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1. lntroduction 
One of the most prominent aims in Computational Chemistry is the modeling of 
chemical reactions and the prediction of molecular properties. Quantum chemical 
methods are used for the calculation of molecular structures, spectra, reaction energy 
profiles and many other interesting quantities. Nowadays, the accuracy of the 
theoretical dculations can compete to an increasing extent with the experimental 
one. Therefore, theoretical methods have become a very useful tool for the solution of 
many realistic chemical quesaons. The just described capabilities are not only of 
pure academic interest Quantum chemicaI methods are also well established in the 
research laboratories of the chemical indusuy. There. they are used suCceSSfuUy for 
many routine applications. However. what is much more imponam they provide a 
detailed source of information which helps in a better understanding of chemical 
processes - a knowledge which is crucial for a directed development of new classes of 
chemical compounds and materials. AI of the computational methods used are 
extremely time consuming and rely heavily on the availablity of sufficient computer 
power. Parallel computing is the only way to open new dimensions in the field of the 
computer simulation of molecules. 
A great variety of quantum chemical methods exist ranging from the standard 
Hamee-Fock theory to sophisticated electron correlation approaches. From ' a  
computational point of view all these methods require rather lengthy and 
complicated program codes (ten thousands to several hundreds of thousands of lines) 
and have to handle a large amount of data to be stored on external devices. In the 
simplest case. the Hamee-Fock (SCF) method, "direct" algorithms have eliminated 
the UO and storage bottleneck and have opened the way to paralie1 implementations. 
For post-Harnee-Fock methods the situation is much more complicated as will be 
demonstrated below, Therefore. most of the previous atfempts in parallelizing 
quantum chemical ab initio programs concentrated on SCF methods. 
Starting with the pioneering work by CIementi and coworkers on "loosely mupied 
array of processors (LCAP)" [l] several investigations on the parallelhion of SCF 
programs have been reported 12-11]. In addition, electron comiation methods based 
on Maller-Plesset Second Order Pernubation Theory 1121, Coupled-Cluster theory 
[13,14] and fuil CI [I5161 have been considered as weil. For reviews on the use 
massively parallel computers in Quantwn Chemistry see e.g. (17.181. 
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Our investigations presented here are a continuation of our previous work 1191 on the 
the paralleiization of the COLUMBUS program system I20.211. The COLUMBUS 
program is based on the multireference single- and doubleexcitarion configuration 
interaction (MRSDCD approach. is very well portable and runs on a large variety of 
computers including numeious Unix-based workstations. VAXNMS minicomputers, 
IBM mainframes and Cray supercomputers. 
2. Quantum Chemical Methods 
In the configuration interaction method (see e.g. [Z]) the Ritz variation principle is 
used to solve the molecular Scbrodinger equation 

HY=m (1) 
where H is the Hamiltonian operator describing the molecular system, Y is a many- 
electron wave function and E is the molecular energy. Expansion of Y into a hear 
combination of configuration state functions (CSFs) 

, 

- 
Y=Zc& 

i 
I and application of the variation principle leads to the following matrix eigenvalue 

problem . 

H is the matrix represention of the Hamiitonian H in the basis of the CSFs, the 
vector c collects the coefficients ci of Eq. (1) and is an approximation to the exact 
energy E. The many-eiecuon functions Yi are constructed from one-elctron functions 
(molecular orbitals. MOs) Qj according to the Pauli principle. The MOs in turn are 
expanded into a fured basis xI  (atomic orbitals. AOs) as 

H c  = Bc. (3) 

&j = cd,x , .  (4) 
k 

The actual choice of CSFs and basis sets has a long tradition in Quantum Chemistry 
and need not be discussed here. In MRCI wave functions. the dimension of the 
matrix eigenvalue problem in Eq. (3) can easily reach hundreds of thousands or 
several millions. Because of the properties of the Hamiltonian operaror the 
Hamiltonian matrix H is sparse. Without going into details. the following main steps 
have to be executed calculation of one- and two-electron ink-ds in the atomic 
orbiral (AO) basis, calculation of molecular orbitals (MOs) by means of a SCF or 
MCSCF procedure. transionnation of the A 0  inte-ds to the MO basis and solution 
of the aforementioned eigenvalue problem. The 1 s t  step is the most complicated and 
in many cases also by far the most time consuming one. For this reason we 
concentrated on it even though it is clear that. fmally, all the aforementioned 
computational steps have to be parallelized. 
In most cases one is only interested in a few of the lowest eigenvalues and 
eigenvectors in Eq. (3). They are usually obtained by a subspace expansion into a set 
of vial vectors according to Davidson [23]. In this method the eigenvector c is 
approximated by a vector u which is expanded into a linear combination of 
correction vectors vi 

U =  L,., (5) 
I 4  
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N is the dimension of the subspace and the expansion coeificients ai are determined 
from the smal l  eigenvalue problem ga=za where gij = vfHv,. From the 
residuum r =( H - g  )u a new expansion vector V,,,+l is computed (for deraits see 
[23]) and an improved approximation u according to (5) is determined. This 
iteration scheme is completed until a cerrain conversence limit is reached. The most 
time consuming step is the calculation of the matrix-vector product 

w, = Hv,. (6) 
Because of the aforementioned sparsity of the matrix H the Hamiitonian matrix 
times vector product in Eq. (6) can be split into a series of dense mauk operatons in 
such a way that H is never constructed explicitly (direct CI). The dense maaices are, 
however, of the dimension of the MO basis only (Le. up to a few hundred at most). 
We use densemanix product kernels (e.g. BLASO) routines [24]) which have 
proven to be very efficient on vector and scalar pipelined computers. In this way 
efficiency and porrabiiity are achieved to a very large degree. The computational step 
shown in Eq. (6) is not only important in terns of CPU time but also because large 
amounts of data (two-electron inte_&) have to be processed and because the whole 
logic of the computation of the respective conmbutions to H (formula tape) has to be 
done here. 
3. Parallel algorithm 
3.1. General considerations 
Our strategy for parallelhion was strongiy ,gided by portability considexations. We 
wanted to have a program system which should work efficiently on shared memory 
and on distributed memory machines inciuding workstation clusters as well. From 
the aforemenaoned small size of the dense matrices an attempt to p d e l i z e  at this 
matrix level was not very amacuve. After analyzing various choices we decided for 
coarse grain parallelkmion at the topmost level in our program [19]. In order to do 
this, v and w are split into segments. The multiplication of the symmemc manix H 
times the vector v (Eq. (6)) was originally written in our sequential p m _ m  as loops 
over segments pairs in the following way: 

DO SEG1= 1 , NSEG 
READ vSEG7 t wS€G7 
DO SEG2 = 1 , SEGl 

READ vSfG? 1 wSEG2 
UPDATE W,EEGI, W S E ~  

WRITE W S E ~  
ENDDO 

WRITE WsEGl 
ENDDO 

The actual work - not shown in this scheme - is done in the routine UPDATE. Also 
not shown is the handlins of the case SEGl = SEG:! and various other special uses. 
In the parailel program the same loop structure as in the sequential case is used. To 
each process work for updating one segment pair is passed at a time and load 
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balancing is used to dismbute the work evenly over all proces~es. The advantage of 
this scheme is that the routine UPDATE which comprises most of the total program 
code remains completely intact Thus. we can st i l l  use the optimized dense matrix 
multipiidon routines and it will be straightforward to make use of any further 
improvements which will be made in the sequential program. For this scheme 
message passing is adequate and straightforward to implement The actual 
implementation is performed via the portable programming toolkit TCGMSG 
developed by one of us 0 [Z]. TCGMSG supplies a set of Foraan and C callable 
library routines by which message passing can be introduced into the application 
program code. A Single Program Multiple Data approach is used. 

32. First impiementations 
In our first implementation 1191 only the sparse marrix veuor veuor product of Eq. 
(6) was parallelized. The vector v was kept on disk as one single file shared by all  
processes. Local copies of the update vector w were held for each process and were 
added up via a global sum operation after completion of the loop over all segment 
pairs. The Davidson step was not parallelized at all. This version was installed on a 
variety of parallel computers like the Alliant FX/2800. the CRAY Y-MP, the Convex 
C2 and the Intel iPSC/860. The program worked very well on the Alliant, CRAY 
and Convex, E.g., on a dedicated 8 processor CRAY Y-Mp roughly one GFLOP per 
wall clock second was achieved. On the iPSc1860 a serious degradation in 
performance was observed already with 7 processors due to the SIOW data transfer 
rate to and from disk. 
In any case, we could show that our overall approach of defining tasks by 
se-menting the v and w vectors was successful. Thus. in the next step effons were 
made to reduce the I/O while changing the basic outline of the program as little as 
possible. This goal was achieved by introducing two features: a) the concept of a 
local virtual disk and b) by developing a data compression scheme for the v and w 
vectors. The virtual disk gave us a flexible tool to store files in the local central 
memory of each processor. By means of the data compression the size of the v and w 
vectors were reduced by factors of four to five. Obviously, best results couid be 
achieved when all data could be kept in core. 
This second program version was tested on the Intel Touchstone Delta and and the 
IBM SP1. Now, the performance was very good for up to about 32 processors. 
Almost 100% efficiency could be achieved for the %.v step. However, we st i l l  had 
the bottleneck to dismbute the v vector for each iteration to all processors and to 
perform a global sum for w at the end of each iteration. Also, the Davidson iterauon 
was st i l l  not pm*ormed in parallel. From our experience gained so far it was clear 
that we needed more flexibility in the data organization. For larger caiculations we 
could not keep identical copies of all files in the memory of each processor as would 
have been necssaxy for an o p W  calculation. What we needed was the possibility 
to disuibute the contents of a iile globally over the memory of all processors and to 
allow all compute processes asynchronous access to these data Again, as it has 
already been stressed above, portability was a crucial requirement for such software 
tools. 



3.3. GIobal arrays 
The global-my took [26] which we were using can be characterized in the 
following way: these tools support one-sided access to data structures (here limited to 
one- and two-dimensional arrays) in the spirit of shared memory. With some effon 
this can be done porlably, and in return for this investment we gain a much easier 
programming environment speeding code development and improving extensibility 
and maintainability. We also gain a significant performance enhancement from 
increased asynchrony of execution of processes. The took efficiently support both 
task and data parallelism. 
By means of the global-my took all major fifes (v and w, two-electron integrals) 
were now stored as a single copy. In particular, reading of the Y v w r  and 
accumuiating the conmbutions to the w vector could be done asynchronously by the 
different processes as needed. No overaU distribution step at the beginning of an 
iteration and no collection of results at the end of each itemuon is necessary 
anymore. It was also straightforward to paralleke the Davidson procedure. 

3.4. Benchmark calculations 
At present, the program works on the Intel Touchstone Delta and on the IBM SP1. 
Benchmark tests (see below) were taken on the Delta. those on the SP1 will follow 
shortly. As test example we used a C2,-pvrZ calculation on the CH3 molecule as 
given in N1 detail in Ref. [19]. The dimension of the CI expansion is 624 334 CSFs. 
The number of segments was held constant at 24 giving 481 s e p e n t  pairs 
(including subdivisions of certain pair typesj in total. Calculations with up to 112 
processors were performed. 
In Fig. 1 for one typical iteration the speedup with the number of processors is shown 
a d  compared to the theoretical value. 
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The results are very satisfactoxy up to about 64 processors and then start to 
deteriorate. Beginning with 96 processors there is no increase in the Speedup 
aymore. The main reason for this rerardation is the fact that the load balancing 



mechanism is not so efficient anymory because only a few segment pairs are 
available for each processor. Moreover. also other evenrs which were not relevant 
before now increase in relative importance. 

4. Conclusions and outlook 
We regard it as a great success that we can run the CI section of the COLUMBUS 
program system - which incorporates a l l  the complexity of the MRSDCI method - 
efficiently on a distributed memory system like the Delta Investigations on the SPl 
machine are in progress. Our next main step will be the introduction of a "double 
direct-' approach which avoids the storage and sorting of the 3- and llexternal two- 
electron integrals. A sequential. A 0  driven code is already available [27]. We are 
contident that with this new features included we will be able to r& our program 
efficiently on several hundred processors. 
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