

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

CSRD Rpt. No. 659

DE88 003595

DISCLAIMER L

This report was prepared as an account of work.sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-

, ence herein to any specific comniercial product, process, or service by trade name, trademark,
manufacture;, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendationfor favoring'by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

A PARALLEL BLOCK CYCLIC REDUCTION ALGORITHM
FOR THE FAST SOLUTION OF ELLIPTIC EQUATIONS

E. Gallopoulos and Youcef Saad
1

April 1987

Center for Supercomputing Research and Development
University of Illinois
305 Talbot - 104 South Wright Street
Urbana, IL 81801-2933
Phone: (217) 333-6223

~h i s 'work was supported in part by the National Science Foundation under Grants No. US NSF DCR84-
10110 and NSF DCR85-09970, the U. S. Department of Energy under Grant No. US DOE-DEFGO2-
85ER25001, the U.S. Air Force Office of Scientific Research under Grant No. AFOSR-85-02
IBM Donation.

ERRATA (A parallel block cyclic reduction ..., CSRD report no. 069)

(1) p. 5 , 1 . 14: change n / 2 to (n+1) /2 .

(2) p. 6 , 1 . 13: (in Lemma 1) change does not exceed to 4s less than.

(3) p . 6 , 1. -15: change "40% for small k and 20%" to "20% for small k and 10%".

Inl1 I (4) p. 6 , 1 . -7: change n f l to -

(5) p. 8, 1. 20: change n+l-k&/2 to

A paraliel block cyclic reduction algorithm for the
".. fast solution of elliptic equations

E. Gallopoulos
Y. Saad

Center for Supercomputing Research and Development
University of Illinois at Urbana Champaign

Urbana, Illinois 61801
U. S .A.

Abstract . This paper presents an adaptation of the Block Cyclic
Reduction (BCR) algorithm for a multi-vector processor. The main
bottleneck of BCR lies in the solution of linear systems whose
coefficient matrix is the product of tridiagonal matrices. This
bottleneck is handled by expressing the rational function
corresponding to the inverse of this product as a sum of elementary
fractions. As a result the solution of this system leads to parallel
solutions of tridiagonal systems. Numerical experiments performed
on an Alliant FX/8 are reported.

1. In t roduct ion

The numerical solution of linear elliptic partial differential equations is a problem of
major importance in many fields of science and engineering. Aside from the traditional
iterative methods, there exist several techniques that can solve many of the separable
elliptic problems much faster [Hock7O], [BuGN70], [Swar84]. The most widely used of
these .methods, which usually come under the general name Rapid Elliptic Solvers
(RES), are based on either using the Fast Fourier Transform (FFT) to decouple the
block tridiagonal systems into multiple scalar ones, or on using general Block Cgclic
Reduction (BCR) as described in [Swee77], or finally, a combination of the above
approaches as is the case in the FACR algorithm [Swar77], [Temp80]. For example, the
solution of Poisson's equation on a rectangle discretized with an nXn grid, entails an
asymptotic operation count of O(n logn and 0(n210g2n) for the (iterative) SOR and 1 AD1 methods respectively, but only ~ (Y L lagn) for the c.yclic reduction and FFT based
methods.

With the advent of vector and parallel architectures, researchers have concentrated
their efforts on making the best use of the computational resources in order to increase
the of these solvers [SaCK76], [OrVo85]. The FFT .based .methods are very
suitable for such a task because of the amenability of the FFT to parallel computation
P

Thla work WM supported hy the National Scicilct Foundation under Grants No. US NSF DCR84-10110 and US NSF DCR85-
09970, the US Department of Energy under Grant No. DOE Dl%FGO2-85~RC6001, by !.hn 113 Air Force under Contract AFSOR-
85-0211, and the IBM donation.

and because of the immediate decoupling of the equations into multiple scalar tridiago-
nal systems. Thus, the .dei.elopment of highly efficient algorithms for the parallel/vector
solution of multiple tridiagonal systems as well as for the FFT were instrumental in the
acceptance of this approach. On the other hand, and despite some important advan-
tages, the BCR methods didn't fare as well and little can be found in the literature con-
cerning the implementation of BCR based elliptic problem solvers on the new genera-
tion supercomputers. The main reason for this is that as the BCR algorithm progresses,
it appears that one must solve a steadily decreasing number of tridiagonal, systems, the
coefficient matrix of each being a matrix polynomial. The difficulty in the standard
implementation is that one must solve in sequence a tridiagonal system per polynomial
factor.

In this paper we describe a new method which is used to overcome this sequential
bottleneck and in turn introduce parallelism at each step of the computation. Our
approach can be used with success on most of the new supercomputers. An important
advantage of the method. is that it allows the efficient parallelization/vectorization of
NCAR's FISHPACK (see [SwSw75]) which is entirely based on BCR for two-
dimensional problems.

The structure of the paper is as follows: Section 2 describes BCR and the computa-
tional bottleneck for a parallel system, sections 3 and 5 describe the new algorithm, and
section 4 discusses implementation issues. In section 6 we present some numerical exper-
iments and in section 7 we propose a few tentative concluding remarks.

2. Background: t h e main bottleneck in Buneman's algorithm.

Consider a block tridiagonal system of the form

where each block is an m Xm tridiagonal matrix and the sub-vectors vi and f are all, of
size m. Such systems frequently arise when discretizing an elliptic partial differential
equalion of the form

with Dirichlet boundary conditions over, for example, a rectangular region.

For simplicity we assume at first that the block-size n of the system (2.1) is of the
form n = 2'-1. For a detailed description of the algorithm in the general case the
reader is referred to (Swee771. At the the r-th step of BCR we have a system of the
form:

where h = 2', and each component of the right hand-side is put in the form

Initially (r = 0) the vectors p,.(0) are zero while q,.(O) = f ,. Equations whose block index
j is ddd are eliminated by multiplying each equation numbered 2 jh by A(') and adding
to it equations (2j- l)h and (2j+l)h. This yields a system of half the size involving
only equations whose indices are even multiples of h. Specifically, the general equation
becomes

The above equation is then rewritten such that the new right-hand-sides will have a
form similar to (2.3) in step r+l. This is achieved by defining

After p-1 steps of these transformations system (2.2) reduces to a system with a single
block which can be solved directly. Then the back-substitution phase will consist of
computing ujh, for the odd values of j, using the fact that for even values of j, the ujh
have been computed in the previous step. Using (2.3), we see that we must compute, for
j odd and j h s n :

(4 (r) -1 (r)
'jh'pjh +((qjh + u(j- l)h + '(j+l)h) ' P7)

The above backward substitution steps are performed for h=2' decreasing from 2" to
2'=1. In summary, Buneman's variant of BCR takes the following form:

Algorithm 1

(0) 1. Initialize: pi 4, *jO)=f j, j=l, ..., n and h=l,

2. Forward solution:
(r) (r) (r) a. Form the matrix Y, with columns q2jh + p(2j-l)h + p(2j-l)h, j = 1, ..., nr/2

b. Solve the (mu1ti)- linear system A(~)X, = Y,
c. Update the vectors p and q according to (2.5) and (2.6).
d. If h<n then h = 2h ; go to a.

(4 3. ~ o l u e for u , A u = q i r) and set uh=ph + u.

4. Backward substitution: while h) l do
a. h = h/2
b. Form the matrix Y, with column vectors q!')

3h + u(j-l)h + u ~ + ~) ~ , j=1,3,5 ..., n/h.
c. Solve for u,, A (~) u ~ = Y ,
d. Update the solution vectors ujh, j=l, 3 , .. according to (2.7).

The most time-consuming part of the above algorithm lies in the solution of the
linear system in the forward and backward phases, i.e., in 2.b and 4.c. Clearly, the
matrix A_(') in never formed explicitly. In fact the way in which 2.a and 4.c are usually
performed is by first observing that the matrix A"' is a known polynomial in A,
specifically [Swee77]

where Tk denotes the Chebyshev polynomial of the first kind of degree k and therefore

(2 a'-1)n A, = 2 cos

When implemented on a serial computer, the linear systems .corresponding to each
of the factors and each of the right-hand-sides are solved in succession. Moreover, Gaus-
sian elimination is used to solve these tridiagonal systems. On vector and parallel
machines, these facts result in less efficient utilization of the available computational
resources. An obvious but pa;tial remedy is to still use Gaussian elimination but solve
for all the righthand-sides simultaneously. This will achieve good performance at the
beginning of the forward sweep and at the end of the backward sweep since there are
many such righthand-sides. However, looking a t the forward solution step only, the
number of right-hand-sides decreases exponentially ((n -1)/2 then (n -1)/4, . . ., I),
while the number of factors increases in the reverse order. This means that this high per-
formance can only be enjoyed at the very first few steps. A similar situation occurs in
the backward solution phase where the number of right-hand sides starts a t one and
then doubles a t every step to reach the maximum number n/2 a t the end of step 4.

Another way of introducing parallelism is to use (scalar) cyclic reduction for the tri-
diagonal systems. However, the cost of cyclic reduction in terms of operation ,count is
high and its use may lead to disappointing speed-ups. This was in particular pointed
out in [Saad87] in the context of Alternating Direction Implicit (ADI) methods.

3. The new algori thm .
In this section, we continue with the assumption that we are solving a problem with

Dirichlet conditions on the boundary and with a rectangular grid of dimension nXm
with n-3'-1. The basic prohlrzrn tan he solved at each step of BCR is of the form

in which X and Y are matrices of dimension mXv. The usual way of solving (3.1) is by
means of the .following algorithm:

Algori thrr~ 2
1. Set Xo=Y
2. Do i=l, ..., k

a. Set Yi=Xi-l
b. Solve (A -Xi I)Xi = Yi-l

3. X=X,

As was pointed out earlier when v is large enough, the amount of vectorization and
parallelization that is available in each of the inner loops of the above algorithm with
the standard Gaussian' elimination may be sufficient to deliver reasonable performance. '

The vector length with this simple approach is v so that when v is small, the delivered
speed may become inadequate.

To introduce the alternative we propose, we start by observing that we are seeking
the matrix [g k (A)]-' Y=sk (A) Y where sk is the rational function

We will need the following well-known elementary result:

Lemma 1 .

Every rational function

where the deg;ee 1 of U , does not exceed k and where the poles X i are all distinct, can
be expanded in terms of elementary fractions as follows

where the scalars a,. are given by

In the context of BCR the polynomials involved are Chebyshev polynomials of the
first and second kind, so that the partial fraction coefficients can be easily calculated (cf.
section 5). For example, in the case we are describing, f is given by (3.2) with
gk (t)=2 Tk (t /2) and a little calculation shows that

A9 s resnlt we can decompose the solution ,Y no

where ai are given by (3.5). This leads to the following rival for Algorithm 2:

Algorithm 3
' 1.Do fori=1,2 ,..., k

Solve (A -Xi I)Xi = Y
1

2. Compute X= CaiXi
i-1

The clear advantage of Algorithm 3 over Algorithm 2 is that the tridiagonal systems
involving the matrix (A-Ail) are now decoupled and can be solved in parallel. In
essence we have replaced a problem involving sequential solutions of tridiagonal linear
systems by one which involves the simultaneous solution of independent tridiagonal
linear systems and the linear combination of the partial results.

Two important questions might be asked a t this point. First there is the danger of
instability: the algorithm is not acceptable if it produces wrong answers. A simple
analysis based on the exact expressions of the ails shows that the process is extremely
stable. This fact is also confirmed by the experiments. The second question concerns
cost. The summation in step 2 of the algorithm involves an additional
2kXm Xu=2Xm Xn operations to be added to the usual 5Xm Xn+SXkXm associated
with the traditional algorithm 2. Thus the additional operation count is not negligible:
approximately 40% for small k and 20% for large k. The above are approximate opera-
tion counts obtained by dropping the less significant terms. Note however that this addi-
tional work is perfectly amenable to parallelization and high performance can be
achieved.

4. Implementation issues
The most difficult issue that one faces when implementing the approach outlined in

Section 3 is the fact that in the course of BCK, the two parameters k, the degree uf the
polynorni~~l, and v the number of right-hand sides, vary widely from one outer step to
the other. In fact the relation k ~ (v + l) = n + l holds for the case when n is of the form
2'-1 which means that the two numbers k and v+l will change' exponentially and in
inverse proportion of each othcr. As a result one must employ different strategies for the
various cases: k large but v small, v large and k small, etc.

First, we discuss one way of implementing the algorithm for a multi-vector proces-
sor architecture. The model architecture is that of an Alliant FX/8 which consists uf 8
Computational Elements (CE's) each being a vector processor. From the above

8

discussion we must distinguish two cases.

Case 1: v is large. Here one can vectorize the operations with respect to'the v r i g h t
hand sides. Moreover if k is large enough (larger than the number of CE's) it is impor-
tant to run concurrently the outer .loop of step 1 in Algorithm 3. However, this becomes
ineffective as k goes below the number of CE's since then fewer CE's would be active.
In this particular case it is preferable to run the outer loop sequentially and perform the
vector operations within the subroutine in a vector concurrent mode.

Case 2: k is large. The situation is the opposite of the previous one: vectorization of the
operations should now be performed along the variables corresponding to the outer loop
of Algorithm 3. Again the outer loop of step 1 in Algorithm 3 should be performed con-
currently unless v the number of right-hand sides is smaller than the number of CE's in
which case it should be executed sequentially, with the vector loops run in a vector-
concurrknt mode.

Next we should say a few words on how Algorithm 3 can be implemented on a vec-
tor computer. Neither of the two approaches outlined above for the two different cases is
likely to. be effective because the vector lengths will decrease very quickly. An approach
that seems best suited for a vector machine is to exploit the observation that at every
step we have in fact a large number, namely kXv, of tridiagonal systems to solve simul-
taneously. This leads to a process which is vectorizable with vector length equal to
kv=n+l-k > n/2 which will be satisfactory for reasonable size problems. These kv
simultaneous tridiagonal systems are obtained by simply reproducing the tridiagonal
matrix (A -Xi I) involved in the (multi) linear system (A -XiI)z=bi, i=1,2, ..., v for each
different right-hand-side. Step 1 of Algorithm 3, is thereofre expanded into the simul-
taneous solutio~j. of exactly kXv independent tridiagonal systems each with a single
rightlhand-side. Although good performance can be achieved when n is large, this
approach has a drawback which needs to be evaluated more carefully. Indeed, in order
to achieve computations with vector lengths of kv, we must actually reproduce the com-
puted data corresponding to forward solution in the tridiagonal solve v times. For exam-
ple, in the first step we can compute in vector mode all the divisions
'l/(all-Xi), i=1,2, ..., k then create a copy of the result for each of the v right hand sides.
Although this involves no arithmetic, the price to pay may be far from negligible.

5. The. g e n ~ r x l case

Sweet generalized the Buneman variant of BCR for general n and showed how it
can be applied for any boundary conditions [Swee77]. We describe .here the.coefficients of .

the expansions necessary for the application of our method for general n as well as Di.ri-
chlet or Neumann boundary conditions. We .postpone the description of the detailed,
generalized algorithms to a fortbcnming paper. Aa before, the key to the success of the
method is the ability to express the matrix bloc'ks a t each step of BCR as a rational or

polynomial matrix forin. In fact, whereas before all the diagonal blocks in (2.2) involved
the matrix polynomial A('), in the general ease the last diagonal block in (2.2) will b e of
the form B(')-~c(') which can be shown to be a rational function in A. In particular
B (~) and c (~) are matrix polynomials in A of degree kr and lr respectively, with
kr = lr + 2r. Depending on the boundary conditions and dimensions, these will be Che-
byshev polynomials of the first or the second kind. Specifically, following the notation in
[Swee77], the systems that must be solved at each step of the Buneman variant of BCR
have one of the following five forms:

and

where Tk and Uk denote, respectively, the Chebyshev polynomials of the first kind

Tk(cosO) = cos(k8),

and of the second kind

Note in particular that (4.1) arises when n = 2'-1 described in the previous sec-
tion, (4.2) and (4.3) when n#2'-1 and with Dirichlet boundary conditions. (4.11, (4.4)
and (4.5) arise in the corresponding circumstances but for Neumann boundary condi-
tions.

In product representation

and

where

and

t
ak (i) = 2 cos-7r

k + l

From Lemma 1 it follows that we need to calculate:

i) f o r (4 . 1)

a t t = p2. (i) (i = 1 , ..., 2 r) ;

ii) for (4.2)

a t t = a (i) - (i = 1, ..., kr) ;
k ,

iii) for (4 .3)

a t t = ok,(i) (i = 1, ..., kr) ;

i v) for (4 .4)

6,. = T,, (2 . [$ Yi, (t .)]

at t = pk , (i) (i = 1 , ..., k r) ;

v) for (4.5)
- 1

, = 2 TI , (1 .,.rt12, [$ [, 1)]I
at t = p2 . (i) (i = 1, ..., k r) .

, The lemma below follows after some algebraic manipulations and by using the rela-
tion k,= = 2, + $
Lemma 2

(-l)i-l (2 i -1)n
a,. = . sin

2' 2'+1

2 pi = - . 2'in . in . sin- . sin-
k, +l k, +l k, +1

2 i n in
9. = -. sin . sin-

2 6. = - 2r-1(2i-1)7r (2 i -1)n . sin . sin
r r 2%

and

2 Ci = - 2r(2i-1)7r (2 i -1)n . sin . sin
r kr 2%

6. Numerical Experiments

We have applied our method to Poisson's equation

u,, + Uyy = f (z'Y),

on the unit square with Dirichlet boundary conditions. The right hand side f and the
Dirichlet boundary conditions are defined so that the true solution is

u(z ,y) = sin

This is identical with problem 11 of [RiHD81].

The resolution was chosen so ' that the number of points in each direction is
n = 2'-1, with /A ranging from 6 to 9. The resulting matrix has block dimension n X n
with cach block being of siw nXn,

Table 1 shows the timings and discretization errors for the original a n d modified
versions of the NCAR package running on the CSRD Alliant FX/8 system using version
3 of the Concentrix operating system. All of the experiments were performed in double
precision arithmetic. We note that the experiments were not done in single-user mode.
~ e n c e in order to reduce the effect, of other user jobs on the timings, the main program
solved the problem 4 times and the total runtime was then averaged. Supporting our ,

previous comments regarding the error accumulationof the'new algorithms, we found

that the maximum difference between the true and the computed solutions was the same
for both methods.

We should point out that the times reported are the total times and do not reflect
the gains made in the steps which have been optimized namely the steps corresponding
to solving the linear systems. If these were to be timed separately these gains could be
substantially better especially for the smaller .grid-size problems. For example it is
estimated that for the 255x255 grid, the time not t t r ibuted to. the solution of linear
systems takes up to 0.5 sec.

Observe that as the grid-sizes increase the gains in total time appreciate steadily.
This is to be expected from the very sequential nature of the original FISHPACK. For
small grids the total gain in the linear systems is somewhat masked by the time spent in
the parts of the algorithm that are not related to solving linear systems. Moreover, the
benefits of vectorization and parallelization become visible only after a minimal vector
length is available. Typically, on the Alliant FX/8, vector processing on each CE
becomes more effective than scalar processing after the vector length exceeds 4.

Finally, the times on one CE do not show a speed-up when the grid-size is below
n=255. Our algorithm has been optimized for the 'case where the number of CE's is 8
and does attempt to reduce the overhead when the number of processors is much
smal1er:Here it would have been better to use the alternative proposed for vector proces-
sors as discussed in Section 4.

Table 1: Runtimes of the original andmodified FISHPACK on Alliant FX/8

Dimension CE's Original times, New Times

(set> (set>

G 3 1 0.41 O,67
6 3 4 0.32 0.22
6 3 8 0.31 0.16

127 1 1.93 2.03
127 4 1.49 0.64
127 8 1.43 0.44

255 1 8.86 5.60
255 4 6.82 1.70
255 8 6.52 1.28

511 8 - - 29.70 5.55

.-

-.

7. Concluding remarks

Our preliminary results indicate that the method described in this paper is a
promising alternative to FFT-based RES. Its reliance on a simple partial fraction expan-
sion, makes it possible to apply the same idea to problems with Neumann or periodic
boundary conditions, to problems involving other coordinate systems, as well as to the
more general separable elliptic problems. Because of the simplicity of the technique,
great care must be taken in choosing the parallel tridiagonal solvers to be used. The
proper choice depends on many factors, particularly the exact set of computational
resources available and the proper balance between parallelism and vectorization at each
step of the computation. Moreover, it is important to note that using a square grid, as
in the experiments, is a "worst case" situation. For any other rectangular grid, the
improvement in speed with the new method will be even better. This is so, because of
the strategy to vectorize and parallelize across systems, instead of seeking the vectoriza-
tion within the tridiagonal system solver (e.g. using scalar cyclic reduction). A sys-
tematic description of the method for each case of boundary conditions, values of
n#2'-1, its stability properties, as well as comparisons with other methods will be given
in a forthcoming paper.

Acknowledgement. We would like to thank Kyle Gallivan for his helpful comments
on the manuscript.

Bibliography

[BuGN70]
I'

B. Buzbee, G. Golub, and C. Nielson, On direct methods for solving Poisson's
equationu SIAM J. Numer. Anal, vol. 7, pp. 627-656, (December 1970).

[Hock701
R. Hockney, "The Potential Calculation and Some Applications", in Methods Com-
put. Phys., v. 9, pp. 135-211, Academic Press, (1970).

[OrVo85]
J, Ortega and R. Voigt, "Partial differential equations on vector adpa ra l l e l com-
puters", SIAM Review, pp. 213-240, (June 1985).

[RiHD 8 11
'1 J. Rice, E. Houstis and W. Dyksen, A population of linear, second order elliptic

partial differential equations on rectangular domains. Part I", Math. Comp., v. 36,
pp. 479-484, (1981).

[Saad87]
Y. Saad, "On the design of parallel numerical methods in message passing and
shared-memory environments", Proc. International Seminar on Scientific Supercom-
puter, Paris, (2-6 February 1987).

[SaCK7 61
A. H. Sameh, S. C. Chen, D. J. Kuck, 'Parallel Poisson and biharmonic solvers",
Computing, vol. 17, pp. 219-230 (1976).

[Swar77]
P. N. Swarztrauber, "The methods of cyclic reduction, Fourier analysis and the
FACR algorithm for the discrete solution of Poisson's equation on a rectangle1',
SIAM Review, v. 19, pp. 490-501, (July 1977).

[S w ar8 41
P. N. Swarztrauber, "F'ast Poisson solvers", in Studies in Numerical Analysis, G . H.
Golub ed., pp. 319-369, Mathematical Association of America, (1984).

[SwSw75]
P. Swarztrauber and R. Sweet, "Efficient Fortran subprograms for the solution of
elliptic partial differential equationsM, NCAR Technical Note IA-109, Boulder, (July
1975).

[Swee77]
R. A. Sweet, "A cyclic rcdi1r:tion algorithm for solving block tridiagonal systems of
arbitrary dimension", SIAM J. Numer. Anal., vol. 14, pp. 707-720, (Septe~aber
1977).

[Temp801
C. Temperton, "On the FACR(1) algorithm for the discrete ~oisson'e~uation", J. of
Comp. Physics, v. 34, pp. 314-329, (1980).

BIBLIOGRAPHIC D A T A 11.. No- 12 13. Recipient 's Accession No. .
SHEET I CSRD-659 ' I I

. . I. T i t l e and Subtitle IS. Report Date

I . .

'. Author(s) 18. cerforrning Organization Rept.

PARALLEL BLOCK CYCLIC REDUCTI'ON ALGORITHM FOR THE FAST
SOLUTION OF ELLIPTIC EQUATIONS

E. ~allo~oulos and Y. Saad NO. CSRD-659
1. Performing Organization Name and Address ., 110. Project/Task/Work Unit No.

A~ril 1987
6.

6 . Abstracts
This paper presents an adaptation of the Block Cyclic Reduction (BCR) algorithm for
a multi-vector processor. . The main bottleneck of BCR,lies in the solution of linear
systems whose coeff'icient matrix is the product of .tridiagonal .matrices. This
bottleneck is handled .by expres,sing the.rationa1 function corresponding to the
inverse of this.product as a sum of elementary fractions. As a result.the solu.tion
of this system leads to. para1,leI. solu.tions of tridiagonal. systems. Numerical
experiments performed on an Alliant FX/8 are reported.

University of Illinois at Urbana-Champaign
Center for ~ u ~ e r c o m ~ u t i n ~ Research and Development .
Urbana, IL 61801-2932

2 . Sponsoring Organization Name and Address

National Science Foundation, Washington, DC
US Department of Energy, Washington, DC.
US Air Force Office of Scientific Research, Washington, DC
_IBM Cor~oration. Armogk. NY

7. Key Words and Document Analysis . 170. Descriptors

~ d l ~ s " ' ~ ~ ~ i y ~ " t # c p ~ - &*
JS DOE DE-FG02-85ER25001
.KFOSR-85-0211; IBM Corp.
13. Type of .Report & Period

Covered

Technical ~ e ~ o r t

14.

7b. Identif iers/Open-Ended Terms

15. Supplementary Notes

17c. COSATI Field/Group

21. No. of P a g e s

14
22. Pr ice

18. Availabi!ity Statement

Release Unlimited

.-
UNCLA~SIFIED

%;M N T I S - 3 8 1.10-70) U F C ~ U U - ~ C 4 0 3 2 9 - ~ 7

19..Security C l a s s (This
n r p o t t)

UN -
20. Securi-is

P a g e

