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Abstract. Due to the packaging problem, the implementation of computing arrays on chips is constrained to 
certain pin limitation. This paper introduces two basic techniques for pin reduction without lowering computa- 
tional efficiency in systolic designs. We exhibit the ideas through the synthesis of a systolic array with very few 
I / O  pins for polynomial division. 

Keywords. Systolic array, polynomial division, data dependence graph, space-time mapping, pin reduction. 

1. Introduction 

The dramatic development of the very large scale integration (VLSI) technology has made it 
possible to implement algorithms directly in hardware and hence promoted a great deal of 
interests in designing algorithmically specialized processing components. Following Kung's 
systolic concept [7-9], many computing arrays have been proposed to handle various compute- 
bound problems. These arrays are formed by regularly connected processing elements (PEs) in 
which data are communicated locally and operated on rhythmically. The simplicity, regularity 
and locality of the systolic arrays render them suitable for VLSI implementation. High 
performances are achieved by the concurrent use of large amount of PEs in the arrays. 

Recently, there have been considerable efforts focused on systematic methods for synthesiz- 
ing systolic arrays [2]. For more recent developments see [3,5,10,11,16] also. Due to the 
packaging problem, the implementation of computing arrays on chips is constrained to certain 
pin limitation. However, none of those methods deals with the pin problem. In other words, the 
systolic arrays designed with those methods often require a large number of external I / O  
connections. One way of reducing the pins is to partition the problem on a small-sized array 
[14,15]. But, the restricted number of PEs in the array will unavoidably downgrade the 
computation concurrency of the array. 

In this paper, we shall adapt Moldovan's synthesis method [13,14] and provide two basic 
techniques for pin reduction without lowering computational efficiency in designing systolic 
arrays. The idea is to identify the data dependencies of a given problem to form a data 
dependence graph, transform it to one that represents a systolic array. An exceeding number of 
I / O  pins will occur when there are too many data flows (in the dependence graph) which are 
'orthogonal' to the target PE space. A technique which we call variable duplication will be 
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applied to redirect the pin-producing data flows and thereby substantially reduce the pin 
number. Another technique called variable substitution can be employed to replace inactive 
data flows by others and hence reduce the pins further. We'll exhibit these ideas through the 
synthesis of a systolic array with very few I / O  pins for polynomial division. 

Polynomial division is fundamental to algebraic computations [1], decoder implementation 
[12], signal/image processing [4] and synthesis and analysis of control systems [6]. Zak and 
Hwang have proposed a linear systolic array for this problem [17]. In their design, repeated 
coefficients of the divisor polynomial are required to enter each PE and coefficients of the 
resulting quotient polynomial are emitted from different PEs. The number of I / O  pins depends 
on the degree of the quotient polynomial. Based on our techniques, we will ultimately reduce 
the pin number to just 4 when counted wordwise. 

2. A systolic array with too many pins 

It is well known that if F ( x )  = ao xm + • • • + a m _ i X  + a m and G ( x )  = bo xn + • • • +bn_ lx  + 
b n (G(x)4= 0) are two polynomials with real coefficients and of degree m and n (0 < n ~< m) 
respectively, there exist unique polynomials Q ( x )  and R ( x ) ,  the quotient and remainder, such 
that 

F ( x ) = G ( x ) Q ( x ) +  R ( x ) ,  O<~ deg R ( x ) < d e g  G ( x ) .  

Here is the ordinary sequential algorithm to compute Q ( x )  and R(x) :  

1. Q ( x )  ~ O. 
2. If deg F ( x )  < deg G ( x )  then R ( x )  ~ F(x) ;  stop. 
3. q ~ leading coefficient of F ( x )  / leading coefficient of G ( x ) .  
4. k ~ deg F ( x ) -  deg G(x).  
5. F ( x )  ~ F ( x )  - q x k G ( x ) .  

6. Q ( x )  ~ O ( x )  + qx k. 

7. Go to 2. 

Following the algorithm, the commonly used synthetic division can be laid out as follows: 

b 0 b 1 ... b~ 
ql q2 " ' "  qm-n+l 

a o  a l  . . .  a n . . .  a m 
qlbl  . . .  qab, 

a~ 1~ . . .  a(n 1} . . .  a ~  ) 

a{m~__- n) . . .  a~  m-n) 

qm_n+lbl . . .  qm_n+lbn 

F 0 . . .  r n _  1 

We may abstractly view this algorithm as computation activities on the index set {(i, j )  l1 ~< 
i ~< m + 1, 1 ~< j ~< m - n + 1 }, and express them by the following recursive equations: 
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/ *  Initialization * / 
aio = ai  - ] f o r l ~ < i < ~ m + l ,  

bm={bo~ for O ~ i ~ < n ,  
for n +  l ~ i ~ m ,  

q0j--O f o r l ~ < j ~ m - n + l ,  

1 i f / = 0 ,  
c i°= 0 i f l~< i~<m;  

/ *  Propagation & Execution * / 

bij = bi_ 1,j- 1, 

Cij  ~ Ci-- 1 , j - -  1 ," 

I a i , j _ l / b i_ l , j _  i f c i_ l , j_  1 = 1 ,  

qij = [ q~_ 1,j if c i_ 1,j- 1 = 0, 

0 if  C i - l , j - I  = 1, 
aid = 

a i , j - 1  -- q i - l , j  b i - l , j - 1  if  C i _ l , j _  I = O; 

/ *  Termination * / 

qj = qm+ lo for l <<.j <~ rn - n + l .  

If computation at index point (i, j )  depends on the outcome of computation at index point 
( i ' ,  j ' ) ,  the vector [ i - i ' j - - j ' ] T  stands for a data dependency. For  example, since the 
computation of cij depends on a~,j_ 1, q i - ld ,  bi-1,/-1,  Ci-l , j-1,  so [0 1] T, [1 0] T, [1 1] T are all 
dependence vectors. From the above recursive equations, all data dependencies can be 
identified to form a data dependence graph, as shown in Fig. 1. 

In order to map this data dependence graph into a systolic array, we seek for a linear 
M - -  T transformation represented by a 2 X 2 matrix - [s ], where T is a time mapping and S is a 

space mapping. That is, the computation indexed by (i, j )  will be performed at the time step 
T[ i j ]  T in the PE enumerated by S[ i j ]  T. The choice of M is constrained to the conditions: 
Td > 0 for all dependence vectors d and M is nonsingular, for apparent reasons. For the 

COO Cl0 c20 C30 ca0 C50 

al0 a20 a30 a40 a50 a60 

boo ~0 b20 b30 b40 bso 

qo~ 

%2 

q03 

q04 

-..........--~ ~-- - - - -~  . . . . .  

----- ,  a - - ¢  _4, " ,3  " 

Fig. 1. Data dependence graph of polynomial division. 
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a5 a4 a3 a2 a l  

0 0 0 b2 bl 

0 0 0 0 0 

ql 

q2 

q3 

q4 

ao ~ '  " 

b0 

1 

qout 

bout 

Cln - - -~  ~--~ Cout 

Fig. 2. A systolic array with too m a n y  I / O  pins.  

I f  Cin = 1 
then [ q := ain / bin ; qout := q ; 

aout := 0 ; bout := bin ; cou t  := Cin ] 
else [ aou t := ain - q * bin ; 

bou t :=b in  ; cou t  := cin ] 

example above, we especially choose T = [1 1] and S = [0 1] for the purpose of optimization. 
The resulting systolic array is depicted in Fig. 2, where each D on a connection means an extra 
delay unit. The function of PEs, which can naturally deduced from the recursive equations, is 
also specified there. 

The total computation time can be calculated as 

T[m_n+am+l ]_T[ll]+l=2m_n+l. 
The number  of PEs in the array is 

S[m_n+lm+l ]-S[~]+l=m-n+l. 
The computation time is optimal due to the following facts. First, we can find a directed 

path in the data dependence graph (i.e., Fig. 1) with 2(m - n) + 1 index points (1, 1), (2, 1), 
(2, 2), (3,2) . . . . .  (m-n, m-n), ( r n - n + l ,  m-n), ( m - n + l ,  m - n + l )  such that the 
sequence of the computations on these points must be preserved by any parallel implementa- 
tion of the synthetic division. This implies that 2(m - n) + 1 time steps are required to produce 
qm-n+l" Second, all the computations on the n index points (i, rn - n + 1), m - n + 2 ~< i ~< m 
+ 1, depend on qm-n+l, which is generated at ( m - n  + 1, m -  n + 1), and no broadcast is 
allowed in a temporally local systolic array, we need n more steps to produce the remainder 
polynomial. Therefore, at least 2(m - n) + 1 + n = 2m - n + 1 time steps are required for the 
whole computation. Although this systolic array achieves optimal computat ion time, it has a 
severe pin problem. The coefficients of R(x) are emitted all from the rightmost PE, however, 
different coefficients of Q(x) are output from different PEs, through the upward pins. When 
counted wordwise, there are m - n + 5 I / O  pins in total. 

3. Pin reduction techniques 

The exceeding amount  of pins for outputting polynomial Q(x) occurs because the data 
flows of the variable q are 'or thogonal '  to the target PE base [0 1] T. It is therefore desirable to 
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'redirect '  the data flows in order to reduce the pins. What  we propose is a technique called 
variable duplication. We duplicate qii by variable qi; right after it is computed, and make qi'i 
move along the target PE base. The recursive equations are now rewritten as follows: 

/ .  Initialization * /  

a io=a i_a  for 1 ~< i ~ < m +  1, 

= [ b ~  fo r0~<i~<n ,  
bio 

0 f o r n + l < , < i < ~ m ,  

q 0 j = 0  for l <~ j <~ m - n + l ,  

t q~0=0 for l ~ < i ~ < m + l ,  

1 for i = 0, 
c~°= 0 f o r l ~ < i ~ < m ;  

/ * Propagation & Execution * / 

bij = b i -  1 , j -  1, 

Cij~-- C i _ l , j _ l ,  

a i , j _ l / b i _ l . j _  if c~_l,j_ l = 1, 

q~i = q i - l , j  if ci_l , j_ 1 = O, 

, ( a i . j _ l / b i _ l , j _  1 if Ci-l , j-1 = 1, 

q~s= t ' if C~_lj_ 1 = 0, q i , j -  1 

0 if G-1, j -1  = 1, 

a i j  = a i , j - 1  -- q i - l , )  b i - l , j - 1  if Ci_l ,  j - -  1 = 0 ;  

/ *  Termination * / 

qj=q~n-n+l , j  f o r l  < j < m - n +  l .  

Again the data dependencies can easily be identified and the formed data dependence graph 
be mapped by exactly the same space-time transformation as the one used in the previous 
section. The desired linear systolic array, as depicted in Fig. 3, has no upward output pins since 
the variables q,j do not act as output variables any more. The number  of pins becomes 5, a 
constant which is independent of the problem size. 

Another technique which we call variable substitution can be applied to reduce the pins 
further. Due to fact that the variables a i j  , 1 < i ~<j ~< m - n + 1, are not used for any operation 

t 
at all, the variables q,j can be substituted by a~j there and are totally eliminated from the 

qa q'3 q~ q'~ <q q q qL a6 a 5  a 4  a 3  a l  ao 

0 0 0 b2 bl bo 

0 0 0 0 0 1 

Fig. 3. A systolic array derived with variable duplication. 
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recursive equations. This brings us the following recursive equations for polynomial division: 

/ *  Initialization * / 

a,0---a,_ 1 f o r l ~ < i ~ m + l ,  

= [ b  i f o r 0 ~ < i ~ n ,  
bio 

0 f o r n + l < ~ i ~ < m ,  
q 0 j = 0  f o r l < ~ j ~ m - n + l ,  

if,_-0, 
ci° = if 1 ~< i ~< m; 

/ *  Propagation & Execution * / 

b,j = b i_ 1 .j - 1, 

Cij = C i _ l , j _ l ,  

{ ag, j_l /b~_l , j_  1 if cg_l.j_ 1 = 1, 

q o  = qi-  1,j if C i_ 1,j- 1 = 0, 

I a i , j _ l / b i _ l . j _  if C i _ l , j _  1 ~- 1, 

a i j  = ~ a i , j  --  q i - l , j  b i - l , j - 1  if C i _ l , j _  1 = 0 ;  

/ *  Termination * /  

q j= am_n+l ,  j f o r l ~ j ~ m - n + l .  

The corresponding data dependence graph is the same as in Fig. 1. By the same space-time 
transformation, we reach the desired systolic design which is depicted in Fig. 4. In this design, 
all the input data are fed into the array through the leftmost PE and all the output data are 
delivered from the rightmost PE. The number  of pins is reduced to 4 finally. 

Let's use F ( x )  = 8x 4 + 2x 3 - 2 x  2 + 4 x  + 5 and G ( x )  = 2 x  2 - 4 x  + 1 as an example to 
demonstrate the operations of the new linear systolic array. In Fig. 5 all the intermediate results 
of different time steps are shown. Steps 3, 4, 5 produce the three coefficients of Q ( x )  = 4 x  2 q- 

9x + 15 and then steps 6, 7 produce the two coefficients of R ( x )  = 55x - 10. 

4. Concluding remarks 

Through the synthesis of a systolic array with only 4 I / O  pins for polynomial  division, we 
have fully illustrated two basic techniques for pin reduction. Variable duplication on the data 

a5 a4  a 3  a 2  a t  

0 0 0 b2 bl 

0 0 0 0 0 

b0 

1 

aout If c i n = l  
then [ q := ain/bin ;aout := q; 

bout bout :=  bin ; cout :=  Cin ] 

c i n ~  ~ cout else [ aout:= ain - q 'bin ; 
bout := bin ;cout := Cin ] 

Fig. 4. The new linear systolic array. 
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time = 0 5 4 -2 2 

0 0 1 -4 

0 0 0 0 
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1 

time = 1 

time = 2 

time = 3 

4 -2 2 ---~ ~ ~ " ' ~  ['- '--~ 

~ 4 ~ 0 ~ 0 [ 0 1 -4 

0 0 0 

5 4 -2 A 18 4 

I 0 0 1 

0 0 0 

5 4 ~  

0 0 

0 0 

time = 4 

0 

0 

time = 5 

time = 6 

time = 7 

Fig. 5. Snapshots of the new linear systolic array. 

dependence graph can be utilized to change data flow direction and reduce the problem-size- 
dependent number of pins to a constant. Variable substitution can then be applied to reuse 
some inactive variables and hence reduce the I / O  pins further. In the example of polynomial 
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divis ion,  the  p i n  r e d u c t i o n  does n o t  affect  c o m p u t a t i o n  eff ic iency,  local  m e m o r y  r e q u i r e m e n t s  
a n d  d a t a  p ipe l in ing .  T h e  p i n  p r o b l e m  has  s o m e h o w  b e e n  i gno red  b y  m a n y  syn thes i s  me thods .  
W e  bel ieve  tha t  the  resul t  p r e s en t ed  in  this  p a p e r  will  l ead  to m o r e  sys t ema t i c  t r e a t m e n t s  o n  

this  i m p o r t a n t  subject .  
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