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Abstract. The relationship between fault tolerance and performance is explored for B-networks used as
interconnection networks in multicomputer systems. The networks of interest are composed of 2X2 switches
(B-clements) and are represented by a graph model called a B-graph. Two parameters derived from 8-graphs are
used to characterize B8-networks. The fault tolerance (FT) parameter is the maximum number of 8-element faults
that can be tolerated. The communication delay (CD) parameter, representing the worst-case delay between any
pair of compuiers, is used as a measure of the performance of the S-networks. Tight bounds for both FT and CD
parameters are derived. Two important classes of B-networks are introduced, namely, DPR-networks and
MISE-networks. It is shown that DPR-networks possess the maximal fault tolerance, and the class of
DPR-networks is unique in achieving the maximum possible fault tolerance. The class of MISE-networks is
minimally fault tolerant, but has the minimum communication delay. A class of f-networks, called RDTT-net-
works, that achieve an optimal balance of the FT and CD parameters is also presented.

Ke:words. Interconnection networks, multicomputer systems, fault-tolerance, performance analysis, beta-net-
works.

1. Infroduction

A number of recently proposed multicomputer systems use a class of interconnection
networks called S-networks as intercomputer communication networks [7,8,10]. A multicom-
puter sysiem is considered here to be a distributed system of computing units supported by an
interconnection network which provides the communication paths among the computing units.
An N X N B-network is an interconnection network with N input and N output terminals which
is composed of 2 X 2 switching elements called 8-elements. Each f-element can be set to one of
two states, namely, the through (T) state or the cross (X) state, to provide interconnecting paths
from the N input terminals to the N output terminals. As illustrated in Fig. 1, the set of N
computing units in a multicomputer system can be equated with the set of input terminals and
the set of output terminals of the B-network. Because of the existence of the & feedback paths
through the N computing units, the N input links and the N output links of the B-network are
considered to be identical and are called the N terminal links of the B-network.
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Fig. 1. A multicomputer system model.

In [12] a theoretical framework for fault-tolerance analysis of f-networks was introduced.
Pertinent results from that work are now summarized here. A fault model is used which allow
B-elements to be stuck in either of their two normal states, i.e.. stuck-at-through (s-2-T) or
stuck-at-cross (s-a-X). A connectivity property called dynamic full access (DFA) serves as the
uriterion for fault tolerance in B-networks. A B-network has the DFA property if each of its
inputs can be connected to any one of its outputs via a finite number of passes through the
B-network. A fault in a P-network is a collection of B-element stuck-at faults. A fault is said to
be critical if it destroys the DFA property of the B-network. A minimal critical fault is a critical
fault none of whose proper subsets constitutes a critical fault. The fault tolerance of a
P-neiwork is defined as its ability to maintain DFA in spite of the presence of stuck-at-T/X
faults in its B-clements. A S-network with DFA is k-fault tolerant or k-FT if the failure, either
s-a-T or s-a-X, of any k or fewer B-elements does not destroy DFA. The largest k& for which a
B-network is k-FT is called the fauit-tolerance (FT) parameter of the B-network.

For analysis purposes, S-networks are represented by graphs 5] called B-graphs. The labeled
B-graph of a B-network is a labeled directed graph with vertices representing the B-elements,
and edges representing the links of the S-network. An edge is labeled and called a terminal edge
if it corresponds to a terminal link of the 8-network, otherwise it is not labeled and is called an
intermediate edge. An unlabeled B-graph, or simply a B-graph, is a labeled B-graph with all its
edge labels deleted. Figure 2 illustrates the labeled B-graph of a B-network called the indirect
binary 2-cube network [10] which connects four computing units {1, 2, 3, 4}. Each computing
unit is implicitly represented by a terminal edge in the S-graph. Usually the terminal edges are
labeled with the indices of the associated computing units as depicted in Fig. 2. Each S-element
in a B-network is modeled by a vertex with two incoming and two outgoing edges in the
corresponding B-graph. When the B-element is stuck at one of its two states, an incoming edge
can only be connected to one of the outgoing edges. Hence, a B-element stuck-at fault can be
modeled by the splitting of the corresponding S-graph vertex into two subvertices, each with
one incoming and one outgoing edge. It is easily seen that a S-network has the DFA property if
and only if the corresponding B-graph is strongly connected. Fault tolerance in terms of the
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Fig. 2. (a) The indirect binary 2-cube network: (b) Its labeled 8-graph.

B-graph can thus be defined as the ability of the 8-graph to stay strongly connected in spite of
the splitting of its vertices.

In this paper a second network parameter called the communication delay is introduced as a
measure of the performance of a S-network. Tight bounds on both the fault-tolerance and the
communication-delay parameters are derived in Section 2. A fundamental relationship between
the two parameters is also established. Two important specific classes of fB-networks are
introduced, namely DPR-networks and MISE-networks. These networks represent two extreme
design choices for fault-tolerant B-networks. It is shown in Section 3 that DPR-networks
posse-s the maximal fauli tolerance and maximal communication delay. It is further shown that
the class of DPR-neiworks is unique in achieving the maximal fault tolerance. Section 4
presents MISE-networks which are demonstrated to be minimally fault tolerant, but have the
minimum communication delay. Section 5 introduces a class of optimal S-networks called
RDTT-networks that exhibits the bes. combination of fault tolerance and performance.

2. Fauit tolerance vs. commumication deiay

Traditionally, high speed or performance has been the primary objective in the design of
interconneciion networks. Due to the proliferation of fauli-critical applications of computers,
fault tclerance is also becoming an important design requirement. It is probable that the
B-nexworks of future multicomputer systems will attempt to strike a balance between perfor-
mance and fault tolerance. This implies the need for a uniferm approach to the measurement of
these parameters. The fault-tolerance parameter k defined earlier can serve as a measure of the
fault tolerance of a B-network. The performance of a f-network can be measured by a basic
conrectivity property such as dynamic full-access (DFA). However. since all useful B-networks
have the DFA property, a finer, and preferably numerical. measure of performance is needed.
in the following section a suitable performance parameter is introduced, which is based on the
iitercomputer communication delays imposed by a B-network.

The communication dealy from computing nit to computing unit is measured here by the
minimum number of 8-elements that need to t. traversed by data being sent from unit ¢ to unit
J. A communication delay parameter 4 for a f-network is obtained by considering the
communication delays between all pairs of computing units and choosing the maximum or
worst-case value of these delays. We formalize the above definition by making use of the
B-graphs model of f-networks. The edge-distance, or simply distance. from edge i to edge j in a
B-graph is the number of intermediate vertices in the shortest directed path having edges / and
J as its first and last edges, respectively. The edge-diameter, or simply diameter, of a f-graph is
the longest distance betwcen any two edges of the B-graph. The communication delay 1CD)
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Fig. 3. (a) The 16 x16 ISE-network; (b) The 16 X 16 SCS-network.

parameter d of a B-network is the diameter of its S-graph. The delays caused by the computing
units themselves are not explicitly considerea here. However, if two B-networks have the same
number of stages of B-elements, their CD parameters will indicate their relative communication
performance.

As an illustration, we now consider two single-stage S-networks having very different values
of the CD parameter 4. The B-network of Fig. 3(a) is the 16 X 16 inverse shuffle exchange
network, or ISE-network [15). We call the B-network of Fig. 3(b) the 16 X 16 single cycle shift
network, or SCS-network. Figures 4(a) and (b) depict the fS-graphs of Figs. 3(a) and (b)
respectively. The diameters of these two B-graphs, and therefore the CD parameters of the
corresponding fB-networks, can be easily computed. The CD parameter for the 16 X 16
ISE-network is four, and that of the 16 X 16 SCS-network is eight. In the SCS-network, for
example, the communication delay is eight when sending a message from computer 1 to
computer 16. ISE-networks and SCS-networks of other sizes can be similarly constructed. In
general, an N X N ISE-network, if N = 2" for some integer m, has CD parameter d; = log, N,
and an N X N SCS-network has CD parameter d, = N /2[13].

Both the FT parameter k and the CD parameter d depend on the structure of a B-network,
and are therefore properties of its f-graph. We now derive tight lower and upper bounds for &
and d in terms of n, the number of B-clements in the B-network. We also establish a
fundamental relationship between & and d. The smallest possible value for &k is clearly zero,
while the largest possible value of k at first glance seems to be n. However, if a S-petwork can
tolerate faults affecting all its » B-elements, then the entire S-network is unnecessary; hence &
cannot exceed n — 1. It can be shown that both the ISE-network and the SCS-network are -FT.
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{a) o
Fig. 4. (a) B-graph of the 16 x 16 ISE-network: (b) f-graph of the 16 x 16 SCS-network.

In subsequent section we demonstrate the existence of a class of (# — 1)-FT B-networks. Hence
0 and n — 1 are tight lower and upper bounds, respectively, for k. The corresponding bounds
for d are given in the foliowing lemma.

Lemma 1. For uny B-network with n > 2 B-elements and CD parameter d.,
jlog,n] +1<d<n.
These bounds are tight.

Preof: The CD parameter d is the diameter of the A-graph. The diameter of a f-graph of n
vertices cannot exceed #, the total number of vertices. The value d=n is achievable, for
example, in the case of SCS-network containing » B-elements. Hence n is a tight upper bound
on d. Since each vertex in a S-graph has two outgoing edges, the outdegree of a vertex is two.
The maximum number of edges which are exactlv at distance d from any edge / is 29 The
maximum number of distinct edges reachable from /i within distance d is 29+ 297 '+ . . +2=
29*1 — 2. We also know that a S-graph with n vertices has exactly 2» edges. and each edge
must be able to reach the othe: 2n — 1 edges. Hence the following inequality must hold:

29221
from which it follows that
d > Jlog,(n+1/2)]

Now [log,x] = |log,x] + 1 unless x is an integral power of 2. which is impossible when
x=n+1/2. Henee

d>{log,n] +1.
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Fig. 5. (a) A critical fault corresponding to an elementary circuit; (b) An elementary circuit of length 2> k +1.

This lower bound for d is achieved by the ISE-network of »n B-elements, hence it also is
tight. O

Lemma 2. For any B-network with FT parameter k and CD parameter d, k < d — 1.

Proof. Every elementary circuit in a S-graph corresponds to a critical fault of the B-network.
The B-elements represented by the vertices of the elementary circuit can fail in such a way that
the edges of the elementary circuit are isolated from the rest of the f-graph as snown in Fig.
5(a). Hence the B-graph of a k-FT B-network must not contain any elemeniary circuit of length
less than or equal to k.

Let C be an elementary circuit of minimal length # > k + 1 in a k-FT B-graph. Assuime that
edges / and j have the same source vertex, and that C contains edge i, as illustrated in Fig.
5(b). Edge i can reach edge j via the edge of C, i.e., there exists a directed path from i to j
consisting of all the edges of C. Since the length of C is 4, the distance from / to j is at most A.
In fact, it must be exactly 4, otherwise there must exist a path P from the destination vertex of i
to ihe source vertex of j containing at most 4 — 2 edges. In that case the path P together with
edge i consiituies an elementary circuit of length # — 1 or less. This contradicts the minimal-
length property of C. Hence the distance from i to j is exactly A. Since A > k + 1, the distance
from i to j must be & + 1 or more. Hence the diameter of the B-graph cannot possibly be less
thar: k + 1. Therefore k<d—1. O

We can summarize the foregoing results in the following theorem.

Theorem 1. Let N be a B-network with n B-elements, where n > 2. The FT parameter k and the
CD parameter d of N are related as follows:

O<k<gn~1, (1)
|log,n| +1<d<n, (2)
k<d-1. (3)

The bounds in (1) and (2) are tight.

Every B-network has a unique 4. As faults occur, &k tends to decrease, while d tends to
increase. A B-network loses the DFA property when d becomes infinite. The synthesis of
practical fault-tolerant 8-network involves finding an appropriate balance between & and d.
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3. Maximal fault tolerance

In Section 2 we showed that the largest possible value for the fauit-tolerance parameter k is
n—1, where n is the number of f-elements. In this section we prove the existence and
uniqueness of a class of B-networks with a cyclic structure which meets this upper bound on k.
A double parallel ring B-network, or DPR-network, of order n is a fB-network with »
B-elements, whose 8-graph consists of two disjoint and parallel Hamiltonian circuits as shown
in Fig. 6. (A Hamiltonian circuit of a directed graph is a circuit that passes through every vertex
exactly once.)

Theorem 2. The FT parameter k of the DPR-network of order n is n — 1.

Proof. This theorem can be proven by examining the minimal critical fault; (MCFs) of the
DPR-network. We need to show that every MCF consists of more than # — 1 8-element stuck-at
faults. From Fig. 6 we see that there is no elementary circuit of length less than » in the B-graph
of the DPR-network of order n. Each circuit partition {12] of the f8-graph must consist of
exactly two elementary circuit each of length n. Hence every CA-graph [12] or Fig. 6 must
consist of two vertices connected by n edges. (The vertices of a CA-graph represent elementary
circuits, while its edges represent vertices of the original S-graph that are common to two
elementary circuits). Clearly each CA-graph has only one cut-set consisting of all its n edges.
There is a one-to-one correspondence between the MCFs of a B-network and the cutsets of its
CA-graphs (Theorem 1 of [12]) Hence every MCF of the DPR-network consists of » faulty
B-eiements. Therefore all n B-elements must be stuck at T/X to destroy the DFA property of
the DPR-network. Consequently, the DPR-network of order n is {» — 1}-FT. O

From Theorem 1 we know that n— 1 is a tight upper bound for & in B-networks with »
B-elements. The DPR-network clearly meets this upper bound. We can therefore say that the
DPR-network of order n is maximally fault tolerant among all S-networks with n S-elements.
Thus in a DPR-network only one fault-free S-element is needed to ensure DFA. The maximal
fault tolerance of the DPR-network can also be viewed from another perspective which is
developed below.

The fa.ii tolerance of a S-network can be analyzed in terms of the number of Eulerian
circuits in its B-graph. An Eulerian circuit of a directed graph is a circuit that includes every
de. in the graph exactly once. Eulerian circuits repr:sent maximal noncritical states of a
B-network. Intuitively. we expect fhe number of Eulerian circuits to be proportional 1o the
degree of fault tolerance. A classical result in graph theory {1] states that the number of Eulerian

Fig. 6. B-graph of 2 DPR nemwork of
order 1.
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circuits in a B-graph is equal to the number of distinct spanning irees rooted at any one of the
vertices. A rooted spanning tree of a B-graph of n vertices consists of n — 1 edges each from a
different vertex and all directed toward the root vertex. Since every veriex in the S-graph has
1wo outgoing edges, either one can be chosen for inclusion in a rooted spanning tree. Hence in a
B-graph of n vertices, there are at most 27~ ! distinci spanning trees rooted at a particular vertex.
As a result, a B-graph of n vertices has at most 2" distinct Eulerian circuits. From the
structure of the B-graph of the DPR-network, we see that all 2" 7! combinations of » — 1 edges
indeed correspond to distinct rooted spanning trees. Hence we have the following result:

Lemma 3. The B-graph of the DPR-network of order n has 2"~ distinct Eulerian circuits, which is
the maximum number possible in any B-graph of n S-elements..

A B-network state is determined by the states of the n S-elements. If s, =s(b,)e {T. X}
denotes the state of the S-element b,, then a srare of the B-network is represented by an n-tuple
(b, by B)=(5), $3,....5,). An Eulerian circuit (EC) s:ate is a S-network state that
specifies an Eulerian circuit in the S-graph. We next show that being (n — 1)-FT is equivalent to
having 2"~ Eulerian circuits. First, we need the following lemma.

Lemmad. If e, and e, are two distinct EC states of a 8-graph, then e, and ¢, cannot differ in only
one of their entries, i.e, at least two B-elements must be in different states.

Proof. Assume that the EC states e; and e, are identical except in the ith entry, ie.,
€= (S, $25eies S Sip1s---n5,) and e =(sy, §5,..., 5, 8, 1...., 8,), where if 5,=T (X) then
§;= X (T). We illustrate the Eulerian circuit corresponding to ¢, in Fig. 7(a), highlighting the
ith B-element. The Eulerian circuit of e, is identical to that shown in Fig. 7(a) except in the ith
B-element as shown in Fig. 7(b). Clearly Fig. 7(b) consists of two disjoint circuits; it is therefore
impossible for e, to represent an Eulerian circuit. Hence e, and e, must differ in more than
oneentry. 0O

Theorem 3. A B-network of n B-elements is (n—1)-FT if and only if its B-graph has 2"~!
Eulerian circuits.

Proof. The necessary condition is straightforward. If a S-network is (n — 1)-FT, then any set of
n — 1 B-elements can be stuck in any of the 27! possible faulty states without destroying DFA.
Each of these 2""! states must be compatible [12] with an EC state. Hence, there must exist
2"~ 1 distinct Eulerian circuits in an (n — 1)-FT B-graph.

We now need to show that a S-graph with 2"~ ! Eulerian circuits is (n — 1)-FT. If not, there
exists a critical fault f involving n — 1 B-elements. Let B-elements b,, b,,...,b,_; be faulty,

e1(bi )=s

e, b,)=5,

(@ )

Fig. 7. Relationship between any two Eulerian circuits.
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and let b, be fault-free. The critical fault state of f must not be compatibie with any of the 27!
EC-states [12]. This implies that none of the 27! EC-states has the same first # — 1 entries as f.
There are 2" possible distinct partiai states involving only the first # — 1 entries. We know that
at least one of these 2"~ ! partial states, namely, the one corresponding to f, does not appear in
the set of 2"~ EC-states. Hence there can be at most 2"~ ' — 1 distinct partial states involving
the first » — 1 entries of the 27! distinct EC-states. Therefore at least two of the EC-states, e,
and e,, must be identical in the first n — 1 entries. This means e, and e, differ only in the nth
entry, which is impossible by Lemma 4. Hence if a B-graph has 27~ ! Eulerian circuits, the
corresponding B-network must be (n — 1)-FT. O

So far we have shown that the DPR-network of order # has FT parameter Xk =n — 1 and has
2"~ Eulerian circuits. We further show that these two properties are equivalent, and char-
acterize the maximal fault tolerance achievable. An interesting question is whether the DPR-
network is the only B-network having the property. The answer is yes, as the following theorem
asserts.

Theorem 4. The DPR-network of order n is unigue among all B-networks of n B-elements in
achieving the maximum possible fault tolerance k = n— 1.

Proof. Let G be the B-graph of the DPR-network of order n. We need to show that if a
B-network of order n is (n — 1)-FT then its B-graph G’ must be isomorphic to G. If G’ is the
B-graph of an (n — 1)-FT B-network, it cannot contain any elementary circuits of length n — 1
or less, because such an elementary circuit would correspond to a critical fault involving n — 1
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Fig. 8. (a) Elementary circuit C; of G’; {b) Elementary Fig. 9. (a) A fault-free B-element r,: (b) Tolerance of

circuit C, of G'. s-2-T by r,: (¢} Tolerance of s-a-{ by ¢,.
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or fewer B-elements. Hence G’ must contain only elementary circuits of length n. Consequently,
to prove that G’ and G are isomorphic, all we need to show is that for every vertex in G’, the
two outgoing edges terminate at the same vertex.

Assume there exist a vertex v; in G’ whose two outgoing edges e, and e, terminate at vertices
v, and v,, respectively, and v, # v, as depicted in Fig. 8(a). Since G’ contains only elementary
circuits of length », the edge ¢, must belong to an elementary circuit C, of length ». G has
only n vertices and the length of C, is n, therefore v, must be a vertex in €., as shown in Fig.
8(b). From Fig. 8(b) we see that ¢, along with some of the edges in C, conastitute another
elementary circuit C,. Since v, # v,, the length of C, must be less than n. This contradicts the
fact that G’ only has elementary circuits of length n. Both outgoing edges of every vertex in G’
must terminate at the same vertex. Hence G’ is isomorphic to G, and the DPR-network of order
n is unique in achieving the maximal fault tolerance k=n—1. O

4. Fault tolerance with minimal delay

In the previous section we introduced DPR-networks, and showed that they have the
maximum fault tolerance k =n — 1. However, it is easily seen that while a DPR-network is
(n — 1)-FT, it has the worst possible communication dela; d = n. In this section we present a
complementary class of B-networks which has the minimum communication delay d = |log,#|
+ 1, and the minimum fault tolerance & = 1.

In a typical fauli-tolerant system, diagnostic software is run periodically, and when a faulty
B-element is detected it is replaced. If the rate of diagnosis is much higher than the average rate
of B-element failurcs, then it is reasonable to assume that only single B-element failures can
occur in B-networks. In light of this single-fault assumption, single-fault tolerance can be
treated as a fundamental design goal. As long as single B-element faults can be tolerated and
removed before a second fault occurs, DFA can be continuously maintained with sufficiently
high probability. We now present a relatively simple characterization of 1-FT B-networks. For
each B-clement v, of a B-network, we denote its two inputs by a, and b,, and its two outputs by
¢, and d, as shown in Fig. 9(a). In order for v, to tolerate the s-a-T fault. there must exist paths
in the B-graph from edges ¢, and d, back to edges b, and a,, respectively, as shown in Fig. 9(b).
Similarly, paths from ¢, and d, to a, and b,. respectively, are needed for r, 10 tolerate the s-a-X
fault, as shown in Fig. 9(c). The foregoing reasoning leads to the following result.

Lemma 5. Let G be the B-graph of a B-network N. N is 1-FT if and only if for every vertex v,
there exist four paths in G, one from each of the two outputs of v, to each of the nvo inputs of v,.
These paths must not include the vertex v,.

Using this lemma, single-fault tolerance can be verified by checking for feedback paths from
the outgoing edges of each vertex back to the incoming edges. If a S-network is not 1-FT. all its
single critical faults can be identified in the same checking procedure. The identification and
removal of single critical faults in a B-network is a basic step in fault-tolerant design. The
charac <rization of Lemma 5 is straightforward, but its usefulness is limited because of the large
amount of computation which may be needed to identify the feedback paths. The sufficient
condition in the next lemma is more useful.

Lemma 6. A S-nerwork is 1-FT if its B-graph contains a Hamiltonian circuit and no self-isops.

A fB-element and the corresponding vertex in its f-graph is critical if one of its stuck-at states
constitutes a single critical fault. Lemma 6 can be restated in the foliowing way:
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Lemma 7. If the B-graph G of a B-nerwork N contains a Hemiltonian circuil, then a vertex v, of G
and the corresponding B-element are critical if and only if there exists a self-loop at ©,.

Proof. If there is a self-loop at v,, then it is obvious that ¢, must be critical. Suppose that ¢, is
critical and has no self-loop. There must thern exist a split of ¢, which disconnects G into two
components G, and G,. Since G contains a Hamiltonian circuit €, one incoming and om

outgoing edge of v, must belong to C. Assume, without ioss of generality, that the edges o, and
d, defined in Fig. 10 belong to C. There must exist a path from G, back 10 §; not containing
v,, in order to complete the Hamiltonian circuit €. This is impossible because 1t implies that ¢,
is not critical. If instead of 4, and d,. 4, and ¢, belong to C. then ¢, and b, must constitute a
self-loop. Hence if ¢, is critical. then v, must contain a self-loop. 0TI

Lemma 7 implies that critical f-elements can be easily identified in B-networks that are
known to contain a Hamiltonian circuit. Mext we look for examples of 1-FT fSnetworks. A
well-known single-stage f-network is the N x N shuffle-exchange network or SE-network {151
The connecting-link pattern used resembies the perfect shuffling of a deck of cards and s called
the perfect shuffle. If the terminals are numbered from 0 to N — 1. then the perfect shuffle can
be represented by a permutation ¢ which caa be defincd as follows:

o(i)=(2i +{2i,'N|}poa » fori=0,1... . N—-1.

The inverse of an N X N f-network is another N X N B-nerwork that it the same as the
original nztwork except that the direction of all the links is reversed. The input terminals
becor: the output terminals. and vice versa. The N X N inverse shuffle exchonge network, or
ISE-network, is the inverse of the N X N SE-network. Figure 11{a) depicts the &8 x § ISE-net-
work, while Fig. 3(a) shows the 16 X 6 case. The order of an ISE-netvork is the number of
B-elements in the network. Hence the order of an 21 % 2n [ISE-network 5 n. For convensence.
we restrict our atteniion to ISE-networks of order s =27, where m Is an integer Each
B-element in an ISE-network can therefore be designated by an m-bit binary number
b.b,_i...b,. where b, € {0.1]. The top f-element is designated 08...0. Following the same
convention, all the 2» links can be labeled from top 10 bottom by {m + 13-bu binary pumbers
b.b,, ... by starting from 00...0 and terminaung with 11... 1. as Hustrated in Fig. 1Had
With the labeling scheme each vertex b4, _,... &, of an ISE-network bas twe incoming links
iabeled b,,... 5,0 and b_,... 5,1, and two outgoing links labeled U5, ... b, and 15, ... 5,. When
B-element & 5 ,...b, is in the T-state, comnections are established from b, .. 4,0 1o
Ob_...b, and from b_ ... b1 to 18, .. b, I it is in the X-state, these connections are reversed.
The iabels for f-elements can be translated directly inte B-graphs to identify corresponding
vertices. The binary (m + 1)-luple labels for S-network links can be used 1o lable edges in the
B-graphs and thereby implicitly identifying the computing units. The labeled f-graph of the
ISE-network of Fig. 11{a) is shown in Fig. 11(b}.

It has been shown that the network siructure of Pease’s indirect binary me-cube [10] s
isomorphic to that of the omega network [6]. which is actually 2 cascade of m stages of the
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Fig. 11. (ay The ISE-network of order four; (b) Labeled B-graph of the {SE-network of order four.

ISE-network of order 2"~ ! [9]; see Fig. 2. We know from Pease’s work that the indirect binary
m-cube has the full access property, that is, every input terminal of the network can reach any
output terminal via one pass through the network. By a simple space-to-time transformation,
the ith stage of the indirect binary m-cube can be mapped onto the ith pass through the
1SE-network of order 2”7~ !. Hence if an input terminal of an indirect binary m-cube can reach
any one of the output terminals in m stages, then any input terminal of the ISE-network of
oidar 2”1 should be able to reach any other terminal within the distance m. The communica-
tion-delay parameter d of the ISE-network of order 2™~ ! must therefore be m or less. In other
words, for the ISE-network of order n = 2", d < log,n + 1. Since we know that |log,n| + 1 is
the smallest possible value of 4 for any B-network with n B-elements (Theorem 1), the CD
parameter of the ISE-network of order » must be log,n + 1. Consequently the ISE-network of
order n =2" has the minimal communication delay among the S-networks of n B-elements. It
is easy to see that the ISE-network of order r is 0-FT. Both the top and bottom B-elements
contain self-loops; by Lemma 7 these self-loops correspond to single critical faults. The
foregoing discussion leads to the following theorem.

Theorem 5. The FT and CD parameters of the 1SE-network of order n=2" for some integer m,
are k=0 and d = log,n + 1, respectively.

The minimal communication delay of ISE-networks makes them very desirable for systems
requiring very fast communication. In addition, they require very simple control algorithms [10].
Clearly, a serious drawback of ISE-networks is their lack of fault tolerance. Next we propose a
modified ISE-network which is fault tolerant and still possesses the minimum communication
delay. In order to make an ISE-network 1-FT, we must identify all its critical S-elements. We
know that the B-eiements labeled 00...0 and 11...1 in the 8-graph have self-icops, and thus
are critical; see Fig. 11(b). We first demonsirate that these are the only S-elements that are
critical, and therefore need to be modified.

In the context of the mathematical treatment of shift register sequences, Good [4] and de
Bruijn [2] introduced an important graph. A Good-de Bruijn graph of order m, G,,, is a direcied
graph with 2™ vertices representing the 2™ distinct binary m-tuples. A directed edge leads from
vertex v; to v, in G, if the m-tuple v, is a successor of the m-tuple v, i.e., v; can be obtained
from v; by a single cyclic shift operation. For example, the m-tuple a,a,...a,, has two
successors, 4,...4,0 and a,...q,,1 and two predecessors, 0q,...a,,_, and la,...a The

m—1
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next lemma is a direct consequence of the definitions of the ISE-network of order # = 2™ and
the Good-de Bruijn graph of order m.

Lemma 8. The B-graph of the ISE-network of order n = 2™ is isomorphic with the Good-de Bruijn
graph G, of order m,

A shift-register sequence of maximum length 2” corresponds to a Hamiltonian circuit in the
Good-de Bruijn graph G,,. Good has provea ikie existence of such maximum-length sequences
{4]. Combining this fact with Lemma 8 we obtain the following results.

Yemma 3. The B-graph of the ISE-network contains a Hamilronian circuit.

Lemmas 7 and 9 together confirm that the top and bottom B-elements are the only critical
B-elements in the ISE-network of order n. In order to make the network 1-FT the two self-loops
associated with these B-elements must be removed.

Sowrirajan and Reddy have recently investigated the design of a class of fault-tolerant
B-network, called C,-networks with the maintenance of rearrangeability as the fault-tolerance
criterion [4]. They showed that by adding one redundant B-element a C, network can be made
1-FT with respect to rearrangeability. Employing a similar approach we can easily make the
ISE-network 1-FT with respect to the DFA by adding a redundant §-element. Figure 12
illustrates a 1-FT version of the ISE-network of order four. During fault-free operation the
redundant B-elements b, is set to the T-state which makes the modified network isomorphic to
the original network. When either S-element 00 or 11 is stuck-at-T, b, can be set to the X-state
to maintain DFA. With the introduction of a redundant S-element, additional hardware and
delay are also introduced.

We next describe another modification method for ISE-networks which makes the networks
1-FT but uses no redundant S-element and incurs no additional delay penalty. The modified
ISE-nerwork, or MISE-network, of order n is an ISE-network of order n with two of its links
altered as follows. The top output from S-element 00...0 is connected to link 11...1 instead of
to link 00...0. Similarly, the bottom output of B-element 11...1 is connected to link 00...0
instead of to link 11...1. Basically in the MISE-network, the desiinations of the two original
seif-loop links are exchanged. Figure 13 illustrates the MISE-network of order four obtained
from Fig. i1(a). We now show that the MISE-network of order » is 1-FT and still possesses the
communication delay d = log,n + 1 of the original ISE-network.

Fig. 12. The 1-FT redundant ISE-network of order four
based on [14]. Fig. 13. The MISE-network of order four.
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Lemma 10. Every MISE-network has FT paramezer k = 1.

Proof. The MISE-network is obtained by deleting the two original self-loops from the ISE-..et-
work. These self-loops could not have been part of a Hamiltonian circuit in the ISE-network.
Hence any such Hamiltonian circuit must still exist in the MISE-network. The MISE-network
thus contains a Hamiltonian circuit and has no self-loops, therefore. by Lemma 6 is is 1-FT. O

Lemma 11. The MISE-network of order n=2", for some integer m, has CD parameter
d=log,n+1.

Proof. If G is the B-graph of an ISE-network and G’ is the B-graph of the corresponding
MISE-network, then we must show that the edge diameter of G’ is the same as that of G. Let
edges a’ and ' in G’ be the modified edges of the self-loops ¢ and b in G. Let vy and vym_,
denote the source vertices of a” and b’ respectively. Let the other four edges adjacent to v, and
vym_, be as denoted in Fig. 14. G’ differs from G only in the edges ¢’ and b’. We know that the
delay in G is log,n + 1. To show that the delayv in G’ is also log,n + 1, all we need to show is
that @’ and &’ can reach and be reached by all other edges in G’ within the distance log,» + 1.

Any edge in G must reach 4 and b via d and e, respectively. If @ and b are reachable from
any other edge within the distance log,» + 1, then 4’ and b" must also be reachabie from any
other edge within the distance log,n + 1. Edges b and a can reach any other edge of G via
edges f and ¢, respectively, within the distance log,n + 1. Hence a’ (") in G’ must be able to
do the same via edge f (c). Consequently the CD parameter of the MISE-network of order # is
the same as that of the ISE-network of order n, namely d = log,n +1. O

Theorem 6. The FT and CD parameters of the MISE-network of order n = 2" for some integer m,
are k =1 and d =log,n + 1, respectively.

MISE-networks are fault-tolerant 8-networks with the minimal communication delay. We
have thus synthesized a fault-tolerant B-network by modifying a non-fault-tolerant 8-network.
This was accomplished without adding extra B-ciements or increasing communication delay.
The simple control algorithm used for ISE-networks needs to be modified only very slightly for
the MISE-networks {13].

5. Optimal networks

The networks presented in Sections 3 and 4 show that the bounds on the fault-tolerance and
the communication delay parameters & and d, respectively, given by inequalities (1) and (2) of

Fig. 14. A portion of the B-graph of a
MISE-network.
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Theorem 1 are tight. This scction considers the tightness of inequality {3) of Theorem 1, which
relates & and 4. B-networks having k =d—1 will be referred to as optimal, because they
zchieve the best fault-tolerance for a given maximum communication delay or, equivalently, the
minimum value of d for a prescribed level of fault tolerance. Since the optimal networks are
defined by a single relationship between &k and d, many different networks fall in this class. In
general, it is possible to have optimal networks with the minimum communication d=1,
optimal networks with the maximum & = n — 1, and optimal networks with intermediate valuss
of k and d. The selection of a particular optimal network depends on the relative importance
given to fault tolerance and performance. Figure 15 illustrates the feasible design space for
B-networks as dictated by the three inequalities of Theorem 1. The optimal networks are those
which are on the diagonal boundary.

The DPR network introduced in Section 3 is an example of an optimal network. since in this
case k=n—1 and d=n»n. Hence, optimal networks with maximal fault tolerance exist;
moreover, it is possible to obtain an optimal network with maximal fault tolerance for every
value of n. Unfortunately, this does not hold for networks with the minimal delay. In fact,
excluding the trivial case of a network with a 8-graph composed of two vertices, it is impossible
to find an optimal network with a B-graph having 4 vertices and d = 3. This may be shown by
exhaustively testing all possible 4-vertex B-graphs each of which is either 2 DPR S-graph, d= 4,
or else a fB-graph with a cycle of length 2, which implies k <1 <log,4 <d4— 1. By applying
classical graph methods [3] and the analysis techniques introduced in [12]. it is possible to verify
that the 8-vertex B-graph shown in Fig. 16 corresponds to an optimal network with minimum
communication delay, since k=3 and ¢ = {log,8] + 1= 4. It is not known whether optimal
networks with minimal delay exist for values of n different from 2, 4 and 8. The foregoing
results suggest that it may not be possible to find an optimal network with minimal delay for
every value of n, although such networks exist for some specific values of n.

A class of optimal networks, referred to as Reduced Doubly Twisted Torus (RDTT) networks,
is now introduced. An n-vertex RDTT-network is defined in terms of its B-graph which
contains n = rc — 1 vertices. An ordered pair of integers (i, j), withO0gi<rand 0<gj<ec, is
associated with each vertex of the B-graph. The two successors of node (i, j) are conveniently
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Fig. 16. S-graph of an optimal network containing 8
Fig. 15. Feasible design space for S-networks. [S-elements.
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Fig. 17. B-graph of o RDTT network with 11 nodes.

defined by associating counters with / and j. Suppose that / is the current value of a modulo-r
counter RC. and j is the current value of a moduio-¢ counter CC. The two counters are
connected so that when a transition from ¢ —1 to 0 takes place in the CC counter, the RC
counter is incremented, and when the transition from r — 1 to 0 takes place in the RC counter,
the CC counter is incremented from j to j+ 1. Hence, when RC is incremented in the state
{r— 1, ¢ — 1), the new state obtained is (0, ¢ — 1. However. since the increment has reset RC,
the CC counter needs to be incremented, leading to (0,0). Furthermore, the reset of CC causes
an increment of RC, so that the final state (1,0) is reached. Similarly, if CC is incremented in
the state (» — 1, ¢ — 1), then a symmetrical sequence of events is activated, leading to the final
state {0,1). As a consequence of this behavior, the state (0,0) can never be obtained, and the
corresponding ncdes does not appear in the B-graph. Using this representation, one successor of
vertex (i, j) is obtained by incrementing only RC, while the other successor is obtained by
incrementing only CC. Figure 17 shows the B-graph of the 11-vertex RDTT network with r=3
and ¢ = 4. The B-graph is drawn as an r X ¢ array with vertex (i, j) placed in row / and column
J-

It is worth noting that the 8-graph of an RDTT network is a directed Doubly Twisted Torus
(DTT) 111}, where the vertex in row 0 and column 1 has been replaced by two arcs connecting
the vertex (r 1, ¢ — 1) to the vertices (1,0) and (0,1). Although the graphs of an RDTT and a
DTT network [11] have similar structures, they have quite different interpretations. in the
RDTT case the graph of interest is a 8-graph, in which each veriex is a B-element and each edge
is either an inter-stage link (unlabelled edge) or a processor (labelled edge). In the DDT graph,
each vertex represents a processor and the edges are the interprocessor links.

Theorem 7. An (rc — 1)-vertex RDTT network has CD parameter d =r + ¢ — 2.

Proof. The length of a path between an edge eniering the vertex (&, b) and an edge leaving the
vertex (f, e) is one g eater than the length of a path between the vertices (a, b} and (/, e).
Considering the correspondence with the counters RC and CC introduced earlier, the following
four cases are possible:

(1) f>a, e>b: the minimum number of increments for obtaining (f, e) from (a, b} is
(f—a)+(e~b)<r+c—2, because (a, b) = (0,0) is not allowed;

(2) f<a, e> b: the minimum number of increments is r —(a —f)+{(e—b—1)<r+c—2;

(3) f>a, e <b: this case is similar to (2), hence the minimum distance is ¢ — (e — )+ (f —
a-1)gr+c-2;
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(4} f<a. e<b (excluding the case f=a and e= b already considered in (1) the minimal
length of the pathis r—(a—f)+c—(b—e)-2<xr+c—2. O

Corollary 1. The mininium length of an elementary circuit in an RDTT B-graph isr+ ¢ — 2.

Proof. An elementary circuit is a closed path containing (a, ) and{ f, e) such that (a, b)= (i, j)

and (f. e)=(i, j—Dor(f, e)=(i—1, j). Hence, from case (4} in the proof of Theorem 7, it

follows that the minimum length of an elementary circuit is equal to the maximum communica-
tion delay. O

Theorem 7 gives the value of the CD parameter of a RDTT network. In order to prove that
these networks are optimal, it is necessary to show that the FT parameter is k = r + ¢ — 3. First,
it should be noted that it is possible to redraw the B-graph of a RDTT by applying a suitable
number of row and column rotations. A row rotation is shown in Fig. 18, where the
unbracketed pairs indicate the original positions of the vertices, while the bracketed pairs
indicate the final positions after the row rotation. The column rotation is obtained by
exchanging the operations performed on the row and column indices. Hence. a vertex (i, j)
may be moved to the bottom left corner of the graph by applying » — 1 — i row rotations and

¢ — 1 — j column rotations. It turns out that the properties valid for the vertex in the bottom left
corner and its associated edges are also valid for other vertices and their edges.

Lemma 12. Let C, be a circuit which includes the bottom left vertex in an RDTT B-graph. There

exists uncther circuit C,, which has at least v + ¢ — 2 common nodes and no common edge with C,.
One of the common vertices should be the bottom left vertex.

*
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Fig. 18. Eftect of the row rotation on the B-graph of an RDTT network
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Proof. [t is possible to use either of the edges leaving any given vertex of the B-graph (i, ;) to
construct a path from (/, 7) to the vertex in the bottom left corner, it turns out that the same
property is valid for every pair of vertices. Hence, the constraint imposed by the condition that
C, and C, should have common vertices and no common edge does not prevent the finding of
the required path. The number of common vertices is limited by the minimum length of a cycle,
hence it is at least r +¢~ 2. O

Theorem 8. An (rc — 1)-vertex RDTT network has FT parameter k =r + ¢ ~ 3.

Proof. Given r + ¢ — 3 faults, it is always possible to find a circuit which is compatible with the
faults and includes the edge 4 leaving the vertex in the botiom left corner. Lemma 12 assures
that another circuit exists, such that it includes the other edge B leaving the vertex in the
bottom left corner and it has r + ¢ — 2 common vertices and no edge in common with the first
one. It can be shown that, given r + ¢ — 3 faulty vertices. A is reachable from B and vice versa.
In fact, since the two circuits including 4 and B have at least » + ¢ — 2 common vertices, and
since there are only r+ ¢ — 3 faulty vertices, at least one common vertex must not be faulty.
Hence, the edges in the circuit including 4 can be reached from the edges in the circuit
including B via the fauli-free vertex. This property is valid for every vertex and every pair of
edges leaving the same vertex. This is sufficient to conclude that the DFA property holds, since
it is possible from any edge to reach both edges leaving the successor vertex, even when the later
is faulty. Applying this property recursively, it may be shown that every edge is reachable. This
leads 1o the conclusion that & > r + ¢ — 3. Equation (3) of Theorem 1 requires k <d—1=r+¢
—3,hence k=r+c¢~3. 0O

The number n of S-elements in a RDTT network is ¢ — 1, while r and ¢ are integers. In
general, several values for r and ¢ may exist for a given value of n. Since d=r+c¢—2 and
n = rc— 1, it is possible to prove that the minimum value of d is achieved for r = ¢ = (n # 1)1/?,
provided that (r+ 1)'/? is an integer. The maximum value of d occurs when r=1 and
c¢=wn+1, or when c=1 and r=n+1 In the latter case, the RDTT network is also a DPR
networs. ixcnce, the RDTT networks can be considered a superset of the DPR networks.

6. Conclusion

In this paper, graph-theoretic techniques are successfully applied to the analysis of the
performance and fault tolerance of B-networks. Theoretical bounds for fault tolerance and
communication delay are characterized. Several classes of B-networks are analyzed and the
feasible design space of B-networks are explored. A class of B-networks exhibiting optimal
balance between fault tolerance and communication delay are introduced.

While the FT and CD parameters do provide rudimentary characterizations of the fault
tolerance and performance of a B-network, more refined parameters are niceaed for practical
design procedures. We believe this paper provides the foundation for developing an intelligent
design procedure for high performance and fault tolerant S-networks.
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