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Abstract .  This paper presents an adaptation of the Block Cyclic 
Reduction (BCR) algorithm for a multi-vector processor. The main 
bottleneck of BCR lies in the solution of linear systems whose 
coefficient matrix is the product of tridiagonal matrices. This 
bottleneck is handled by expressing the rational function 
corresponding to the inverse of this product as a sum of elementary 
fractions. As a result the solution of this system leads to parallel 
solutions of tridiagonal systems. Numerical experiments performed 
on an Alliant FX/8 are reported. 

1. In t roduct ion  

The numerical solution of linear elliptic partial differential equations is a problem of 
major importance in many fields of science and engineering. Aside from the traditional 
iterative methods, there exist several techniques that can solve many of the separable 
elliptic problems much faster [Hock7O], [BuGN70], [Swar84]. The most widely used of 
these .methods, which usually come under the general name Rapid Elliptic Solvers 
(RES), are based on either using the Fast Fourier Transform (FFT) to decouple the 
block tridiagonal systems into multiple scalar ones, or on using general Block Cgclic 
Reduction (BCR) as described in [Swee77], or finally, a combination of the above 
approaches as is the case in the FACR algorithm [Swar77], [Temp80]. For example, the 
solution of Poisson's equation on a rectangle discretized with an nXn grid, entails an 
asymptotic operation count of O(n logn and 0(n210g2n) for the (iterative) SOR and 1 AD1 methods respectively, but only ~ ( Y L  lagn) for the c.yclic reduction and FFT based 
methods. 

With the advent of vector and parallel architectures, researchers have concentrated 
their efforts on making the best use of the computational resources in order to increase 
the of these solvers [SaCK76], [OrVo85]. The FFT .based .methods are very 
suitable for such a task because of the amenability of the FFT to parallel computation 
P 
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and because of the immediate decoupling of the equations into multiple scalar tridiago- 
nal systems. Thus, the .dei.elopment of highly efficient algorithms for the parallel/vector 
solution of multiple tridiagonal systems as well as for the FFT were instrumental in the 
acceptance of this approach. On the other hand, and despite some important advan- 
tages, the BCR methods didn't fare as well and little can be found in the literature con- 
cerning the implementation of BCR based elliptic problem solvers on the new genera- 
tion supercomputers. The main reason for this is that as the BCR algorithm progresses, 
it appears that one must solve a steadily decreasing number of tridiagonal, systems, the 
coefficient matrix of each being a matrix polynomial. The difficulty in the standard 
implementation is  that one must solve in sequence a tridiagonal system per polynomial 
factor. 

In this paper we describe a new method which is used to overcome this sequential 
bottleneck and in turn introduce parallelism at each step of the computation. Our 
approach can be used with success on most of the new supercomputers. An important 
advantage of the method. is that it allows the efficient parallelization/vectorization of 
NCAR's FISHPACK (see [SwSw75]) which is entirely based on BCR for two- 
dimensional problems. 

The structure of the paper is as follows: Section 2 describes BCR and the computa- 
tional bottleneck for a parallel system, sections 3 and 5 describe the new algorithm, and 
section 4 discusses implementation issues. In section 6 we present some numerical exper- 
iments and in section 7 we propose a few tentative concluding remarks. 

2. Background: t h e  main  bottleneck in Buneman's algorithm. 

Consider a block tridiagonal system of the form 

where each block is an m Xm tridiagonal matrix and the sub-vectors vi and f are all, of 
size m. Such systems frequently arise when discretizing an elliptic partial differential 
equalion of the form 



with Dirichlet boundary conditions over, for example, a rectangular region. 

For simplicity we assume at first that the block-size n of the system (2.1) is of the 
form n = 2'-1. For a detailed description of the algorithm in the general case the 
reader is referred to (Swee771. At the the r-th step of BCR we have a system of the 
form: 

where h = 2', and each component of the right hand-side is put in the form 

Initially ( r  = 0) the vectors p,.(0) are zero while q,.(O) = f ,. Equations whose block index 
j is ddd are eliminated by multiplying each equation numbered 2 jh by A(') and adding 
to it equations (2j- l )h  and (2j+l)h.  This yields a system of half the size involving 
only equations whose indices are even multiples of h. Specifically, the general equation 
becomes 

The above equation is then rewritten such that the new right-hand-sides will have a 
form similar to (2.3) in step r+l. This is achieved by defining 



After p-1 steps of these transformations system (2.2) reduces to a system with a single 
block which can be solved directly. Then the back-substitution phase will consist of 
computing ujh, for the odd values of j, using the fact that for even values of j, the ujh 
have been computed in the previous step. Using (2.3), we see that we must compute, for 
j odd and j h s n :  

(4 (r)  -1 (r )  
'jh'pjh +( (qjh + u(j- l )h + '(j+l)h) ' P7) 

The above backward substitution steps are performed for h=2' decreasing from 2" to 
2'=1. In summary, Buneman's variant of BCR takes the following form: 

Algorithm 1 

(0) 1. Initialize: pi 4, *jO)=f  j, j=l, ..., n and h=l,  

2. Forward solution: 
(r )  (r )  (r )  a. Form the matrix Y, with columns q2jh + p(2j-l)h + p(2j-l)h, j = 1, ..., nr/2 

b. Solve the (mu1ti)- linear system A(~)X,  = Y, 
c. Update the vectors p and q according to (2.5) and (2.6). 
d. If h<n then h = 2h ; go to a. 

(4 3. ~ o l u e  for u ,  A u = q i r )  and set uh=ph + u. 

4. Backward substitution: while h ) l  do 
a. h = h/2 
b. Form the matrix Y, with column vectors q!') 

3h + u(j-l)h + u ~ + ~ ) ~  , j=1,3,5 ..., n/h. 
c. Solve for u,, A ( ~ ) u ~ = Y ,  
d. Update the solution vectors ujh, j=l, 3 , .. according to (2.7). 

The most time-consuming part of the above algorithm lies in the solution of the 
linear system in the forward and backward phases, i.e., in 2.b and 4.c. Clearly, the 
matrix A_(')  in never formed explicitly. In fact the way in which 2.a and 4.c are usually 
performed is by first observing that the matrix A"' is a known polynomial in A,  
specifically [Swee77] 

where Tk denotes the Chebyshev polynomial of the first kind of degree k and therefore 



(2 a'-1)n A, = 2 cos 

When implemented on a serial computer, the linear systems .corresponding to each 
of the factors and each of the right-hand-sides are solved in succession. Moreover, Gaus- 
sian elimination is used to solve these tridiagonal systems. On vector and parallel 
machines, these facts result in less efficient utilization of the available computational 
resources. An obvious but pa;tial remedy is to still use Gaussian elimination but solve 
for all the righthand-sides simultaneously. This will achieve good performance at  the 
beginning of the forward sweep and at  the end of the backward sweep since there are 
many such righthand-sides. However, looking a t  the forward solution step only, the 
number of right-hand-sides decreases exponentially ((n -1)/2 then (n -1)/4, . . ., I), 
while the number of factors increases in the reverse order. This means that this high per- 
formance can only be enjoyed at  the very first few steps. A similar situation occurs in 
the backward solution phase where the number of right-hand sides starts a t  one and 
then doubles a t  every step to reach the maximum number n/2 a t  the end of step 4. 

Another way of introducing parallelism is to use (scalar) cyclic reduction for the tri- 
diagonal systems. However, the cost of cyclic reduction in terms of operation ,count is 
high and its use may lead to disappointing speed-ups. This was in particular pointed 
out in [Saad87] in the context of Alternating Direction Implicit (ADI) methods. 

3. The new algori thm . 
In this section, we continue with the assumption that we are solving a problem with 

Dirichlet conditions on the boundary and with a rectangular grid of dimension nXm 
with n-3'-1. The basic prohlrzrn tan he solved at each step of BCR is of the form 

in which X and Y are matrices of dimension mXv. The usual way of solving (3.1) is by 
means of the .following algorithm: 

Algori thrr~ 2 
1. Set Xo=Y 
2. Do i=l,  ..., k 

a. Set Yi=Xi-l 
b. Solve ( A  -Xi I)Xi = Yi-l 

3. X=X, 



As was pointed out earlier when v is large enough, the amount of vectorization and 
parallelization that is available in each of the inner loops of the above algorithm with 
the standard Gaussian' elimination may be sufficient to deliver reasonable performance. ' 

The vector length with this simple approach is v so that when v is small, the delivered 
speed may become inadequate. 

To introduce the alternative we propose, we start by observing that we are seeking 
the matrix [ g k  (A)]-' Y=sk (A) Y where sk is the rational function 

We will need the following well-known elementary result: 

Lemma 1 . 

Every rational function 

where the deg;ee 1 of U ,  does not exceed k and where the poles X i  are all distinct, can 
be expanded in  terms of elementary fractions as follows 

where the scalars a,. are given by 

In the context of BCR the polynomials involved are Chebyshev polynomials of the 
first and second kind, so that the partial fraction coefficients can be easily calculated (cf. 
section 5). For example, in the case we are describing, f is given by (3.2) with 
gk (t)=2 Tk ( t  /2) and a little calculation shows that 

A9 s resnlt we can decompose the solution ,Y no 



where ai are given by (3.5). This leads to the following rival for Algorithm 2: 

Algorithm 3 
' 1.Do fori=1,2 ,..., k 

Solve (A -Xi I)Xi = Y 
1 

2. Compute X= CaiXi 
i-1 

The clear advantage of Algorithm 3 over Algorithm 2 is that the tridiagonal systems 
involving the matrix (A-Ail) are now decoupled and can be solved in parallel. In 
essence we have replaced a problem involving sequential solutions of tridiagonal linear 
systems by one which involves the simultaneous solution of independent tridiagonal 
linear systems and the linear combination of the partial results. 

Two important questions might be asked a t  this point. First there is the danger of 
instability: the algorithm is not acceptable if it produces wrong answers. A simple 
analysis based on the exact expressions of the ails shows that the process is extremely 
stable. This fact is also confirmed by the experiments. The second question concerns 
cost. The summation in step 2 of the algorithm involves an additional 
2kXm Xu=2Xm Xn operations to be added to the usual 5Xm Xn+SXkXm associated 
with the traditional algorithm 2. Thus the additional operation count is not negligible: 
approximately 40% for small k and 20% for large k. The above are approximate opera- 
tion counts obtained by dropping the less significant terms. Note however that this addi- 
tional work is perfectly amenable to parallelization and high performance can be 
achieved. 

4. Implementation issues 
The most difficult issue that one faces when implementing the approach outlined in 

Section 3 is the fact that in the course of BCK, the two parameters k,  the degree uf the 
polynorni~~l, and v the number of right-hand sides, vary widely from one outer step to 
the other. In fact the relation k ~ ( v + l ) = n + l  holds for the case when n is of the form 
2'-1 which means that the two numbers k and v+l will change' exponentially and in 
inverse proportion of each othcr. As a result one must employ different strategies for the 
various cases: k large but v small, v large and k small, etc. 

First, we discuss one way of implementing the algorithm for a multi-vector proces- 
sor architecture. The model architecture is that of an Alliant FX/8 which consists uf 8 
Computational Elements (CE's) each being a vector processor. From the above 
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discussion we must distinguish two cases. 

Case 1: v is large. Here one can vectorize the operations with respect to'the v r i g h t  
hand sides. Moreover if k is large enough (larger than the number of CE's) it is impor- 
tant to run concurrently the outer .loop of step 1 in Algorithm 3. However, this becomes 
ineffective as k goes below the number of CE's since then fewer CE's would be active. 
In this particular case it is preferable to run the outer loop sequentially and perform the 
vector operations within the subroutine in a vector concurrent mode. 

Case 2: k is large. The situation is the opposite of the previous one: vectorization of the 
operations should now be performed along the variables corresponding to the outer loop 
of Algorithm 3. Again the outer loop of step 1 in Algorithm 3 should be performed con- 
currently unless v the number of right-hand sides is smaller than the number of CE's in 
which case it should be executed sequentially, with the vector loops run in a vector- 
concurrknt mode. 

Next we should say a few words on how Algorithm 3 can be implemented on a vec- 
tor computer. Neither of the two approaches outlined above for the two different cases is 
likely to. be effective because the vector lengths will decrease very quickly. An  approach 
that seems best suited for a vector machine is to exploit the observation that at  every 
step we have in fact a large number, namely kXv, of tridiagonal systems to solve simul- 
taneously. This leads to a process which is vectorizable with vector length equal to 
kv=n+l-k > n/2 which will be satisfactory for reasonable size problems. These kv 
simultaneous tridiagonal systems are obtained by simply reproducing the tridiagonal 
matrix (A -Xi I) involved in the (multi) linear system (A -XiI)z=bi, i=1,2, ..., v for each 
different right-hand-side. Step 1 of Algorithm 3, is thereofre expanded into the simul- 
taneous solutio~j. of exactly kXv independent tridiagonal systems each with a single 
rightlhand-side. Although good performance can be achieved when n is large, this 
approach has a drawback which needs to be evaluated more carefully. Indeed, in order 
to achieve computations with vector lengths of kv, we must actually reproduce the com- 
puted data corresponding to forward solution in the tridiagonal solve v times. For exam- 
ple, in the first step we can compute in vector mode all the divisions 
'l/(all-Xi), i=1,2, ..., k then create a copy of the result for each of the v right hand sides. 
Although this involves no arithmetic, the price to pay may be far from negligible. 

5. The. g e n ~ r x l  case 

Sweet generalized the Buneman variant of BCR for general n and showed how it 
can be applied for any boundary conditions [Swee77]. We describe .here the.coefficients of . 

the expansions necessary for the application of our method for general n as well as Di.ri- 
chlet or Neumann boundary conditions. We .postpone the description of the detailed, 
generalized algorithms to a fortbcnming paper. Aa before, the key to the success of the 
method is the ability to express the matrix bloc'ks a t  each step of BCR as a rational or 



polynomial matrix forin. In fact, whereas before all the diagonal blocks in (2.2) involved 
the matrix polynomial A('), in the general ease the last diagonal block in (2.2) will b e  of 
the form B(')-~c(') which can be shown to be a rational function in A. In particular 
B ( ~ )  and c (~)  are matrix polynomials in A of degree kr and lr respectively, with 
kr = lr + 2r. Depending on the boundary conditions and dimensions, these will be Che- 
byshev polynomials of the first or the second kind. Specifically, following the notation in 
[Swee77], the systems that must be solved at  each step of the Buneman variant of BCR 
have one of the following five forms: 

and 

where Tk and Uk denote, respectively, the Chebyshev polynomials of the first kind 

Tk(cosO) = cos(k8), 

and of the second kind 

Note in particular that (4.1) arises when n = 2'-1 described in the previous sec- 
tion, (4.2) and (4.3) when n#2'-1 and with Dirichlet boundary conditions. (4.11, (4.4) 
and (4.5) arise in the corresponding circumstances but for Neumann boundary condi- 
tions. 

In product representation 

and 



where 

and 

t 
ak ( i )  = 2  cos-7r 

k + l  

From Lemma 1 it follows that we need to calculate: 

i )  f o r ( 4 . 1 )  

a t  t = p2. ( i )  ( i  = 1 ,  ..., 2 r ) ;  

ii) for (4.2) 

a t  t = a ( i )  - ( i  = 1,  ..., kr ) ;  
k ,  

iii) for (4 .3 )  

a t  t  = ok,(i) ( i  = 1,  ..., kr ) ;  

i v )  for (4 .4)  

6,. = T,, ( 2  . [$ Yi, ( t . ) ]  

at t = pk , ( i )  ( i  = 1 ,  ..., k r ) ;  

v) for (4.5) 
- 1 

, = 2 TI ,  ( 1  .,.rt12, [ $ [ , 1 )  ]I 
at  t  = p2 . ( i )  ( i  = 1,  ..., k r ) .  



, The lemma below follows after some algebraic manipulations and by using the rela- 
tion k,= = 2, + $ 
Lemma 2 

(-l)i-l (2 i -1)n 
a,. = . sin 

2' 2'+1 

2 pi = - . 2'in . in . sin- . sin- 
k, +l k, +l k, +1 

2 i n in 
9. = -. sin . sin- 

2 6. = - 2r-1(2i-1)7r (2 i -1)n . sin . sin 
r r 2% 

and 

2 Ci = - 2r(2i-1)7r (2 i -1)n . sin . sin 
r kr 2% 

6. Numerical Experiments 

We have applied our method to Poisson's equation 

u,, + Uyy = f (z'Y), 

on the unit square with Dirichlet boundary conditions. The right hand side f and the 
Dirichlet boundary conditions are defined so that the true solution is 

u(z ,y)  = sin 

This is identical with problem 11 of [RiHD81]. 

The resolution was chosen so ' that  the number of points in each direction is 
n = 2'-1, with /A ranging from 6 to 9. The resulting matrix has block dimension n X n  
with cach block being of siw nXn, 

Table 1 shows the timings and discretization errors for the original a n d  modified 
versions of the NCAR package running on the CSRD Alliant FX/8 system using version 
3 of the Concentrix operating system. All of the experiments were performed in double 
precision arithmetic. We note that the experiments were not done in single-user mode. 
~ e n c e  in order to reduce the effect, of other user jobs on the timings, the main program 
solved the problem 4 times and the total runtime was then averaged. Supporting our , 

previous comments regarding the error accumulationof the'new algorithms, we found 



that the maximum difference between the true and the computed solutions was the same 
for both methods. 

We should point out that the times reported are the total times and do not reflect 
the gains made in the steps which have been optimized namely the steps corresponding 
to solving the linear systems. If these were to be timed separately these gains could be 
substantially better especially for the smaller .grid-size problems. For example it is 
estimated that for the 255x255 grid, the time not t t r ibuted  to. the solution of linear 
systems takes up to 0.5 sec. 

Observe that as the grid-sizes increase the gains in total time appreciate steadily. 
This is to be expected from the very sequential nature of the original FISHPACK. For 
small grids the total gain in the linear systems is somewhat masked by the time spent in 
the parts of the algorithm that are not related to solving linear systems. Moreover, the 
benefits of vectorization and parallelization become visible only after a minimal vector 
length is available. Typically, on the Alliant FX/8, vector processing on each CE 
becomes more effective than scalar processing after the vector length exceeds 4. 

Finally, the times on one CE do not show a speed-up when the grid-size is below 
n=255. Our algorithm has been optimized for the 'case where the number of CE's is 8 
and does attempt to reduce the overhead when the number of processors is much 
smal1er:Here it would have been better to use the alternative proposed for vector proces- 
sors as discussed in Section 4. 

Table 1: Runtimes of the original andmodified FISHPACK on Alliant FX/8 

Dimension CE's Original times, New Times 

(set> (set> 

G 3 1 0.41 O,67 
6 3 4 0.32 0.22 
6 3 8 0.31 0.16 

127 1 1.93 2.03 
127 4 1.49 0.64 
127 8 1.43 0.44 

255 1 8.86 5.60 
255 4 6.82 1.70 
255 8 6.52 1.28 

511 8 - -  29.70 5.55 

.- 

-. 



7. Concluding remarks 

Our preliminary results indicate that the method described in this paper is a 
promising alternative to FFT-based RES. Its reliance on a simple partial fraction expan- 
sion, makes it possible to apply the same idea to problems with Neumann or periodic 
boundary conditions, to problems involving other coordinate systems, as well as to the 
more general separable elliptic problems. Because of the simplicity of the technique, 
great care must be taken in choosing the parallel tridiagonal solvers to be used. The 
proper choice depends on many factors, particularly the exact set of computational 
resources available and the proper balance between parallelism and vectorization at  each 
step of the computation. Moreover, it is important to note that using a square grid, as 
in the experiments, is a "worst case" situation. For any other rectangular grid, the 
improvement in speed with the new method will be even better. This is so, because of 
the strategy to vectorize and parallelize across systems, instead of seeking the vectoriza- 
tion within the tridiagonal system solver (e.g. using scalar cyclic reduction). A sys- 
tematic description of the method for each case of boundary conditions, values of 
n#2'-1, its stability properties, as well as comparisons with other methods will be given 
in a forthcoming paper. 

Acknowledgement. We would like to thank Kyle Gallivan for his helpful comments 
on the manuscript. 



Bibliography 

[BuGN70] 
I' 

B. Buzbee, G. Golub, and C. Nielson, On direct methods for solving Poisson's 
equationu SIAM J. Numer. Anal, vol. 7, pp. 627-656, (December 1970). 

[Hock701 
R. Hockney, "The Potential Calculation and Some Applications", in Methods Com- 
put. Phys., v. 9, pp. 135-211, Academic Press, (1970). 

[OrVo85] 
J, Ortega and R. Voigt, "Partial differential equations on vector adpa ra l l e l  com- 
puters", SIAM Review, pp. 213-240, (June 1985). 

[RiHD 8 11 
'1 J. Rice, E. Houstis and W. Dyksen, A population of linear, second order elliptic 

partial differential equations on rectangular domains. Part  I", Math. Comp., v. 36, 
pp. 479-484, (1981). 

[Saad87] 
Y. Saad, "On the design of parallel numerical methods in message passing and 
shared-memory environments", Proc. International Seminar on Scientific Supercom- 
puter, Paris, (2-6 February 1987). 

[SaCK7 61 
A. H. Sameh, S. C. Chen, D. J. Kuck, 'Parallel Poisson and biharmonic solvers", 
Computing, vol. 17, pp. 219-230 (1976). 

[Swar77] 
P. N. Swarztrauber, "The methods of cyclic reduction, Fourier analysis and the 
FACR algorithm for the discrete solution of Poisson's equation on a rectangle1', 
SIAM Review, v. 19, pp. 490-501, (July 1977). 

[S w ar8 41 
P. N. Swarztrauber, "F'ast Poisson solvers", in Studies in Numerical Analysis, G .  H. 
Golub ed., pp. 319-369, Mathematical Association of America, (1984). 

[SwSw75] 
P. Swarztrauber and R. Sweet, "Efficient Fortran subprograms for the solution of 
elliptic partial differential equationsM, NCAR Technical Note IA-109, Boulder, (July 
1975). 

[Swee77] 
R. A. Sweet, "A cyclic rcdi1r:tion algorithm for solving block tridiagonal systems of 
arbitrary dimension", SIAM J. Numer. Anal., vol. 14, pp. 707-720, (Septe~aber 
1977). 

[Temp801 
C. Temperton, "On the FACR(1) algorithm for the discrete ~oisson'e~uation",  J. of 
Comp. Physics, v. 34, pp. 314-329, (1980). 



BIBLIOGRAPHIC D A T A  11.. No- 12 13. Recipient 's  Accession No. . 
SHEET I CSRD-659 ' I I 

. . I. T i t l e  and Subtitle IS. Report Date 

I . . 

'. Author(s) 18. cerforrning Organization Rept. 

PARALLEL BLOCK CYCLIC REDUCTI'ON ALGORITHM FOR THE FAST 
SOLUTION OF ELLIPTIC EQUATIONS 

E. ~allo~oulos and Y. Saad NO. CSRD-659 
1. Performing Organization Name and Address ., 110. Project/Task/Work Unit No. 

A~ril 1987 
6. 

6 .  Abstracts  
This paper presents an adaptation of the Block Cyclic Reduction (BCR) algorithm for 
a multi-vector processor. . The main bottleneck of BCR,lies in the solution of linear 
systems whose coeff'icient matrix is the product of .tridiagonal .matrices. This 
bottleneck is handled .by expres,sing the.rationa1 function corresponding to the 
inverse of this.product as a sum of elementary fractions. As a result.the solu.tion 
of this system leads to. para1,leI. solu.tions of tridiagonal. systems. Numerical 
experiments performed on an Alliant FX/8 are reported. 

University of Illinois at Urbana-Champaign 
Center for ~ u ~ e r c o m ~ u t i n ~  Research and Development . 
Urbana, IL 61801-2932 

2 .  Sponsoring Organization Name and Address 

National Science Foundation, Washington, DC 
US Department of Energy, Washington, DC. 
US Air Force Office of Scientific Research, Washington, DC 
_IBM Cor~oration. Armogk. NY 

7. Key Words and Document Analysis .  170. Descriptors 

~ d l ~ s " ' ~ ~ ~ i y ~ " t # c p ~ -  &* 
JS DOE DE-FG02-85ER25001 
.KFOSR-85-0211; IBM Corp. 
13. Type  of .Report & Period 

Covered 

Technical ~ e ~ o r t  

14. 

7b. Identif iers/Open-Ended Terms 

15. Supplementary Notes 

17c. COSATI Field/Group 

21. No. of P a g e s  

14 
22. Pr ice  

18. Availabi!ity Statement 

Release Unlimited 

.- 
UNCLA~SIFIED 

%;M N T I S - 3 8  1.10-70) U F C ~ U U - ~ C  4 0 3 2 9 - ~ 7  

19..Security C l a s s  (This  
n r p o t t )  

UN - 
20. Securi-is 

P a g e  




