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Abstract. The relationship between fault tolerance and performance is explored for /3-networks used as 
interconnection networks in multicomputer systems. The networks of interest are composed of 2 X2 switches 
(&eiements) and are represented by a graph model called a p-graph. Two parameters derived from P-graphs are 
used to characterize &networks. The fault tolerance (FT) parameter is the maximum number of p-element faults 
that can be tolerated. The communication delay (CD) parameter, representing the worst-case delay between any 
pair of computers, is used as a measure of the performance of the &networks. Tight bounds for both FT and CD 
parameters are derived. Two important classes of @etworks are introduced, namely, DPR-networks and 
MISE-networks. It is shown that DPR-networks possess the maximal fault tolerance, and the class of 
DPR-networks is unique in achieving the maximum possible fault tolerance. The class of MISE-networks is 
minimally fault tolerant. but has the minimum communication delay. A class of &networks. called RD’IT-net- 
works, that achieve an optimal balance of the FT and CD parameters is also presented. 

Key words. Interconnection networkc _, multicomputer systems, fault-tolerance, performance analysis, beta-net- 
works. 

1. Pntroduction 

A number of recently proposed multicomputer systems use a class of interconnection 
networks called ,&networks as intercomputer communication networks [7,8,10]. A multicom- 
purer system is considered here to be a distributed system of computing units supported by an 
interconnection network which provides the communication paths among the computing units. 
An N x N P-network is an intercorm,__._ prtion network with N input and N output terminals which 
is composed of 2 X 2 switching elements called p-elements. Each p-element can be set to one of 
two states. namely, the through (T) state or the cross (X) state, to provide interconnecting paths 
from the N input terminals to the N output terminals. As illustrated in Fig. 1, the set of N 
computing units in a multicomputer system can be equated with the set of input terminals and 
the set of output terminals of the P-network. Because of the existence of the N feedback paths 
through the N computing units, the N input links and the N output links of the @-network are 
considered to be identical and are called the N terminal links of the B-network. 
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Fig. 1. A multicomputer system model. 

In [12] a theoretical framework for fault-tolerance analysis of /?-networks was introduced. 
Pertinent results from that work are now summarized here. A fault model is used which allow 
p-elements to be stuck in either of their two normal states, i.e., stuck-at-through (s-a-T) or 
stuck-at-cross (s-a-X). A connectivity property called dynamic fui/ access (DFA) serves as the 
tiiiterion for fault tolerance in /3-networks. A P-network has the DFA property if each of its 
inputs can be connected to any one of its outputs via a finite number of passes through the 
P-network. A fault in a P-network is a collection of p-element stuck-at faults. A fault is said to 
be critical if it destroys the DFA property of the P-network. A minimal critical fault is a critical 
fault none of whose proper subsets constitutes a critical fault. The fau!t tolerance of a 
B-network is defined as its ability to maintain DFA in sp ite of :he presence of stuck-at-T/X 
faults in its p-elements. A P-network with DFA is k-fault tolerant or k-FT if the failure, either 
s-a-T or s-a-X, of any k or fewer &elements does not destroy DFA. The largest k for which a 
/?-network is k-F’T is called the fat&-tolerance (FT) parcmeter of the P-network. 

For analysis purposes, B-networks are represented by graphs IS] called P-graphs. The labeled 
P-graph of a P-network is a labeled directed graph with vertices representing the ,&elements, 
and edges representing the links of the ,&network. An edge is labeled and called a terminal edge 
if it corresponds to a terminal link of the P-network, otherwise it is not labeled and is called an 
intermediate edge. An unlabeled P-graph, or simply a /?-graph, is a labeled P-graph with all its 
edge labels deleted. Figure 2 illustrates the labeled P-graph of a P-network called the indirect 
binary 2-cube network [lo] which connects four computing units (1, 2, 3, 4). Each computing 
unit is implicitly represented by a terminal edge in the &graph. Usually the terminal edges are 
labeled with the indices of the associated computing units as depicted in Fig. 2. Each p-element 
in a P-network is modefed by a vertex with two incoming and two outgoing edges in the 
corresponding B-graph. When the p-element is stuck at one of its two states, an incoming edge 
can only be connected to one of the outgoing edges. Hence, a @-element stuck-at fault can be 
modeled by the splitting of the corresponding B-graph vertex into two subvertices, each with 
one incoming and one outgoing edge. It is easily seen that a P-network has the DFA property if 
and only if the corresponding P-graph is strongly connected. Fault tolerance in terms of the 
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(a) 03 
Fig. 2. (a) The indirect binary Z-cube network: (b) Its labeled P-graph. 

P-graph can thus be defined as the ability of the b-graph to stay strongly connected in spite of 
the splitting of its vertices. 

In this paper a second network parameter called the communication delay is introduced as a 
measure of the performance of a P-network. Tight bounds on both the fault-tolerance and the 
communication-delay parameters are derived in Section 2. A fundamental relationship between 
the two parameters is also established. Two important specific classes of P-networks are 
introduced, namely DPR-networks and MISE-networks. These networks represent two extreme 
design choices for fault-tolerant /?-networks. It is shown in Section 3 that DPR-networks 
posse-s the maximal fauli tolerance and maximal communication delay. It is further shown that 
the class of DPR-networks is unique in achieving the maximal fau!t tolerance. Section 4 
presents MISE-networks which are demonstrated to be minimally fault tolerant, but have the 
minimum communication delay. Section 5 introduces a class of optimal &networks called 
RDTT-networks that exhibits the best combination of fault ?olerance and performance. 

2. Fault tolerance vs. communication delay 

Traditional!! 1 high speed or performance has been the primary objective in the design of 
interconnection networks. Due to the proliferation of fault-critical applications of computers. 
fault Merance is also becoming an important design requirement. It is probable that the 
/3-networks of future multicomputer systems will attempt to strike a balance between perfar- 
mance and fault tolerance. This implies the need for a uniform approach to the measurement cf 
these paraweters. The fault-tolerance parameter k defined earlier can serve as a measure of the 
fault tolerance of a /?-network. The performance of a P-network can be measured tpy a basic 
connectivity property such as dynamic full-amess (DFA). However. since aff useful P-networks 
have the DFA property, a finer. and preferably numerical, measure of performance is needed. 
In the following section a suitable performance parameter is introduced, which is based on the 
irrtercomputer commu~catiou delays imposed by a &network. 

The communication dealy from computinp nit t o computing unit is measured here by the 
mir,imum number of &elements that need to ti, traversed by data being sent from unit i to unit 
Jo A communication delay parameter d for a /hework is obtained by ozGdering the 
comzmunication delays between all pairs of computing units and choosing the maximum or 
worst-case value of these delays. We formalize the above definition by making use of the 
P-graphs model of ,&Eetworks. The edgedistance, or simply ciisio~~c~. from edge i to edge j in a 
P-graph is the number of intermediate vertices in the shortest directed path having edges r and 
j as its first and last edges, respectively. The edge-diameter. or simply &WW&T. of a &graph i-s 
the fongest distance between r;ry two edges of the @-graph. The co~~~~z~n~c~f~~~ d&y /CD) 
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Fig. 3. (a) The 16 x 16 ISE-network; tb) The 16 x 16 SCS-network 

parameter d of a B-network is the diameter of its P-graph. The delays caused by the computing 
units themselves are not explicitly considereo here. However, if two P-networks have the same 
number of stages of p-elements, their CD parameters will indicate their relative communication 
performance. 

As an illustration, we now consider two single-stage D-networks having very different values 
of the CD parameter d. The /%network of Fig. 3(a) is the 16 X 16 inverse shuffle exchange 
network, or ISE-network [15]. We call the B-network of Fig. 3(b) the 16 x 16 single cycie shift 
EZW&, or KS-network; Figures 4(a) and (b) depict the P-graphs of Figs. 3(a) and (b) 
respectively. The diameters of these two P-graphs, and therefore the CD parameters of the 
corresponding &networks, can be easily computed. The CD parameter for the 16 X 16 
ISE-network is four, and that of the 16 x 16 SCS-network is eight. In the SCS-network, for 
example, the communication delay is eight when sending a message frcm computer 1 to 
computer 16. ISE-networks and SCS-networks of other sizes can be similarly constructed. In 
general, an N x N ISE-network, if N = 2”’ for some integer m, has CD parameter d, = log, N, 
and an N X N SCS-network has CD parameter d, = N/2 [13]. 

Both the FT parameter k and the CD parameter d depend on the structure of a fl-network.. 
and are therefore properties of its p-graph. We now derive tight lower and upper bounds fir k 
and d in terms of n, the number of &elements in the @-network. We also establish a 
fundamental relationship between k and d. The smallest possible value for k is clearly zero, 
while the largest possible value of k at first glance seems to be n. However, if a &network can 
tolerate faults affecting all its 12 p-elements, then the entire B-network is unnecessary; hence k 
cannot exceed n - 1. It can be shown that both the IS&network and the SCS-network are O-ET. 
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ia) 04 
Fig. 4. (a) P-graph of the 16X 16 EX-network: (b) P-graph of the 16X 16 SCS-nc:uork. 

In subsequent section we demonstrate the existence of a class of (n - 1 )-FT &networks. Hence 
0 and n - 1 are tight lower and upper bounds, respectively, for k. The corresponding bounds 
for d are given in the foliowing lemma. 

Lemma 1. Far my /3-netwmk ~.i& n > 2 /3-elements and CD purmzeter d. 

/logznj + 1 G.d< n. 

T/me bounds are tight. 

Proof: The CD parameter d is the diameter of the @graph. The diameter of a &graph of II 
vertices cannot exceed n, the iota1 number of vertices. The v&e d = II is achievable, for 
examp!e, in the case of SCS-network containing n &elements. Hence n is a tight upper bound 
on d. Since each vertex in a /I-graph has two outgoing edges. the outdegree of a vertex is two. 
The maximum number of edges which are exactly at dktance d from any edge i is 2’. The 
maximum number of distinct edges reachable from i within distance d is 2’ t 2d- ’ t _ . - 2 = 
2dt’ - 2. We also know that a B-graph with n vertices has exactly 2n edges. and each edge 
must be able to reach the othe; 2n - 1 edges. Hence the following inequality must hold: 

2”” i -2>2n-1 
from which it follows that 

d > flog,Gr + l/2)1 

Now jlog,xl = fiog,xf + 1 unless x is an integral power of 2. which is impossible when 
x=n-+l,‘2.Hence 

d > flog,n! + 1. 
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(a) w 
Fig. 5. (a) A critical faulr corresponding to an elementary circuit; (b) An elementary circuit of leng:h h a k + 1. 

This lower bound for d is achieved by the BE-network of n /I-elements, hence it also is 
tight. 0 

Lemma 2. For an.y P-network with FTparameter k and CD parameter d, k < d - 1. 

Proof. Every elementary circuit in a P-graph corresponds to a critical fault of the P-network. 
The P-elements represented by the vertices of the elementary circuit can fail in such a way that 
the edges of the elementary circuit are isolated from the rest of the P-graph as snown in Fig. 
5(a). Hence the P-graph of a k-FT P-network must not contain any elemenrary circuit of length 
less than or equal to k. 

Let C be an elementary circuit of minimal length h 2 k + 1 in a k-FTP-graph. Assume that 
edges i and j have the same source vertex, and that C contains edge i, as illustrated in Fig. 
5(b). Edge i can reach edge j via the edge of C, i.e., there exists a directed path from i to j 
consisting of all the edges of C. Since the length of C is h, the distance from i to j is at most h. 
In fact, it must be exactly h, otherwise there must exist a path P from the destination vertex of i 
to the source vertex of j containing at most h - 2 edges. In that case the path P together with 
edge i constiiuies an elementary circurt of length h - 1 or less. This contradicts the minimal- 
length property of C. Hence the distance from i to j is exactly h. Since h > k + 1, the distance 
from i to j must be k + 1 or more. Hence the diameter of the @-graph canno: possibly be less 
than k f 1. Therefore k 6 d - 1. ??

We can summarize the foregoing results in the following theorem. 

Theorem 1. Let h’ be a P-network with n /I-elements, where n > 2. The FTparameter k and the 
CD parameter d of N are related as follows: 

O<kfn--1, iii 
/log,nj +l <d<n, (2, 
k<d-1. (3) 

The bounds in (1) and (2) are right. 

Every P-network has a unique d. As faults occur, k tends to decrease, while d tends to 
increase. A /?-network loses the DFA property when d becomes infinite. The synthesis of 
practical fault-tolerant /?-network involves finding an appropriate balance between k and d. 
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3. Maximal fault tolerance 

In Section 2 we showed that the largest possible value for the fault-tolerance parameter k is 
n - 1, where n is the number of p-elements. In this section we prove the existence and 
uniqueness of a class of /3-networks with a cyclic structure which meets this upper bound on k. 
A double parallel ring P-network. or DPR-network, of order II is a /3-network with n 
p-elements, whose b-graph consists of two disjoint and parallel Hamiltonian circuits as shown 
in Fig. 6. (A Hamiltonian circuit of a directed graph is a circuit that passes through every vertex 
exactly once.) 

Theorem 2. The FT parameter k of the DPR-network of order n is n - 1. 

Proof. This theorem can be proven by examining the minimal critical fault; (MCFs) of ?he 
DPR-network. We need to show that every MCF consists of more than n - 1 &element stuck-at 
faults. From Fig. 6 we see that there is no elementary circuit of length less than n in the P-graph 
of the DPR-network of order n. Each cir+. rYll partition [12] of the b-graph must consist of 
exactly two elementary circuit each of length n. Hence every CA-graph [12] or Fig. 6 must 
consist of two vertices connected by n edges. (The vertices of a CA-graph represent elementary 
circuits, while its edges represent vertices of the original /?-graph that are common to two 
elementary circuits). Clearly ea:h CA-graph has only one cut-set consisting of ail its n edges. 
There is a one-to-one correspondence between the MCFs of a P-network and the cutsets of its 
CA-graphs (Theorem 1 of [la]) Hence every MCF of the DPR-network consis:s of ii faulty 
fl-eiements. Therefore all n /?-elements must be stuck at T/X to destroy the DFA property of 
the DPR-network. Consequentfy, the DPR-network of order N is (II - 1 )-FT. 13 

From Theorem 1 we know that n - 1 is a tight upper bound for k in /&networks with n 
p-elements. The DPR-network clearly meets this upper bound. We can therefore say that the 
DPR-network of order n is maximally fault tolerant among all fl-networks with n &elements. 
Thus in a DPR-network only one fault-free B-element is needed to ensure DFA. The maximal 
fault to’lerance of the DPR-network can also be viewed from another perspective which is 
developed helow. 

The fait tolerance of a /?-network can be anafyzed in terms of the number of Euierian 
circuits in its /?-graph. An Eu!eriun circuit of a directed graph is a circuit that includes every 
e+_ in the graph exactly once. Eulerian circuits repr sent maximal noncritical states of a 
/3-network. Intuitively. we expect fhe number of Eulerian circuits to be proportional to the 
degree of fault tolerance. A classical result in graph theory il] states that the number of Eulerian 

b 
n-2 



circuits in a &graph is cqua! to the number of distinct spanning trees rooted at any one of the 
vertices, .A rciort*d splmrri~r~ tree of 1% B-graph of II vertices consists of II - 1 edges each from a 
different vertex and all directed toward the root vertex. Since every vertex in the P-graph has 
two outgoing edges, either one can be chosen for inclusion in a rooted spanning tree. Hence in a 
/I-graph of n vertices, there are at most 2”- ’ distirici spanning trees rooted at a particular vertex. 
As a result, a p-graph of n vertices has at most 2”-’ distinct Eulerian circuits. From the 
structure of the P-graph of the DPR-network, we see that all 2”-’ combinations of n - 1 edges 
indeed correspond to distinct rooted spanning trees. Hence we have the following result: 

Lemma 3. The &graph of the DPR-network of order n has 2” - ’ distinct Eulerian circuits, which is 
the maximum number possible in any P-graph of n ,l%elements.. 

A /?-network state is determined by the states of the n &elements. If s, = so {T. X) 
denotes the state of the &element h,, then a state of the P-network is represented by an n-tuple 
s(b,, ht . ..I ,b,)=(s,, s2 1... 7 s,,). An Eulerian circurt (EC) s:ate is a P-network state that 
specifies an Eulerian circuit in the B-graph. We next show that being (n - I)-FT is equivalent to 
having 2”- ’ Eulerian circuits. First, we need the following lemma. 

Lemma 4. I/e., and e2 are two distinct EC states of a P-graph, then e, and e, cannot differ in onb 
one of their entries, i.e., at least two p-elements must be in different states. 

Proof. Assume that the EC states et and e, are identical except in the ith entry, i.e., 
e,=(s,,s,,...,s,, s,+r ,..., s,) and e,=(s,, s2 . . . . . S,, s,+ ,,..., s,,), where if s,=T (X) then 
S, = X (T). We illustrate the Eulerian circuit corresponding to et in Fig. 7(a), highlighting the 
ith p-element. The Euterian circuit of e2 is identical to that shown in Fig. 7(a) except in the ith 
/3-eiemen: as shown in Fig. 7(b). Clearly Fig. 7(b) consists of two disjoint circuits; it is therefore 
impossible for e, to represent an Eulerian circuit. Hence e, and e, must differ in more than 
one entry. 0 

Tlxeorem 3. A P-network of n /l-elements is (n - l)-FT if and only if its P-graph has 2”-’ 
Eulerian circuits. 

Proof. The necessary condition is straightforward. If a P-network is (n - I)-FT, then any set of 
n - 1 p-elements can be stuck in any of the 2”-’ possible faulty states without destroying DFA. 
Each of these 2”-’ states must be compatible 1121 with an EC state. Hence, there must exist 
2”- ’ distinct Eulerian circuits in an (n - I)-FT P-graph. 

We now need to show that a P-graph with 2”-’ Eulerian circuits is (n - I)-FT. If no?, there 
exists a critical fault f involving n - 1 &elements. Let p-elements b,, b,, . . . , b,,_ 1 be faulty, 

el(bi )=a i e2 (bi)=8t 

(a) (b) 
Fig. 7. Relationship between any two Eulerian circuits. 



and let b,, be fault-free. The critizsl fault state of f must not be compatible with any of the 2” _ ! 
EC-states [12]. This implies that none of the 2”-’ EC-states has the same first n - 1 entries as i. 
There are 2”-t possible distinct partiai states involving only the first II - 1 entries. We know that 
at least one of these 2”- ’ partial states, namely. the one corresponding to f, does not appear in 
the set of 2”-’ EC-states. Hence there can be at most 2”-t - 1 distinct partial states involving 
the first n - 1 entries of the 2”-’ distinct EC-states. Therefore 3”~ least two of the EC-states, e, 
and e2, must be identical in the first n - 1 entries. This means e, and e, differ only in the nth 
entry, which is impossible by Lemma 4. Hence if a P-graph has 2”-’ Eulerian circuits, the 
corresponding ,&network must be (n - l)-FT. 0 

So far we have shown that the DPR-network of order II has FT parameter k = n - 1 and has 
2”-’ Eulerian circuits. We further show that these two properties are equivalent, and char- 
acterize the maximal fault tolerance achievable. An interesting question is whether the DPR- 
network is the on!y /?-network having the property. The answer is yes, as the following theorem 
asserts. 

Theorem 4. The DPR-network of order n is unique among aN P-networks of n p-elements in 
achieving the maximum possible fbult tolerance k = FI - 1. 

Proof. Let G be the P-graph of the DPR-network of order n. We need to show that if a 
p-network of order n is (n - I)-FT then its P-graph G’ must be isomorphic to G. If G’ is the 
P-graph of an (n - 1)-F% P-network, it cannot contain any elementary circuits of length n - 1 
or less, because such an elementary circuit would correspond to a critical fault involving II - 1 
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or fewer p-elements. Hence G’ must contain only elementary circuits of length li. Consequently, 
to prove that G’ and G are isomorphic, all we need to show is that for every vertex in G’, the 
two outgoing edges terminate at the same vertex. 

Assume there exist a vertex ui in G’ whose two outgoing edges e, and e, terminate at vertices 
O, and ukr respectively, and u, f uk, as depicted in Fig. 8(a). Since G’ contains only elementary 
circuits of length w, the edge e, must belong to an elementary circuit C, of length n. G’ has 
only n vertices and the length of C, is n. therefore u, must be a vertex in C,, as shown in Fig. 
8(b). From Fig. S(b) we see that e, along wi:h some of the edges in C, constitute another 
elementary circuit. C,. Since u, f u&, the length gf C, must be less than n. This contradicts the 
fact that G’ only has elementary circuits of length ,z. Both outgoing edges of every vertex in G’ 
must terminate at the same vertex. Hence G’ is isomorphic to G. and the DPR-network of order 
n is unique in achieving the maximal fault tolerance k = n - 1. D 

4. Fault tolerance with minimal delay 

In the previous section we introduced DPR-networks, and showed that they have the 
maximum fault tolerance k = n - 1. However, it is easily seen that while a DPR-network is 
(n - I)-FT. it has the worst possible communication de& J= n. In this section we present a 
complementary class of P-networks which has the minimum communication delay d = [10g2tll 
+ 1, and the minimum fault tolerance k = 1. 

In a typical fault-tolerant system, diagnostic software is run periodically. and when a faulty 
p-element is detected it is replaced. If the rate of diagnosis is much higher than the average rate 
of p-element failures, then it is reasonable to assume that only single p-element failures can 
occur in j&networks. In light of this single-fault assumption, single-fault tolerance can be 
treated as a fundamental design goal. As long as single /3-eiement faults can be tolerated and 
removed before a second fault occurs, DFA can be continuously maintained with sufficiently 
high probability. We now present a relatively simple characterization of I-FT P-networks. For 
each p-element u, of a P-network. we denote its two inputs by a, and b,, and its two outputs by 
c, and d, as shown in Fig. 9(a). In order for t’, to t o!era?e the s-a-T fault. there must exist paths 
in the P-graph from edges c, and d, back to edges b, and a*, respectively. 2% shown in Fig. 9(b). 
Similarly, paths from c, and d, to 0, and b,. respectively. are needed for p, to tolerate the s-a-X 
fault, as shown in Fig. 9(c). The foregoing reasoning leads to the following result. 

Lemma 5. Let G he the &graph of a /.&network IV. N is 1 -FT i/ md arr& if ftir ecey certm ,I~, 
there exist fo14r paths in G, one jrom euch of the trw outputs qf 13: to each of the two inputs 01 (7,. 

These paths must not in&de the t1erte.x ~7,. 

Using this lemma, single-fault tolerance can be verified by checking for feedback paths from 
the outgoing edges of each vertex back to the incoming edges. If a P-network is not I-FT. all its 
single critical faults can be identified in the same checking prtrcedure. The identification and 
removal of single critical faults in a P-network is a basic step in fault-tolerant design. The 
charac .;rization of Lemma S is straightforward, but its usefulness is limited because of the iarge 
amount of computation which may be needed to identify the feedback paths. The sufficient 
condition in the next lemma is more useful. 

A /3-element and the corresponding vertex in its P-graph is critical if une of its stuck-at states 
constitutes a single critical fault. Lemma 6 can be restated in the following way: 



Proof. If there is a self-loop at u,. then it is obviorts that c, must be critical. Suppose that L‘; is 
critical and has no self-loop. There must thefi exist d split of c; which discoymects G into two 
components G, and fiz. Since G contains a Hamiltonian circuit C, 01 I e :nccming and uns 
outgcing edge of u, must belong to C. Assume, without ins5 of generality, that the edges a, and 
d, defined in Fig. 10 belong to C. There must exist a path from G, back to G1 not contai~iing 
u,, in order to complete the Hamiltonian circuit C. This is impossible hecazlse it impties that I’; 
is not critical. If instead of a, and d,, u, and c, belong to C. then d, and b, mrs~ constitute a 
self-loop. Hence if u, is critical, then tj, must contain a se%-ioop. ‘EI 



IP!Gnetwork of order 2”‘- ’ (91; see Fig. 2. We know from Pease’s work that the indirect binary 
m-cube has the full access property. that is, every input terminal of the network can reach any 
output terminal via one pass through the network. By a simple space-to-time transformation, 
the ith stage of the indirect binary m-cube can be mapped onto the ith pass through the 
LYE-network of order 2”-‘. Hence if an input terminal of an indirect binary m-cube can reach 
any one of the output terminals in m stages, then any input terminal of the ISE-network of 
oi2-r 2”-’ should be able to reach any other terminal within the distance m. The communica- 
tion-delay parameter d of the ISE-network of order 2”‘~ ’ must therefore be m or less. In other 
words, for the ISE-network of order n = 2”‘, d < log,n + 1. Since we know that Ilog,nf + 1 is 
the smallest possible value of d for any P-network with n p-elements (Theorem 1). the CD 
parameter of the ISE-network of order n must be log,n + 1. Consequently the ISE-network of 
order n == 2”’ has the minimal communication delay among the P-networks of n p-elements. It 
is easy to see that the ISE-network of order n is 0-FT. Both the top and bottom p-elements 
contain self-loops; by Lemma 7 these self-loops correspond to single critical faults. The 
foregoing discussion leads to the following theorem. 

Theorem 5. The FT and CD parameters of the IS&network of order n = 2”’ for some integer m, 
are k = 0 and d = log,n + 1, respective!~~. 

The minimal communicatioli uelay of ISE-networks makes them very desirable for systems 
requiring very fast communication. In addition, they require very simple control algorithms [lo]. 
Clearly, a serious drawback of ISE-networks is their lack of fault tolerance. Next we propose a 
modified ISE-network which is faalt tolerant and still possesses the minimum communication 
delay. In order to make an ISE-network I-FT, we must identify all its critical p-elements. We 
know that the p-elements labeled 00.. .O and 1 I . . 1 in the P-graph have self-ioops, and thus 
are critical; see Fig. 11(b). We first demonstrate that these are the only p-elements that are 
critical, and therefore need to be modified. 

In the context of the mathematical treatment of shift register sequences, Good [4] and de 
Bruijn [2] introduced an important graph. A Good-de Bruijn graph of order m, G,,,, is a directed 
graph with 2”’ vertices representing the 2”’ distinct binary m-tuples. A directed edge leads from 
vertex u, to v, in C,,, if the ???-t!jple v, is a successor of the m-tuple u,, i.e., u, can be obtained 
from u, by a single cyclic shift operation. For example, the m-tuple ala*. . . a,,, has two 
successors, a2.. . a,,0 and a2.. . a,1 and two predecessors, Oa,. ..a,,_, and la, . . . a,,,_,. The 



next lemma is a direct consequence of the definitions of the ISE-network of order n = 2’” and 
the Good-de Bruijn graph of order M. 

Lemma 8. The P-graph oj the ISE-network oj^order n = 2”’ is isomorphic wrth the Good-de Bruijn 
graph G,,, OJ order m. 

A shift-register sequence of maximum length 2”’ corresponds to a Hamiltonian circuit in the 
Good-de Bruijn graph G,,,. Good has prove- 11 the existence of such maximum-length sequences 
[4]. Co&ining this fact with Lemma 8 we obtain the following results. 

Lemma 9. The P-graph Gj :!ie ISE+~etwork contains 0 Humi&onian circuit. 

Lemmas 7 and 9 together confirm that the top and bottom p-elements are the only critical 
&elements in the IS&network of order n. In order to make the network I-FT the two self-loops 
associated with these p-elements must be removed. 

Sowrirajan and Reddy have recently investigated the design of a class of fault-tolerant 
b-network, called C,-networks with the maintenance of rearrangeability as the fault-tolerance 
criterion [4]. They showed that by adding one redundant P-element a C, network can be made 
l-FT with respect to rearrangeability. Employing a similar approach we can easily make the 
!SE-network l-FT with respect to the DFA by adding a redundant p-element. Figure 12 
illustrates a l-FT version of the HE-network of order four. During fault-free operation the 
redundant b-elements b, is set to the T-state which makes the modified network isomorphic to 
the original network. When either /?-element 00 or 11 is stuck-at-T, b, can be set to the X-state 
to maintain DFA. With the introduction of a redundant p-element, additional hardware and 
delay are also introduced. 

We next describe another modification method for ISE-networks which makes the networks 
I-FT but uses no redundant p-element and incurs no additional delay penalty. The modified 
ISE-network, or MISE-network, of order n is an ISE-network of order n with two of its links 
altered as follows. The top output from p-element 00.. . 0 is connected to link 11.. . 1 instead of 
to link 00.. .O. Similarly, the bottom output of p-element 11. . . 1 is connected to link 00.. .O 
instead of to link II . . . 1. Basically in the MISE-network, the destinations of the two original 
self-loop iinks are exchanged. Figure 13 illustrates the MISE-network of order four obtained 
from Fig. II(a). We now show that the MISE-network of order n is l-FT and still possesses the 
communication delay d = log,n + 1 of the original ISE-network. 
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Fig. 12. The l-FT redundant SE-network of order four 
based on 1141. Fig. 13. The MISE-network oi order iour. 



Proof. The MISE-network is obtained by deleting the two original self-loops from the ISE-,.et- 
work. These self-loops could not have been part of a Hamiltonian circuit in the ISE-network. 
Hence any such Hamiitonian circuit must still exist in the MISE-network. The &IKE-network 
thus contains a Hamiftonian circuit and has no self-loops, therefore. by Lemma 6 is is I-FT. ??

Lemma 11. The MISE-nerwork of order n = 2”“, for some integer m, has CD parameter 
d = jogZN + 1. 

Proof. If G is the @-graph of an BE-network and G’ is the P-graph of the corresponding 
MISE-network, then we must show that the edge diameter of G’ is the same as that of G. Let 
edges a’ and 6’ in G’ be the modified edges of the self-loops a and b in G. Let u, and r+_, 
denote the source vertices of a’ and b’ respectively. Let the other four edges adjacent to v,, and 
I_+_ 1 be as denoted in Fig. 14. G’ differs from G only in the edges a’ and b’. We know that the 
delay in G is log,n + 1. To show that the delay in G’ is also Iog,n + 1, all we need to show is 
that a’ and b’ can reach and be reached by all other edges in G’ within the dis:acce log,n + 1. 

Any edge in G must reach a and b via d and e, respectively. If a and b are reachable from 
any other edge within the distance log,n + 1, then a’ and b’ must also be reachabie from any 
other edge within the distance log,n + 1. Edges b and a can reach any other edge of G via 
edges f and c, respectively, within the distance log,n + 1. Hence a’ (b’) in G’ must be able to 
do the same via edge f (c). Consequently the CD parameter of the MISE-network of order n is 
the same as that of the IS&network of order n, namely d = log,n + 1. ??

Theorem 6. The FT and CD parameters of the MISE-network of order n = 2”’ for some integer m , 
are k = 1 and d = log,n + 1, respectively. 

MISE-networks are fault-tolerant P-networks with the minimal communication delay. We 
have thus synthesized a fault-tolerant P-network by modifying a non-fault-tolerant ,/3-network. 
This was accomplished without adding extra @ements or increasing communication delay. 
The simple control algorithm used for ISE-networks needs to be modified only very slightly for 
the MISE-networks [ 131. 

5. Optimal networks 

The networks presented in Sections 3 and 4 show :bat the bounds on the fault-tolerance and 
the communication delay parameters k and d, respectively, given by inequalities (1) and (2) of 

Fig. 14. A p&on of the P-graph of a 
MISE-network. 
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Theorem 1 are tight. This section considers the tightness of inequality (3) of Theorem 1, which 
relates k and d. &networks having k = d - 1 will be referred to as n;prima/, because they 
achieve the best fault-tolerance for a given maximum communication delay or, equivalently, the 
minimum value of d for a prescribed level of fault tolerance. Since the optimal networks are 
defined by a single relationship between k and d, many different networks fall in this class. In 
general, it is possible to have optimal networks with the minimum communication d = 1, 
optimal networks with the maximum k = n - 1, and optimal networks with intermediate values 
of k and d. The selection of a particular optimal network depends on the relative importance 
given to fault tolerance and performance. Figure 15 illustrates the feasible design space for 
P-networks as dictated by the three inequalities of Theorem 1. The optimal networks are those 
which are on the diagonal boundary. 

The DPR network introduced in Section 3 is an example of an optimal network. since in this 
case k = n - 1 and d = n. Hence, optima! networks with maximal fault tolerance exist; 
moreover, it is possible to obtain an optimal network with maxima1 fault tolerance for every 
value of n. Unfortunately, this does not hold for networks with the minimal delay. In fact, 
excluding the trivial case of a network with a P-graph composed of two vertices, it is impossible 
to find an optimal network with a P-graph having 4 vertices and d = 3. This may be shown by 
exhaustively testing all possible 4-vertex P-graphs each of which is either a DPR &graph, d = 4, 
or else a P-graph with a cycle of length 2, which implies k d i < log,4 6 d - 1. By applying 
classical graph methods [3] and the analysis techniques introduced in [12]. it is possible to verify 
that the S-vertex P-graph shown in Fig. 16 corresponds to an optimal network with minimum 
communication delay, since k = 3 and O= j!og,Sf + 1 = 4. It is not known whether optimal 
networks with minimal delay exist for values of n different from 2. 4 and 8. The foregoing 
results suggest that it may not be possible to find an optimal network with minimal delay for 
every value of n, although such networks exist for some specific values of n. 

A class of optimaf networks, referred to as Reduced Doublv T;vis:ed Torus (RDTT) networks, 
is now introduced. An n-vertex RDTT-network is defined in terms of its P-graph which 
contains n = rc - 1 vertices. An ordered pair of integers (i. j), with 0 < i < r and 0 <j < c, is 
associated with each vertex of the P-graph. The two successors of node (i, j) are conveniently 

Communication Delay, d ” 

Fig. 16. &graph of an optima1 netn-ark containing 8 
Fig. 15. Feadie design space for p-network>. p-elements. 
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defined by ~lss~~i~~t~~lg counters with i and j. Suppose that i is the current value of a module-r 
counter RC. and j is the current value of a moduio-c counter CC. The two counters are 
connected so that when a transition from c- 1 to 0 takes place in the CC counter. the RC 
counter is incre_mented, and when the transition from r - 1 to 0 takes place in the RC counter, 
the CC counter is incremented from j to j + 1. Hence, when RC is incremented in the state 
(P - 1. c - I)+ the new state obtained is (0, c - i j. However. since the increment has reset RC, 
the CC counter needs to be incremented, leading to (0.0). Furthermore, the reset of CC causes 
an increment of RC, so that the final state (1,0) is reached. Similarly. if CC is incremented in 
the state (r - 1, c - 1). then a symmetrical sequence of events is activated, leading to the final 
state (t&l). As a consequence of this behavior, the state (0,O) can never be obtained, and the 
corresponding nodes does not appear in the P-graph. Using this representation, one successor of 
vertex (i, j) is obtained by incrementing only RC, while the other successor is obtained by 
incrementing only CC. Figure i7 shows the P-graph of the Il-vertex RDTT network with r = 3 
and c = 4. The P-graph is drawn as an r X c array with vertex (i, j) placed in row i and column 
j. 

It is worth noting that the D-graph of an RDTT network is a directed Doubly Twisted Torus 
(DTT) {II], where the vertex in-row 0 and column 1 has been replaced by two-arcs connecting 
the vertex (r - 1, c - 1) to the vertices (1,0) and (0,l). Although the graphs of an RDTT and a 
DTT rie?Nork [Ill have similar structures, they have quite different interpretations. In the 
RDTT case the graph of interest is a P-graph, in which each vertex is a p-element and each edge 
is either an inter-stage link (unlabelled edge) or a processor (labelled edge). In the DDT graph, 
each vertex represents a processor and the edges are the interprocessor links. 

Theorem 7. An (rc - l)-vertex RDTT network has CD parameter d = r + c - 2. 

Proof. The length of a path between an edge entering the vertex (a, 6) and an edge leaving the 
vertex (f, e) is one g eater than the length of a path between the vertices (a, b) and (J, e). 
Considering the correspondence with the counters RC and CC introduced earlier, the following 
four cases are possible: 

(1) fa a, e z b: the minimum number of increments for obtaining (f, e) from (a, b) is 
(f-a)+(e-b)<r+c-2, because(a, b)=(O,O)is not allowed; 

(2) f<a,e>b: theminimumnumberofincrementsisr-(a-f)+(e-b-l)~r+c-2; 
(3) f> a, e < b: this case is similar to (2), hence the minimum distance is c - (e - b) + (f- 

a-l),<r+c-2; 



(4) f$ a. e < b (excluding the case f= a and e = b already considered in (1) the minimal 
lengthofthepathisr-(n-f)i-c-(b-e)-2<r+c-2. •I 

Corollary 1. Tire minimum length of an elementary circuit in an RDTTP-graph is r + c - 2. 

Proof. An elementary circuit is a closed path containing (a, b) and ( f, e) such that (a, b) = (i, j) 
and (J, e) = (i, j - 1) or (I, e) = (i - 1, j). Hence, from case (4) in the proof of Theorem 7, it 
follows that the milnimum length of an elementary circuit is equal to the maximum communica- 
tion delay. 0 

Theorem 7 gives the value of the CD parameter of a RDTT network. In order to prove that 
these networks are optimal, it is necessary to show that the FT parameter is k = r + c - 3. First, 
it should be noted that it is possible to redraw the P-graph of a RDTT by applying a suitable 
number of row and column rotations. A row rotation is shown in Fig. 18, where the 
unbracketed pairs indicate the original positions of the vertices, while the bracketed pairs 
indicate the final positions after the row rotation. The column rotation is obtained by 
exchanging the operations performed on the row and column indices. Hence. a vertex (i, j) 
may be moved to the bottom left corner of the graph by applying r - 1 - i row rotations and 
T - 1 -j cohunn rotations. It turns out that the properties valid for the vertex in the bottom left 
corner and its associated edges are also valid for other vertices and their edges. 

Lemma 12. Let C, be a circuit which includes the bottom left vertex in an RDTT P-graph. There 
exists unother circuit C2, which has at least r -I- c - 2 common nodes and no common edge wiih C,. 
One of the common vertices should be the bottom left vertex. 

I- 

I 

Fig. 18. Ettec: of the row rotation on the &graph of an RDTT network 



Proof. It is possible to use either of the edges ieaving any given vertex of the P-graph (i, j) to 
construct a path from (i, j) to the vertex in the bottom left corner, it turns out that the same 
property is valid for every pair of vertices. Hence. the constraint imposed by the condition that 
C, and C, should have common vertices and no common edge does not prevent the finding of 
the required path. The number of common vertices is limited by the minimum length of a cycle, 
hence it is at least r f c - 2. 0 

Theorem 8. An (rc - I)-veriex RDTT network has FT parameter k = r + c - 3. 

Proof. Given r + c - 3 faults, it is a!ways possible to find a circuit which is compatible with the 
faults and includes the edge A leaving the vertex in the bottom iefi corner. Lemma I2 assures 
that another circuit exists, such that it includes the other edge B leaving the vertex in the 
bottom left corner and it has r + c - 2 common vertices and no edge in common with the first 
one. It can be shown that, given r + c - 3 faulty vertices. ,4 is reachable from B and vice versa. 
In fact, since the two circuits in&ding A and B have at least r + c - 2 common vertices. and 
since there are only r + c - 3 faulty vertices, at least one common vertex must not be faulty. 
Hence, the edges in the circuit including A can be reached from the edges in the circuit 
including B via the fault-free vertex. This property is valid for every vertex and every pair of 
edges leaving the same vertex. This is sufficient to conclude that the DFA property holds, since 
it is possible from any edge to reach both edges leaving the successor vertex, even when the later 
is fat&y. Applying this property recursively, it may be shown that every edge is reachable. This 
leads to the codusion that k > r + c - 3. Equation (3) of Theorem 1 requires k < d - 1 = r + c 
-3,hencek=r+c-3. 0 

The number n of fi-eiements in a RDTT network is rc - 1, while r and c are integers. In 
general, several values for r and c may exist for a given value of n. Since d = Y-C c - 2 and 
n = rc - 1, it is possible to prove that the minimum value of d is achieved for r = c = (n #- I)“‘, 
provided that (I: + 1)“’ is an integer. The maximum value of d occurs when r = 1 and 
c = ‘1 f 1, or when c = 1 and r = n + 1 In the latter case, the RDTT network is also a DPR 
network. ;Iznce, the RDTT networks can be considered a superset of the DPR networks. 

6. Conclusion 

In this paper, graph-theoretic techniques are successfuiiy applied to the analysis of the 
performance and fault tolerance of P-networks. Theoretical bounds for fault tolerance and 
communication delay are characterized. Several classes of /3-networks are analyzed and the 
feasible design space of P-networks are explored. A class of B-networks exhibiting optimal 
balance between fault tolerance and communication delay are introduced. 

While the FT and CD parameters do provide rudimentary characterizations of the fault 
tolerance and performance of a P-network, more refined parameters ai< nc<oed for practical 
design procedures. We believe this paper provides the foundation for deve!oping an intelligent 
design procedure for high performance and fault tolerant P-networks. 
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