )< Ls+L(p-§)=L(p-q.
The ‘<’ relation holds since ‘-’ is greatest lower bound in L. L s is 0 as mentioned above.
To show condition M for ¢ = (L, U'), we have to derive U'(p-¢) = 1 from U'p = 1 and
L g = 0. Equivalently, we have to derive U(p-5-q) =1 from U(p-8) = 1 and Lg = 0.
L g = 0 implies ¢ < s since s is the supremum of all predicates that are mapped to 0 by L.
Since addition in L is lub, ¢ + s = s follows, whence § = ¢+ s =G-3. Thus U(p-3) = 1
implies U (p-5-q) = 1. O

An analogous M-C-theorem cannot be proved analogously since the first step, i.e. the
construction of s, does not work out. In the world of U-predicates, the set of all p with
U p = 0is downward directed, and its infimum may not exist. Here, the inherent asymmetry
of domains matters.

22.10 The case of an algebraic ground domain

Next, we consider the case of an algebraic ground domain. We claim that for all R €
18,8, M, M, 8§, MS, SM, C}, the power domain RX is algebraic if the ground domain
is, and the base of RX equals the part of the base of DX which is within RX, i.e. (RX)" =
(DX)° N RX. The power constructions involving 7 are excluded from this claim because
they are of minor interest. To prove the claim, we show two lemmata.

Lemma 22.10.1 Every pair in (DX)" N RX is isolated in RX.

Proof: Let A be a member of RX that is isolated in DX, and let A <||zx D where D
is a directed set in RX. Because RX is a sub-domain of DX, lubs of directed sets w.r.t. RX
coincide with lubs w.r.t. DX. Hence A < D for some D in D since A is isolated in PX. O

The second Lemma is less trivial.

Lemma 22.10.2 Let P be a member of RX, and let A be an isolated point of DX below
P. Then there is an isolated point B in DX that lies within RX and is between A and P.

Ae(DX), PeRX, A< P=3Bc(PX)’NRX:A<B<LP

Before we are going to prove this lemma, we show that the two lemmata imply algebraicity.
Let P be in RX. Then let A= {4 € (PX)’| A< P}and B={B e (DX)’NRX | B < P}.
Since DX is algebraic, A is directed with lub P. Obviously, B C A holds, and Lemma 22.10.2
implies A C |B. Thus, A and B are cofinal, whence B is also directed with the same lub P
by Prop. 3.1.8. Lemma 22.10.1 states that B is a set of isolated points in RX.



22.10. THE CASE OF AN ALGEBRAIC GROUND DOMAIN 259

Proof of the Lemma:

We have to show the claim for each R separately. Generally, A = (| £, TF) holds where £
and F are finite subsets of X, and P = (C, K) where C is closed, K is a compact upper
set,and £ C C and K C TF hold because of A < P. Two finite subsets £’ and F’ of XY are
to be found that satisfy the conditions of R and lie between A and P,i.e. EC |E', E' C C,
and K C 7F" C 1F have to hold.

S:

S:

<l

< <

&l

A itself is in §X since SX is lower in DX. (Indeed, we already proved the algebraicity
of §X in section 21.5.)

We know E C €, K C 1F, and K C TC because of condition 5.

Let £ = {E' C C | E' Cp, X", E C E'}. € contains E and is closed w.r.t. union.
Hence, it is C-directed. |J& = C holds, whence 1C' = TUE = UT[E]. The set T[&] is a
C-directed collection of open sets that cover K since K C TC. By compactness of K,
there is £/ in £ with K C TE'. ¥ C K’ C C holds as required.

K C TE and K C 1F implies K C TE'N TF. This set is open as intersection of
two open sets. Since K is compact and X is algebraic, there is a finite set of isolated
points I’ with K C T/ C TE'NTF. Then K C 1F" C TF holds as required, and
TF CTE' C T1E' shows that (| £/, TF") satisfies S.

S: A< P e S8SX C SX implies the existence of B in (DX)"NSX with A < B < P as

we have seen above. Since $X is a lower set in DX, B € §X also holds.

: (LE,TF) <(C, K)means ¥ C C and K C 1F. TF is open by Prop. 6.2.4, whence we

obtain C' C cl(C' N TF) by the mix property of (C', K). This implies E C cl(C' N TF),
whence even F C [(C N TF) follows by Prop. 6.1.3.
Hence, for all e in F, there is ¢, in ' and f, in F such that e < ¢, > f.. As X is

algebraic, there are isolated points g. with e, f. < g. < c.. Let E' = {g. | e € E}. Then
E' is a finite subset of X°.

e < go € E' for all e in FE implies £ C |E'. ¢g. < ¢, € C for all e in E implies
E'C|lC =C. g > f for all e in E implies £/ C TF, whence (| E’, TF) is a mix
because it implies £/ = E'NTF Cc (|E' N TF).

K C 1F and condition M imply K C 1(CNK)C 1(CNTF)=1(CnNF). The last
equality holds since C'is lower. Tet F/ = CNF. Then K C TF' C TF holds as required.
Let £/ = EU F'. Then £ C E' C C holds since ' C C. Finally, " C E’ implies
F' = E'0F CI(LE'n1F).

: Follows from ‘M’ as ‘SS’ follows from ‘S’ since SX is a lower set.

: A< P e MSX C SX implies a point By in (DX)? N SX with A < By < P. Then

P € MX implies B in (DX)? N MX with B; < B < P. Because SX is an upper set
in DX, B is also in SX.

Asin ‘M’ K C 1(CNF) holds, whence K C 1F' C 1F where I’ = C'NF. By defining
E'asin ‘M’, EC |E'C C holds. E' C TF" holds since ¢, > g. > f., i.e. f. € F".
Now let G = E'UF'. We claim that (|G, TG) is the desired pair. £ C | E’ C |G holds,

and G C C since F' C . In addition, K C TF’ C 7G holds and also G C 1F' C TF
since ' C TF".
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(1G, 1G) is in CX since G C |G'N TG whence conditions M and M follow. a

The proof above not only shows the algebraicity of RX, but also provides nice representations
for the bases of these power domains. The most important ones are included in the following
theorem.

Theorem 22.10.3 All the constructions D, S, M, S, M, 8§, SM, MS, and C preserve
algebraicity, continuity, finiteness, finite algebraicity, and finite continuity of the ground
domain. In case of algebraic ground domain, their bases are the intersections of the base
of D with the respective power domains. The base of DX is the set of all pairs (| F, TF)
where F and F are finite subsets of the base of X. In particular, the bases of the most

important constructions are characterized as follows:

S: EC|F S: FCTE
M: ECF M: FCE C: E=F
Proof: Preservation of algebraicity was shown above. Preservation of continuity follows

by the theory of retracts. All these constructions are sub-constructions of D, whence they
preserve finiteness as D does.

The characterization of the base of § is taken over from Th. 21.6.4, whereas ‘S’, ‘M’, and ‘C’
follow from the proof of Lemma 22.10.2. For M, this Lemma only provided £ C TF. Given
(lE,1F) with ECTF,let ' = EUF. Then 1F' = {EUTF = 1F holds since £ C 1F,
and F C F’' obviously holds. This implies the form in the theorem. a

We already know that our sandwich power construction S generalizes the one in [BDWS8S]
and [Gun89b, Gun90] that was defined for algebraic ground domain only. The original char-
acterization £ C TF — E >! F in Gunter’s notation — shows that our mixed power
construction generalizes Gunter’s [Gun89b, Gun90].

The base of CX is the set of all pairs (| F, TF) where F is a finite subset of X°. The
intersection of | F" and TF is the convex hull JF of F. It suffices to recover | F and TF
since | F'= |[{F and TF = ] F. The ordering of these convex sets is given by [F < [ Fiff
1F C |TF and [F' C 71F. This is the Egli-Milner ordering. Hence, CX equals Plotkin’s
power domain for algebraic ground domain.



Chapter 23

Properties of B- and
C-constructions

In this chapter, we first consider the preservation of bounded completeness under some
B- and C-constructions. The sandwich construction S and the non-empty part of SS are
shown to preserve bounded completeness, whereas the smaller constructions M and C do not
(section 23.1).

In section 23.2, we investigate initiality and reducedness of the constructions M and
C. For algebraic ground domains, they are known to be initial. This property carries over
to continuous ground domains by Th. 14.4.3. For multi-continuous ground domains, we
furthermore prove the reducedness of M.

Then, we consider the final power constructions for semirings B and C, and investigate
whether they are sub-constructions of the final D-construction D. In the case of semiring
B, the answer is yes: the final B-construction is just the existential restriction § of D to B
(section 23.3). In the case of semiring C, the answer is no: the final C-construction is not
faithful (section 23.4). Hence, it cannot be a sub-construction of any D-construction since
all these constructions are faithful. In section 23.5, we reveal some more awkward properties
of the final C-construction. If the ground domain is an infinite discrete domain, then linear
functions are not uniquely determined by their values on singletons. In section 23.6, we briefly
consider the core of the final C-construction.

23.1 Notes on bounded completeness

The sandwich power construction § and the C-construction SS have the advantage to

preserve bounded completeness.

Proposition 23.1.1 If X is bounded complete and sober, then §X is bounded complete.
Thus, § preserves BC & ALG and BC & CONT.

Proof: By Prop. 20.2.4, 4X is complete in this case. The lub of two members K7 and
K, is given by Ky N Ky. L£X is complete for all ground domains; the lub of Cy and C5 is
ChUCs.

261
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If X has a least element L, then DX has the least element L-{L[} = (0, 1)-(|L, TL1) = (0, X).
This pair obviously satisfies the sandwich condition, whence it is also the least element of

SX.

If two sandwiches 57 = (Cy, K1) and Sy = (Cq, K3) are bounded by some sandwich 5, then
the pair § = (C1UCy, K1 N K3) is the least upper bound of 57 and S5 in DX. S is a sandwich
by Prop. 21.3.1 since it is below S’. Thus, it is the lub of S; and S5 in SX. a

The C-construction SS given by the intersection of § and S does not preserve bounded
completeness since its power domains have no least element. They fall into two incomparable
parts: an empty part mapped to 0 by ne, and a non-empty part S3'x mapped to 1 (cf.
section 17.7). We claim that the non-empty part preserves bounded completeness.

Proposition 23.1.2 If X is bounded complete and sober, then SS'X is bounded com-
plete. Thus, S3 preserves BC & ALG and BC & CONT.

Proof: If L is the least element of X, then the pair {{ L[} = (] L, TL) = ({L}, X)is in
SSX since SS is a sub-construction of D. Tt is in SS' X since all singletons are mapped to
1 by ne. Let (C, K) be an arbitrary member of S§'X. ({L}, K) is below (C, K)iff C is
not empty. If C' were empty, then K would also be empty by the dual sandwich condition
K C1C. (0,0) = 0 is however mapped to 0 by ne. Thus, {|L[} is the least element of S3'X.

Let S7 and 59 be two members of SS'X that are bounded by some S’ in SS'X. Then S
and Sy are also bounded in X, whence they have a lub § in X by Prop. 23.1.1. Since
S > 8; and S is in SSX, § is in SSX because SX is an upper set in DX by Prop. 21.7.1.
ne S > ne 51 = 1 implies 5 € SS'X. O

In contrast to the sandwich power domains, the power domains MX and CX are not
necessarily bounded complete, even in the case of finite bounded complete ground domain
X. The example is identical with Plotkin’s example for his power domain.

Let X = B x B. To be concise, we write the domain members as zy instead of (z, y),
e.g. L1, TF. Since this domain is finite, all its lower subsets are closed and all subsets are
compact. Thus, Th. 22.6.1 applies and condition M reads (L, U) € MX iff L, C [(LNT).
Condition M is U C T(L N U).

Let U = {TL,FL} and V = {LT, LF}, and let Y = {TT, FF} and 7 = {TF, FT}.
Then consider the corresponding formal sets A = {{TL, FL[} = (LU, 1U), B = (lV,1V),
C=(Y,1Y)and D =(1Z,17). A, B, C, and D are members of CX since they satisfy
the criterion for the base of CX of Th. 22.10.3. It is easy to verify that both of A and B are
below both of C' and D.

A least upper bound X of A and B, and also a greatest lower bound X of C' and D
must lie in between, i.e. A, B < X < C, D. This means AV, BV > XV > ¢V, DV, whence
AVnBY D XU D cVuDY, or fUNTV 2 XU D 1Y UTZ. Since TUNTV equals 1Y U TZ,
XY is uniquely determined to be {TT, TF, FT, FF}.

Analogously, A¥ U B C X' C " n D" holds. This determines X* since both sides are
equal. Thus, we obtain X = ({11, TL,FL, LT, LF}, {TT, TF, FT, FF}), i.e. X¥ and XV

are disjoint, although they are not empty. Thus, X is neither a member of MX nor a member
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of MX (nevertheless, it is in SSX). This shows that A and B have no lub, and C' and D no
glb in MX, MX, and CX.

Since S preserves bounded completeness but is not reduced, whereas M is reduced but
does not preserve BC, one might believe that the power domains X are reduced if one
restricts attention to bounded complete sub-powerdomains. This belief is wrong since for
instance M2 and S§2 differ as pointed out in section 22.1, but are both bounded complete.
Nevertheless, & might be a minimal B-construction that preserves BC & ALG.

23.2 Notes on initiality and reducedness

In [Gun89b], Gunter proves the initiality of M in case of an algebraic ground domain X.
Hence, MX and P?X are isomorphic for all algebraic ground domains X. By Th. 14.4.3,
this isomorphism extends to all continuous ground domains. Similarly, the initiality of C'X
was claimed in [HP79] for algebraic ground domain X w.r.t. the class of C-modules without
0. One easily verifies that the addition of the empty set to C'X does not matter if only
C-modules according to our definition are considered. Applying Th. 14.4.3 once more, we
obtain

Theorem 23.2.1 For continuous ground domains, M and the initial B-construction co-

incide as well as C and the initial C-construction.

In the remainder of this section, we show that MX is reduced for multi-continuous X.
We do not know whether it is not reduced for some strange ground domains. If M is not
reduced, it differs from its core M®. Then M and M will be two different generalizations
of Gunter’s mixed power construction that have to be carefully distinguished. If in addition
M¢ and the initial B-construction differ,' one gets even a third generalization.

The proof of MX = MX for multi-continuous X proceeds in several steps. In each step,

we prove a larger class of mixes to be contained in the core. The first steps also work in the
larger class of sober domains.

Proposition 23.2.2 Let X be a sober ground domain. If £ and F are finite sets of X
such that £ C TF, then (| F, TF) is in M°X.

Proof: First of all, (| £, TF)is amix since £ C TF implies £ = ENTF Ccl (| ENO) for
all supersets O of TF. Let £ = {ey, ..., e} and F = {f1,..., fm}. Weclaim (| E, TF) =
{ler, oo en, il ooy fn?l}e

Since {le} = (le, Te) and {|f?[} = (0, Tf), the right hand side equals (| E U@, TE UTF).
TEUTF is TF since K C TF.

{ler, -- s en, i, ..., fm?[} is a finite union (by means of ‘8’) of singletons and uncertain

singletons. In module theory, one would say it is a finite linear combination of singletons.
Hence, it is in M°X. a

In the next step, we make the lower part arbitrary, whereas the upper part remains finitary.

Meanwhile, they are shown to differ.
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Proposition 23.2.3 Let X be a sober ground domain. If C' is a closed set and F a
finitary upper set such that C' C cl (C'N F), then (C, F') is in M°X.

Proof: Let £ be the set of all finite subsets of C' N F, and let D = {(|E, F) | F € £}.
Because of £/ C I, this set is a subset of M“X by Prop. 23.2.2. It is directed, since £y, Ky Cy
C N Fimplies Ky U Ey Cp C N F,and ([(F1 U Ey), F) is the lub of (| F;, ).

We claim that (C, I') is the limit of D. We have to show cl |J [[£] = C. All members of £ are
subsets of C', whence ‘C’ follows. For the opposite, notice that £ contains all singleton subsets
of CNF,whence JE=CNF. Thus,cd Y [[E] =cd JE = (CNF)follows. I (CNF)DC
holds by the precondition.

(C, F)is in M°X since it is the lub of a directed set of core elements. O
In the final step, we generalize the upper set.

Proposition 23.2.4 Let X be a multi-continuous ground domain. Then every mix
(C, K) belongs to M“X.

Proof: Let F be the set of all finitary upper environments of K. From Th. 8.3.2, we
know that F is directed in ¢ ;X with lub K. Let D = {(C, F) | I' € F}. The members of
this set satisfy the preconditions of Prop. 23.2.3: if F’ is in F, then there is an open set O
with ' C O C F. Because (C, K)is amix, C Cc(CNO)Cc(CNF) holds.

Thus, D is a subset of M®X. Since F is directed with lub K, D is directed, too, with lub
(C, K). Thus, (C, K) is in M°X. O

Summarizing, we obtain

Theorem 23.2.5 For multi-continuous ground domain X, M°X = MX holds.

23.3 The final B-construction

The Boolean semiring B is a sub-semiring of the double semiring D. Generally, the
existential restriction of the final construction for the larger semiring is completely different
from the final power construction of the sub-semiring. An example will be presented in
section 23.4. In the case of B and D however, these two constructions happen to coincide.

Hence, we claim

Theorem 23.3.1 The final B-construction is isomorphic to the existential restriction of

the final D-construction, i.e. the sandwich power construction: 73}]?’ =S.

Proof: We have to establish an isomorphism between P?X = [[X — B] wdd B] and

SX = {P € [[X — D] add D] | Vp: [X — B] : Pp € B}. An obvious choice is the

restriction and co-restriction R of functions in SX to arguments in [X — B] and results in
B. Since the power operations in SX are inherited from those in Dy, restriction R coincides
with existential quantification in §X, whence it is a power homomorphism as indicated in
chapter 15. Employing Prop. 12.2.1, we only have to show that it is bijective and its inverse

is monotonic, then it is a power isomorphism.
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From Prop. 16.3.1, we know that DsX and £;X X U X are isomorphic. Hence, every P :

[X — D] add D] may be considered a pair (P, PY) where P : [[X — L] add L] and
PY :[[X — U] add U]. Accordingly, every function from somewhere to D may be considered

a pair of functions to L and U respectively.

Let P and @ be two members of SX such that RP < R). We have to show P < (). For every
f1[X = D] resp. (/7 /)1 [X — L] x [X — UL, Pf = P(f%, f7) = P(f£, 0)+ P(0, V)
where 0 = Az.0 holds by additivity of P. The second summand is handled easily: function
(0, fV) can produce the values (0,0) = 0 and (0,1) = L only. Both are in B, whence
by RP < RQ the inequality P (0, fV) < Q (0, fY) follows. The first summand cannot be
handled this way since its argument may produce (1,0) = W. We consider the argument
(f£, 1) instead. It can produce the values (0, 1) = L and (1, 1) = 1 which are both in B.
Hence, (PLfL PY1) = P(fF, 1) < Q(fF, 1) = (Q¥fF, QU1) holds, whence P fl < QF f&
follows. Since PY0 = 0 = QV0, one obtains by combination P (f”, 0) < @ (f*, 0). Returning
to the sum, this proves P (f*, f) < Q (f", fV). Thus, we have shown P < Q.

We now know that R is injective and that its inverse — if it exists — is monotonic. Hence,
only surjectivity of R remains to be shown. Let @ : [[X — B] add B] be given. We
now consider B as subset of D = L x U, i.e. consisting of pairs. Hence, one may assume
Q = (@1, Q2) where @, : [[X — B] add L] and @, : [[X — B] wdd U]. We show that @,
does not depend on the second component of its argument, and correspondingly, ()5 does not

depend on the first.
(1) @ (f*, f7) =@ (f*, 1) for all (f", fV):[X — BI.

This statement makes sense because (fL, 1) always maps to B as we saw above. In
U, 1 is least, whence Q1 (£, fV) > Q1 (f", 1) by monotonicity. By additivity of Q1,
Qi(ff ) =01 (f", fOY+ Q1 (f", 1) > Qi (f", fY)sincel =z +1in Uand z > 0in
L

(2) Q2(fF, V) = Q2(0, fY) for all (f*, fV):[X — BI.
This statement makes sense because (0, fV) always maps to B as pointed out above. 0 is
the least element of L, whence Q4 (f*, fU) > Q4 (0, fV) by monotonicity. By additivity
of Qz, Q2 (% V) = Qo (F¥, fU) + Q2 (0, V) < Q2 (0, V) since & = @ + 0 in L and
r <0in U.
For fV : [X — U], (0, fV) maps from X to B whence the definition PV fV = Q,(0, fY)
makes sense. Similarly, for f* : [X — L], (f", 1) is in [X — B] whence P"f" = Q, (f*, 1)
may be defined. PL and PY are maps in [[X — L] — L] and [[X — U] — U] respectively.
In the sequel, we show their additivity. Thus, they may be combined to P = (P¥, PU) in

[X — D] add D]. We then have to show RP = @; this automatically implies P € SX.

PY0=Q2(0,0) =0and PY(f+g) = PV f+ PV g hold by additivity of @ because (f+g, 0) =
(f,0)+ (9, 0).

PH(f 4+ g) = PVf + PPg holds by additivity of @ because (f + g,1) = (f, 1) + (g, 1).
PL0 = Q4(0,1) = Q1(0, 0) = 0 holds; here statement (1) from above is applied.

Finally, we have to show RP = @, i.e. for f : [X — B], Pf = Qf holds. Applying state-
ments (1) and (2) from above, we obtain Pf = (PLfL, PY Uy = (@, (f, 1), Q2 (0, fY)) =
(@1 (" f7), Q2 (f7, fU)) = Q" ') = QF. o
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The theorem allows a slight simplification of the definition of M. In section 22.3, we
defined
add

e MX={Pe[X—=D]=D]|Pp-Pqg>T=P(p—q)>TVp,q:[X— D[}

Now, we know MX C §X = [[X — B] wdd B]. Hence, one may replace all occurrences of D

by B in the formula above. For values bin B, b > T is equivalent to b = T. Thus, one obtains

e MX={Pe[X—B]|““UB]|Pp-Pg=T=P(p-q)=TVp,q:[X — BJ}

23.4 The final C-construction

In this section, we investigate the final C-construction 77?. For the sake of simplicity, we
abbreviate it by Py in the sequel.

The properties of Py are quite awkward.

Proposition 23.4.1
(1) PsX is discrete for all ground domains X.
(2) If 2 < 2’ holds in X, then {2z} = {2’} holds in P;X.
(3) If X has a least element L, then P¢X has exactly two elements: 0 and {L[}. They

are incomparable.

Proof:

(1) P < @ holds iff Pp < @Qp for all p : [X — C]. Since Pp and @p are in C, and C is
discrete, Pp = @p follows for all p, whence P = Q).

(2) z < 2’ implies {z[} < {z'[} by monotonicity. By (1), {z[} = {z'[} follows.

(3) If f:[X — C], then fz > fL holds for all z in X. As C is discrete, fz = fL follows.
Hence, [X — C] has exactly two elements: Az.0 and Az. 1. Every additive second order
predicate must map Az.0 to 0; it only has the choice to map Az.1. Thus, [[X — C] add C]
has at most two elements. Conversely, it has at least two elements, namely 6 and {|L[}.
They are different, even incomparable, because they are distinguished by ne. a

By this proposition, Py is not faithful. It maps all ground domains with a least element
— no matter how large they might be — to a power domain of just two elements. Probably,
this is the reason why this construction never was proposed in the literature.

23.5 C-constructions on discrete ground domains

One might guess that P;X always be quite small. This however is not true: discrete
ground domains on the contrary are mapped to huge power domains. Remember we already
know two C-constructions defined on the class of discrete domains: the set of arbitrary
subsets P,.; and the set of finite subsets Pg,. The resulting power domains are always
ordered discretely. Since functions from a discrete domain are continuous always, continuity

is of no concern in this section.
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Proposition 23.5.1 For discrete X, Ps, X may be embedded into P, X, and this may
in turn be embedded into P;X. Both embeddings are surjective iff X is finite.

Proof: The statements about Pz, X and P, X are obvious. Abbreviating the latter
by PX, we have to provide an embedding from PX into P;X. By section 15.5, existential
quantification is the only power homomorphism from P to P;. We have to show €A = &B
implies A = B for A, B in PX.

For ¢ in X, let f, : X — C be defined such that f,z = 1 iff « = z, and = 0 otherwise. Then
EAf, = 1 iff thereis z in A with a = z iff « € A. Hence, £A = B implies EAf, = 1 iff
EBf, =1, whence a € Aiffa € B,ie. A= B.

Finally, we have to show & is surjective iff X is finite. Let X be finite. For P : (X — C) add C,
let A={ae€ X |Pf,=1}. Weclaim EA=P. Letp: X — C,andlet B={be X |pb=1}.
Then p = 57,5 fp holds; this sum is well-defined since X and more than ever B are finite.
By additivity of P, Pp =3, .5 Pfy, holds. This value is 1 iff there is b in B with P f, = 1iff
there is b in B with b € A iff there is bin A with pb=1iff EAp = 1.

Now let X be infinite. We have to show that £ is not surjective. Let P : (X — C) — C be
defined such that Ppis 0 iff p~'[1] is finite. This function is additive since P(Az.0) is 0, and
P(p+q)is 0iff (p+ ¢)~'[1] is finite iff p~'[1] U ¢~ '[1] is finite iff both p~'[1] and ¢~'[1] are
finite iff Pp =0 and Pg = 0 iff Pp + Pg = 0. Assume there is a set A with £A = P. For all
ain A, EAf, = 1 holds, whereas Pf, = 0 because f;![1] = {a}. Hence, A is empty. Thus,
EAp=20forall p: X — C. P(Az.1) however is 1 since (Az.1)71[1] = X is infinite. |

By this proposition, we see that P¢X is even larger than the power set of X if X is an
infinite discrete domain. In section 15.8, we wondered whether all final power constructions
have unique extension, and claimed the answer be no. An example is provided by the final
C-construction.

Proposition 23.5.2 For discrete ground domain X, Ps, X is the initial C-powerdomain
over X. The cores of Ps.; X and of P; X are both (isomorphic to) Ps, X. Pset X and Py X

have unique extensions iff X is finite.

Proof: Let M be a not necessarily discrete C-module, i.e. a commutative idempotent
monoid, and let f : X — M be a function. Then define ext fA = )" -4 fa for all finite
subsets of X. By idempotence, ezt f is additive. ext f{z} = fz obviously holds. Because of
the required additivity, ext f is unique with these properties.

Because of Prop. 23.5.1, Pg, X is contained in both of P,,; X and P;X. Hence, it is their
core because it is reduced.

For finite X, all three considered power domains are isomorphic by Prop. 23.5.1. Since Pg, X
is initial, the remaining two also have unique extensions.

Let X be infinite. We define two different linear functions from P, X to C that coincide
for singletons. Let FF'A be 0 for all A C X, and let GA be 0 iff A is finite, and 1 otherwise.

F obviously is additive, and G is so since a binary union is finite iff its constituents are.
F{z} = G{z} = 0 holds for all z in X, whereas F'X = 0 and GX = 1 since X is infinite.

This example cannot be taken directly for Py X because it is not obvious how to define ¢
for all members of Py X. We call A € PsX finite iff there are 2y, ..., 2 € X, such that
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A ={zy, ..., z¢l}, and we call B € PsX sub-finite iff there is an arbitrary C' and a finite
A such that B Y ' = A. Because of A &Y A = A, every finite set is sub-finite. After these
preliminaries, we define

FA=0forall AecPsX
GA = 0 if A is sub-finite
1 otherwise
F is obviously linear. For G, some more work is needed. G8 = 0 holds since 0 is sub-finite.
For linearity, we then have to show G(AY B) = GA+GB. G(AY B)=0holdsiff Ag B
is sub-finite, and GA + GB = 0 holds iff GA = 0 and GB = 0 iff A and B are sub-finite.
Hence, we have to show A Y B is sub-finite iff A and B are sub-finite.

If A and B are sub-finite, there are arbitrary U and V and finite C'and D such that AQ U = C
and BYV =D whence A By U YV =CUY D whence A Y B is sub-finite because the
union of finite members of P; X is finite again. Conversely, if A & B is sub-finite then there
are some U/ and a finite C' with A 9 B & U = C. This equation may be directly interpreted
such that A and B are sub-finite.

The linear mappings F and G coincide for singletons; both map all singletons {z[} to 0
because singletons are sub-finite. Nevertheless, F' and G are different. This is shown by
presenting an A in Py X that is not sub-finite.

0 ifpz=0forallz e X

1 otherwise

Let A be defined by Ap = {

Obviously, A(Az.0) = 0 holds. A is linear by the following derivation:

Ap+q)=0 iff (p+q¢)z=0"forallz

iff  pz+qx =0 forall x

ifft  (pz =0 and gz =0) for all z

iff  (pz =0 for all z) and (¢gz = 0 for all z)

iff Ap=0and Ag=0

iff Ap+Aq=0
Finally, we show that A is not sub-finite. Assume there are U/ in Py X and zy, ..., 2, € X
such that AQ U = {z1, ..., z¢[}. Let 2’ be a point of X that is not among z1, ..., zx, and let
p: X — C be defined such that z’ is mapped to 1 and all other points are mapped to 0. Then
(A8 U)p=Ap+Up=1+Up=1holds, whereas {z1, ..., zx}p=pa1+ -+ par =0
— a contradiction. Hence, FA = 0, but GA = 1. a

23.6 The core of the final C-construction

For ground domains with least element, P?X has only two elements: 0 and {|L[} by
Prop. 23.4.1 (3). Thus, it is reduced and coincides with its core. This provides an example
for a reduced power construction that is not faithful. For infinite discrete ground domains
however, P?X and its core P?X are far from being equal. The core of PJ(;X is initial in
this case.
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The lower semiring L is a commutative idempotent monoid, i.e. a C-module. It is not
discrete, whence by Prop. 14.5.3, the initial C-construction 73,:-3 is faithful. Thus, P?X and
PEX are not isomorphic if X is a domain with bottom and at least one further element.

Hence, we have seen that the three autochthonous C-constructions PZC, 739, and PJ(;
considerably differ. The difference shows up even for complete algebraic ground domains.



Chapter 24

Sandwich theory

In case of the power constructions £, U, C, and M, the power domain over a continuous
ground domain is algebraically characterized as the free (initial) R-module with appropriate
semiring R. In Gunter’s papers, the freedom of the sandwich power domains is an open
question. Qur results show that they cannot be characterized as free modules of some semiring

since M and S share the same semiring, but nevertheless differ.

The chapter at hand shows that the sandwich power domains are also free algebras be-
longing to an algebraic theory that however cannot be seen as theory of R-modules for some
semiring R. This sandwich theory involves a partial operation with a strange meaning. The
problem is that all reasonable operations on sandwiches seem to preserve the mix condition,

whence only ‘unreasonable’ operations remain.

The chapter at hand consists of only two sections: in section 24.1, the axioms and theorems
of the sandwich theory are introduced, and in section 24.2, the sandwich power domains are

shown to be free sandwich algebras if the ground domain is algebraic.

24.1 Axioms and theorems of the sandwich theory

To define sandwich algebras, we use an operation that marries sandwiches to each other
ie. (A", AY) o (B, BY) = (A", BY). A problem is that the partners may not harmonize
such that the marriage is not durable. This means that ‘®’ is a partial operation only. The

exact definition for the sandwich power domain is

(AT, BU) if (A", BU) € 8X

undefined otherwise

(AL, AU) @ (BL, BU) — {

‘@’ becomes a total continuous operation if ‘undefined’ is added to the sandwich power domain
as an artificial top element. This is done in the following definition which enumerates the

axioms of a sandwich algebra.

Definition 24.1.1 (Sandwich algebras)
A sandwich algebra (P, 4+, 0, ®) is a commutative idempotent monoid domain (P, +, 0)

270
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with an additional continuous operation — @ _ : [P x P — P U {undefined}] where
z < undefined for all z € P satisfying the following 4 axioms

(A1) Ao A=A

(A2) Ao B<(A4+ Ao B (A3) Ao B> Aw(B+ B)

(A4) If Ao B and A’ ® B’ are defined, then (A + A )o (B+ B')= (Ao B)+ (A" @ B’)
A mapping f between two sandwich algebras is a sandwich homomorphism iff it is con-

tinuous and additive and satisfies f(A® B) = (fA) ® (fB) whenever A® B is defined, i.e.
in P.

One may easily verify that sandwich power domains become sandwich algebras by defining
‘@’ as indicated above.

As for the mix theory, some theorems may be derived from the axioms. In the sequel,
idempotence is abbreviated by (I) and neutrality of 0 by (N).

(T1) If Ao B and A ® B’ are defined, then Ao (B+ B')= (Ao B)+ (Ao B')
Proof: let A" = A in (A4) and apply (I).

(T2) If Ao B and A’ ® B are defined, then (A4+ A')o B= (Ao B) 4+ (A’ ® B)
Proof: let B’ = B in (A4) and apply (I).

(T3) If Ao B is defined, then (A+ B)o B=(AoB)+ B and Ao (A+ B)=A+ (Ao B).
Proof: the first equation by (T2) and (A1), the second one by (T1) and (Al).

(T4) A® B and B are both < (A+ B)o B.
Proof: B = B B by (A1), then apply (A2) in both cases.

(T5) Ao (A+ B) < both of A and Ao B.
Proof: A=A ® A by (A1), then apply (A3) in both cases.

. T4 N Al
@ < since U ® < @ = O} =
(T6) 0o B< B leB<(0+B)oB=BoB=B

T5
(TT) 0@ B<0 since 0o BE0w (04 B) <0

(T8) Every sandwich algebra is a mix algebra (a B-module) by the definition B? = 0 o B.
Proof: (T6) means B? < B and (17) means B? < 0. These inequations also show that
B? is defined for all B. (T3) implies B?+ B= (00 B)+ B=(0+ B)® B = B by (N)
and (A1). (T1) gives (A4 B)? = A7 + B?.
(T9) A< A+ B iff loA<0@B iff forall C: Co A< CoB.
1 A3
Proof: (1)= (3): CeA<(Co(A+B)<CoB
(3) obviously implies (2), and (2) implies (1) by (T8) and theorem (T8) of the mix
theory.
(T10) A+ B< B iff forall C: AeC < BoC.
A2 lhs
Proof: ‘= Ao C < (A+B)oC < Bo(C
‘= A+BL(A+B)o(A+B) Z (Ao (A+ B))+ (Bo(A+ B)). (T2) is applicable
since both marriages to the right are defined due to (T5) viz. A® (A4 B) < A and
B o (A+ B) < B. The precondition with C' = A + B may be applied to the last term

T5
resulting in A+BS(B@(A+B))+(B©(A+b’))éB@(A%—B) < B.
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(T11) A< A+ B>B iff foral C: CoA=CoB.
This is deduced directly from (T9). We call A and B in this case upper equivalent and
write A &~y B. This relation obviously is an equivalence relation. For the sandwich
power domain, one can show A ~y B iff AY = BV, hence the name.

(T12) A> A+ B<B iff forall C: AeC =BaoC(.
This is deduced directly from (T10). We call A and B in this case lower equivalent and
write A ~;, B. For the sandwich power domain, one can show A ~;, B iff A" = B,

hence the name.

(T13) If A® B is defined, then it is in the intersection of the lower class of A and the upper
class of B,i.e. A~y Ao B~y B.
Proof: The lower equivalence by (T3) and (T5), and the upper one by (T3) and (T4).

(T14) For given A and B, there is an X such that A ~;, X ~y B iff A® B is defined. In this
case, A @ B = X holds. A ® B is undefined iff there is no such X.
Proof: If A® B is defined, there is such an X by (T13). Conversely, assume such an
X. Note that (T11) and (T12) hold no matter whether the married couples involving
‘C" are defined or not. Hence, A ® B xopL xox 2 X,i.e. Ao B is defined

and equals X.

Similar to mix algebras, (T14) implies that the operation ‘@’ is uniquely determined in
a given sandwich algebra, i.e. for given commutative idempotent monoid domain, there is at
most one choice for the operation ‘@’ to turn it into a sandwich algebra. Another important

consequence is the following theorem:

Theorem 24.1.2 An additive mapping between two sandwich algebras is automatically

a sandwich homomorphism.

Proof: Let f : [X — Y] be a (continuous) additive map between the two sandwich
algebras X and Y. Let A and B be members of X such that A ® B is defined. Then
A=y, Ao B = B holds by (T13). Using the equivalence of § ~7, T with § > S+ 7T < T and
of S =y T with § < 5+ 71 > T, one obtains by monotonicity and linearity of f the relations
fA=r f(Ae B) = fB. (T14) then implies fAw® fB = f(A® B). O

24.2 Sandwich power domains as free sandwich algebras

In this section, we show that the sandwich power domains are free sandwich algebras:

Theorem 24.2.1 For every domain X, the sandwich power domain $SX is a sandwich
domain. If X is algebraic, then for every arbitrary sandwich domain Y and every con-
tinuous map f : [X — Y], there is a unique additive continuous map f : [SX — Y] with

f{z} = fz. fis a sandwich homomorphism.

Proof: For a finite set of isolated points £ C X, we define f'E = " . fe. The isolated
sandwiches are given by (| E, T F) with E C | TF. We define for them f(|E, {F) = f'Eof'F.

We first show that the married couple on the right hand side is always defined. If F is empty,
flfEo f'F =0w f'F <0is defined by (T7). Let e be some member of K. By £ C |[TF, there
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are points y and z such that z € £ and e,z < y. Then few fo < fyo fy = fy is defined by
(A1). By (A3), feo f'F = feo(fz+f'(F\{z})) < fewfz holds, whence feo f'F'is defined for
all ein E. Applying (T2) iteratedly, we obtain f'Eo f'F = (Y .cp fe)of'F =3 cp(feo f'F)
is defined.

We also have to show that f is well-defined, i.e. independent from the specific choice of £ and
F. We do this by showing its monotonicity. Well-definedness then follows from antisymmetry
inY.

Assume ([ F, TF) < (LFE', TF') holds, i.e. E C |FE" and F' C TF. We have to show f'F ®
f'F<f'E'o f'F'. £ C |E means there is a member y(z) in I/ for every z in F such that
y(z) > z. Thus, we obtain

ffEeo f'F = Yiepfro fF

Yven [(y(z)) @ 11

Yyeym fy e ['F

Yyepr [y f'F = f'E'e f'F

Next, I’ C TF means there is a member y(z) in F for every z in F’ such that y(z) < z.

—
= IN

IANE

Thus, we obtain

[E e f'F = flE ey e fo
> ' o e f(y(@))
I
(:) f’E’ ® EyEy[F’] fy
(AB) I nls I nls 1
Y R Y, fy = B fF

Combining both inequations results in f'F o f'F < f'E'® f'F' as required.

Now, we know that f is well-defined and monotonic. Next, we show its additivity.
fo = J0.0) = f'(0)o f'(0) = 000 = 0

holds using (A1).

f(Ag B) = fAbuBE AUy BY)
(J/A" 4 'BY) @ (fAY 4 f'BY)
(AT e fAY) + (1B @ fBY)
= fA+[B
shows the additivity of f.

=

f can be extended from the base of SX to the whole of SX resulting in a continuous additive
map f:[SX — Y].

Uniqueness is shown by using the fact (| E, TF) = (|E, TE)o (|F,1F) ={e|e€ E[}
{y |y € F|} and theorem 24.1.2. O

Corollary 24.2.2
If X is algebraic, then for every continuous map f : [X — SY], there is a unique additive
continuous extension f:[SX — SY] with fo {.[} = f. It is explicitly given by f = ext f
where ext is defined as in section 21.2. O
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This corollary is particularly nice because it neither mentions sandwich theory nor mar-
rying, i.e. it is independent from this partial and semantically dubious operation. It shows
that even power constructions which are far from being reduced may have unique extensions.
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Introduction

The index consists of two parts: a notation
indez and a word index. The notation in-
dex contains symbols such as ‘@’ or ‘<,
words and abbreviations in special fonts,
e.g. ‘ext’ and ‘CONT’. The symbols are
ordered by visual appearance and related
meaning, whereas the abbreviations are or-
dered primarily by font, and secondarily
alphabetically. The word index is to be
used to look for (more or less) usual Eng-
lish words.

Notation index

L (don’t know), 198

L (lower implication), 251

A (upper implication), 251

[X — Y] (function domain), 49

(X hp Y] (right linear functions), 173
lz (lower cone), 34

1 (lower closure), 35

1%z (isolated points below z), 83
Uz (points way-below z), 89

Tz (upper cone), 34

T (upper closure), 35

ftz (points way-above z), 89

1 (convex hull), 37

A (formal conjunction), 134

¥ (formal disjunction), 131

Cy (finite subset), 29

C (logical order), 201

< (way-below), 89

- (‘algebraic’ product), 133, 139, 142
M (binary glb), 38, 77, 91, 103, 200
U (binary lub), 38, 76
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M (greatest lower bound = glb = infimum),

38

L| (least upper bound = lub = supremum),

38
- (negation), 199, 240
a—b=a--b, 251
o (composition), 29, 48, 51
@ (marrying), 271
* (doubly extended *), 129
(dually doubly extended %), 129
(Cartesian combinator), 51
(binary Cartesian product), 34
conform, 70, 105
(formal Cartesian product), 130
(dual formal Cartesian product), 130

~1, (lower equivalent), 272

*
—
*
X
X
X -
=
X
—
X

~r (upper equivalent), 272
f:[X—=Y],50
f[A] (image of a subset), 29
/7'[B] (inverse image), 29
fo=2y. (2, 9), 41,49

V= 2XAz. f(z,9),41,49
A (d-closure of A), 53
f (extension of f, also extf), 124
¢ (= Az.c), 125,137
p (negated predicate), 240
{.[} (formal singleton map, also ¢), 124
0 (formal empty set), 123

g (formal binary union), 123
_? (lower approximation), 202
_! (upper approximation), 203
¢ (the unique point of 1), 33
1 (one-point domain {¢}), 33
2 (two-point domain {1 < T}), 33, 55
¢ (formal singleton map, also {.[}), 124
7 (projection to dim. k), 34, 48
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or = Ay. (2, 9), 68
oV = Az.(z,y), 68
AX (Alexandroff space), 59

AX (poset of (T0)-space X), 61
[Tic; (Cartesian product), 34, 48

Y X (Scott space), 59

QX (domain of open sets of X), 55

(A), 127
(C), 127
(N), 127
(P1), 125, 127
(P1.), 133
(P1f), 135
(P2), 125, 127
(P2-), 133
(P2f), 135
(P3), 125, 127
(P3-), 133
(P3f), 135
(S1), 125, 127
(S1.), 133
(S1f), 135
(S2), 125, 127
(S2-), 133
(S2f), 135
(S3), 125, 127
(S3f), 135
(S4), 125, 127
(S4-), 133
(S4a-), 133

( 4f)7
(SY')7
(Y1),
(T0)-spaces, 61

(T1)-spaces, 61, 73
(T2)-spaces, 62, 107

¢ (core), 156, 165

¢ (existential restriction), 172
XY (isolated points of X), 82
M condition, 252

M condition, 252

R-X-linear map, 155
R-X-submodules, 156
R-constructions, 142

@ 0]

135
133
135

w2

INDEX

S (sandwich condition), 241
S condition, 246
U (formal big union), 129
def P (class where P is defined), 122
ex (existential quantification), 131, 142
ext (extension functional), 124
filter (filtering), 135, 142
id (identity), 48
map (mapping functional), 129
maz S (set of maximal points of ), 41
min S (set of minimal points of ), 41
ne (non-emptiness), 132, 142
F (false), 131, 198
M, 77
T (true), 131, 198
W (contradiction), 198
cl (closure)
generic closure, 30
Scott closure, 72
topological closure, 59
cls (Scott closure), 54
co (complement), 29
B (Boolean semiring {L < [0, 1]}), 33, 198
B (dual Boolean semiring {[0, 1] < T}),
199
C (convex semiring {0, 1}), 197
D (double semiring {L < [0, 1] < T}), 198
L (lower semiring {0 < 1}), 197
L-U-linear, 235
L-U-modules, 235
L-U-X-linear, 235
L-U-X-modules, 235
N’ (lazy naturals), 33
N (ascending naturals {0 < 1 < -+ <
x}), 33
U (upper semiring {1 < 0}), 197
C (convex power construction), 141, 197,
256
D (final D-construction), 239
& (existential quantification), 132, 142
F(A) (finitary upper environments of A),
104, 224
F'(A) (finitary upper supersets of A), 111,
231



INDEX

FO(A) (finitary open supersets of A), 105

G(C) (open sets meeting C'), 213

7 (ideal completion), 88

K(O) (compact upper subsets of O), 220

Ks(O) (strongly compact upper subsets of
0), 230

L (lower power construction), 140, 197, 210

Lr (lower p.c. by grills), 211

L¢ (lower p.c. by closed sets), 213

Ly (lower p.c. by predicates), 210

M (mixed power constr.), 141, 198, 253

M in terms of B-predicates, 266

M-C-theorem, 257

M (dual mixed power construction), 255

O(A) (open supersets of A), 59, 63

O(z) (open sets containing z), 59

PX (empty part), 207

P'X (non-empty part), 207

77? (final R-construction), 173

Piin (power set of finite sets), 126, 266

Pset (full power set), 126, 266

S (sandwich power constr.), 141, 198, 241

S (dual sandwich p.c.), 246

SS construction, 248

ST construction, 248

7 construction, 248

TS construction, 248

U (upper power construction), 140, 197,
217

Ug (final upper p.c. by filters), 218

Ur (upper p.c. by compact sets), 219, 229

Ur-admitting, 228

Us (upper p.c. by strongly compact sets),
927, 229

Us-admitting, 228

Us-conform, 232

Uy (final upper p.c. by predicates), 217

Us (upper p.c. by strong filters), 227

ALG (algebraic domains), 83

BC (bounded complete domains), 75, 86,
94

CC (complete domains), 76, 86, 200

CI monoids, 199

CONT (continuous domains), 89
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DIS (discrete domains), 73

DOM (class of domains), 73

DOM, (domains with least element), 73

F-ALG (finitely algebraic), 93

F-CONT (finitely continuous), 93

FC (finitarily complete domains), 77, 111

FIN (finite domains), 73

K-RD domains, 111, 228

KC (compactly complete domains), 79, 86

L-COMP (locally compact), 101

M-ALG (multi-algebraic), 101

M-CONT (multi-continuous), 101

S-RD domains, 111, 229

SC (strongly compactly complete), 79, 86,
95

SOB (sober domains), 110

Word index

actual sets, 123
additive functions, 124
additive semirings, 149
admitting

Ur-admitting, 228

Ug-admitting, 228
Alexandroff space AX, 59
algebraic domains (ALG), 83
algebraic spaces, 84
antisymmetry, 32
application, 50
approximation

— lower _7, 202

— upper _!, 203
ascending naturals N§°, 33

base X of algebraic domains, 83
base of

CX, 260

LX, 216

MX, 260

MX, 260

SX, 245, 260

SX, 260

UrX, 222
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big set domain construction, 141, 198
big union, formal U, 129
binary glb M, 77, 91, 103
binary lub U, 76
Boolean semiring B, 33, 198
bounded, 37
bounded complete domains (BC), 75, 86,
94
bounded complete posets, 73
bounded completeness
not preserved by M and C, 262
of SX, 261
of SSX, 262

cardinality
of cores M*, 156
of d-closures 4, 53
of Scott closures clg A, 54
Cartesian closedness
of classes of domains, 72
of DIS, 73
of F-ALG and F-CON'T, 95
of FIN, 73
of the category of domains DOM, 51
Cartesian combinator x, 51
characteristic semiring, 140
closed sets, 59, 213
closure
convex hull I, 37
d-closure A, 53
generic closure cl, 30
lower closure |, 35
Scott closure (clg or cl), 54, 72
topological closure cl, 59
upper closure T, 35
cofinal, 46
commutation
of £ and U;, 237
of £ and Us, 232
commutative monoids, 123
commutative semiring, 139
commutativity of power constructions, 144
compact sets, 65, 108
compactly complete domains (KC), 79, 86

INDEX

complement co, 29
complete domains (CC), 76, 86, 200
complete lattices, 76
composition o, 29, 48, 51
comprising filters, 108
condition M, 252
condition M, 252
condition 5, 241
condition §, 246
conform
x-conform, 70, 105
Us-conform, 232
conjunction, formal A, 134
consistent second order predicates, 241
construction, 122
continuous domains (CONT), 89
continuous extension on algebraic domains,
87
continuous functions
between topological spaces, 63
defined by directed sets, 47
defined by Scott closed sets, 54
defined by Scott open sets, 54
continuous spaces, 90
convex, 36
convex hull T, 37
convex power construction C, 141, 197, 256
convex semiring C, 197
core
and product, 188
of a power construction, 165
of an R-X-module M*, 156
of the final construction, 181
currying, 50

d-closed, 51

d-closure A, 53

d-open, 52

d-space, 59

De Morgan’s formulae, 240
deflation, 93

degenerated power construction, 146
degree of multiplicity, 101

derived operations
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for D by topology, 240
in Lc, 214
in Lr, 212
in Us, 218
in Ug, 221
in final constructions, 178
difference @ — b = a - =b, 251
directed closed (d-closed) set, 51
directed complete posets (domains), 47
directed families, 44
directed lubs (limits), 47
directed sets, 44
discrete posets, 33, 73, 85
disjunction, formal ¥, 131
domain classes
x-conform, 70, 105
Ur-admitting, 228
Ug-admitting, 228
Us-conform, 232
ALG (algebraic), 83
BC (bounded complete), 75, 86, 94
CC (complete domains), 76, 86, 200
CONT (continuous domains), 89
DIS (discrete), 73
DOM (domains), 73
DOM, (with least element), 73
F-ALG (finitely algebraic), 93
F-CONT (finitely continuous), 93
FC (finitarily complete), 77, 111
FIN (finite), 73
K-RD, 111, 228
KC (compactly complete), 79, 86
L-COMP (locally compact), 101
M-ALG (multi-algebraic), 101
M-CONT (multi-continuous), 101
S-RD, 111, 229

SC (strongly compactly complete), 79,

86, 95
SOB (sober), 110
admitting
Ug-admitting, 228
Us-admitting, 228
algebraic (ALG), 83
bounded complete (BC), 75, 86, 94
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compactly complete (KC), 79, 86
complete domains (CC), 76, 86, 200
conform
x-conform, 70, 105
Us-conform, 232
continuous domains (CONT), 89
finitarily complete (FC), 77, 111
finitely algebraic (F-ALG), 93
finitely continuous (F-CONT), 93
locally compact (L-COMP), 101
multi-algebraic (M-ALG), 101
multi-continuous (M-CONT), 101
overview, 115
sober (SOB), 110
strongly compactly complete (SC), 79,
86, 95

domain hierarchy, 115

domains (directed complete posets), 47

double extension, 129

double semiring D, 198

dual Boolean semiring B, 199

dual mixed construction M, 255

dual poset, 33

dual sandwich p.c. S, 246

embedding, 39, 88
empty set, formal 0, 123
environment, 59
existential quantification &, 132, 142, 176
existential quantification ez, 131, 142
existential restriction, 171

extension function ext = —, 124
extension of a function, 124

factorization
of linear maps, 187
of linear power homomorphisms, 191
of modules, 186
of power constructions, 189
faithful constructions, 146
filtering filter, 135, 142
filters
comprising filters, 108
general filters, 108
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open filters, 108, 218, 242
prime filters, 108
strong filters, 226
final
B-construction, 264
C-construction, 266
D-construction D, 239
lower construction, 210
power constructions, 154, 173
upper construction, 217
finality and product, 185
finitarily complete domains (FC), 77, 111
finitarily complete posets, 77
finitary sets, 32, 43
finite linear combinations, 142
finite posets, 73, 84
finitely algebraic domains (F-ALG), 93
finitely complete posets, 75

finitely continuous domains (F-CONT), 93

finitely generable, 67

fixed point theorem, 73

flat poset, 33

formal sets, 123

free R-X-modules, 158

free sandwich algebras, 272
function domain [X — Y], 49
functor, 96

glb (greatest lower bound) M, 38
greatest element, 32, 41

greatest lower bound (glb) M, 38
grills, 211, 242

ground domain, 123

homomorphisms
linear power h., 153
monoids, 124
power constructions, 150
sandwich, 271

semirings, 139

ideal completion 7, 88
ideals, 46

idempotent function, 93
idempotent semiring, 139
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image of a subset, 29
implication

lower »£>, 251

upper rg, 251
infimum M, 38
initial

lower construction, 215

power constructions, 154, 169

upper construction, 225
initiality

and product, 189

of MX and CX, 263
interpolation property, 90
inverse image of a subset, 29
irreducible closed sets, 106
iso-finite sets, 82
isolated points, 82
isomorphisms

domains, 49

posets, 39

power constructions, 151

semirings, 142

lazy naturals N’ 33
least element, 32, 41
least element
of final power domains, 180
of reduced R-X-modules, 158
of reduced power domains, 167
least fixed point, 73
least upper bound (lub) | ], 38
left linearity, 139
left modules, 139
limits (directed lubs), 47
linear maps
R-X-linear, 155
L-U-linear, 235
L-U-X-linear, 235
left linear, 139
right linear, 140
linear power homomorphisms, 153
locally compact domains (L-COMP), 101
locally continuous, 96
logical order C, 201
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logically monotonic, 201
lower approximation _7, 202
lower bound, 38

lower closure |, 35

lower cone |z, 34

lower equivalent, 272

lower implication »£>, 251
lower power construction £, 140, 197, 210
lower semiring L, 197

lower set, 34

lub (least upper bound) ||, 38

mapping functional map, 129
marrying o, 270
maximal, 41
maximal points of S (maz 5), 41
minimal, 41
minimal points of S (min S), 41
mix algebras, 204
mixed power construction M, 141, 198, 253
modules
R-X-modules, 155
R-X-submodules, 156
B-modules, 205
B-modules, 205
C-modules, 199
D-modules, 205
L-modules, 199, 200
L-U-modules, 235
L-U-X-modules, 235
U-modules, 200
core of an R-X-module, 156
free R-X-modules, 158
left modules, 139
over proper rings, 148
reduced R-X-modules, 157
right modules, 139
monoids
CI monoids, 199
commutative, 123
homomorphisms, 124
monoid domains, 123
monotonic, 39
morphism (= continuous function), 47
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multi-algebraic domains (M-ALG), 101
multi-continuous domains (M-CONT), 101
multi-power constructions, 141

natural transformation, 152
negated predicate p, 240
negation -, 199, 240
non-emptiness ne, 132, 142
non-empty part P1X, 207, 262

non-sober domains, 114

omniscient second order predicates, 246
one-point domain 1, 33

open filters, 108, 218

open grills, 211

open sets, 59

order, 32

order continuity of functions, 47

partial construction, 122
partial order, 32
Plotkin power construction, 141
poset, 32
posets
bounded complete posets, 73
discrete posets, 33, 73, 85
embedding, 39, 88
finitarily complete posets, 77
finite posets, 73
finitely complete posets, 75
isomorphisms, 39
power (domain) construction, 123
power constructions
R-constructions, 142
C (convex p.c.), 141, 197, 256
D (final double p.c.), 239
L (lower p.c.), 140, 197, 210
L and U; commute, 237
L and Us commute, 232
M (mixed p.c.), 141, 198, 253
M (dual mixed p.c.), 255
S (sandwich p.c.), 141, 198, 241
S (dual sandwich p.c.), 246
S8S construction, 248
ST construction, 248
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7 construction, 248 power set formation, 126, 266
7S construction, 248 pre-order, 32
U (upper p.c.), 140, 197, 217 preserving a domain class, 97
Cartesian product, 183 primary axioms of extension, 125
commutativity, 144 prime filters, 108
convex p.c. C, 141, 197, 256 product
core formation, 165 Cartesian product
definition, 123, 127 and closure, 69
degenerated, 146 and continuity, 48
dual mixed p.c. M, 255 and directed sets, 46
dual sandwich p.c. S, 246 and K-RD and S-RD, 112
existential restriction, 171 and least upper bounds, 39
factorization, 189 and lower closure |, 36
faithful, 146 and monotonicity, 41
final, 154, 173, 176 and sobriety, 111
final double p.c. D, 239 and upper closure T, 36
final lower, 210 in topological view, 68
final upper, 217 of domains, 47
four kinds, 145 of formal sets x ;, 130
homomorphisms, 150 of modules, 182, 183
initial, 154, 169 of multi-continuous domains, 105
initial upper, 225 of posets, 34
isomorphisms, 151 of power constructions, 183
linear homomorphisms, 153 of semirings, 183
lower p.c. £, 140, 197, 210 of strongly compact sets, 70
mixed p.c. M, 141, 198, 253 external product
multi-power constructions, 141 from the left, 133, 142
Plotkin’s, 141 from the right, 136, 142
real ones, 144 projection mp, 34, 41, 48
reduced, 166 property M, 77, 87
and retracts, 168
sandwich p.c. §, 141, 198, 241 R-X-module, 155
sub-constructions, 164 real power construction, 144
symmetry, 130, 144 reduced R-X-modules, 157
unique additive extensions, 145 reduced power constructions, 166
unique linear extensions, 145 reducedness
upper p.c. U, 140, 197, 217 and product, 189

power domain, 123 of MX, 264

power domain of non-empty sets P'X, 207 of Ug, 222

power homomorphisms of sandwich power domains, 250
general, 150 reflexivity, 32
linear, 153 retract, 97

power isomorphism, 151 retract closed classes, 97

power set, 29, 33, 85 retracts
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and domain continuity, 99
and functors, 99
and K-RD and S-RD, 112
and power constructions, 168
and sobriety, 110
right linearity, 140, 173
right modules, 139
ring, 148
Rudin classes (K-RD and S-RD), 111
Rudin’s Lemma, 56-57, 111

sandwich algebra, 270
sandwich homomorphism, 271
sandwich power construction §, 141, 198,
241
sandwich theory, 270-274
Scott closed, 54
Scott closure (cls or cl), 54
Scott open, 54
Scott space XX, 59
secondary axioms of extension, 125
semiring domain, 139
semiring homomorphism, 139
semirings
additivity, 149
Boolean semiring B, 198
commutativity, 139
convex semiring C, 197
definition, 139
double semiring D, 198
dual Boolean semiring B, 199
homomorphisms, 139
idempotence, 139
and lattices, 139
lower semiring L, 197
proper rings, 148
sub-semirings, 165
tropical semiring, 142
upper semiring U, 197
set domain constructions, 141, 198
small set domain construction, 141, 198
sober domains (SOB), 110
sobriety
a non-sober domain, 114
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and Cartesian product, 111
and retracts, 110
by irreducible closed sets, 107
by open filters, 109
by prime filters, 109
implies K-RD, 111
of domains, 110
of multi-continuous domains, 110
specialization pre-order, 60
strong filters, 226
strongly compact, 67
strongly compactly complete (SC), 79, 86,
95
structurally algebraic semirings, 161
sub-construction, 164
sub-domains, 51
sub-semiring, 165
supremum | |, 38
symmetry of power constructions, 130, 144

topological continuity, 63

topological space, 59

total construction, 122

transitivity, 32

tropical semiring, 142, 149, 161
two-point domain 2 = {L < T}, 33, 55

union, formal 4, 123
unique additive extensions, 145

unique extensions

counterexample final C-construction, 267

in final constructions, 180
unique linear extensions, 145
upper approximation _!, 203
upper bound, 37
upper closure T, 35
upper cone Tz, 34
upper equivalent, 272
upper implication »g, 251
upper power construction U, 140, 197, 217
upper semiring U, 197
upper set, 34

way-below, 89
Zorn’s Lemma (for domains), 47



