
.

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

O. Brewer, J. Dongarra, and D. Sorensen

Tools to Aid in the Analysis of Memory Access Patterns

for Fortran Programs

Mathematics and Computer Science Division

Technical Memorandum No. ??

June 1988

Tools to Aid in the Analysis of Memory Access Patterns

for Fortran Programs

O. Brewer, J. Dongarra, and D. Sorensen

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439-4844

1. Introduction

The development of efficient algorithms on todays high-performance computers can be a challeng-

ing undertaking, with the efficient use of memory being a critical factor. Memory is organized in a

hierarchy according to access time. High-performance computers rely on effective management of

memory hierarchy when carrying out floating-point computations. This hierarchy takes the form of main

memory, cache, local memory, and vector registers. The basic objective of this organization is to attempt

to match the imbalance between the fast processing speed of the floating-point units and the slow latency

time of main memory. Successful algorithms must effectively utilize the memory hierarchy of the under-

lying computer architecture on which they are implemented.

Cache memory, local memory, and vector registers are really high-speed buffers[8]. Cache memory

is usually controlled by hardware, while local memory and vector registers are controlled by software.

The purpose of this hierarchy is to capture those portions of the main memory that are currently in use,

and to reduce the time for subsequent accesses. Since these high-speed buffers are often 5 to 10 times

faster than main memory, they can substantially reduce the effective memory access time if they can be

used. The success of hierarchy is then attributed to locality of reference and reuse of data in a users pro-

gram.

Thus, in order to improve the performance of algorithms implemented on high-performance com-

puters, we must consider not only the total number of memory references, but also the pattern of memory

references[5, 7]. We would like our algorithms to observe the principle of locality of reference, so that

the data can be effectively utilized. Our new tool provides an aid in understanding a program’s locality

of reference.

We have designed and built two tools that will help in understanding how a specific Fortran pro-

gram references memory. The first tool, called the Memory Access Pattern Instrumentation program

(MAPI), instruments a user’s program and, when the instrumented program is run, produces a trace file.

The trace file is a detailed ASCII file giving the individual memory references that were made to the one-

and two-dimensional arrays in the program. The second tool, called the Memory Access Pattern

†

Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.

Typeset on December 9, 1991.

Animation (MAPA) program, allows the trace file to be viewed. This program runs on a Sun workstation

(running UNIX and SunView)[1].

In this paper Section 2 examines the motivation for efficient use of memory hierarchy, Section 3

discusses the goals for the tools, Section 4 presents a detailed description of the tools, and Section 5

shows how to instrument a program using MAPI and how it is tied into the BLAS. Sections 6, 7, and 8

discuss the user interface to the animation part of the tools and give an example of its use. Section 9

states the availability of the tools overnetlib and Section 10 summarizes our efforts.

2. Motivation

The goal of this work is to assist in formulating correct algorithms for high-performance computers

and to aid as much as possible the process of translating an algorithm into an efficient implementation on

a specific machine. Over the past five years we have developed approaches in the design of certain

numerical algorithms that allow both efficient and portability[5]. Our current efforts emphasize three

areas: environments for algorithm development, parallel programming methodologies, and advanced

algorithm development.

For most computational problems, the design and implementation of an efficient parallel solution

are formidable challenges. Since parallel computation is still in its infancy, we often do not understand

what algorithms to use, much less how to implement them efficiently on specific architectures. With

existing technology, the construction of a parallel program is a laborious, largely manual enterprise that

forces the programmer to assume responsibility for determining a suitable mathematical algorithm and

translating it into an intricately coordinated set of instructions tuned to a particular parallel machine.

Efficient parallel programs are much more difficult to write than efficient sequential programs,

because the behavior of parallel programs is nondeterministic. They are also much less portable, because

the structure critically depends on specific architectural features of the underlying hardware (such as the

structure of the memory hierarchy). To use parallel machines efficiently in scientific research, we must

develop high-level languages and environments for producing efficient parallel solutions to scientific

problems.

The key to using a high-performance computer effectively is to avoid unnecessary memory refer-

ences. In most computers, data flows from memory into and out of registers and from registers into and

out of functional units, which perform the given instructions on the data. Algorithm performance can be

dominated by the amount of memory traffic rather than by the number of floating-point operations

involved. The movement of data between memory and registers can be as costly as arithmetic operations

on the data.

This situation provides considerable motivation to restructure existing algorithms and to devise new

algorithms that minimize data movement. A number of researchers have demonstrated the effectiveness

of block algorithms on a variety of modern computer architectures with vector-processing or parallel-

processing capabilities[2], on which potentially high performance can easily be degraded by excessive

transfer of data between different levels of memory (vector registers, cache, local memory, main

memory, or solid-state disks).

- 2 -

In particular, for computers with memory hierarchy or for true parallel processing computers, it is

often preferable to partition the matrix or matrices into blocks and to perform the computation by

matrix-matrix operations on the blocks. This approach provides for full reuse of data while the block is

held in cache or local memory. It avoids excessive movement of data to and from memory and gives a

surface-to-volume effect for theratio of arithmetic operations to data movement, i.e.,O(n
3
) arithmetic

operations toO(n
2
) data movement. In addition, on architectures that provide for parallel processing,

parallelism can be exploited in two ways: (1) operations on distinct blocks may be performed in parallel;

and (2) within the operations on each block, scalar or vector operations may be performed in parallel.

The performance of these block algorithms depends on the dimensions chosen for the blocks. It is

important to select the blocking strategy for each of our target machines, and then develop a mechanism

whereby the routines can determine good block dimensions automatically.

Since most memory accesses for data in scientific programs are for matrix elements, which are usu-

ally stored in two-dimensional arrays (column-major in FORTRAN), knowing the order of array refer-

ences is important in determining the amount of memory traffic. To get an idea of how arrays are

accessed for a particular implementation of an algorithm and for a particular data set, we could add

instructions to our code to output the name of the array and the indices, whenever an array element is

accessed. However, the coding would be tedious and error prone, and looking at page after page of

indices is a difficult way of visualizing the memory access patterns. Notice the use of the word "visualiz-

ing." We would like to take an arbitrary linear algebra program, have its matrices mapped to a graphics

screen, and have a matrix element flash on the screen whenever its corresponding array element was

accessed in memory. This type would of tool would be beneficial in many ways:

1. It would help show that the implementation of the algorithm is correct, or at least doing what the

developer thinks the algorithm should be doing.

2. It would provide insight into the algorithm’s behavior.

3. It would enable the programmer to compare the memory access patterns of different algorithms.

4. Being easy to use, it would be used more often than a tedious method such as examining pages of

indices.

3. Goals

The MAP tools are intended to provide an ‘‘animated’’ view of the memory activity during execu-

tion. Our objective in providing these tools was threefold: (1) We wished to easily play back a previous

execution trace over and over again to study how an algorithm uses memory, (2) we would wished to

experiment with different memory hierarchy schemes and observe their effects on the program’s flow of

information; and (3) we wished to use what was available from Sun Microsystems in the way of creating

a SunView application.

- 3 -

4. Description of Tools

There are two basic aspects toaccomplishing ourgoals: preprocessor instrumentation and postpro-

cessing display graphics. Our first tool, MAPI, is applied to the user’s program before it is executed.

This tool instruments the program so that trace information can be produced. MAPA is a postprocessing

tool which displays the output of the instrumented program, permitting a user to visualize the output of

the instrumented program and study how the program is referencing memory.

We have developed a simple preprocessor (written in C) that analyzes a FORTRAN module and,

for each reference to a matrix element, generates a FORTRAN statement that calls a MAPI routine which

in turn records the reference to matrix element. In addition, if calls are made to Level 1, 2, or 3 BLAS

MAPI translates those calls into calls to MAPI routines which understand the BLAS operations and

record the appropriate array references. The output of this tool is a FORTRAN module that, when com-

piled and linked with a MAPI library, executes the original code and produces a trace file. This trace file

is used as input to MAPA in order to display the memory accesses on the arrays in the FORTRAN code.

By default, the preprocessor looks for references to array A and assumes that all arrays that are

parameters in calls to the BLAS subroutines are array A. However, it also has a run-time option to search

for up to three different arrays. Thus, it can be directed to look for references to arrays A, B, and C.

An example of how the program is instrumented is as follows. The original code is

DO 3 0 K = 1 , J - 1

DO 2 0 I = K+1 , N

A(I , J) = A(I , J) + A(I , K) *A(K , J)

2 0 CONT I NUE

3 0 CONT I NUE

which is transformed into

DO 3 0 K = 1 , J - 1

DO 2 0 I = K+1 , N

CALL R (1 , I , I , J , J)

CALL R (1 , I , I , K , K)

CALL R (1 , K , K , J , J)

CALL W(1 , I , I , J , J)

A(I , J) = A(I , J) + A(I , K) *A(K , J)

2 0 CONT I NUE

3 0 CONT I NUE

Subroutines R and W record access to storage. The calling sequence has the following meaning:

R(<array id>, <start of row>, <end of row>, <start of column>, <end of column>)

W(<array id>, <start of row>, <end of row>, <start of column>, <end of column>)

- 4 -

where <array id> is the number given to reference the array, (<start of row>,<start of column>) is the

starting point in the array for the operation, and (<end of row>,<end of column>) is the ending point in

the array for the operation.

Each call to subroutine R records the element of the array. In this case, array A has been given the

identifier 1, the first argument to subroutines R and W. Arguments 2 and 3 give the range of rowaccesses,

and arguments 4 and 5 give the range of column accesses. Thus ‘‘CALL R(1, I, I, J, J)’’ translates to a

read of array A for element I, J. In addition to this information, subroutines R and W also time stamp the

event.

The subroutines R and W record the information in a trace file. MAPA can then read the informa-

tion in the trace file and produce a simple animation simulating the memory accesses. Figure 1 displays

the output of MAPA for a view of LU decomposition.

Figure 1. MAPA output for LU decompostion

5. MAPI: The Preprocessor

The preprocessor is very simple and makes many assumptions about the FORTRAN code. Most are

assumptions about styles that, although syntacticly correct, are not in common usage. The idea here was

not to spend a great deal of time producing a complete FORTRAN lexical analyzer to cover every possi-

ble statement, but to produce something quick and easy that would recognize common FORTRAN state-

ments and pick out the array references. Others assumptions are so the preprocessor is aware of certain

information such as array size and array names. In addition, there two types of array references that the

preprocessor does not yet catch. These are valid array references but not as common. They should be

added as needed in the future. All of the assumptions and exceptions are listed below.

- 5 -

At the moment, the preprocessor makes the following assumptions about the input FORTRAN file:

1. It is syntactically correct and compiles.

2. Statements do not extend beyond column 72; in fact, nothing should be beyond column 72, such as

old dusty decks that used columns 73-80 as ordering information for the cards.

3. A single parameter is not split across lines in a call to a BLAS routine:

CALL SUB (n 1 , n 2 , a (i ,

$ j) , . . . , b

$ (j,i), ..., nlast).)

4. A single term is not split across lines in an assignment statement:

A(I , J) = T*A(J ,

$ I) / (A(J ,

$ I)+B(J,I))).

5. Comments are not interwoven with continuation lines:

CALL SUB (n 1 , n 2 , . . . ,

C c omme n t

$ ni, nj, ..., nlast)

6. There are no variable names like DO30I (i.e DO30I = 1.3 vs DO30I = 1,3) or function names like

IF.

7. There is a variable named N in the file being preprocessed which is set to the array size.

8. The designated arrays are global throughout the file. In other words, there should not be two sub-

routines each with local arrays using the same variable name; the preprocessor would not know the

difference. Also, the main driver program should be in a separate file so that array references, such

as array initialization, are not listed in the metafile.

9. In calls to subroutine, the sequence "CALL SUB(parameter1,", should be on the same line.

The preprocessor does not yet catch the following references:

- 6 -

1. IF(...A(I,J)...) ... array reference in logical expression of IF.

2. ...z(A(I,J))... array reference used as an array index.

To use the MAPI program one merely types

mapi < foo.f > outfoo.f

at the UNIX shell level. The MAPI program will take as input a Fortran program and generate a new pro-

gram on standard output containing the instrumented version. When compiling and loading outfoo.f, the

user should reference the mapilib.a file to resolve calls to MAPI routines.

5.1 Calls to the BLAS

Since the BLAS form such an important part of software for linear algebra problems, we have pro-

vided an interface for them to our package. During the preprocessing phase, if a call to a Level 1, 2, or 3

BLAS is present, it is replaced by a call to one of our MAPI routines. The replaced routine will record the

memory access to be made, as well as the number of floating point operations to be performed, and then

call the Level 1, 2, or 3 BLAS originally intended.

For example, a call such as

CALL SGEMV(. . .)

will be replaced by a call to

CALL MSGEMV(. . .) .

The call will be modified by additional parameters to resolve the two-dimensional array references in the

call.

The next example shows how calls to the BLAS are translated. The original code looks like

- 7 -

*

* Compute superdiagonal block of U.

*

CALL STRSM(’Left’, ’Lower’, ’No transpose’, ’Unit’, J - 1,

$ JB, A, LDA, A(1, J), LDA)

*

* Update diagonal and subdiagonal blocks.

*

CALL SGEMM(’No transpose’, ’No transpose’, M - J + 1, JB,

$ J - 1, -ONE, A(J, 1), LDA, A(1, J), LDA, ONE,

$ A(J, J), LDA)

After the preprocessor executes, it is transformed to

*

* Compute superdiagonal block of U.

*

CALL MSTRSM(’Left’, ’Lower’, ’No transpose’, ’Unit’, J - 1,

$ JB, A, LDA, A(1, J), LDA ,

$ 1, 1, 1, 1, 1, J)

*

* Update diagonal and subdiagonal blocks.

*

CALL MSGEMM(’No transpose’, ’No transpose’, M - J + 1, JB,

$ J - 1, -ONE, A(J, 1), LDA, A(1, J), LDA, ONE,

$ A(J, J), LDA ,

$ 1, J, 1, 1, 1, J, 1, J, J)

In the instrumentation the name of the subroutine has been changed. Routines MSTRSM and

MSGEMM are MAP routines that record the memory references and call the corresponding Level 3

BLAS. The calling sequence has been augmented to add the starting point of each array reference. Since

internally the BLAS do not know what part of the original array the calling program has actually passed,

we need to supply the starting index to correctly record each array reference. Therefore, in the call to

MSTRSM, the last six arguments describe the starting point of the two arrays involved in the operation.

The first arguement 1 involves the array A; the next two arguments, 1,1, provide the row and column

index for the starting point of the first array; the last three arguments 1,1,J follow the same form. Within

subroutine MSTRSM the appropriate calls to R and W are made to record the events, and then the call to

the Level 3 BLAS takes place.

- 8 -

5.2 Execution of the instrumentated program

As the instrumentated program executes, it generates a trace file namedmemory.<name>.The

trace file is a readable ASCII file which contains an encoded description of how the arrays in the program

have been referenced. There are basically three types of trace lines generated: array definition, read

access, and write access. For compactness not every element reference generates a trace line. If a call to

one of the BLAS has been made, the trace line may contain the information about a row or columnaccess

or both. In addition, the events are time stamped, allowing the MAPA program to merge information

with other trace files and have the relative order of operations preserved. We also record the amount of

floating-point work that has taken place for a given memory reference. The name of the BLAS is

recorded, and during playback the name of the BLAS executed will be displayed.

The trace file has the following format:

Matrix definition:

0 <array id> <number of rows> <number of columns>

Readaccess:

1 <array id> <start of row> <end of row> <start of column> <end of column> <time>

Write access:

2 <array id> <start of row> <end of row> <start of column> <end of column> <time>

Arithmetic operations and BLAS called:

5 <array id> <flops> <BLAS subroutine name>

An example of the trace file output is displayed below:

0 1 40 40

5 1 0 strsm

5 1 125 strsm

1 1 1 5 1 1 0.05000

1 1 1 5 6 10 0.05000

2 1 1 5 6 10 0.05000

1 1 2 5 2 2 0.05000

1 1 2 5 6 10 0.05000

2 1 2 5 6 10 0.05000

1 1 3 5 3 3 0.05000

1 1 3 5 6 10 0.05000

2 1 3 5 6 10 0.05000

1 1 4 5 4 4 0.05000

1 1 4 5 6 10 0.05000

2 1 4 5 6 10 0.06667

- 9 -

1 1 5 5 5 5 0.06667

1 1 5 5 6 10 0.06667

2 1 5 5 6 10 0.06667

.

.

.

6. MAPA: The Control Panel

The MAPA program is written in C, using SunView, and runs on monochrome and color monitors.

It displays the memory access patterns of the arrays by mapping the arrays to the graphics screen and

highlighting the elements of the arrays when they areaccessed.

The graphics window takes up most of the screen. It initially looks for trace files named

memory.<name>, where<name>distinguishes the different trace files. If it does not find any, it prints an

informational message to that effect.

The program can display up to four different arrays at one time. The top row displays the read

accesses to the arrays, and the bottom displays the writes. The read accesses flash in blue, and the write

accesses flash in red on a color monitor. On a monochrome monitor, the accesses flashed in black.

The panel subwindow (see Figure 2) is MAPA’s main user control interface and contains several

features:

Figure 2. MAPA Control Panel

• Directory: The user can step through various directories to locate the desired trace file. If the cursor is

placed over the end of the directory string and the right mouse button is pressed, a menu listing of other

directories will appear. To change to one of these directories, the user simply uses the cursor to highlight

the directory and releases the right mouse button. One of the directories in the listing will have a check

next to it (most probably the ‘‘.’’ directory). Depressing and releasing the left mouse button while the cur-

sor is positioned on the directory string will cause a change to the checked directory. The user should

remember, however, that while directory changes are supported to assist in locating trace files, this is

- 10 -

fragile feature.

• Memory files: When files exist in the current directory that begin with the letters ‘‘memory’’, the first of

these will appear in the memory file string. Positioning the cursor on the string and depressing the right

mouse button will cause a menu of memory files to appear. Files can be selected from the menu by

highlighting the file name and releasing the right mouse button. Depressing and releasing the left mouse

button will cause the next file in the menu to be selected.

• Update speed: This slider controls the length of time the memory reference is held on the screen before

fading away. The default value of the slider is set at 100% and can be easily changed by clicking the left

button in the slider at the desired value (current value is displayed in brackets, See Figure 1).

• Execution speed: This slider controls the speed in which events are processed when ‘‘GO’’ has been

chosen. The speed control slider expresses the event display speed as a percentage of the fastest possible

speed. The default value of the slider is set at 100% and can be easily changed by clicking the left button

in the slider at the desired value (current value is displayed in brackets, See Figure 1).

The ovals in the panel act as buttons. All of the buttons on the panel are activated by clicking the

left button within the boundaries of the button. The button will remain gray as long as the action started

by the button continues.

• Load: Initialize and reset MAPA for another trace file. Once a trace file has been chosen it must be

loaded in before the animation can be started.

• Go: Process events from the trace file consecutively without stopping. The screen and counters in

the control panel are updated appropriately. The only way the event process is halted is for you to

hit the left mouse button while the mouse cursor is in the control panel or the end of the trace file is

reached.

• Stop: Stops the tracing of events once the program realizes the button has been pressed. It some-

times requires a heavy finger. The activity can be restarted by hitting the ‘‘GO’’ button.

• Quit: This will completely exit the MAPA tool, first asking for confirmation.

• FLOP meter: This meter shows graphically the number of floating point operations over time. It

needs work!

- 11 -

7. Execution of MAPA

The canvas subwindow occupies the lower two-thirds of the window. Graphics information is

displayed here. The canvas is divided into two rows of four squares. The first row displays the load

activities, and the second row displays the store activity.

Each of the four columns of squares across the canvas can be used to display an array. When the

trace file is started, a load of a matrix element is denoted by a blackening of an area of the block used to

represent the array. (With a color monitor, the area will turn dark blue.) As time evolves and if no

further reference is made to that specific matrix element, the area will gradually become lighter, until at

some time after the original access, it will return to its original color. If a subsequent reference to that ele-

ment is made, the area representing the element will again become darken. In this way a user can

observe the locality of reference the program is able to achieve.

The same situation is true for store operations. As a store is made, the area representing the ele-

ment affected is darkened (on a color monitor, the area will turn dark red), and after time the area will

return to its original color.

If the BLAS have been used, the whole area affected by the operation is changed at once. This

results in considerable saving in terms of display time and in the amount of space the trace file occupies.

8. Example

We have been experimenting with three different organizations for the algorithm to factor a matrix

in preparation to solving a system of linear equations via Gaussian elimination. Each method performs

the same number of floating-point operations; the algorithms differ only in the way in which the data is

accessed. The three methods are block jki, block Crout, and block rank update (see [2-4, 6] for more

details).

When MAPA displays the trace file produced by merging the trace files from the execution of the

instrumented versions of the three different programs, we obtain the picture at shown in Figure 3.

Figure 3. Display of Fortran execution

matrix of order 40 blocksize of 5

The following table was generated on a matrix of order 100 and a blocksize 64.

- 12 -

As can be seen in this case, algorithm 1 (block jki) has fewer store operations over all and slightly

more load operations. We would expect this algorithm to perform better than algorithm 3 (block rank

update) and marginally faster than algorithm 2 (block Crout).

100 x 100 matrix

LU1 LU2 LU3___
Random LOADS 102530 108515 99965

STORES 33180 37455 90180

Diag LOADS 84100 90085 81535

Dominant STORES 14750 19025 71750

The row marked Diag Dominant reflects the fact that the matrix is diagonally dominant; thus, no pivoting

is performed during the factorization resulting in fewer memory references. (For these results, it was

assumed that the data would be held in the memory hierarchy once it was fetched for the operation, (i.e.,

fetched once for each block operation.)

9. Availability of the Tools

The software described in this report is available electronically vianetlib. To retrieve a copy, one

should send electronic mail to netlib@anl-mcs.apra. In the mail message type:

send map from anl-tools

A UNIX sharfile will be sent back. To build the parts, one need only sh the mail file (after removing the

mail header) into an empty directory and type ‘‘make’’. Two separate directories will be created, one

with the MAPI tools and the other with the MAPA tools.

10. Summary

We have discussed a set of tools for the graphical analysis of memory accesses within a Fortran

program. These tools allow users to view trace files generated by algorithms run on any computer.

Using such a tool provides insight into potential bottlenecks resulting from memoryaccesses.

While these ideas are still in the formative stages, we believe approaches along these lines will greatly

enhance the performance of programs and the underlying algorithm on shared-memory, high-

performance computers.

- 13 -

References

1. Alan J. Smith, ‘‘SunView Programmer’s Reference Manual,’’ Part No. 800-1345-02, Sun Microsys-

tems Inc, 2550 Garcia Ave, Mountain View CA 94043..

2. J. Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen, and D. Padua, ‘‘Prospectus for the

Development of a Linear Algebra Library for High-Performance Computers,’’ Argonne National

Laboratory Report, ANL-MCS-TM-97, September 1987.

3. J. J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, ‘‘An Extended Set of Fortran Basic

Linear Algebra Subprograms,’’ACM Trans. Math. Software, vol. 14, 1, pp. 1-17, March 1988.

4. J. J. Dongarra, F. Gustavson, and A. Karp, ‘‘Implementing Linear Algebra Algorithms for Dense

Matrices on a Vector Pipeline Machine,’’SIAM Review, vol. 26, 1, pp. 91-112, Jan. 1984.

5. J.J. Dongarra and D.C. Sorensen, ‘‘Linear Algebra on High-Performance Computers,’’ inProceed-

ings Parallel Computing 85, ed. U. Schendel, pp. 3-32, North Holland, 1986.

6. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, ‘‘Basic Linear Algebra Subprograms for Fortran

Usage,’’ACM Transactions on Mathematical Software, vol. 5, pp. 308-323, 1979.

7. U. Meier, ‘‘The Use of BLAS3 in Linear Algebra on a Parallel Processor with a Heirarchical

Memory,’’ SIAM J. Sci. Stat. Comput., vol. 8, 6, pp. 1079-1084, November 1987.

8. B. Parlett,IEEE Spectrum, Dec 1987.

