
TOWARDS POINTER ALGEBRA

Bernhard Möller

Institut für Mathematik, Universität Augsburg
Universitätsstr. 2, W-8900 Augsburg, Germany

Abstract. We show that the well-known unfold/fold transformation strategy is also fruitful for
the (formal) derivation of correct pointer algorithms. The key to this extension is an algebra
of partial maps which allows convenient description and manipulation of pointer structures at
the functional level.

1 Introduction

It is well-known that algorithms involving pointers are both difficult to write and to verify.
Due to the implicit connections through paths within a pointer structure, the side effects of a
pointer assignment are usually much harder to survey than those of an assignment to a simple
variable. Second, a careless assignment may destroy the last link to a substructure which thus
is lost forever. Now, not only is it easy to make such errors; it is also very hard to find them.
With this paper we want to show that these difficulties can be greatly reduced by making the
store, which is an implicit global parameter in procedural languages, into an explicit parameter
and by passing to an applicative treatment using a suitable algebra of operations on the store.

The storage state of a von Neumann machine can be viewed as a total map from addresses to
certain values. A part of such a state that forms a logical unit can then be represented by a
partial submap of that map. This gives the possibility of describing the state in a modularised
way as the union of the submaps for its logical subunits. In the case of pointer structures
this means that the usual “spaghetti” structure of the entire state can be (at least partly)
disentangled.

Therefore we use the algebra of partial maps as our tool for specifying and developing pointer
algorithms in a formal and yet convenient way using standard transformation techniques. The
key to the method consists in considering the store as an explicit parameter, since then one
has complete information about sharing and therefore complete control about side effects. This
also makes it possible to stay, almost to the very end of the derivations, at the applicative level
with its rich algebraic properties. Also, we can stay with equational reasoning rather than with
more general inference rules as would be necessary for the special “pointer logics” introduced
in [5,9,12]. Finally, our “pointer algebra” saves a lot of quantifiers as compared e.g. with [4].

We illustrate the approach with derivations of two algorithms on singly linked lists, viz. concate-
nation and reversal “in situ”. However, the method is not limited to such simple structures: In
[3] we have derived an efficient and intricate garbage collection algorithm for a storage structure
that allows the representation of arbitrary graphs.

1

2 Partial Maps and Overwriting

The use of algebraic operations on maps for describing the effect of a program dates back at
least to [18]. Two of the most useful operations in our setting are map union (see also [17] for
other applications) and map overwriting. Unfortunately, union is a partial operation on maps: if
two maps disagree at a certain argument, their union is a proper relation and no longer a map.
To simplify the algebraic treatment we therefore embed the algebra of maps into the algebra of
binary relations [21]. In this section we present the definitions and the essential properties of
our operations on relations and maps; a systematic development including further properties
and full proofs is given in the appendix. There is also a more general algebraic framework
accomodating these notions (see [13–16,19] for its use); however, a lot of the definitions there
are not necessary when dealing with pointer structures alone, and so we do not want to burden
the reader with them.

A relation R between two sets M and N is a subset of the cartesian product M ×N . Some of
our notation derives from this set-theoretical view of relations. E.g., by ∅ we denote the empty
relation between M and N . Moreover, we shall use union and intersection of relations. The
domain domR of a relation R is given by

domR
def
= {x | ∃ y : (x, y) ∈ R} .

Another essential operation on relations is that of overwriting one relation with another one
(see e.g. [6, 7, 8] for the special case of maps): Given relations R, S between sets M and N , we
define

R |S def
= R ∪ {(x, y) | (x, y) ∈ S ∧ x 6∈ domR} .

In other words, R |S results from S by changing the images of the elements of M according to
the prescription of R (if any). For example, if S is a map then {(x, y)} |S “updates” S to make
y the value corresponding to x. This operation will be our main tool for describing selective
updating of storage structures. We use the convention that | binds tighter than all set-theoretic
operations.

The following properties allow localising side effects to that part of a store they really affect:

Lemma 2.1 (Localisation)

(1) domR ∩ domS = ∅ ⇒ R | (S ∪ T) = S ∪ R |T .
(2) domR ∩ domT = ∅ ⇒ (R ∪ S) |T = R ∪ S |T .

Relations form a monoid under overwriting:

Lemma 2.2 (Monoid)

(1) ∅ |R = R = R | ∅ .
(2) (R |S) |T = R | (S |T) .

The following lemma describes the relation between overwriting and union in more detail.

Lemma 2.3 (Compatibility)
The following properties are equivalent:
(1) R |S = R ∪ S = S |R .
(2) R |S = S |R .
(3) R and S agree on domR ∩ domS .

2

If any of these conditions holds we call R and S compatible. From this we obtain two useful
corollaries:

Corollary 2.4 (Sequentialisation)

(R ∪ S) |T = R | (S |T) provided R and S are compatible.

By this property, a complex overwriting may also be done by two successive simpler overwritings.

Corollary 2.5 (Annihilation)

Suppose S |T = T . Then (R ∪ S) |T = R |T provided R and S are compatible.

This means that an overwriting with values that are already present does not have any effect
and thus can be skipped.

Now we consider the special case of maps. A relation R ⊆ M × N is a (partial) map from
M to N if it associates every element of M with at most one value, i.e., if

∀ x ∈M : ∀ y, z ∈ N : (x, y) ∈ R ∧ (x, z) ∈ R ⇒ y = z .

We write R : M → N to indicate that R is a map between M and N . Note that ∅ is a map.
Moreover, if R is a map and S ⊆ R then S is a map as well.

In general, relational union does not preserve the map property. However,

Lemma 2.6 (Map Compatibility)

Let (Rj)j∈J be a family of maps. Then
⋃
j∈J

Rj is a map iff the Rj are pairwise compatible.

The operation of map union is the key tool in obtaining a modular description of pointer
structures, since it allows viewing a (total) storage state as the union of those of its (partial)
substates that form logical units. This aspect of modularisation is reflected by the distributive
laws that allow propagation of operations to substates of a state.

Maps are closed under overwriting:

Lemma 2.7 (Closure)

Let R, S be maps. Then R|S is a map as well.

For maps, inclusion implies compatibility, which is not necessarily the case for arbitrary rela-
tions:

Lemma 2.8 (Submap)

Let S be a map and R ⊆ S. Then R and S are compatible.

This gives a kind of idempotence property:

Lemma 2.9 (Idempotence)
Let S be a map and T a relation. Then

R ⊆ S ⇒ S |T ≡ S |R |T .

When viewed operationally, the direction from left to right allows early overwriting of parts of
a map.

Finally, using Lemma 2.8, for maps the annihilation property can be stated more simply:

3

Corollary 2.10 (Annihilation)
Let S, T be maps such that S ⊆ T . If R is a map such that R and S are compatible,
then (R ∪ S) |T = R |T . In particular, setting R = ∅, we obtain S |T = T .

3 Chains

As an example of how to describe pointer structures within the algebra of maps we now study
singly linked lists.

3.1 Notation

In notation and semantics we follow (the ALGOL variant of) the language CIP-L (cf. [1,2]).
In particular, we denote semantic equivalence of expressions by ≡ . We have E1 ≡ E2 iff both
E1 and E2 are undefined (non-termination or abortion) or both are defined and have the same
value. For Boolean expression B we abbreviate B ≡ true by B.

As an important aid in specifying and developing recursive routines we use assertions or re-
strictions about their parameters, formulated as Boolean expressions of the language. Let B be
a Boolean expression possibly involving the identifier x. Then the declaration

funct f ≡ (t x : B) u : E

of function f with parameter x restricted by B and with body E is by definition equivalent to

funct f ≡ (t x) u : if B thenE else error fi .

This means that f is undefined for all arguments x that violate the restriction B; i.e., B acts as
a precondition for f . If f is recursive, B has to hold also for the parameters of the recursive calls
to ensure definedness; hence in this case B corresponds to invariants as known from imperative
programming. Analogous constructions apply to statements and procedures.

As our last piece of notation we introduce the conditional conjunction cand and the conditional
disjunction cor defined by

E1 candE2
def≡ if E1 thenE2 else false fi ,

E1 corE2
def≡ if E1 then true elseE2 fi .

So they are asymmetric, sequentially evaluated variants of the usual Boolean conjunction and
and disjunction or . Our main use of them is in shielding partialities. E.g., the expression

x 6= 0 cand 5/x = 1

is defined for all x, whereas
x 6= 0 and 5/x = 1

is undefined for x ≡ 0, since then 5/x is undefined and and is strict.

4

3.2 A Model of Pointer Structures

A pointer structure consists of a set of records connected by pointers. We abstract from the
concrete contents of the records and consider only their interrelationship through the pointers,
since this is the only source of problems in pointer algorithms. This is modelled by a binary
access relation R ⊆ rcd× rcd where rcd is the set of records (represented, say, by their initial
addresses). rcd is not required to be finite; this way also (conceptually) unbounded storage can
be modelled.

In the case of regular record structures, R will be a union of maps. For instance, in the case of

binary trees we would have two maps left , right : rcd → rcd and set R
def≡ left ∪ right .

In implementions one frequently uses a (pointer to) a special pseudo-record as a terminator
common to all pointer structures considered (e.g., nil in Pascal). Let therefore 2 ∈ rcd be a
distinguished element, called the anchor. The elements of rcd\{2} are called proper records.
A state is a finite relation R ⊆ rcd × rcd such that 2 6∈ domR. Hence, in a state, 2 is a
sink not in relation with any other record. This implies that there can be no 2 record properly
within a pointer structure; if present, 2 terminates the structure at that point.

3.3 Definition of Chains

We concentrate now on the special case of chains, i.e., of (finite) cycle-free singly linked lists.
Since every record in such a list has at most one link, the associated access relation will actually
be a (partial) map next : rcd → rcd. A single record x with successor y is modeled by the map

[x 7→ y]
def≡ {(x, y)}. Partialities in next model records which do not (yet) have a proper

successor.

A chain contains a number of records in a certain order prescribed by the links in the list.
This induces a sequence structure on these records: The first element in the sequence, if any,
is the head record, followed by the others in the order of traversal. Since there is no cycle, the
sequence is repetition-free.

The idea of following the pointers in a singly linked list within a state next is captured by
considering the reflexive transitive closure next∗ of next defined by

x next∗ y
def⇔ ∃ n > 0 : ∃ x1, . . . , xn : x ≡ x1 ∧ y ≡ xn ∧

n−1∧
j=1

xj+1 ≡ next(xj) .

Hence x next∗ y iff record y can be reached from record x following the links of next zero or
more times. The set of all records reachable from x in next is denoted by

next∗(x)
def≡ {y | x next∗ y} .

From the definitions the following recursion equation is immediate:

Corollary 3.1

next∗(x) ≡ {x} ∪ if x ∈ dom next then next∗(next(x)) else ∅ fi .

Since we use the anchor 2 to terminate chains, we call a record x anchored in a state next iff

2 ∈ next∗(x). In particular, 2 is anchored in every state. This is reasonable, since 2 will be
the “head” of the empty chain. Moreover,

5

Corollary 3.2

2 ∈ next∗(x) andx 6∈ dom next ⇔ x = 2 .

Proof: Immediate from the definition.

By the above considerations, anchored chains are in exact correspondence with finite repetition-
free sequences of proper records. We denote the type of sequences of records by rcdsequ. For
s ∈ rcdsequ, we mean by |s| the length of s and by s[i] the i-th element of s where numbering

starts with 1. If i > |s| or i = 0, we set s[i]
def≡ 2. By 〈〉 we denote the empty sequence and by

+ sequence concatenation. A singleton sequence is identified with the only element it contains.
Finally,

first(s)
def≡ s[1] , last(s)

def≡ s[|s|] ,

rest(s)
def≡

|s|∑
i=2

s[i] , lead(s)
def≡

|s|−1∑
i=1

s[i] .

Note that
first(〈〉) ≡ 2 ≡ last(〈〉) ,
rest(〈〉) ≡ 〈〉 ≡ lead(〈〉) .

We define a representation function from finite repetition-free sequences of proper records to
anchored chains:

funct chain ≡ (rcdsequ s : ischainable(s)) state :
|s|⋃
i=1

[s[i] 7→ s[i+ 1]] .

Note that
chain(〈〉) ≡ ∅ .

Moreover,
dom chain(s) ≡ set(s) ,

where
set(s)

def≡ {s[i] : 1 ≤ i ≤ |s|}

is the set of all records occurring in sequence s.

The precondition ischainable is defined inductively as follows:

ischainable(〈〉) ≡ true ,
ischainable(x) ≡ x 6= 2 ,

ischainable(s+ t) ≡ ischainable(s) and ischainable(t) and
set(s) ∩ set(t) = ∅ .

We have

Lemma 3.3
Assume s, t ∈ rcdsequ and x ∈ rcd such that ischainable(s+ x+ t). Then
(1) chain(x+ t) ≡ [x 7→ first(t)] ∪ chain(t) .
(2) chain(s+ x+ t) ≡ chain(x+ t) | chain(s+ x) .
(3) chain(s+ x+ t) ⊇ [x 7→ first(t)] .

Proof: (1) is immediate from the definition.

6

(2) First we note that for sequences u, v the property ischainable(u+ v) implies

(∗) ischainable(s) ∧ ischainable(t) ,
(∗∗) dom chain(u) ∩ dom chain(v) ≡ ∅ ,

and hence compatibility of chain(u) and chain(v). Now

chain(s+ x+ t)

≡ {[definition of chain]}
|s+x+t|⋃
i=1

[(s+ x+ t)[i] 7→ (s+ x+ t)[i+ 1]]

≡ {[definition of + and union]}
|s|⋃
i=1

[(s+ x)[i] 7→ (s+ x)[i+ 1]] ∪ [x 7→ t[1]] ∪
|t|⋃
i=1

[t[i] 7→ t[i+ 1]]

≡ {[definition of chain and |]}
([x 7→ t[1]] | chain(s+ x)) ∪ chain(t)

≡ {[(∗) and ischainable(s+ x+ t), (∗∗), localisation (Lemma 2.1)]}
[x 7→ t[1]] | (chain(s+ x) ∪ chain(t))

≡ {[(∗), compatibility (Lemma 2.3)]}
[x 7→ t[1]] | (chain(t) | chain(s+ x))

≡ {[sequentialisation (Corollary 2.4)]}
([x 7→ t[1]] ∪ chain(t)) | chain(s+ x)

≡ {[by (1)]}
chain(x+ t) | chain(s+ x) .

(3) is immediate from (1), (2) and the definition of |.

Conversely, given a record x and a state next , we can retrieve the sequence of records in the
sublist starting from x (if any) using

funct sequ ≡ (rcd x, state next) rcdsequ :
if x 6∈ dom next then 〈〉 elsex+ sequ(next(x), next) fi .

Thus, for a record x without successor or for 2 we return the empty sequence. Note also
that sequ will not terminate if the sublist within next starting from x contains a cycle. In
our applications this will not occur. For more general use, however, one should base this on a
non-strict functional language in which the algorithm then would return a periodically infinite
sequence of records. Then a record y can be reached from x following the links of next (zero or
more times) iff contains(sequ(x, next), y) ≡ true, where

funct contains ≡ (rcd y, rcdsequ s) bool :
if s = 〈〉 then false else y = first(s) cor contains(rest(s), y) fi .

The functions sequ and chain are, under suitable restrictions, inverses of each other:

7

Lemma 3.4
For x ∈ rcd, next ∈ state and s ∈ rcdsequ,
(1) 2 ∈ next∗(x) ⇒ first(sequ(x, next)) ≡ x ;
(2) 2 ∈ next∗(x) ⇒ chain(sequ(x, next)) ⊆ next ;
(3) ischainable(s) ⇒ sequ(first(s), chain(s)) ≡ s .

Proof: (1) Case 1: x ≡ 2. We get

first(sequ(x, next))

≡ {[definition, next state]}
first(〈〉)

≡ {[definition]}
2 .

Case 2: x 6≡ 2. Then 2 ∈ next∗(x) implies that x ∈ dom next and that the
recursive call sequ(next(x), next) terminates. Hence

first(sequ(x, next))

≡ {[definition]}
first(x+ sequ(next(x), next))

≡ {[definition]}
x .

(2) is a straightforward induction on the length of sequ(x, next).

(3) is a straightforward induction on the length of s.

A fundamental property is that overwriting outside of a chain does not change the chain:

Lemma 3.5
For x, u, v ∈ rcd and next ∈ state such that ¬ x next∗ u,

(1) sequ(x, [u 7→ v] | next) ≡ sequ(x, next) .
(2) ([u 7→ v] | next)∗(x) ≡ next∗(x) .

Proof: (1) We use the well-known technique of computational induction (see e.g. [11]) for
proving properties of recursively defined functions: Consider a continuous (or ad-
missible) predicate P and a recursive definition

funct g ≡ τ [g]

with least fixpoint µτ of the associated functional τ . If we can show P [Ω] (where
Ω is the totally undefined function) and ∀ f : P [f] ⇒ P [τ [f]], then we may infer
P [µτ] as well. Here we choose the continuous predicate

P [f]
def⇔ ∀ next : ∀ x : ∀ u : ∀ v :
¬ x next∗ u ⇒ f(x, next) ≡ f(x, [u 7→ v] | next) .

The induction base P [Ω] is trivial. For the induction step assume that P [f] and
¬ x next∗ u hold. The functional belonging to the definition of sequ is

τ : f 7→ (rcd x, state next) rcdsequ :
if x 6∈ dom next then 〈〉 elsex+ f(next(x), next) fi .

8

First we note that from the definitions it is straightforward that

(∗) ¬ x next∗ u ⇒ u 6≡ x ,
(∗∗) x ∈ dom next and¬ x next∗ u ⇒ ¬ next(x) next∗ u .

Now we calculate, assuming ¬ x next∗ u,

τ [f](x, next)
≡ if x 6∈ dom next then 〈〉 elsex+ f(next(x), next) fi

≡ {[by (∗∗) and induction hypothesis P [f]]}
if x 6∈ dom next then 〈〉 elsex+ f(next(x), [u 7→ v] | next) fi

≡ {[by (∗)]}
if x 6∈ dom ([u 7→ v] | next)

then 〈〉
else x+ f(([u 7→ v] | next)(x), [u 7→ v] | next) fi

≡ τ [f](x, [u 7→ v] | next) .

(2) is proved analogously using the recursion from Corollary 3.1.

4 Concatenation of Chains “in Situ”

We now want to specify and develop an algorithm for concatenating two non-overlapping an-
chored chains “in situ”.

4.1 Specification and First Explicit Solution

First we give the precondition for our desired function:

funct disjoint ≡ (rcd x, rcd y, state next) bool :
next∗(x) ∩ next∗(y) = {2} .

So we consider a state next in which the sublists starting from the records x and y are anchored
chains whose sets of proper records are disjoint. We want to form a new state in which the
concatenation of these two sublists is overwritten onto the same set of proper records; moreover,
the order of traversal within the sublists should be preserved, and all records from the sublist
of x should precede all records in the sublist of y. This can be specified by

funct conc ≡ (rcd x, rcd y, state next : disjoint(x, y, next)) state :
chain(sequ(x, next) + sequ(y, next)) | next .

So the proper records of the subchains are collected in the right order, the resulting sequence is
chained, and this chain is overwritten onto next while re-using the same records. Hence, no copy-
ing is involved and we really are specifying concatenation “in situ”. Note that disjoint(x, y, next)
implies ischainable(sequ(x, next) + sequ(y, next)).

From this specification we now want to develop a direct recursion without the “detour” through
sequences. We try to obtain it by the familiar unfold/fold technique. We consider the following
cases:

9

Case 1: x 6∈ dom next . Then sequ(x, next) ≡ 〈〉, and hence

chain(sequ(x, next) + sequ(y, next)) | next

≡ {[neutrality of 〈〉]}
chain(sequ(y, next)) | next

≡ {[by annihilation, since chain(sequ(y, next)) ⊆ next by Lemma 3.4(2)]}
next .

Case 2: x ∈ dom next . We define an auxiliary function

funct neconc ≡ (rcd x, rcd y, state next : disjoint(x, y, next) andx ∈ dom next) state :
chain(sequ(x, next) + sequ(y, next)) | next .

We calculate:

chain(sequ(x, next) + sequ(y, next)) | next

≡ {[definition of sequ]}
chain(x+ sequ(next(x), next) + sequ(y, next)) | next

≡ {[abbreviation]}
(∗) .

Now we perform a case analysis on next(x).

Case 2.1: next(x) 6∈ dom next . Then sequ(next(x), next) ≡ 〈〉, and hence

(∗)
≡ {[by Lemma 3.3(1) and Lemma 3.4(1)]}

([x 7→ y] ∪ chain(sequ(y, next))) | next

≡ {[annihilation, since chain(sequ(y, next)) ⊆ next]}
[x 7→ y] | next .

Case 2.2: next(x) ∈ dom next . Then

(∗)
≡ {[by Lemma 3.3(1) and Lemma 3.4(1)]}

([x 7→ next(x)] ∪ chain(sequ(next(x), next) + sequ(y, next))) | next

≡ {[annihilation, since [x 7→ next(x)] ⊆ next]}
chain(sequ(next(x), next) + sequ(y, next)) | next

≡ {[fold neconc]}
neconc(next(x), y, next) .

For the correctness of the folding step we also need to check the validity of the assertion of
neconc for the recursive call. We calculate, assuming x ∈ dom next cand next(x) ∈ dom next :

disjoint(x, y, next)

≡ {[definition of disjoint]}
next∗(x) ∩ next∗(y) = {2}

≡ {[by Corollary 3.1]}
({x} ∪ next∗(next(x))) ∩ next∗(y) = {2}

10

≡ {[distributivity]}
({x} ∩ next∗(y)) ∪ (next∗(next(x)) ∩ next∗(y)) = {2}

≡ {[x 6= 2, {x} ∩ next∗(y) ⊆ {x}]}
{x} ∩ next∗(y) = ∅ ∧ next∗(next(x)) ∩ next∗(y) = {2}

≡ {[definition of disjoint]}
{x} ∩ next∗(y) = ∅ ∧ disjoint(next(x), y, next) .

Thus,
(disjoint(x, y, next) andx ∈ dom next) cand next(x) ∈ dom next ⇒
disjoint(next(x), y, next) and next(x) ∈ dom next ,

as required.

Altogether we obtain, using Corollary 3.2,

funct conc ≡ (rcd x, rcd y, state next : disjoint(x, y, next)) state :
if x = 2 then next else neconc(x, y, next) fi

where
funct neconc ≡ (rcd x, rcd y, state next : disjoint(x, y, next) andx ∈ dom next) state :

if next(x) = 2 then [x 7→ y] | next
else neconc(next(x), y, next) fi .

Termination of neconc follows from 2 ∈ next∗(x). It is quite reassuring that the fundamental
unfold/fold technique for deriving recursions also applies to pointer algorithms in this setting.

We briefly discuss an alternative derivation for the same problem. In Case 2 above we know by
definition of sequ that sequ(x, next) 6≡ 〈〉. Hence we may calculate

chain(sequ(x, next) + sequ(y, next)) | next

≡ {[definition of lead , last]}
chain(lead(sequ(x, next)) + last(sequ(x, next)) + sequ(y, next)) | next

≡ {[by Lemma 3.3(2) and associativity]}
chain(last(sequ(x, next)) + sequ(y, next)) |
chain(lead(sequ(x, next)) + last(sequ(x, next))) | next

≡ {[definition of lead , last]}
chain(last(sequ(x, next)) + sequ(y, next)) | chain(sequ(x, next)) | next

≡ {[by annihilation, since chain(sequ(x, next)) ⊆ next]}
chain(last(sequ(x, next)) + sequ(y, next)) | next

≡ {[by Lemma 3.3(1)]}
([last(sequ(x, next)) 7→ first(sequ(y, next))] ∪ chain(sequ(y, next))) | next

≡ {[by annihilation, since chain(sequ(y, next)) ⊆ next]}
[last(sequ(x, next)) 7→ first(sequ(y, next))] | next

≡ {[by Lemma 3.4(1)]}
[last(sequ(x, next)) 7→ y] | next .

So a different specification of neconc would be

funct neconc ≡ (rcd x, rcd y, state next : disjoint(x, y, next) andx ∈ dom next) state :

11

[last(sequ(x, next)) 7→ y] | next .

Now one can use the standard recursion for last and the definition of sequ to show, for x ∈
dom next ,

last(sequ(x, next)) ≡ if next(x) ∈ dom next then last(sequ(next(x), next)) elsex fi .

A straightforward unfold/fold transformation for neconc then yields the same result as before.
This second derivation invests more lemmata, whereas the first one is more direct.

4.2 Introducing Selective Updating

Since we have even obtained a tail-recursive version, we are already very close to an imperative
program. To get there, we introduce a procedure specified by

proc pconc ≡ (var state next , rcd x, y : disjoint(x, y, next)) :
next := conc(next , x, y) .

Note that this clearly specifies the state next as a transient parameter, whereas x and y are
passed by value. Therefore the imperative version of pconc needs local variables for x and y,
whereas it may operate on next directly. This is described by the following schematic rule for
transforming an assignment that involves a tail-recursive function into a loop:

a := f(a,E)
where
funct f ≡ (t a, u b) t : if C thenT else f(K,L) fi

xy
[
b 6∈ FREE[[E]]
f 6∈ FREE[[E,C, T,K, L]]

d var u b := E ;
while ¬ C do (a, b) := (K,L) od;
a := T c .

The double arrow indicates that, under the syntactic conditions at the side, the top scheme is
semantically equivalent to the bottom scheme. a is a global variable; since it is modified by the
assignment anyway, it may also be used for accumulating the intermediate results. E,C, T,K,
and L stand for expressions of appropriate types, possibly involving a and b, but not f . Note
that the rule holds also if a and b stand for tuples of distinct identifiers.

Application of this rule (under appropriate renaming within neconc) leads to

proc pconc ≡ (var state next , rcd x, y : disjoint(x, y, next)) :
d if x = 2

then next := next
else (var rcd vx, vy) := (x, y) ;

while next(vx) 6= 2 do (next , vx, vy) := (next , next(vx), vy) od;
next := [vx 7→ vy] | next fic .

Our final version results from eliminating useless assignments of the form z := z as well as the
variable vy which is never changed:

12

proc pconc ≡ (var state next , rcd x, y : disjoint(x, y, next)) :
d if x = 2

then skip
else var rcd vx := x ;

while next(vx) 6= 2 do vx := next(vx) od;
next := [vx 7→ y] | next fic .

If we write the assignment
next := [vx 7→ y] | next

in a Pascal-like way as
vx↑ .next := y ,

we see that we actually have derived a version with selective updating.

In the derivation we have not made use of any assumptions about absence of sharing except for
disjointness of the two lists headed by x and y. Indeed, if in next there are pointers from other
data structures to (parts of) these lists, there will be indirect side effects on these pointers.
However, since by the specification we know the value of the complete store after execution
of our procedure, we can calculate these effects using our algebraic laws. Also, one can easily
formulate stronger preconditions that exclude sharing if this is desired.

5 Chain Reversal

Next we want to derive a procedure for reversing a non-empty chain “in situ”.

5.1 Specification and First Explicit Solution

Again we first specify a purely applicative version. The reverse of a chain should contain exactly
the same proper records as the original chain, however, in reverse order of traversal. We can
express this as follows:

funct reverse ≡ (rcd x, state next : 2 ∈ next∗(x)) state :
chain(rev(sequ(x, next))) | next ,

where rev is the reversal function on sequences:

funct rev ≡ (rcdsequ s) rcdsequ :
if s = 〈〉 then 〈〉 else rev(rest(s)) + first(s) fi .

Let us now derive a recursion for reverse. The basic idea for the development is to adapt the
standard technique for making rev tail-recursive. There one defines a generalised function rrev
with an additional parameter t that accumulates the intermediate results:

funct rrev ≡ (rcdsequ s, t) rcdsequ :
rev(s) + t .

rev is embedded into rrev by
rev(s) ≡ rrev(s, 〈〉) .

A straightforward unfold/fold derivation using associativity of + then leads to the tail-recursion

13

rrev(s, t)
≡ if s = 〈〉 then t

else rrev(rest(s), first(s) + t) fi .

In the case of reverse we now proceed similarly; however, we do not carry the accumulating
submap itself as a parameter, but just its head record. Hence we define

funct rreverse ≡ (rcd x, y, state next : disjoint(x, y, next)) state :
chain(rev(sequ(x, next)) + sequ(y, next)) | next .

An appropriate embedding is

reverse(x, next) ≡ rreverse(x,2, next) ,

since sequ(2, next) ≡ 〈〉.
As before, we now perform a case analysis.

Case 1: x ≡ 2. Then sequ(x, next) ≡ 〈〉, and hence rev(sequ(x, next)) ≡ 〈〉. Thus

chain(rev(sequ(x, next)) + sequ(y, next)) | next
≡ chain(sequ(y, next)) | next

≡ {[since chain(sequ(y, next)) ⊆ next by Lemma 3.4(2)]}
next .

Case 2: x 6≡ 2. Then sequ(x, next) ≡ x + sequ(next(x), next), and hence rev(sequ(x, next))
≡ rev(sequ(next(x), next)) + x. Thus

chain(rev(sequ(x, next)) + sequ(y, next)) | next
≡ chain(rev(sequ(next(x), next)) + x+ sequ(y, next)) | next

≡ {[by Lemma 3.3(3), Lemma 3.4(1), and idempotence (Lemma 2.9)]}
chain(rev(sequ(next(x), next)) + x+ sequ(y, next)) | [x 7→ y] | next

≡ {[by Lemma 3.5(1), since disjoint(x, y, next) implies
x 6∈ next∗(y) and x 6∈ next∗(next(x))]}

chain(rev(sequ(next(x), [x 7→ y] | next)) + x+ sequ(y, [x 7→ y] | next)) | [x 7→ y] | next

≡ {[definition of sequ]}
chain(rev(sequ(next(x), [x 7→ y] | next)) + sequ(x, [x 7→ y] | next)) | [x 7→ y] | next

≡ {[fold rreverse]}
rreverse(next(x), x, [x 7→ y] | next) .

Again, we have to check the validity of the assertion for the recursive call. Assuming that
x 6≡ 2 and disjoint(x, y, next) holds, we calculate:

disjoint(next(x), y, [x 7→ y]|next)

≡ {[definition of disjoint]}
([x 7→ y]|next)∗(next(x)) ∩ ([x 7→ y]|next)∗(x) = {2}

≡ {[by Lemma 3.5(2)]}
next∗(next(x)) ∩ ([x 7→ y]|next)∗(x) = {2}

≡ {[definition of ([x 7→ y]|next)∗]}
next∗(next(x)) ∩ ({x} ∪ ([x 7→ y]|next)∗(y)) = {2}

≡ {[by Lemma 3.5(2) and disjoint(x, y, next)]}

14

next∗(next(x)) ∩ ({x} ∪ next∗(y)) = {2}
≡ {[distributivity]}

(next∗(next(x)) ∩ {x}) ∪ (next∗(next(x)) ∩ next∗(y)) = {2}
≡ {[x 6= 2, next∗(next(x)) ∩ {x} ⊆ {x}]}

next∗(next(x)) ∩ {x} = ∅ ∧ next∗(next(x)) ∩ next∗(y) = {2} .
Both conjuncts are implied by disjoint(x, y, next), since that also implies 2 ∈ next∗(x).

Altogether, we have

funct rreverse ≡ (rcd x, y, state next : disjoint(x, y, next)) state :
if x = 2 then next

else rreverse(next(x), x, [x 7→ y] | next) fi .

Again we have arrived at an (obviously terminating) tail recursion.

5.2 A Version With Selective Updating

Specifying a procedure

proc preverse ≡ (var state next , rcd x : 2 ∈ next∗(x)) :
next := reverse(x, next) ,

we obtain, analogously to the previous section, the final version

proc preverse ≡ (var state next , rcd x : 2 ∈ next∗(x)) :
d (var rcd vx, vy) := (x,2) ;

while vx 6= 2 do (vx, vy, next) := (next(x), vx, [vx 7→ vy] | next) od c .

Note that sequentialisation of the collective assignment would require an auxiliary variable. This
is a spot of frequent error in attempts to write down this algorithm straightforwardly without
deriving it. The systematic derivation allows us to avoid such errors by using the standard
knowledge about the treatment of collective assignments.

This program describes a well-known algorithm for reversing a list “in situ”. Whereas verifica-
tion purely at the procedural level is by no means easy (see e.g. [5, 10]), in particular if all the
details were to be filled in, we have derived and thereby verified the program by a fairly short
and simple formal calculation using standard transformation techniques.

6 Conclusion

We have shown two examples of how to derive algorithms involving pointers and selective
updating from formal specifications using standard transformation techniques. The key to the
method consists in considering the store as an explicit parameter, since then one has complete
information about sharing and therefore complete control about side effects. We deem this
approach much clearer (and much more convenient) than the idea of hiding the store and
coming up with special logics (see e.g. [5, 9, 12]) that capture the side-effects indirectly, as
needs to be done in the field of verification of procedural programs.

Staying at the applicative level almost to the very end of the derivations has allowed us to

15

take full advantage of the powerful algebra of partial maps. Using this algebra one saves many
quantifiers (as compared e.g. to [4]). Moreover, the operations of that algebra are expressive
enough that we did not need to explain anything with the help of pictures. This may seem due
to the simplicity of the algorithms. However, the situation almost seems to be reversed: when
developing the intricate garbage collection algorithm described in [3] we quite soon stopped
drawing pictures, because they became so complicated as to be ununderstandable. Contrarily,
the algebraic formulation was clear and modular so that one exactly saw what was going on.
Another advantage of the applicative treatment is that if additional predicates or operations
on maps are needed, they are more easily added at the applicative than at the procedural level.
Finally, if pointer algorithms are developed in a systematic way at the applicative language
level, there is no need for introducing additional imperative language concepts such as the
highly imperspicuous pointer rotation [22].

We are convinced that our approach can be extended into a convenient method for constructing
systems software with guaranteed correctness.

Acknowledgements
The idea of an algebraic treatment of pointers was stimulated by discussions within IFIP WG
2.1 “Algorithmic Languages and Calculi”, notably by the algebraic way in which R. Bird and L.
Meertens develop tree and list algorithms. I gratefully acknowledge helpful comments by F.L.
Bauer, U. Berger, J. Desharnais, W. Dosch, H. Ehler, W. Meixner, O. de Moor, H. Partsch, P.
Pepper, M. Russling, M. Sintzoff and the anonymous referees.

7 References

1. F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz, E. Hangel, W.
Hesse, B. Krieg-Brückner, A. Laut, T.A. Matzner, B. Möller, F. Nickl, H. Partsch, P. Pepper,
K. Samelson, M. Wirsing, H. Wössner: The Munich project CIP. Volume I: The wide spectrum
language CIP-L. Lecture Notes in Computer Science 183. Berlin: Springer 1985

2. F.L. Bauer, B. Möller, H. Partsch, P. Pepper: Formal program construction by transformations
— Computer-aided, Intuition-guided Programming. IEEE Transactions on Software Engineering
15, 165–180 (1989)

3. U. Berger, W. Meixner, B. Möller: Calculating a garbage collector. In: M. Broy, M. Wirsing
(eds.): Methods of programming. Lecture Notes in Computer Science 544. Berlin: Springer
1991, 137–192

4. A. Bijlsma: Calculating with pointers. Science of Computer Programming 12, 191–205 (1988)

5. R. Burstall: Some techniques for proving correctness of programs which alter data structures. In:
B. Meltzer, D. Mitchie (eds.): Machine Intelligence 7. Edinburgh University Press 1972, 23–50

6. E.C.R. Hehner: A practical theory of programming. Forthcoming book

7. A. Horsch: Functional programming with partially applicable operators. Fakultät für Mathe-
matik und Informatik, Technische Universität München, Dissertation, 1989

8. C.B. Jones: Software development: A rigorous approach. Englewood Cliffs: Prentice-Hall 1980

16

9. A. Kausche: Modale Logiken von geflechtartigen Datenstrukturen und ihre Kombination mit
temporaler Programmlogik. Fakultät für Mathematik und Informatik, Technische Universität
München, Dissertation, 1989

10. M. Levy: Verification of programs with data referencing. Proc. 3me Colloque sur la Program-
mation 1978, 413–426

11. Z. Manna: Mathematical theory of computation. New York: McGraw-Hill 1974

12. I. Mason: Verification of programs that destructively manipulate data. Science of Computer
Programming 10, 177–210 (1988)

13. B. Möller: Relations as a program development language. In B. Möller (ed.): Constructing
programs from specifications. Proc. IFIP TC2/WG 2.1 Working Conference on Constructing
Programs from Specifications, Pacific Grove, CA, USA, 13–16 May 1991. Amsterdam: North-
Holland 1991, 373–397

14. B. Möller: An algebraic treatment of sorting. Document Nr. 693 AUG-7 of IFIP WG 2.1, Sept.
1992

15. B. Möller: Derivation of graph and pointer algorithms. Institut für Mathematik der Universität
Augsburg, Report No. 280, 1993. Also in B. Möller, H.A. Partsch, S.A. Schuman (eds.): Formal
program development. Proc. IFIP TC2/WG 2.1 State of the Art Seminar, Rio de Janeiro, Jan.
1992. Lecture Notes in Computer Science. Berlin: Springer (to appear)

16. B. Möller, M. Russling: Shorter paths to graph algorithms. Proc. 1992 International Conference
on Mathematics of Program Construction (to appear). Extended version: Institut für Mathe-
matik der Universität Augsburg, Report Nr. 272, 1992. Also to appear in Science of Computer
Programming

17. P. Pepper, B. Möller: Programming with (finite) mappings. In: M. Broy (ed.): Informatik und
Mathematik. Berlin: Springer 1991, 381–405

18. J. Reynolds: Reasoning about arrays. Commun. ACM 22, 290–299 (1979)

19. M. Russling: Hamiltonian sorting. Institut für Mathematik der Universität Augsburg, Report
Nr. 270, 1992

20. G. Schmidt, T. Ströhlein: Relationen und Graphen. Berlin: Springer 1989. English version:
Relations and graphs (forthcoming)

21. A. Tarski: On the calculus of relations. J. Symbolic Logic 6, 73–89 (1941)

22. N. Suzuki: Analysis of pointer rotation. Conf. Record 7th POPL, 1980, 1–11. Revised version:
Commun. ACM 25, 330–335 (1982)

8 Appendix: The Algebra of Relations and Partial Maps

We have given our definitions of the relational operations in set theoretic terms. However, in
the literature (see e.g. [20]) one frequently works with an abstraction of this framework, viz.
with abstract relational algebras. In this appendix we shall show that our laws hold in this
more general setting as well.

17

8.1 Abstract Relational Algebras

An abstract relational algebra consists of a set A together with binary operations

∪ , ∩ , ; : A× A → A ,

unary operations
., .−1 : A → A ,

and constants
∅, I, 11 ∈ A ,

such that

1. (A, ∪ , ∩ , ., ∅, 11) forms a Boolean algebra, i.e., a complete, distributive, atomic, and com-
plementary lattice, the corresponding lattice order being denoted by ⊆ ;

2. (A, ; , I) is a monoid;

3. Tarski’s rule R 6= ∅ ⇒ 11 ;R ; 11 = 11 holds;

4. Dedekind’s rule R ; S ∩ T ⊆ (R ∩ T ; S−1) ; (S ∩ R−1 ; T) is satisfied.

The elements of A are called abstract relations; the operation .−1 forms the converse of a
relation, whereas ; is called relational composition. It is customary to use the convention
that ; binds tighter than ∪ and ∩.

A concrete model of an abstract relational algebra is the set of all binary relations on a set M ,
where ∪ , ∩ , and . are usual union, intersection, and complement, ∅ is the empty relation, 11
is the universal relation M ×M , and I = {(x, x) | x ∈M} is the identity relation on M .
The converse is given by

R−1 = {(y, x) | (x, y) ∈ R} ,

while composition is defined as

R ; S = {(x, z) | ∃ y ∈M : (x, y) ∈ R ∧ (y, z) ∈ S} .

This is the generalisation of functional composition to relations.

The following properties are consequences of the definition. First, composition distributes
through union:

(R ∪ S) ; T = R ; T ∪ S ; T ,
R ; (S ∪ T) = R ; S ∪ R ; T .

From this it follows that ; is monotonic w.r.t. inclusion of relations. However, it is only subdis-
tributive w.r.t. intersection:

(R ∩ S) ; T ⊆ R ; T ∩ S ; T ,
R ; (S ∩ T) ⊆ R ; S ∩ R ; T .

The universal relation is idempotent:

11 ; 11 = 11 .

Composition is strict w.r.t. ∅:
∅ ;R = ∅ = R ; ∅ .

18

The following laws hold for the converse:

(R−1)−1 = R ,
(R ; S)−1 = S−1 ;R−1 ,

I−1 = I .

Moreover, the converse distributes through all lattice operations.

Interesting special relations arise from composition with universal relations. From the definitions
it is straightforward that in the set theoretic model

R ; 11 = (domR)×M .

Thus, R ; 11 relates each element in the domain of R to each element of M ; it therefore can
serve as a relational representation of the domain of R (see e.g. [20]). Note that

R ⊆ R ; 11 .

Using this, we can form restriction operations. In the set theoretic model, the relation

R ∩ S ; 11

results from R by retaining only those pairs the first components of which are also in the domain
of S. Similarly, forming

R ∩ S ; 11

removes from R all pairs with a first component in the domain of S.

8.2 Overwriting

In this section we investigate the operation of overwriting one relation with another one.
Given relations R, S we define

R |S def
= R ∪ (S ∩ R ; 11) .

Hence, in the set theoretic model a pair (x, y) is in R |S iff it is in R or x is not in the domain
of R and (x, y) is in S, and thus the definition agrees with the one in Section 2. We use the
convention that | binds tighter than the lattice operations; however, no precedence is defined
between ; and |.
We now prove a number of useful properties of overwriting. It should be noted that the proofs
only use identities between relations and hence are valid in all abstract relational algebras.

Corollary 8.1 (Right-Distributivity)

R | (S ∪ T) = R |S ∪ R |T .

Proof: Immediate from the distributivity of ∩ over ∪.

From this it follows that | is monotonic in its right argument. Note, however, that | is neither
distributive nor monotonic in its left argument.

19

Lemma 8.2 (Extension)

(1) R ⊆ R |S .
(2) R = R |S ∩ R ; 11 .

Proof: (1) is immediate from the definition.

(2) R |S ∩ R ; 11

= {[definition]}
(R ∪ (S ∩ R ; 11)) ∩ R ; 11

= {[distributivity]}
(R ∩ R ; 11) ∪ (S ∩ R ; 11 ∩ R ; 11)

= {[Boolean algebra, R ⊆ R ; 11]}
R .

Overwriting is idempotent:

Corollary 8.3 (Idempotence)

R |R = R .

Proof: Straightforward from the definition.

The following properties allow localising side effects to that part of a store they really affect:

Lemma 8.4 (Localisation)

(1) R ; 11 ∩ S ; 11 = ∅ ⇒ R | (S ∪ T) = S ∪ R |T .
(2) R ; 11 ∩ T ; 11 = ∅ ⇒ (R ∪ S) |T = R ∪ S |T .

Proof: (1) By the assumption, S ⊆ S ; 11 ⊆ R ; 11 (∗). Hence

R | (S ∪ T)

= {[right-distributivity (Corollary 8.1)]}
R |S ∪ R |T

= {[definition of |]}
R ∪ (S ∩ R ; 11) ∪ R |T

= {[by (∗) and Boolean algebra]}
R ∪ S ∪ R |T

= {[Lemma 8.2(1), Boolean algebra]}
S ∪ R |T .

(2) By the assumption, T ⊆ T ; 11 ⊆ R ; 11 (∗∗). Hence

(R ∪ S) |T
= {[definition of |]}

R ∪ S ∪ (T ∩ (R ∪ S) ; 11)

= {[distributivity]}

20

R ∪ S ∪ (T ∩ R ; 11 ∪ S ; 11)

= {[Boolean algebra]}
R ∪ S ∪ (T ∩ R ; 11 ∩ S ; 11)

= {[by (∗∗) and Boolean algebra]}
R ∪ S ∪ (T ∩ S ; 11)

= {[definition of |]}
R ∪ S |T .

Now we show that R |S lies in between R ∩ S and R ∪ S. More precisely,

Lemma 8.5 (Median)

(1) R ∪ S = R |S ∪ (S ∩ R ; 11) .
(2) R ∩ S = R |S ∩ (S ∩ R ; 11) .
(3) R ∩ S ⊆ R |S ⊆ R ∪ S .

Proof: (1) R ∪ S

= {[Boolean algebra]}
R ∪ (S ∩ R ; 11) ∪ (S ∩ R ; 11)

= {[definition]}
R |S ∪ (S ∩ R ; 11) .

(2) is immediate from Lemma 8.2(2).

(3) is immediate from (1) and (2).

Next we show that the domain of R |S coincides with that of R ∪ S.

Lemma 8.6 (Domain)

(R |S) ; 11 = (R ∪ S) ; 11 .

Proof: By Lemma 8.5(1) and distributivity we have

(R ∪ S) ; 11 = (R |S) ; 11 ∪ (S ∩ R ; 11) ; 11 .

However,

(S ∩ R ; 11) ; 11

⊆ {[subdistributivity]}
S ; 11 ∩ R ; 11 ; 11

= {[idempotence of 11]}
S ; 11 ∩ R ; 11

⊆ {[Boolean algebra]}
R ; 11

⊆ {[Lemma 8.2(1), monotonicity]}

21

(R |S) ; 11 ,

so that the claim follows by Boolean algebra.

Relations form a monoid under overwriting:

Lemma 8.7 (Monoid)

(1) ∅ |R = R = R | ∅ .
(2) (R |S) |T = R | (S |T) .

Proof: (1) is straightforward from the definition.

(2) R | (S |T)

= {[definition]}
R ∪ ((S ∪ (T ∩ S ; 11)) ∩ R ; 11)

= {[distributivity]}
R ∪ (S ∩ R ; 11) ∪ (T ∩ S ; 11 ∩ R ; 11)

= {[definition of | , de Morgan, distributivity]}
R |S ∪ (T ∩ (S ∪ R) ; 11)

= {[Lemma 8.6, Boolean algebra]}
R |S ∪ (T ∩ (R |S) ; 11)

= {[definition of |]}
(R |S) |T .

Now we want to analyse the relation between overwriting and union in more detail.

Lemma 8.8 (Compatibility)
The following properties are equivalent:
(1) R |S = R ∪ S = S |R .
(2) R |S = S |R .
(3) R ∩ S ; 11 = S ∩ R ; 11 .
(4) R ∩ S ; 11 = R ∩ S = S ∩ R ; 11 .

Proof: (1)⇒ (2) is immediate.

(2)⇒ (3) R ∩ S ; 11

= {[Lemma 8.2(2)]}
R |S ∩ R ; 11 ∩ S ; 11

= {[assumption]}
S |R ∩ R ; 11 ∩ S ; 11

= {[Boolean algebra, Lemma 8.2(2)]}
S ∩ R ; 11 .

(3)⇒ (4) R ∩ S

= {[S ⊆ S ; 11]}

22

R ∩ S ; 11 ∩ S

= {[assumption]}
S ∩ R ; 11 ∩ S

= {[Boolean algebra]}
S ∩ R ; 11 .

(4)⇒ (1) R ∪ S

= {[Lemma 8.5(1)]}
R |S ∪ (S ∩ R ; 11)

= {[assumption]}
R |S ∪ (R ∩ S ; 11)

= {[Boolean algebra, Lemma 8.2(1)]}
R |S .

Now the claim follows from commutativity of ∪.

If any of these conditions holds we call R and S compatible. It should be noted that the
weakening R |S = R ∪ S of property(1) does not imply (2): If S ⊆ R we always have R |S =
R = R ∪ S. However, take in the set theoretic model R = {(1, 1), (1, 2), (2, 1)} and S = {(1, 1)}.
Then S |R = {(1, 1), (2, 1)} 6= R = R ∪ S.

From the above lemma we obtain two useful corollaries:

Corollary 8.9 (Sequentialisation)

(R ∪ S) |T = R | (S |T) provided R and S are compatible.

Proof: Immediate from compatibility and associativity of | .

Corollary 8.10 (Annihilation)

S |T = T ⇒ (R ∪ S) |T = R |T provided R and S are compatible.

Proof: Immediate from sequentialisation.

8.3 Partial Maps

Now we consider the special case of maps. A relation R is a (partial) map if

R−1 ;R ⊆ I .

In the set theoretic model this is equivalent to the definition given in Section 2.

Corollary 8.11 (Submap)

If S is a map and R ⊆ S then R is a map as well.

Proof: Immediate by monotonicity.

23

Next, we show an auxiliary lemma:

Lemma 8.12 (Propagation)

(1) For relations R, S we have R−1 ; S ⊆ I iff S−1 ;R ⊆ I.
(2) Let R be a map and S a relation. Then R−1 ; S ⊆ I iff S ∩ R ; 11 ⊆ R ∩ S ; 11.

Proof: (1) R−1 ; S ⊆ I

⇔ {[monotonicity]}
(R−1 ; S)−1 ⊆ I−1

⇔ {[converse]}
S−1 ;R ⊆ I .

(2)(⇒) R ; 11 ∩ S

⊆ {[Dedekind]}
(R ∩ S ; 11−1) ; (11 ∩ R−1 ; S)

= {[converse, Boolean algebra]}
(R ∩ S ; 11) ; (R−1 ; S)

⊆ {[assumption]}
(R ∩ S ; 11) ; I

= {[neutrality]}
R ∩ S ; 11 .

(⇐) S−1 ;R

= {[Boolean algebra]}
S−1 ;R ∩ 11

⊆ {[Dedekind]}
(S−1 ∩ 11 ;R−1) ; (R ∩ (S−1)−1 ; 11)

= {[converse]}
(S ∩ R ; 11)−1 ; (R ∩ S ; 11)

⊆ {[assumption]}
(R ∩ S ; 11)−1 ; (R ∩ S ; 11)

⊆ {[Boolean algebra, monotonicity]}
R−1 ;R

⊆ {[R map]}
I .

Now the claim follows by (1).

In general, relational union does not preserve the map property. However, the above lemma
gives us a good characterisation:

Corollary 8.13 (Compatibility)

Let (Rj)j∈J be a family of maps. Then
⋃
j∈J

Rj is a map iff the Rj are pairwise compatible.

24

Proof: By distributivity we have

(
⋃
j∈J

Rj)
−1 ; (

⋃
k∈J

Rk) =
⋃
j∈J

⋃
k∈J

R−1
j ;Rk

and hence

(
⋃
j∈J

Rj)
−1 ; (

⋃
k∈J

Rk) ⊆ I ⇔ ∀ j ∈ J : ∀ k ∈ J : R−1
j ;Rk ⊆ I .

Using the fact that the Rj are maps the claim now is immediate from Lemma 8.12(2)
and Lemma 8.8(3).

Maps are closed under overwriting:

Lemma 8.14 (Closure)

Let R, S be maps. Then R|S is a map as well.

Proof: By definition, R |S = R ∪ (S ∩ R ; 11). Corollary 8.11 shows that also S ∩ R ; 11 is
a map, so that by Corollary 8.13 it suffices to show compatibility of R and S ∩ R ; 11.
We calculate

R ∩ (S ∩ R ; 11) ; 11

⊆ {[subdistributivity]}
R ∩ S ; 11 ∩ R ; 11 ; 11

= {[Boolean algebra]}
R ; 11 ; 11 ∩ R ∩ S ; 11

⊆ {[Dedekind, monotonicity]}
(R ; 11 ∩ R ; 11−1) ; (11 ∩ (R ; 11)−1 ;R) ∩ S ; 11

= {[converse]}
(R ; 11 ∩ R ; 11) ; (11 ∩ (R ; 11)−1 ;R) ∩ S ; 11

= {[Boolean algebra]}
∅ ; (11 ∩ (R ; 11)−1 ;R) ∩ S ; 11

= {[strictness]}
∅ .

Moreover, Boolean algebra immediately shows (S ∩ R ; 11) ∩ R ; 11 = ∅.

Next, we give a characterisation of inclusion:

Lemma 8.15 (Inclusion)

(1) For relations R, S we have S ∩ R ; 11 = R ⇒ R ⊆ S.
(2) If S is a map, the reverse implication holds as well.

Proof: (1) is immediate from Boolean algebra.

(2) We have

R ; 11 ∩ S

25

⊆ {[Dedekind]}
(R ∩ S ; 11−1) ; (11 ∩ R−1 ; S)

⊆ {[Boolean algebra, monotonicity]}
R ;R−1 ; S

⊆ {[assumption, monotonicity]}
R ; S−1 ; S

⊆ {[S map, monotonicity]}
R ; I

= {[neutrality]}
R .

The reverse inclusion follows from the assumption and R ⊆ R ; 11.

We show now that for maps inclusion implies compatibility, which is not necessarily the case
for arbitrary relations.

Lemma 8.16 (Submap)

Let S be a map and R ⊆ S. Then R and S are compatible.

Proof: S ∩ R ; 11

= {[assumption, Lemma 8.15(2)]}
R

= {[R ⊆ R ; 11 ⊆ S ; 11]}
R ∩ S ; 11 .

This gives another kind of idempotence property:

Lemma 8.17 (Idempotence)
Let S be a map and T a relation. Then

R ⊆ S ⇒ S |T ≡ S |R |T .

Proof: S |T
≡ {[assumption, Boolean algebra]}

(S ∪ R) |T
≡ {[Lemma 8.16, Corollary 8.9]}

S |R |T .

26

To proceed further, we now state some general facts about binary operations. Let ⊕ : N×N →
N be a binary operation on some set N . Define, for x, y ∈ N ,

x ≤⊕ y
def⇔ x⊕ y = y ,

x ⊕≤ y
def⇔ y ⊕ x = y .

Lemma 8.18

(1) ⊕ is idempotent iff ⊕≤ and ≤⊕ are reflexive.

(2) If ⊕ is commutative then ⊕≤ and ≤⊕ are antisymmetric and coincide.

(3) If ⊕ is associative then ⊕≤ and ≤⊕ are transitive.

(4) If ⊕ has a neutral element 0 then 0 is a least element w.r.t. ≤⊕ and ⊕≤.

Proof: Immediate from the definitions.

Now, since | is idempotent and associative with neutral element ∅, the relations |≤ and ≤| are
preorders with least element ∅. It turns out that they have interesting properties:

Lemma 8.19 (Preorders)
Let R and S be relations. Then
(1) R |S = S ⇔ S ∩ R ; 11 = R .
(2) S |R = S ⇔ R ; 11 ⊆ S ; 11 .

Proof: (1) S = R |S
⇔ {[Boolean algebra, definition]}

(S ∩ R ; 11) ∪ (S ∩ R ; 11) = R ∪ (S ∩ R ; 11)

⇔ {[(S ∩ R ; 11) ⊆ R ; 11 and R ⊆ R ; 11]}
S ∩ R ; 11 = R .

(2) S |R = S

⇒ {[equality]}
(S |R) ; 11 = S ; 11

⇔ {[domain (Lemma 8.6)]}
S ; 11 ∪ R ; 11 = S ; 11

⇔ {[Boolean algebra]}
R ; 11 ⊆ S ; 11

⇒ {[R ⊆ R ; 11, Boolean algebra]}
R ∩ S ; 11 = ∅

⇒ {[definition]}
S |R = S .

For maps the preorder ≤| has a simple characterisation:

Corollary 8.20 (Preorder)

Let R, S be maps. Then R |S = S ⇔ R ⊆ S.

27

Proof:(⇒) By definition, R ∪ (S ∩ R ; 11) = S and hence R ⊆ S.

(⇐) By Lemma 8.16, R and S are compatible and hence R |S = R ∪ S = S.

From this and Corollary 8.10 we obtain immediately

Corollary 8.21 (Annihilation)
Let R, S, T be maps such that S ⊆ T and R and S are compatible. Then

(R ∪ S) |T = R |T .

We have given our derivations in the framework of an homogeneous abstract relational algebra.
However, all proofs also extend directly to the case of heterogenous abstract relational algebras.

28

