
NASA Contractor Report Z72457

ICASE REPORT NO. 84-35 "

NASA-CR-172457
19850003278

ICASE "
PARALLEL, ITERATIVE SOLUTION OF SPARSE
LINEAR SYSTEMS: MODELS AND ARCHITECTURES

Daniel A. Reed

Merrell L. Patrlck

Contract Nos. NASI-17070, NASI-17130

August 1984

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration _._ANGI_EY_E.c',;--ARCH CEHTER

LIBRARY,_'IASA
Langley Research Center HA._.:PTON,VI,RGL;'ll.4
Hampton,Virginia 23665

Parallel, Iteratlve Solution of
Sparse Linear Systems: Models and Architectures

Daniel A. Reed t

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

Merrell L. Patrick _

Department of Computer Science
Duke University

Durham, North Carolina 27706

ABSTRACT

Solving large, sparse, linear systems of equations is a fundamental prob-
lems in large scale scientific and engineering computation. A model of a
general class of asynchronous, iterative solution methods for linear sys-
tems is developed. In the model, the system is solved by creating several
cooperating tasks that each compute a portion of the solution vector. A
data transfer model predicting both the probability that data must be
transferred between two tasks and the amount of data to be transferred

is presented. This model is used to derive an execution time model for
predicting parallel execution time and an optimal number of tasks given
the dimension and sparsity of the coefficient matrix and the costs of com-
putation, synchronization, and communication.

The suitability of different parallel architectures for solving randomly
sparse linear systems is discussed. Based on the complexity of task
scheduling, one parallel architecture, based on a broadcast bus, is
presented and analyzed.

_The research reported here was supported in part by the National
Aeronautics and Space Administration under NASA Contracts No.
NASI-17070 and No. NASI-17130 and was performed while the authors
were visitors at ICASE, NASA Langley Research Center, Hampton, VA
23665.

A!#q-//5gO-
I

Introductlon

Solving large, sparse systems of linear algebraic equations is a fundamental prob-

lem in l._rgc scale scientific and engineering computation. Such systems arise during the

analysi_ of both electrical power grids and simulation of large scale integrated circuits.

Frequently, the non-zero elements of the coefficient matrices are structurally symmetric

but otherwise appear in irregular patterns [5, 6]. In this paper, we focus on parallel,

iterative methods for solving such systems.

We consider iterative methods because they avoid the overhead associated with

matrix reordering schemes. These reordering schemes reduce the Jill-in that occurs when

direct elimination methods are used. Sparse systems can be solved by iterative methods,

however, without the coefficient matrix changing its form as the computation proceeds.

We tacitly assume that, for any given sparse system, iteration matrices exist such that

the iterations converge to the solution at a reasonable rate. Otherwise, our methods are

not applicable, and the system must be solved using a direct method.

Prior Work

In earlier work [7], we developed a model for a general class of asynchronous, itera-

tive solution methods for linear systems. In this model, a linear system is solved by

creating several cooperating tasks that each compute a portion of the solution vector.

The model was analyzed to determine the expected intertask data transfer and task

computational complexity as functions of the number of tasks. The recommended

number of tasks was then computed as a function of the sparsity of the linear system

and its dimension. The results presented in [7] are summarized in the next few sections.

In related work, Amano, Yoshida, and Also [4] proposed a parallel architecture, the

Sparse Matrix Solving Machine (SM) 2, for iterative solution of sparse linear systems with

irregular non-zero structure. Calahan [5] has investigated approaches for solving similar

2

systems on a pipelined architecture, the GRAY-l, using direct elimination methods.

Adams [1] has studied parallel implementations of iterative methods for the linear

systems arising from finite element analysis, particularly on the Finite Element Machine

FEM, under development at the NASA Langley Research Center. However, the linear

systems of her study have symmetric coefficient matrices with non-zero elements appear-

ing i= regular patterns.

Overview

In the remainder of the paper, we precisely define both the problem and the class

of iterative methods used to solve it. We discuss different ways of partitioning the prob-

lem for parallel solution and the costs associated with the partitioning. We then define a

data transfer model predicting both the probability that data must be transferred

between two partitions and the amount of data to be transferred. Using this data

transfer model, we derive a probabilistic technique for predicting the execution time and

optimal number of tasks given the dimension and sparsity of the coefficient matrix and

the costs of computation, synchronization, and communication.

Finally, the suitability of different parallel architectures for solving randomly

sparse linear systems is discussed. Based on the complexity of task scheduling, we

present and analyze one parallel architecture based on a broadcast bus.

Problem Definition

Consider a linear system of equations of the form

Kx m_ f (1)

where K is a large N X N sparse matrix and x and f are vectors of length N. Such

systems are frequently rewritten in the form

3

x = Ax + c

and solved using the iteration formula

x(i+ 1) = Ax (i) + c (2)

where z and e are N-vectors and A is another sparse N X N matrix. Although A is a

function of K, and c is a function of K and the f vector, there are many ways to

choose A and c such that (2) describes a convergent iterative scheme for (1). We only

assume that they are chosen such that the sequence of iterates <z(;)> converges to the

solution. Henceforth, we consider only the parallel implementation of the computation

defined by (2).

Parallel Solution Technique

One parallel computation schema for (2) is illustrated by the diagram in Figure I.

The matrix A and the vectors c and z (i + x) (denoted by XN), with the rows possibly

rearranged, are partitioned into sets of rows. A basic iteration step of the computation

is then partitioned into the set of computations defined symbolically by

XSET[I]=ASET[I]* XO + CSET[I] I =I,...,M.

After each basic iteration, a norm of the vector XN - XO must be checked for

convergence. If convergence has occurred or the maximum allowable number of itera-

tions has been exceeded, the iteration halts; otherwise XO is replaced by XN, and the

iteration step is repeated.

This computation schema can be realized as follows. In the main program, the

data objects and their types are declared. In addition, worker tasks, called X_TASKs,

and their controlling task, the C_TASK, are defined. The body of the main program

reads the input data, initiates the control task, which in turn initiates the worker tasks,

4

and prints the solution vector after the control task has terminated.

X_TASK[I] computes the components of the vector XN corresponding to XSET[I].

To accomplish this, X_TASK[I] needs the non-zero elements of A corresponding to

ASET[I], the elements of c corresponding to CSET[I], and a portion of the vector XO,

specifically those elements whose subscripts are the same as the column subscripts of the

non-zero elements of A in ASET[I]. Initially, this information is sent to each of the

X_TASKs by the C_TASK. After each iteration, if convergence has not occurred, the

vector XO is replaced with the vector XN. Because of this replacement, each XTASK

must send those components of XN that it computes to the other X_TASKs that need

them. Each X_TASK then determines if the XN components just computed have con-

verged and notifies the C_TASK accordingly by sending a boolean flag. When an

X_TASK is notified by the C_TASK that all XTASKs report convergence of their com-

ponents, it sends the current values of its XN components to the C_TASK and ter-

minates.

The role of the C_TASK is now clear. After initializing the X_TASKs and sending

them the initial data they need to iterate, it receives local convergence information from

each X_TASK, determines if global convergence has occurred, and notifies the X_TASKs

accordingly. If global convergence has occurred, the CTASK then receives the com-

ponents of XN and terminates.

Problem Partitioning

Clearly, the rows of the iteration matrix A must be assigned to X_TASKs. There

are an enormous number of possibilities, ranging from equal size partitions of contiguous

rows to arbitrary row permutations. Indeed, there are

N_

5

distinct ways of assigning the N rows of A to M equal size tasks.

Optimally, a row assignment algorithm should use knowledge of the matrix struc-

ture to minimize the expected (parallel) iteration time. Unfortunately, the computa-

tional cost of finding an optimal row assignment is both expensive relative to the cost of

solving the system and dependent on the underlying parallel architecture. Hence, we ini-

tially consider only partitions composed of contiguous matrix rows. Although significant

latitude in row assignments is sacrificed, differing size partitions are possible. Moreover,

this restriction greatly simplifies later analysis, and, as we shall see, is not an unreason-

able constraint for the class of bus-connected architectures. Indeed, if the matrix has

truly random structure, equal size, contiguous partitions will place approximately equal

numbers of non-zero elements in each partition.

An Analytical Model of the Computation

Objectives

Because the intent of parallel computation is a reduction of the expected execution

time, we must consider the performance of the parallel, sparse, linear systems iteration

algorithm just described. Unlike sequential algorithms, the performance of a parallel

algorithm depends not only on the number of arithmetic operations but also on the

amount and frequency of inter-task data transfer. Consequently, we derive formulae

describing

• the amount of data transfer among X_TASKs needed for each iteration,

• the computational complexity of each XTASK, and

• the time to synchronize the X_TASKs.

Based on these formulae, we create a model for predicting performance as a function of

both the number and size of matrix partitions and the matrix sparsity.

B

Notation and Assumptions

Unless otherwise specified, we assume the elements of the matrix A are randomly

non-zero with probability P (i.e., p (aii _ O) = P), as defined below. In our model of

matrix sparsity, the probability function P is determined by imposing two very weak

conditions on A. First, we require each row of A to contain at least Z non-zero ele-

ments, each randomly distributed throughout the row. Second, each row element not

known to be one of the Z non-zero values is itself assumed to be non-zero with probabil-

ity q.

Given the two conditions above, the value of P can be derived using a straightfor-

ward application of conditional probabilities. We define two events:

E: aii is one of the Z non-zero elements in row i

F: aii is a non-zero element with probability q but not one of the Z non-zero ele-

ments

Then, with N being the number of rows in A,

P(N, Z, q) = p(aij _ 0)

= p(E) + p(F) - p(E andF)

+q ql l

- Z(l_q)+ q.N

Finally, we require Z to be greater than zero (i.e., there is at least one non-zero element

in each row).

7

Throughout our discussion, M denotes the number of partitions of A (i.e., the

number of X_TASKs), and bi and ei respectively denote the indices of the beginning

and ending rows of partition]. This notation, and that introduced throughout the

remainder of our matrix analysis, is summarized in Table I.

Data Transfer for Sparse Matrices

Given a sparse matrix A whose elements are randomly non-zero with probability

P(N, Z, q) and two partitions j and k, we wish to determine the data transfer from

partition k to partition j needed to perform one iteration. For pedagogical purposes, we

consider three eases of increasing generality.

Case I:] and k are single row partitions

Partition] requires the single value zb_ if and only if abibk_ 0. Since this occurs

with probability P(N, Z, q), the expected data transfer from k to 3" is simply

P(g, Z, q).

Case II:] is a multiple row partition; k is not

Clearly, partition] does not need zbk if and only if aibk -_ 0 for all i in the range

bi < i _ ei. By assumption, each matrix element is randomly non-zero. Hence,

the probability that at least one element of the column bk in partition j is non-zero

is

l- [1- P(N,Z, q)]. ei-bj-'

Because partition k contains only one row, the expected data transfer from k to j

is the same.

Case III: both j and k are multiple row partitions

This case is illustrated in Figure II. An immediate generalization of the previous

case, partition 3" does not need any zt if and only if a, _A 0 for i in the range

8

bi < i < ei and all ! in the range bk _ 1 < ek. Consequently, the expected data

transfer from partition k to partition j is just (ek - bk + 1) times that of case

II, namely,

Tr(k, j) = (et_- bt: + 1)[1- [1-P(N, Z, q)]eJ-bi+ l]. (3)

Finally, the probability, Prr(k, j), that partition j needs at least one element from

partition k is just the probability that the submatrix delimited by rows bi and ei

and columns bk and ek, matrix A in Figure II, is not identically zero. This proba-

bility is just

PTr(k, j) ----- 1 - [1 - P(N, Z, q)J.(e,- bj+ 1)(e,-,, + 1) (4)

Although general, (3) and (4) provide little insight or intuition about data transfer

as a function of either P(N, Z, q) or M. If the partition size is constant, simpler

expressions can be obtained. Hence, we fix (ei - bi + 1), the partition size, at a

constant S = N/M for all partitions. Then replacing P(N, Z, q) by its definition,

we obtain

Tr(k, j) -- N 1 - 1- q ZM - -_ (5)

and

PTr(k,.i) 1 [1 q][N}_[1 ___][N}"]

.... . (8)

9

Parallel Computational Complexity

As noted earlier, the performance of a parallel algorithm depends on both the

intertask data transfer and the amount of computation performed by each task. Having

considered the former, we turn our attention to the latter.

Each of the parallel X_TASKs is itself just a sequential code whose two primary

constituents, inner product and convergence test, were described earlier. Consequently,

we can apply standard techniques [3] to determine the complexity of each X_TASK.

The results of this analysis are shown in Table II.

We assume that all indexing and arithmetic operations require the same amount of

time Up. Combining the results for the inner product and convergence test, the compu-

tational complexity of an arbitrary X_TASK is

(ei - bi + 1)Cp(6NP(N, Z, q) + 16) + 5Cp (7)

for the randomly sparse matrix. The C_TASK must also check for global convergence

after each iteration. This consists of ANDing the M local convergence flags received

from the X_TASKs and requires

(3M + 1)Cp (8)

operations.

Model Deserlptlon

Having just determined the expected amount of data transfer among X_TASKs

(partitions), and their computational complexity, we can now define an execution time

model of the parallel, sparse matrix algorithm. This model can then be used to predict

the execution time of one iteration.

10

Let ti(comp) denote the computational complexity of X_TASK j, ti(comm)

denote the time required for task j to send and receive all data needed for the next

iteration, and t(sync) be the time required for the C_TASK to receive and test all local

synchronization flags. Then the total execution time for one sparse matrix iteration is

(

t(.y.c)+ max ti(comp)+ ti(comm)I
I__)'__M ()

Clearly, the time required to transmit or receive a datum is some function of the

number of partitions (XTASKs) concurrently operating (e.g., if only two X_TASKs

were operating in parallel, they should be able to exchange data more quickly than if

fifty additional X_TASKs were also operating). Hence, we make both the time needed

to transmit a boolean, Cb(M), and the time to transmit an z value, Ct(M), functions of

M.

We now consider each component of the execution time. Given that Cb(M)

denotes the time needed to transmit a single boolean value, then t(sync) is given by

RECEIVE FLAGS TEST FLAGS SEND FLAGS

MCb(M) + (3M + 1)Cp + UCb(U).

Of course, ti(comp)is given by (7). The communication component, t_(cornm)is, how-

ever, somewhat more complicated. In addition to including the interpartition data

transfer, it should also include startup costs for data transmission. That is, two parti-

tions exchanging ten data values should require less time than four partitions exchang-

ing five data values. This intent is reflected by the formula

11

tj(comm) = 8end to other partition_ (10)

+ receive from other partition8

]= E [CsPTr(k, J) + Ct(M)Tr(k, J)k=l

M

+ _ Ct(M)Tr(k, j)
k_l

where Cs is the startup cost for initiating a data transfer.

Given these formulae, consider the matrix case for which we derived closed forms

for PTr(k, j) and Tr(k, j), the randomly sparse matrix with fixed partition size.

Substituting values from (5) and (6)in (10) for PTr(k, j) and Tr(k, J) gives

ti(comm) ---

N]1 - 1 - q) -
M

12

Conclus_.onsBased on the Model

As we have seen,the totalexecutiontime forone sparsematrixiterationisgiven

by (9).For equalsizedpartitions,(9)simplifiesto

t(sync) -t- ty(corap) -t- ty(comm). (11)

There are two primary means of implementing communication in a parallel system,

shared memory and communication networks. In both cases, the delays incurred for

data transfer increase as the number of parallel tasks increase. (Shared memory suffers

from memory access conflicts, and communication networks, being necessarily incomplete

connections, require additional routing of data.) Hence, it seems appropriate to make the

synchronization and data transmission costs functions of the number of partitions M

(i.e., the number of parallel X_TASKs). We used the functions

1

log2(M)

f(M) =
,/W

M

in the communication component of (11) to reflect the possible range of communication

costs one might encounter.

Using (11) and the communication cost function, f(M), we then plotted total exe-

cution time as a function of matrix sparsity, P(N, Z, q), computation time, Cp, com-

munication time, Ct and C8, and synchronization cost, Cb, for the random sparsity case.

These plots, shown in Figures III-V, are discussed in detail below. In all cases, the smal-

lest number of partitions chosen was M = 5.

13

FigureIII

This figure shows iteration time as a function of the number of matrix partitions

(X_TASKs) for varying communicationcosts. Each matrix row contains 14 non-zeroele-

ments, a typical number for a matrix arising from a finite element method.

As can be seen, there exists an optimal level of parallelism in each case. Not

surprisingly, the optimum level of parallelism declines as the communication costs

increase. Even constant cost communication cannot support as many parallel tasks as

there are matrix rows. The reason is quite simple, as the number of partitions grows,

synchronization costs become prohibitive.

Figure IV

This figure shows the effectof matrix sparsity on iteration time for communication

costs proportional to v/-M; the lowest curve corresponds to greatest sparsity. As

expected, increasing the number of non-zero elements results in increased iteration time.

In addition, the optimum level of parallelism increases as the number of non-zero ele-

ments increases.

Figure V

Finally, this figure shows iteration time for varying matrix sizes, again with com-

munication costs proportional to v/-M.

Results of the model clearly show that the execution time of the solution methods

can be reduced by partitioning the computation into parallel subtasks. However, the

optimum number of partitions is very dependent on synchronization and communication

costs.

14

Allocating Tasks to Processors

Although the model described above can provide some insights into the appropri-

ate balance of parallel computation and communication, it assumes both a random

assignment of tasks to processors and assignment of contiguous rows to tasks. Two

important questions remain.

• What factors must a good scheduling algorithm include?

• What are the constraints on the computational complexity of such an algorithm?

Each of these questions have significant ramifications for possible parallel architectures.

The Scheduling Problem

As a first approximation, the X_TASKs of the iterative algorithm should be

assigned to processors to minimize interproeessor communication. At each iteration,

X_TASK[I] needs a group of XN values computed by the other X_TASKs. As we have

seen, the particular XN components needed are determined by the unique column sub-

scripts of the non-zero elements of the matrix A held by X_TASK[I]. Hence, an ideal

row assignment would minimize over all tasks the sum of the number of unique column

subscripts. Not surprisingly, this function is minimized when all rows are placed in a

single task. Obviously, the number of tasks used must also be selected. Note, however,

that the number of tasks cannot be selected a priorL There exists an optimal row

assignment for a given number of tasks, but there is also an optimal number of tasks.

In practical terms, the existence of p parallel processors should not mandate use of

them all; communication delays may encourage use of fewer processors. Finally, architec-

tural considerations intrude. Of the possible partitionings of an N row matrix, some are

infeasible either because

15

• the number of partitions exceeds the number of processors, or

• a partition size exceeds a processor memory size.

Thus, the scheduling problem becomes one of finding an optimal number of parti-

tions (tasks) and an optimal row assignment across the partitions that minimizes itera-

tion time while satisfying all architectural constraints. Using the notation of Table III,

we can formally express the scheduling problem as follows.

minimize IterTime (M, P, Msiz_,ComType)

subject to:

I<M<p

P E Pset(p)

Merei < Msize V Merni E P

ComType E { shared memory, bus, "'" }

Generally, IterTime (M, P, Msize, ComType) is not a simple analytic function; it must

be determined either by simulation or computation. Because there are also a combina-

torial number of row assignments, it is not surprising that optimal scheduling is prohibi-

tively expensive. In the general case, it is surely NP-complete. _re find ourselves in the

rather unattractive position Of needing to solve an NP-complete problem as a preprocess-

ing step to a problem whose sequential complexity is polynomial. Since optimal schedul-

ing is infeasible, we must consider the viability of scheduling heuristics.

10

Scheduling Heuristic8

If a parallel iterative method is to be effective for solution of a single linear system,

the prescheduling and the parallel iteration must be faster than the sequential method.

For a sparse matrix with P(N, Z, q)lV_ non-zero elements, a sequential iterative method

requires O(iP(N, Z, q)N _) time, where i is the number of iterations required. If M pro-

cessors were dedicated to a parallel iterative method, an M-fold speedup could at best be

achieved, resulting in a parallel computational complexity of O(iP(N, Z, q)--_). Thus,

a scheduling heuristic should require no more than O(iP(N, Z, q)N _) time and, desir-

N 2

ably, less than O(iP(N, Z, q)--_-) time.

In practical terms, these results mean a scheduling heuristic can examine each

non-zero matrix element at most a constant number of times before making a decision.

Moreover, if more than a constant performance improvement is desired, the entire

matrix cannot be examined at all. This suggests that finding a good scheduling heuristic

is unlikely. Two natural alternatives then present themselves.

• Do not attempt to schedule.

• Select a parallel architecture where scheduling is not needed.

The first approach was adopted in our earlier analysis. If the coefficient matrix is truly

randomly sparse, then the computation and communication requirements of _NN equalM

size partitions should be roughly equal. The second alternative promises greater perfor-

mance and is the subject of the next section.

17

Possible Parallel Architectures

As we have seen, an architecture capable of obviating or greatly reducing the

scheduling burden is needed. Although a globally shared memory meets this need,

memory conflicts limit performance; moreover, such a scheme has limited extensibility.

The other obvious alternative is a network whose processors appear approximately

equidistant from one another. Although the equidistance criterion excludes common net-

works such as meshes, the global bus and networks capable of emulating a complete con-

nection remain.

The complete connection is both expensive and impractical for large networks, but

recent preliminary work by Van Rosendale and Mehrotra (private communication) sug-

gests that multistage networks, such as the omega network [8], may well approach the

complete connection in performance for iterative methods on sparse linear systems.

Iteration on a Bus Architecture

For moderate parallelism the global bus architecture provides a simple alternative

to intereonneetion networks; see Figure VI. Although using a single bus may seem

unduly conservative, given other proposed parallel architectures, the recent emergence of

local area networks (e.g., ethernet) has made distributed computation uoing a global bus

widely available. Thus, our discussion and analysis of bus architectures can be applied

to either tightly coupled parallel systems or loosely coupled local networks.

In the bus approach, the matrix partition in each processor broadcasts components

of XN across the bus(es) if at least one other partition needs the values. The number of

broadcasts ean be reduced by judicious row assignment, but even in the worst ease only.

one copy of the current XN vector need be broadcast each iteration. Because the total

amount of computation at each iteration is proportional to N 2, substantial computa-

tional parallelism can be realized before the broadcast bus becomes the performance

18

limiting factor (assuming the processors and the broadcast bus differ in speed by a factor

that is small relative to N).

As an added benefit, convergence flags can be transmitted with the XN values

allowing each X_TASK to test for global convergence. This eliminates the need for glo-

bal synchronization and a convergence test by the C_TASK. Because each communica-

tion processor (see Figure VI) must watch the bus for XN components, these conver-

gence flag broadcasts are essentially free. Finally, good analytic performance models for

bus architectures can be developed, providing a means to determine an appropriate

number of processors to use. We explore this last issue in the next section.

In summary, each processor on the global bus repeatedly

• computes new values for its local XN values,

• broadcasts its convergence flag and appropriate XN values,

• receives data and convergence flags, and

• computes global convergence

until all tasks have converged.

Performance Models of Bus Architectures

Consider the simplest possible bus architecture, a single broadcast bus. The per-

formance of such a system is important, both because it can help determine the number

of processors needed and because it can validate performance projections. Below, we

present two performance models, one an optimistic performance bound and the other

pessimistic.

19

Optimistic Performance Model

As derived earlier, the expected data transfer from one partition (task) to another

for randomly sparse matrices is given by (3) and, for equal size partitions, by (5). For a

bus, however, the expected amount of data broadcast by a task is desired. To derive

this quantity, first consider the probability that a single component of an XN iterate is

needed by any other task. This is just the probability that at least one row in some

other task's partition contains a non-zero element in the column corresponding to the

component of the XN iterate. If each processor 3" contains a partition of size

(ei - bi + 1), the probability of a broadcast by processor j is

PBr(J) ---- 1 - IX - P(N,Z, q)],N-(_J-bJ

-4- 1)

and the expected size of a broadcast is

Br(j) ---- (ej - bj + 1) PBr(J).

N

For simplicity's sake, we henceforth consider only partitions of equal size -_. The pro-

cessor subscript j can then be dropped, and the above formulae simplify to

and

respectively.

Because a broadcast bus has somewhat different properties than the point-to-point

networks considered earlier, our execution time model is slightly different. First, we

define the communication component of iteration time for one X_TASK, t(comm), as

2O

BROADCAST DATA BROADCAST CONVERGENCE FLAG

t(send) t(send convergence)

[C, PBr + C, Br] + C b

(Recall that convergence flags are broadcast.) Notice that it does not include a delay for

receiving data from the bus. As Figure VI shows, each node is assumed to contain a

broadcast processor capable of sending and receiving broadcast messages without delay-

ing the computation processor.

The computation component of iteration time for one XTASK, t(comp), is given

by

UPDATE XN GLOBAL CONVERGENCE TEST

NCp
[6NP(N, Z, q) + 16] -I- 5Cp + (3M + 1)CpM

where the components are obtained from (7) and (8), respectively.

Given the communication and computation components of iteration delay, we can

now develop a performance model. This simple machine repairman queueing network

model [9], shown in Figure VII, can provide simple estimates of the time needed for a

single matrix iteration. In the model of Figure VII, a task computes new XN com-

ponents, broadcasts them across the bus, and immediately begins a new iteration at a

processor. For standard iteration schemes, each task must wait until it receives new XN

components broadcast by other tasks. This delay until all values are received can

significantly increase the iteration time. Hence, the iteration times predicted by this

model are optimistic; we present a pessimistic model in the next section. Note, however,

that this model quite accurately predicts the iteration time of iteation schemes that do

not wait for updated values before beginning the next iteration (i.e., chaotic iteration

schemes).

21

A cursory examination shows that upper and lower bounds on the iteration time of

the machine repairman model can be easily derived. In the best case, a task computes,

attempts to use the broadcast bus before computing again, and finds the bus idle. If

It pt denotes this lower bound on the optimistic iteration time, thenower

= t(omp) +ower

Conversely, a task may, in the worst case,, compute, attempt to broadcast, and find all

other M- 1 tasks also trying to broadcast. This upper bound on the optimistic itera-

tion time is then

l°_er = t(comp) + M t(comm).

If t(comp) and t(comm) are assumed to be the means of negative exponential distribu-

tions, standard queueing theoretic techniques [9] can be applied to the machine repair-

man model to determine the mean iteration time. Using standard formulae, the mean

iteration time is

M t(comp)
I:P:c| _ M-1

Y] (M - i)Pi
i=0

where

[t(c°mm)] i M!
Pi _-

k=o t(e--_mpj (M - k)!

and Pi is the probability that i processors are waiting to use the broadcast bus.

I

22

Peooimiotic Performance Model

Developing a more accurate performance model requires inclusion of the synchroni-

zation delays to receive broadcast values. The simplest such approach again requires the

assumption of negative exponential distributions for t(comp) and t(comm) as well as the

notion of blocking. This model, shown in Figure VIII, allows tasks to begin computing

again only after all tasks have broadcast their values. Because not all tasks need data

from all other tasks, this model gives pessimistic estimates of iteration time.

The queueing network of Figure VIII can be in several possible states. Each such

state is defined by the number of tasks computing and the number blocked after using

the broadcast bus. Transitions among the states are caused by tasks completing an

iteration's computation or a broadcast. The rate these transactions occur is determined

by the expected delays at the processors and the bus. If these states are represented by

the tuple (i,]), where i is the number of tasks computing , and j is the number of tasks

blocked, then Figure IX is the state transition diagram of the network.

When this model is in equilibrium, the system will occupy each state with a partic-

ular probability, and the rate of transition into a given state must be the same as the

transition rate from the state. These steady state probabilities are obtained by solving a

linear system of state space balance equations obtained from the state diagram. For

state (M, 0), all tasks computing, the balance equation is

laPo, M-1. _ MkPM, o

or

_uP0, M-1
PM, o -- M)_ (12)

Now consider an arbitrary state (i, j):

23

\

(Pi+l,i; (i+ 1)X _ iX _! P;-1,_i
. \--J

The balance equation for this state is

(i + 1)XP_+_,i + PPi, j-1 _ (iX + i_)Pi, j,

and the state probability is

(i + 1)XPi+I, i + /aPi, i-1

Pi, i _ iX + la

Notice that each state probability can be expressed using those states either above or to

the left in the transition diagram. Hence, all state probabilities can (recursively) be

expressed using PM, o. As (12) shows, PM, o can in turn be expressed using P0, M-1.

Thus, knowing P0, M-I would permit easy calculation of all other state probabilities.

But,

_]_Pi, i _ 1

must hold since the Pi, i are probabilities. So, P0, M-1 is just the reciprocal of the sum

of the Pi, J coefficients. Solving for the state probabilitics is then straightforward.

* Sum all probability coefficients and invert the sum; this is P0, M-l-

24

• Solve for the other state probabilities by multiplying their coefficients by P0, M-I"

Now P0, M-1 is the state corresponding to all tasks but one blocked waiting for the final

task to complete its broadcast. The network must pass through this state each iteration.

Consequently, the mean iteration rate is

PO, M-1
laPo, M-1 --

t(comm) '

and the mean time to perform one matrix iteration is

1 t(comm)Ip¢8 __
laPo,M-1 Po, M-1

for the pessimistic performance model.

Comparison of Performance Models

Figure X shows the optimistic and pessimistic iteration time models for one set of

rropt the lower bound on optimistic iteration time, is omittedmatrix parameters, tllower,

because it was indistinguishable from ropt•_act.) As the number of X_TASKs increases, the

delays caused by the presence of the blocking queue become pronounced. Because test-

ing for global convergence is essentially a global synchronization, it is not surprising that

the presence of additional tasks results in longer iteration times.

As noted earlier, the optimistic iteration time model assumes each X_TASK needs

no XN components from other X_TASKs. Similarly, the pessimistic model assumes

each X_TASK needs XN components from all other X_TASKs. Clearly, the actual

iteration time must lie between these two bounds.

The precise form of the actual iteration time curve is a function of matrix sparsity

and structure. For example, a tridiagonal matrix divided into contiguous partitions of

size greater than three would result in XTASKs needing XN components from only two

25

other X_TASKs. Thus, one would expect the actual iteration time to be near that

predicted by the optimistic model. Similarly, a set of X_TASKs, each containing a dense

matrix row, would need XN components from all other X_TASKs, and one would

expect the pessimistic model to be more accurate.

In general, the selection of either the optimistic or pessimistic model depends on

the matrix structure and partitioning. Although the optimistic models have the advan-

tage of efficient evaluation, the pessimistic model should be used in any conservative

designs.

Parametric Performance Study

Having derived iteration time models, we undertook a parametric study of perfor-

mance. Selected results of this study are discussed below. Although we present results

only for the pessimistic model, similar results hold for the optimistic case.

Matrix Size

Figure XI shows iteration time as a function of the number of matrix partitions

(X_TASKs). In each case, an optimal level of parallelism, balancing computation

requirements against saturation of the broadcast bus, exists. As the number of parti-

tions grows, communication and synchronization delays increase whereas task computa-

tion decreases. Similar behavior is seen in Figure V for our analytic iteration time

model, suggesting both models capture the salient aspects of delays.

Communication Co_ts

Figure XII shows the effects on iteration time of varying bus speeds. The lowest

curves correspond to bus speeds near those of the processors, such as one might find in a

tightly coupled parallel system. Interestingly, the curves for Ct _---1.0 and 0.1 are nearly

identical, suggesting that, for sufficiently fast buses, computation and synchronization

28

delays dominate.

The _pper curves in Figure XII reflect speed differentials more appropriate for local

area networks. For large ratios of communication time to computation time, the single

bus is an obvious performance bottleneck, hence the nearly horizontal performance

curves for large numbers of X_TASKs. In these cases, a modest number of processors

suffices to realize most of the potential performance gains.

It is interesting to compare Figure XII, the pessimistic iteration time model for the

bus, with an equivalent performance prediction obtained from iteration time model ini-

tially derived. In the first model, this is the f(M)= M curve in Figure III. The pes-

simistic bus model predicts a horizontal performance asymptote while the initial model

predicts increasing iteration time. The reason for this difference is quite simple. Recall

that the initial model included a controlling C_TASK that tested for global convergence.

In contrast, the bus model includes distributed determination of convergence in parallel

with computation. This overlap becomes increasingly important as the number of tasks

grows. Indeed, in the non-overlapped initial model, this synchronization is the dominant

delay for large numbers of tasks.

Matriz SparMty

Finally, Figure XIII shows the effect on iteration time of matrix sparsity; the

lowest curve corresponds to greatest sparsity. As with Figure IV, the optimum level of

parallelism increases with the number of non-zero elements.

Summary

We have derived the expected inter-task data transfer and defined an execution

time model for predicting the parallel iteration time during solution of random, sparse

linear systems of algebraic equations. Although this performance model clearly shows

27

that solution time can be reduced by "partitioning the computation into parallel sub-

tasks, the optimum number of partitions is very dependent on synchronization and com-

munication costs.

We also considered the mapping of partitions onto the processors of a parallel

architecture. We observed that optimal scheduling was NP-complete and, because linear

systems can be solved sequentially in polynomial time, infeasible. Moreover, we showed

that scheduling heuristics would likely not be cost effective.

Finally, we considered one parallel architecture where scheduling is not needed, the

broadcast bus. Although scheduling can be avoided on other architectures, notably

those based on multistage networks, the broadcast bus is an alternative for modest

numbers of processors. Moreover, local area networks have made bus systems (e.g., eth-

ernet) widely available.

Optimistic and pessimistic performance models of the broadcast bus architecture

for solving linear systems were derived and analyzed. We concluded with an investiga-

tion of the performance of the bus architecture as a function of matrix sparsity and the

costs of communication, synchronization, and computation. This investigation showed

that a broadcast bus architecture can effectively reduce the expected computation time

for solving sparse linear systems.

Aeknowledgrnents

We are particularly indebted to Loyce Adams, Piyush Mehrotra, Terry Pratt, John

van Rosendale and Robert Voig_, our colleagues in the XFEM Research group at

ICASE, NASA Langley Research Center, for many helpful discussions.

28

References

[1] L. Adams, "Iterative Algorithms for Large Sparse Linear Systems on
Parallel Computers," NASA CR No. 166027, NASA Langley Research
Center, Hampton, Virginia, November 1982 (also published as a Ph.D.
dissertation, University of Virginia).

[2] L. Adams and R. Voigt, "Design, Development, and Use of the Finite Ele-
ment Machine," NASA CR No. 172250, also ICASE Report 83-56, NASA
Langley Research Center, Hampton, Virginia, October 1983.

[3] A.V. Aho, J. E. Hoperoft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

[4] H. Amano, T. Yoshida, and H. Aiso, "(SM)2: Sparse Matrix Solving
Machine," The lOth Annual International Symposium on Computer Archi-
tecture, A CM Sigarch Newsletter, Vol. 11, No.3, June 1983, pp. 213-220.

[5] D.A. Calahan, "Randomly Sparse Equation Solution by Loopless Code
Generation on the CRAY-I," Technical Report 162, Systems Engineering
Laboratory, University of Michigan, May 1982.

[6] J.G. Lewis and W. G. Poole, Jr., "Ordering Algorithms Applied to Sparse
Matrices in Electrical Power Problems," Electrical Power Problems: The
Mathematical Challenge, A. M. Erisman, K. W. Neeves, and M. H.
Dwarakanath (eds.), SIAM Publications, Philadelphia, 1980.

[7] D.A. Reed and M. L. Patrick, "A Model of Asynchronous Iterative Algo-
rithms for Solving Large, Sparse, Linear Systems," Proceedings of the 1984
International Conference on Parallel Processing, Bellaire, Michigan, pp.
402-409.

[8] A. Gottlieb et al, "The NYU Ultra Computer- Designing an MIMD
. Shared Memory Parallel Computer," IEEE Transactions on Computer_,

Vol. C-32, pp. 175-189, February 1983.

[9] L. Kleinrock, Queueing Systems, Vol. I, Wiley:Interscience, New York,
1975.

29

Table I Matrix Analysis Notation

Quantity Definition

A arbitrary NX N sparse matrix

bj initial row of partition]
c " arbitraryconstantN-vector

transmissiontimefora booleanas a functionof
C6(M) the number of partitions

Cp computation time foi-arithmetic operations

U, startup time for data transmission

C_M) transmission time for one datum as a function of
the number of partitions

ei final rowof partition j

M number of matrix partitions
N matrix dimension

/_N, Z, q) probability that a matrix element is non-zero

Prr(k, I") probability that partition k transfers data to parti-
tion j

probabilitythat a matrix element is non-zero given
q that it is not one of the Z known non-zero ele-

ments

S fixed partition width

tj(cornm) communication time for one iteration at partition j

tj(comp) computation time for one iteration at partition j

Tr(k, .f) expected data transfer from partition k to j
z N-vector of unknowns

Z number of known non-zero elements in a row

30

Table II Computational Complexity of XTASKs

Loop Statement Statement
Cost Cost

(1) 2Cp FORI:= B IJitoE IJ!DO
BEGIN

C'p SUM:=ffi0;

(2) 2 6'v FORK := L [Jlto U [JlDO
6Cp SUM :=SUM +

ANZ [Kl * XO [COLSUB [Kllt

4Cp XN[q:= sUM+c Ill
END;

Cp CONVERGED:=TRUE;

(3) 2Cp FORI := B IJ]to E IJlDO
BEGIN

5 Cp IFABS(XN[I]-X0 [I])> EPSTHEN
6'9 CONVERGED:----FALSE

3cp x0_1:= XN[I!
END;

!" 1

(I): (ei - bi q" 1)Cv[6NP(N, Z, q) . 7J "t"2Cp

(2): 6GvNP(N,Z,q) + Sap

(3):(e_- b;+ 1)0C,+ 3C,

TANZ and COLSUB are vectors of the non-zero elements of A and the
corresponding column subscripts, respectively. L [J] and U [J] denote the begin-
ning and ending indices of components of these vectors belonging to partition J.

31

Table HI Scheduling and Performance Notation

Quantity Definition

Br amount of data broadcast by a task

CornType type of interprocessor communication mechanism

lower bound on optimistic prediction of iteration
_P_er time

upper bound on optimistic prediction of iterationpt
_pper time

ire, pessimistic prediction of iteration time

Memi memory required by the ith partition of assignment P

M,i_e processor memory size

p maximum number of processors on bus

P a possible assignment of rows to partitions

Pset(p) set of all possible row assignments to no more than pprocessors

Pi probability that i tasks are waiting to use the bus

Pi, i probability of being in state (i,])

PBr probability of broadcast by a task

X reciprocal of mean task computation time, t(comp)

p reciprocal of mean task communication time, t(comm)

32

XN A XO C

]

XSET [i] [ASET [i] CSET [1]
]

XSET [2] [ASET [2] CSET [2]

I
--]= * ---+ --,

/
XSET _l] ASET_] CSET[M]

Figure I Partitioning of a lineaz syst_m

33

e! bk ek

A _ _k

X

Figure II
Data rranger betweenmultiple row partitions

I I I I

Quantity Value
L_

%
ao l
c, /(M)

_0-- M , o
Z 14 _

Time

Number of Pargig|ons M

Figure HI Execution time for N ---=-!000

i i I I

Quantity Value

ab

ao 1

q 0.0,0.01,...,0.1
Z 4

Time

f I

Number of Partitions M

Figure IV Execution time for N --_ 1000

[. • [

Quantity Value co.

Cb V_"

cp 1
Cs 1

c, v_
q 0

Z 14

Time

,

J

0 -x- i600 0 -y-' 600000

Number ef Partitions M

FigureV Execut,ion thne for N _--- 100, 500, 1000, 1500

37

- Broadcast
Bus

BroadcastBusNetwork

Processing
Element

Memo_

Communi_fion
Memo_

Communication
P_,ocessor

To Bun

Figure VI
Network and Processor for Broadcast Bus

38

No Queueing

M CirculatingTasks _ ./ Queue

Figure VII Optimistic Queueing Model of Matrix Iteration

39

No Queueing

Blocked
Queue

Wait until
all M tasks

present

Figure VIII Pessimistic Queueing Model of Matrix Iteration

40

Figure IX
State SpaceDiagram for PessimisticQueuelngModel

i i i i

Qua.tity Value

N 1000

c6 1

Co 1
ct 1
q 0.0
Z 14

Time

F e"

pt
]_upper

ropt

30 '0 -y- 800C_0 ' I -_t

Number of Partitions M

Figure .._ Compari._on of It,cratio. Th.c Models

I I I I

Quan.tity Value
b_

Cb 1

c, 1
co 1
ct 1
q 0.0

Z 14

Time

Pessimistic Iteration Time Model

I I

Number of Partitions M

FigureX_ IterationTimeforN = I00,500, 1000

i i i I

Quantity Value

N 1000

c6,cp,c, 1
Ct 0.1, 1, 5, 10, 50, 100

q 0.0
Z 14

Time Pessimistic Iteration Time Model

.... I A__ I I
U -X- OUU U -y- IOUUUU

Number of Partitions M _*"

Figure :X:II ltcration Time for Varying Transmission Costs

I I I I

Quantity Value ._.

N 1000

O_ 1

C'p 1

@, 1

Ct 1

q 0.0, 0.1, 0.2, ..., 0.1
Z 14

Time

Pessimistic Iteration Time Model

I !

Number of Partitions M

Figure XIII Iteration Time for Varying Matrix Sparsity

1. ReportNo. NASA CR-172457 I 2. GovernmentAccessionNo. 3. Recip;ent'sCat_lo9No.
ICASE Report No. 84-35 i

4. Title and Subtitle 5. Report Date

Parallel, Iterative Solution of Sparse Linear Systems: August 1984
Models and Architectures 6. Performing Organization Code

7. Author(s) 8. Performing Organ;zation Report No,

Daniel A. Reed and Merrell L. Patrick 84-35
10. WorkUnit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering 1]_A_.o_tr_c_0o_0Grant No.

Mail Stop 132C, NASA Langley Research Center NASI-17130

Hampton, VA 23665 13. Typeof ReportandPeriodCovered

12. SponsoringAgencyNameandAddress Contractor Report

National Aeronautics and Space Administration 14. SponsoringAgencyCode
Washington, D.C. 20546 505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: J. C. South, Jr.
Final Report

16. Abstract

Solving large, sparse, linear systems of equations is a fundamental problem in

large scale scientific and engineering computation. A model of a general class of

asychronous, iterative solution methods for linear systems is developed. In the

model, the system is solved by creating several cooperating tasks that each compute a

portion of the solution vector. A data transfer model predicting both the
probability that data must be transferred between two tasks and the amount of data to

be transferred is presented. This model is used to derive an execution time model

for predicting parallel execution time and an optimal number of tasks given the
dimension and sparsity of the coefficient matrix and the costs of computation,

synchronization, and communication.

The suitability of different parallel architectures for solving randomly sparse

linear systems is discussed. Based on the complexity of task scheduling, one

parallel architecture, based on a broadcast bus, is presented and analyzed.

17. Key Words (Suggested by Author(s)) 18. DistributionStatement
random sparse linear systems, parallel

iterative methods, queuing network 62 - Computer Systems

models, interprocessor communication 64 - Numerical Analysis
networks, task allocation, bus

architecture, optimal partitioning. Unclassified - Unlimited

lg" SecurityClassif"(°f thisreport) I 20" SecurityClassif"(°f thispage) [21"N°" °f Pages] 22" PriceUnclassified Unclassified 46 A03

ForsalebytheNationalTechnicalInformationService,Springfield,Virginia2216!
NASA-Langley, 1984

%

p

, 3 1176 00520 9144

